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A The iid model

This section derives some useful results for the iid model. The utility is given by

Vt = Et

∫ ∞
t

f(Cs, Vs) ds, (A.1)

where

f(C, V ) =
β

1− 1
ψ

C1− 1
ψ − ((1− γ)V )

1
θ

((1− γ)V )
1
θ
−1

, (A.2)

and θ = (1− γ)/(1− 1
ψ

). For ψ = 1, we assume

f(C, V ) = β(1− γ)V

(
logC − 1

1− γ
log((1− γ)V )

)
. (A.3)
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Proposition 1. When consumption growth is iid, along the optimal consumption path, utility

satisfies

Vt ≡ J(Ct) = j
C1−γ
t

1− γ
.

where j > 0 and given by

j =

(
1 +

1

β

(
−
(

1− 1

ψ

)
µ+

1

2
γ

(
1− 1

ψ

)
σ2 − 1

θ
λ
(
Eν
[
e(1−γ)Zt − 1

])))−θ
. (A.4)

Proof of Proposition 1 Conjecture:

J(Ct) = j
C1−γ
t

1− γ
, (A.5)

where θ = (1− γ)/(1− 1
ψ

).

For convenience, let Jt = J(Ct). The HJB equation is:

DJt + f(Ct, Jt) = 0.

Plug (A.5) into (A.2) we get:

f(Ct, Jt) = βθJt

[
j−

1
θ − 1

]
, (A.6)

and by Ito’s Lemma:

DJ
J

=
1

J

(
∂J

∂C
Cµ+

1

2

∂2J

∂C2
C2σ2 + λEν

[
J(C eZt)− J(C)

])
. (A.7)

The HJB can be rewritten as:

0 =

(
1− 1

ψ

)
µ− 1

2
γ

(
1− 1

ψ

)
σ2 +

1

θ
λ
(
Eν
[
e(1−γ)Zt − 1

])
+ βj−

1
θ − β. (A.8)
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Solving this, we get

j =

(
1 +

1

β

(
−
(

1− 1

ψ

)
µ+

1

2
γ

(
1− 1

ψ

)
σ2 − 1

θ
λ
(
Eν
[
e(1−γ)Zt − 1

])))−θ
.

Proposition 2. When consumption growth is iid,

πt ∝ C−γt .

That is, the state-price density is proportional to C−γt with a positive constant of proportion-

ality.

Proof. It follows from the form of f(Ct, Vt) that

∂f

∂C
=

β

1− 1
ψ

C
− 1
ψ

t

((1− γ)Vt)
1
θ
−1

∝ C
− 1
ψ

t

C
(1−γ)( 1

θ
−1)

t

∝ C−γt .

where the second line follows from Proposition 1.

Proposition 3. When consumption growth is iid, the riskfree rate is equal to

r = β +
1

ψ
µ− 1

2

(
γ +

γ

ψ

)
σ2 + λEν

[
−(e−γZt − 1) +

(
1− 1

θ

)
(e(1−γ)Zt − 1)

]
. (A.9)

Proof of Proposition 3 In the i.i.d case:

∂f

∂C
(Ct, Vt) = βC−γt j1−

1
θ

and

∂f

∂V
(Ct, Vt) = β

(
θ − 1

j
1
θ

− θ
)
.
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Therefore,

πt = exp

(
−
∫ t

0

β

(
θ +

1− θ
j

1
θ

)
ds

)
βθC−γt kθ−1 (A.10)

By Ito’s Lemma:

µπ = −β
(
θ +

1− θ
j

1
θ

)
− γ

Ct
Ctµ+

1

2

γ(γ + 1)

C2
t

C2
t σ

2 (A.11)

Substituting j using (A.4) in the main text and rearrange:

µπ = −β − 1

ψ
µ+

1

2
γ

(
1 +

1

ψ

)
σ2 −

(
1− 1

θ

)
λEν

[
e(1−γ)Zt − 1

]
. (A.12)

It also follows from no-arbitrage that

r = −µπ − λEν [e−γZt − 1]

= β +
1

ψ
µ− 1

2

(
γ +

γ

ψ

)
σ2 + λEν

[
−(e−γZt − 1) +

(
1− 1

θ

)(
e(1−γ)Zt − 1

)]
.

