Stress Tests and Information Disclosure

Itay Goldstein (Wharton)

Yaron Leitner (Philadelphia Fed)¹

September 2015

¹The views expressed here are those of the authors and do not necessarily reflect those of the Federal Reserve Bank of Philadelphia or of the Federal Reserve System.

Goldstein & Leitner ()

Stress Tests and Information Disclosure

September 2015 1 / 28

- The paper is about whether a regulator should disclose information about banks.
- Very controversial. For example, with regards to disclosure of stress tests results:
 - Fed Governor Tarullo expresses support for wide disclosure as it "allows investors and other counterparties to better understand the profiles of each institution."
 - But the Clearing House Association is concerned of "unanticipated and potentially unwarranted and negative consequences to covered companies and U.S. financial markets." (WSJ, 2012)

- A new theory of (optimal) disclosure, focusing on the following tradeoff:
 - Disclosure harms risk sharing arrangements among banks. (Relates to Hirshleifer effect.)
 - But some disclosure may be necessary to prevent a market breakdown.
- We find that:
 - During normal times, no disclosure is optimal.
 - During bad times, some disclosure is necessary. We characterize its optimal form; e.g., under what conditions a simple cutoff rule is optimal.

- In our model, risk sharing takes a simple form:
 - A bank has an asset that yields a random cashflow.
 - The bank can replace the random cash flow with a deterministic cashflow by selling the asset in a competitive market.
- The sale price and hence the bank's ability to share risk depends on the regulator's disclosure policy.
- The regulator does not inject money in our model. (We discuss extensions.)

- Bayesian persuasion games (e.g., Kamenica & Gentzkow, 2011)
- Disclosure
 - by regulator (e.g., Morris & Shin, 2002; Angeletos & Pavan, 2007; Prescott, 2008; Leitner, 2012; Bond & Goldstein, 2012; Bouvard, Chaigneau & de Motta, 2013; Shapiro & Skeie, 2013; Goldstein & Sapra, 2014; Gick and Pausch, 2014; Andolfatto, Berentsen, and Waller, 2014)
 - by firm (e.g., Diamond, 1985; Fishman & Hagerty, 1990, 2003; Adamati & Pflediderer, 2000)
 - by credit rating agencies (e.g., Lizzeri, 1999; Kartasheva & Yilmaz, 2012; Goel and Thakor, 2015)
- Market incompleteness based on Hirshleifer effect vs. adverse selection (Marin & Rahi, 2000)
- Financial networks (e.g., Allen & Gale, 2000; Leitner, 2005)

- There is a bank, a regulator (planner), and a perfectly competitive market.
- The bank has an asset that yields $\tilde{ heta} + \tilde{ heta}$. $\tilde{ heta} \perp \tilde{ heta}$, $E(\tilde{ heta}) = 0$
- The bank can sell its asset in the market for an amount x (derived endogenously).
- Everyone is risk neutral, and the risk-free rate is 0%.
- Hence, $x = E[\tilde{\theta} + \tilde{\varepsilon} \mid \text{market information}].$
- Bank's final cash holding: $z = \begin{cases} x & \text{if bank sells asset} \\ \tilde{\theta} + \tilde{\epsilon} & \text{if bank keeps asset} \end{cases}$

• Bank's final payoff is

$$R(z) = \begin{cases} z & \text{if } z < 1\\ z + r & \text{if } z \ge 1 \end{cases} \qquad (r > 0)$$

- Several motivations: project, debt liability, bank run
- Results hold for more general specifications.
- Bank maximizes E[R(z)] bank's information].

- $\tilde{\theta}$ is drawn from a finite set $\Theta \subset \mathbb{R}$ according to $p(\theta) = \Pr(\tilde{\theta} = \theta)$.
- $\tilde{\epsilon}$ is drawn from a continuous cumulative distribution function *F*.
- Probability structure (i.e., functions p and F) is common knowledge.
- Assume: $\theta_{\max} \ge 1$, $F(1 \theta_{\min}) < 1$, $F(1 \theta_{\max}) > 0$.

- Planner observes the realization of $\tilde{\theta}$ (denoted by θ).
- Market does not observe θ .
- As for the bank, we focus on 2 cases:
 - **1** Bank does not observe θ .
 - 2 Bank observes θ .
- In both cases, no one observes the realization of $\tilde{\epsilon}$.