Proposition 4. When consumption growth is iid, and dividend is Dt = Cφ
t

dDt

Dt−
= µD dt+ φσ dBt + (eφZt − 1) dNt.

Let St denote the price of the dividend claim,then the price-dividend ratio is given by

St
Dt

= Et

∫ ∞
t

πs
πt

Ds

Dt

ds

=

(
β − µD +

1

ψ
µ− 1

2

(
γ +

γ

ψ
− 2φγ

)
σ2

+ λEν

[(
1− 1

θ

)(
e(1−γ)Zt − 1

)
− (e(φ−γ)Zt − 1)

])−1
.

Proof of Proposition 4 Section A in the Appendix in the main text gives the general
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no-arbitrage condition:

µπ,t + µS,t +
Dt

St
+ σπ,tσ

>
S,t + λ>t Eν

[
eZπ+ZS − 1

]
= 0. (A.13)

Conjecture:

St
Dt

= G,

therefore St = GDt and by Ito’s Lemma:

dSt
St

= µD dt+ φσ dBt + (eφZt − 1) dNt. (A.14)

In the iid case

πt ∝ C−γt ,

therefore

σπ = −γσ, (A.15)

Zπ = −γZt. (A.16)

Substituting (A.12) and (A.14)-(A.16) into (A.13) implies

− β − 1

ψ
µ+

1

2
γ

(
1 +

1

ψ

)
σ2 + µD +G−1 − γφσ2

−
(

1− 1

θ

)
λEν

[
e(1−γ)Zt − 1

]
+ λEν

[
e(φ−γ)Zt − 1

]
= 0.

Rearranging this verifies the conjecture and the dividend-price ratio is:

G−1 = β − µD +
1

ψ
µ− 1

2

(
γ +

γ

ψ
− 2φγ

)
σ2

+ λEν

[(
1− 1

θ

)(
e(1−γ)Zt − 1

)
−
(
e(φ−γ)Zt − 1

)]
.
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B Data and results for time-varying disaster probabil-

ities model

We use annual data from 1948 to 2013. The aggregate market data come from CRSP. The

market return is the gross return on the NYSE/AMEX/NASDAQ value-weighted index.

Dividend growth is computed from the dividends on this index. The price-dividend ratio

is price divided by the previous 12 months of dividends to remove the effect of seasonality

in dividend payments (in computing this dividend stream, we assume that dividends on the

market are not reinvested). For the government bill rate, we use real returns on the 3-month

Treasury Bill. We compute market returns, dividend growth, and government bill returns in

real terms by adjusting for inflation using changes in the consumer price index (also available

from CRSP). We also compute consumption growth using real, per capital expenditures on

non-durables and services for the U.S., available from the Bureau of Economic Analysis.

Table A.1-A.6 reports results for the time varying disaster probability case. Parameters

are as follows: using the 15% cutoff for disasters we set the average disaster probability

λ̄ = 0.0218, and assume that there is a 40% probability of default on government bills in

the case of a disaster. Discount rate β = 0.01 to match the low risk-free rate. Normal

time consumption growth and volatility are set to match the postwar data, µ = 0.0195, and

σ = 0.0125. We set dividend growth µD = 0.04 to get realistic price-dividend ratios and

idiosyncratic volatility σi = 0.05 to match the postwar dividend growth volatility. We set

risk aversion γ = 3 and leverage φ = 3 to match the equity premium and return volatility.

The mean-reversion κλ = 0.12 to match persistence for price-dividend ratio. We look at six

cases – time additive utility (EIS = 1/3), EIS = 1 and EIS = 2, for each of the three cases,

we compare results with time-varying disaster probability, σλ = 0.081, to ones with constant

disaster probability, σλ = 0.002.

1Given other parameters and disaster distribution, the existence of the value function imposes a constraint
on κλ and σλ. In particular, the disaster probability process cannot be highly persistent and “too” highly
volatile at the same time. We choose κλ and σλ to best to match both the volatility of stock returns, the
persistence of the price-dividend ratio, and the volatility of Treasury Bill returns

2In order to solve the model using the general case, ψ can not be exactly one and σλ can not be exactly

6



We simulate monthly data for 600,000 years to obtain population moments. We also sim-

ulate 100,000 65-year samples. In the tables, we report population values for each statistic,

percentile values from the small-sample simulations, and percentile values for the subset of

small-sample simulations that do not contain jumps. It is this subset of simulations that is

the most interesting comparison for postwar data.

C Production economy

This section solves the two models with endogenous consumption choice are considered by

Barro (2009). The first one allows for labor-leisure choice, and productivity is subject to

disaster shocks, we will show that this case is equivalent to the iid endowment case. Then

we will consider another case with capital accumulation.

C.1 Recursive utility in discrete time

Assume that continuation utility takes the following form:

Vt =

[
(1− e−β)C

1− 1
ψ

t + e−β
(
Et[V

1−γ
t+1 ]

) 1− 1
ψ

1−γ

] 1

1− 1
ψ

, (C.1)

with intertemporal marginal rate of substitution (IMRS):

Mt+1 = e−β
(
Ct+1

Ct

)− 1
ψ

(
Vt+1

Et[V
1−γ
t+1 ]

1
1−γ

) 1
ψ
−γ

.

For these preferences, Epstein and Zin (1989) show that the intertemporal marginal rate of

substitution (IMRS) can be expressed as:

Mt+1 = e−βθ
(
Ct+1

Ct

)− θ
ψ

Rθ−1
W,t+1, (C.2)

zero, they are numbers very close to one and zero (1 + 10−8 and 10−8, respectively). Since σλ is not exactly
zero, the autocorrelation of price-dividend ratios in Table A.4 and A.6 are not all equals one.
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where θ = (1−γ)/(1− 1
ψ

), and RW,t+1 is the gross return on an asset that delivers aggregate

consumption as its dividend.

C.2 Leisure-labor choice

This is the first case in Barro (2009). In this model, output is given by

Yt = AtL
α
t , (C.3)

where At is productivity and Lt is the quantity of labor employed. Here, assumptions on

the endowment process are replaced by assumptions on productivity, so that At is given by:

log
At+1

At
= µ+ εt+1 +


0 if there is no disaster at t+ 1

Zt+1 if there is a disaster at t+ 1

(C.4)

where εt+1 is an iid standard normal shock and disaster occurs with probability 1− e−λ. We

modify (C.1) by replacing Ct with period utility that allows for preferences over leisure:

Ut = Ct(1− Lt)χ. (C.5)

As we show in Section 6.1, a constant share (α) of the consumption comes from labor

income, and the rest (1 − α) comes from dividend. Therefore, consumption/output growth

and dividend growth both equal to technology growth:

log
Ct+1

Ct
= log

Dt+1

Dt

= log
Yt+1

Yt
= log

At+1

At
.
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That is, log consumption growth process is the same as log productivity process3:

logCt+1 = logCt + µ+ εt+1 +


0 with prob. e−λ

Zt+1 with prob. 1− e−λ.
(C.6)

Period utility depends on both consumption and leisure in this model, as stated by (C.5).

In the iid case, however, labor share Lt, is constant over time, it follows that the IMRS only

depends on consumption growth and return on consumption wealth.

Conjecture the consumption-to-wealth ratio is constant, that is, Ct/Wt = cw for all t.

The budget constraint for the representative agent:

Wt+1 = RW,t+1(Wt − Ct),

can be written as

RW,t+1 =
1

1− cw
Ct+1

Ct
. (C.7)

And we can rewrite the IMRS by plugging (C.7) into (C.2):

Mt+1 = e−βθ
(
Ct+1

Ct

)−γ (
1

1− cw

)θ−1
. (C.8)

The Euler equation implies that the consumption-wealth ratio is determined by

Et

[
Mt+1

Wt+1

Ct+1

Ct+1

Ct

]
=
Wt

Ct
− 1,

or,

Et

[
Mt+1

Ct+1

Ct

1

cw

]
=

1

cw
− 1,

3Notice that this specification is almost the same as the one in the continuous time endowment econ-
omy. The only difference is the interpretation of µ. In normal times, log consumption growth is normally
distributed with mean µ in this discrete time model, and it is (µ− 1

2σ
2)∆t in the continuous time model.
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Substituting (C.8) into the IMRS and rearrange:

(1− cw)θ = Et

[
e−βθ

(
Ct+1

Ct

)1−γ
]

= exp

{
−θβ + (1− γ)µ+

1

2
(1− γ)2 σ2

}(
e−λ + (1− e−λ)Eν

[
e(1−γ)Zt

])
.