- Before observing θ, the planner chooses (and publicly announces) a disclosure rule.
- A disclosure rule is a set of "scores" S, and a function that maps each type to a distribution over scores. (Without loss, S is finite.)
- Denote

$$g(s| heta) = \mathsf{Pr}(ilde{s} = s| ilde{ heta} = heta)$$

$$\mu(s) = E[\tilde{\theta} + \tilde{\varepsilon}|\tilde{s} = s)] = \frac{\sum_{\theta \in \Theta} \theta p(\theta) g(s|\theta)}{\sum_{\theta \in \Theta} p(\theta) g(s|\theta)}$$

- The planner can commit to the chosen disclosure rule.
- Planner's objective: maximize expected total surplus.
- Same as maximizing bank's expected payoff across all types.

- The planner chooses a disclosure rule and publicly announces it.
- **②** The bank's type θ is realized and observed by the planner. (In case 2, θ is also observed by the bank.)
- Interplanner assigns the bank a score s and publicly announces it.
- The market offers to purchase the asset at a price x(s).
- **(3)** The bank chooses whether to keep its asset or sell it for a price x(s).
- The residual noise ε is realized. So, z and R(z) are determined.
- Essentially, a score is a price recommendation to the market.

- Bank's action depends only on *s*, and so does not convey additional information to the market.
- Hence, the market sets a price $x(s) = \mu(s)$.
- Hence, in equilibrium the bank sells if and only if $\mu(s) \ge 1$. (Explain.)

• Expected payoff for type θ , given disclosure rule (S, g):

$$u(\theta) = \sum_{s: \mu(s) < 1} [\underbrace{\theta + r \operatorname{Pr}(\tilde{\varepsilon} \geq 1 - \theta)}_{\text{bank keeps asset}}]g(s|\theta) + \sum_{s: \mu(s) \geq 1} [\underbrace{\mu(s) + r}_{\text{bank sells}}]g(s|\theta)$$

- The planner chooses (S,g) to maximize $\sum_{\theta\in\Theta} p(\theta)u(\theta)$.
- Same as maximizing

$$\sum_{ heta \in \Theta} p(heta) \operatorname{\mathsf{Pr}}(ilde{arepsilon} < 1 - heta) \sum_{s: \mu(s) \geq 1} g(s| heta).$$

- We can focus (without loss) on disclosure rules that assign at most two scores, s_1 and s_0 , such that $\mu(s_1) \ge 1$ and $\mu(s_0) < 1$.
- $h(\theta)$: probability of obtaining the "high" score s_1 .

Lemma

The planner's problem reduces to choosing $h: \Theta \rightarrow [0, 1]$ to maximize

$$\sum_{ heta \in \Theta} p(heta) \, \mathsf{Pr}(ilde{arepsilon} < 1 - heta) h(heta)$$
 ,

subject to

$$\sum_{\theta \in \Theta} p(\theta)(\theta - 1)h(\theta) \ge 0.$$

• Constraint follows since $\mu(s_1) \ge 1$.

э

• If
$$E(ilde{ heta})\geq 1$$
, set $h(heta)=1$ for every $heta\in \Theta$. ("normal" times)

• If $E(\tilde{\theta}) < 1$ ("bad" times), the solution depends on the gain-to-cost ratio:

$$G(\theta) \equiv rac{\mathsf{Pr}(\tilde{\epsilon} < 1 - heta)}{1 - heta}$$

•

• For $\theta \ge 1$: set $h(\theta) = 1$ • For $\theta < 1$: set $h(\theta) = 1$ to types with high $G(\theta)$, and $h(\theta) = 0$ to types with low $G(\theta)$

• If
$$E(ilde{ heta})\geq 1$$
, set $h(heta)=1$ for every $heta\in \Theta.$ ("normal" times)

• If $E(\tilde{\theta}) < 1$ ("bad" times), the solution depends on the gain-to-cost ratio:

$$G(heta) \equiv rac{\mathsf{Pr}(ilde{arepsilon} < 1 - heta)}{1 - heta}$$

• For $\theta \ge 1$: set $h(\theta) = 1$ • For $\theta < 1$: set $h(\theta) = 1$ to types with high $G(\theta)$, and $h(\theta) = 0$ to types with low $G(\theta)$

• Types that obtain the low score are not necessarily the lowest.