Therefore,

log (1− cw) = −β +

(
1− 1

ψ

)
µ+

1

2

1

θ
(1− γ)2 σ2 +

1

θ
log
(
e−λ + (1− e−λ)Eν

[
e(1−γ)Zt

])
,

(C.9)

which verifies the conjecture. We are interested in the value when the time interval goes to

zero. Since λ scale with the time interval, in the limit, λ is close to zero and:

1− e−λ ≈ λ,

moreover, for x close to zero,

log(1 + x) ≈ 1

1 + x
|x=0x = x.

Therefore the last term in (C.9),

log
(
e−λ + (1− e−λ)Eν

[
e(1−γ)Zt

])
≈ log

(
1− λ+ λEν

[
e(1−γ)Zt

])
≈ λEν

[
e(1−γ)Zt − 1

]
.

In the limit, Equation (C.9) can be written as:

log (1− cw) ≈ −β +

(
1− 1

ψ

)
µ+

1

2

1

θ
(1− γ)2 σ2 +

1

θ
λEν

[
e(1−γ)Zt − 1

]
. (C.10)

Next we can solve for the risk-free rates and returns on consumption claim in the economy,
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and we will focus on the limit when time interval approaches zero:

logRf
t+1 = − logEt[Mt+1]

= θβ + γµ− 1

2
γ2σ2 − log

(
e−λ + (1− e−λ)Eν

[
e−γZt

])
+ (θ − 1) log(1− cw)

= β +
1

ψ
µ− 1

2
σ2

(
γ2 − θ − 1

θ
(1− γ)2

)
− log

(
e−λ + (1− e−λ)Eν

[
e−γZt

])
+
θ − 1

θ
log
(
e−λ + (1− e−λ)Eν

[
e(1−γ)Zt

])
≈ β +

1

ψ
µ− 1

2
σ2

(
γ2 − θ − 1

θ
(1− γ)2

)
− λEν

[
e−γZt − 1

]
+
θ − 1

θ
λEν

[
e(1−γ)Zt − 1

]
= β +

1

ψ
µ− 1

2
σ2

(
γ +

γ

ψ
− 1

ψ

)
+ λEν

[
−
(
e−γZt − 1

)
+
θ − 1

θ

(
e(1−γ)Zt − 1

)]
.

(C.11)

Comparing with the continuous time version, there is an extra 1
2
1
ψ
σ2 in the risk-free rate,

and this is because the mean of log consumption growth is µ instead of µ− 1
2
σ2.

The return on consumption claim is given by (C.7):

logEt[RW,t+1] = µ− 1

2
σ2 + log

(
e−λ + (1− e−λ)Eν

[
eZt
])
− log(1− cw)

= β +
1

ψ
µ+

1

2
σ2

(
1− 1

θ
(1− γ2)

)
+ log

(
e−λ + (1− e−λ)Eν

[
eZt
])
− 1

θ
log
(
e−λ + (1− e−λ)Eν

[
e(1−γ)Zt

])
≈ β +

1

ψ
µ+

1

2
σ2

(
1− 1

θ
(1− γ2)

)
+ λEν

[(
eZt − 1

)
− 1

θ

(
e(1−γ)Zt − 1

)]
.

(C.12)

Next we can calculate the risk premium for the consumption claim. Using (C.11) and

(C.12):

logEt[RW ]− logRf = γσ2 − λEν
[(
e−γZt − 1

) (
eZt − 1

)]
. (C.13)

Notice that the equity premium on consumption claim in the continuous time limit is the

same as the one we obtain in the iid endowment economy (Section 3.1).
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C.3 Capital accumulation

In the second case of Barro (2009), output is given by:

Yt = AKt,

where Kt is the capital stock. Productivity A is constant in this model while capital evolves

according to:

Kt+1 = Kt + It − δt+1Kt,

where δt+1 is depreciation. Depreciation has a normal time and disaster component:

δt+1 = δ +


0 if there is no disaster at t

1− eZt if there is a disaster at t.