- If $E(\tilde{\theta}) \geq 1$, the planner can give every type the same score (i.e., no disclosure)
 - It is also possible to give multiple scores, such that $\mu(s) \geq 1$ for every score.
 - If $\theta_{\min} \geq$ 1, we can even have full disclosure.
- If $E(\tilde{\theta}) < 1$, the planner must assign at least two scores. Yet, full disclosure is suboptimal.

- $ilde{ heta} \in \{ 0.8, 1.0, 1.2 \}$, equal probabilities.
- With no disclosure, every type sells (for 1) -> optimal.
- With full disclosure, only types 1 and 1.2 sell -> suboptimal.

- $\tilde{\theta} \in \{0.6, 0.8, 1.0, 1.2\}$, equal probabilities.
- With no disclosure, no one sells (since average is 0.9).
- With full disclosure, only types 1 and 1.2 sell.
- Partial disclosure can do better (since more types sell).
 - $G(\theta)$ increasing -> high score to 0.8 1.0 1.2
 - $G(\theta)$ decreasing -> high score to 0.6 (with probability 0.5) 1.0 1.2

- The solution so far (when bank does not observe its type) is close to Kamenica & Gentzkow (2011); but since we put more structure on the planner's objective, we can say more.
- The case in which the bank observes its type is harder (and new).
 - Now each type has its own "reservation price," i.e., a minimum price at which it is willing to sell.
- The planner may need to assign more than 2 scores to distinguish among types with different reservation prices.

- ρ_1 : reservation price of highest type
- If $E(\tilde{\theta}) \ge \rho_1$, no disclosure achieves the optimal outcome.
- If $E(\tilde{\theta}) < \rho_1$, some disclosure is necessary.
- Next, we focus on the case in which resources are scarce
 - I.e., it is impossible to implement an outcome in which every type sells with probability 1.
- In this case, if the highest type that obtains score s is $\theta_i>1,$ then $x(s)=\rho(\theta_i)$

- Consider 2 types above 1 $(\theta_1>\theta_2>1)$ with different reservation prices $(\rho_1>\rho_2\geq 1).$
- First result: θ_1 and θ_2 must obtain different scores.

"Proof":

- If θ_1 and θ_2 obtain the same score, type θ_2 ends up with ρ_1 .
- This is a waste of resources, but without any gain.
- Better to give type θ_2 its own score, so that it ends up with only ρ_2 .
- Second result: Among the types below 1 that are pooled with types above 1, the lowest types below 1 are pooled with the highest types above 1.

Intuition:

• As before, the planner uses a gain-to-cost ratio to assign scores, but now the cost depends on the assigned score.

$$G_i(heta) \equiv rac{\mathsf{Pr}(ilde{arepsilon} < 1- heta)}{
ho_i - heta}.$$

• Nonmonotonicity follows because it is relatively more costly to assign a high score to a high type. (That is, when $\rho_1 > \rho_2$, $\frac{\rho_1 - \theta}{\rho_2 - \theta}$ is increasing in θ .)

- Add a constraint that higher types must end up with higher expected equilibrium payoff
 - E.g., banks can freely dispose assets (Innes, 1990).
- If planner *can* randomize:
 - Lower types may continue to sell for higher prices, but they sell with probability that is less than 1.
 - Types above 1 may sell above their reservation prices.
- If planner *cannot* randomize:
 - Optimal rule becomes monotone and generally involves two cutoffs.
 - For some parameter values, full disclosure is uniquely optimal.

- Risk sharing can take a more complicated form.
- Model can capture externalities imposed by banks on the rest of society. (Hence, regulation is necessary.)
- In many cases, regulator's commitment would arise endogenously.
- Model can be used as benchmark to think of credit rating agencies.
- An interesting extension: regulator can provide funds to banks.
 - Such an extension would suggest that in some cases, it is optimal to inject money not only to weak banks but also to strong banks.
- The results could be applied to other settings of Bayesian persuasion

- If $E(\theta)$ is sufficiently high, no disclosure is necessary.
- Otherwise, some disclosure is needed to enable trade.
 - True even if banks do not have private information.
- In many cases, the weakest banks receive the lowest possible score and are out of the market. But more generally, use "gain-to-cost" ratio.
- When banks observe their types, more disclosure is needed.
- Low types receiving high scores can emerge as a socially optimal outcome.

Thank you!

2

A B > 4
 B > 4
 B