First, conjecture a constant investment-to-capital ratio ζ = It/Kt, consumption growth

equals capital growth, thus investment growth:

Ct+1

Ct
=

(A− ζ)Kt+1

(A− ζ)Kt

=
Kt+1

Kt

= 1 + ζ − δt+1. (C.14)

Similar to the previous case, we can conjecture and verify that the consumption-wealth ratio

is constant:

(1− cw)θ = Et

[
e−βθ

(
Ct+1

Ct

)1−γ
]
,

with (C.14), the right hand side is a constant.

In this case, return on capital equals return on wealth:

RW,t+1 = RS
t+1 = 1 + A− δt+1,
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and the Euler equation can be written as:

e−βθEt

[(
Ct+1

Ct

)− θ
ψ (
RS
t+1

)θ]
= 1. (C.15)

We can rewrite (C.15) as:

e−βθEν

[
(1 + ζ − δt+1)

− θ
ψ (1 + A− δt+1)

θ
]

= 1,

or

−βθ + log
(
Eν

[
(1 + ζ − δt+1)

− θ
ψ (1 + A− δt+1)

θ
])

= 0. (C.16)

We are interested in the limit when time interval goes to zero:

Eν

[
(1 + ζ − δt+1)

− θ
ψ (1 + A− δt+1)

θ
]

= e−λ(1 + ζ − δ)−
θ
ψ (1 + A− δ)θ + (1− e−λ)Eν

[
(1 + ζ − δ + eZt − 1)−

θ
ψ (1 + A− δ + eZt − 1)θ

]
= (1 + ζ − δ)−

θ
ψ (1 + A− δ)θ

(
e−λ + (1− e−λ)Eν

[
(eZt + ζ − δ)−

θ
ψ (eZt + A− δ)θ

(1 + ζ − δ)−
θ
ψ (1 + A− δ)θ

])

≈ (1 + ζ − δ)−
θ
ψ (1 + A− δ)θ

(
1− λ+ λEν

[
(eZt + ζ − δ)−

θ
ψ (eZt + A− δ)θ

(1 + ζ − δ)−
θ
ψ (1 + A− δ)θ

])

= (1 + ζ − δ)−
θ
ψ (1 + A− δ)θ

(
1 + λEν

[
(eZt + ζ − δ)−

θ
ψ (eZt + A− δ)θ

(1 + ζ − δ)−
θ
ψ (1 + A− δ)θ

− 1

])
.

Therefore:

log

(
(1 + ζ − δ)−

θ
ψ (1 + A− δ)θ

(
1 + λEν

[
(eZt + ζ − δ)−

θ
ψ (eZt + A− δ)θ

(1 + ζ − δ)−
θ
ψ (1 + A− δ)θ

− 1

]))

≈− θ

ψ
(ζ − δ) + θ (A− δ) + λEν

[
(eZt + ζ − δ)−

θ
ψ (eZt + A− δ)θ

(1 + ζ − δ)−
θ
ψ (1 + A− δ)θ

− 1

]
≈− θ

ψ
(ζ − δ) + θ (A− δ) + λEν

[
e(1−γ)Zt − 1

]
.
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We can then solve for the investment-capital ratio ζ using (C.16):

−βθ − θ

ψ
(ζ − δ) + θ (A− δ) + λEν

[
e(1−γ)Zt − 1

]
= 0,

and

ζ = ψ

(
1
ψ
− 1

γ − 1

)
λEν

[
e(1−γ)Zt − 1

]
+ δ + ψ (A− δ − β) . (C.17)

Next we can also solve for the risk-free rate using the Euler equation:

1 = e−βθEν

[(
Ct+1

Ct

)− θ
ψ

(RS
t+1)

θ−1Rf

]
= e−βθRfEν

[
(1 + ζ − δt+1)

− θ
ψ (1 + A− δt+1)

θ−1
]
.

Similar to the above calculation, the Euler condition becomes:

−βθ + rf − θ

ψ
(ζ − δ) + (θ − 1) (A− δ) + λEν

[
e−γZt − 1

]
= 0,

where logRf = log(1 + rf ) ≈ rf . Plugging in ζ using (C.17):

rf = A− δ + λEν
[
e−γZt(eZt − 1)

]
,

or

Rf = 1 + A− δ + λEν
[
e−γZt(eZt − 1)

]
.

Recall that the expected return on equity is a constant:

E[RS] = 1 + A− δ + λEν
[
eZt − 1

]
,

hence the equity premium for consumption claim is:

E[RS]−Rf = −λEν
[
(e−γZt − 1)(eZt − 1)

]
.
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The equity premium here again is the same as the one in the iid endowment economy model,

except for not having the volatility term.
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Table A.1: Power utility and time-varying disaster probability

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

E[Rb] 1.24 0.08 3.55 5.26 -3.17 2.36 4.89 1.79

σ(Rb) 2.57 1.51 3.03 6.00 1.86 4.49 9.57 6.00

E[Re −Rb] 7.69 1.51 3.79 7.40 0.99 3.80 8.27 4.15

σ(Re) 17.72 5.71 6.68 7.69 6.12 10.43 18.12 11.58

Sharpe ratio 0.44 0.23 0.57 1.13 0.08 0.38 0.91 0.36

exp(E[p− d]) 33.33 34.52 34.52 34.52 34.52 34.52 34.52 34.52

σ(p− d) 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AR1(p− d) 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00

E[∆c] 1.93 1.69 1.94 2.20 -0.49 1.42 2.09 1.21

σ(∆c) 1.25 1.07 1.24 1.43 1.14 3.74 12.97 6.08

E[∆d] 2.06 2.66 3.92 5.20 -3.44 2.31 4.69 1.73

σ(∆d) 6.95 5.33 6.22 7.14 5.71 12.33 39.34 18.90

Notes: Parameters are as follows: average disaster probability λ̄ = 0.0218, discount rate

β = 0.01, risk aversion γ = 3, normal time consumption growth µc = 0.0195, consumption

growth volatility σc = 0.0125, dividend growth µd = 0.04, idiosyncratic volatility σi = 0.05,

leverage φ = 3, and mean-reversion κλ = 0.12, and volatility σλ = 0.08.
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Table A.2: Power utility and constant disaster probability

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

E[Rb] 1.24 1.93 1.93 1.93 0.93 1.93 1.93 1.69

σ(Rb) 2.57 0.00 0.00 0.00 0.00 0.00 6.69 2.89

E[Re −Rb] 7.69 3.98 5.35 6.73 1.91 4.31 6.19 4.25

σ(Re) 17.72 5.72 6.68 7.68 6.20 10.79 17.52 11.65

Sharpe ratio 0.44 0.59 0.80 1.04 0.12 0.40 0.92 0.36

exp(E[p− d]) 33.33 34.52 34.52 34.52 34.52 34.52 34.52 34.52

σ(p− d) 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AR1(p− d) 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00

E[∆c] 1.93 1.69 1.94 2.20 -0.30 1.37 2.07 1.20

σ(∆c) 1.25 1.07 1.24 1.43 1.15 3.97 12.80 6.90

E[∆d] 2.06 2.65 3.94 5.22 -2.90 2.15 4.63 1.72

σ(∆d) 6.95 5.33 6.23 7.14 5.78 12.99 38.73 18.95

Notes: Parameters are as follows: average disaster probability λ̄ = 0.0218, discount rate

β = 0.01, risk aversion γ = 3, normal time consumption growth µc = 0.0195, consumption

growth volatility σc = 0.0125, dividend growth µd = 0.04, idiosyncratic volatility σi = 0.05,

leverage φ = 3, and mean-reversion κλ = 0.12, and volatility σλ = 0.00.
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Table A.3: EIS=1 and time-varying disaster probability

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

E[Rb] 1.24 -0.04 1.48 2.22 -1.84 0.84 2.05 0.58

σ(Rb) 2.57 0.65 1.31 2.65 0.80 2.34 7.36 3.78

E[Re −Rb] 7.69 4.74 7.04 10.65 4.02 6.90 11.33 7.17

σ(Re) 17.72 10.75 15.05 21.34 12.16 18.83 28.00 19.73

Sharpe ratio 0.44 0.35 0.47 0.61 0.21 0.38 0.56 0.36

exp(E[p− d]) 33.33 25.79 31.42 34.67 22.09 29.68 34.06 28.87

σ(p− d) 0.42 0.09 0.18 0.34 0.11 0.22 0.44 0.30

AR1(p− d) 0.91 0.55 0.77 0.90 0.59 0.81 0.93 0.89

E[∆c] 1.93 1.69 1.94 2.20 -0.52 1.42 2.09 1.18

σ(∆c) 1.25 1.07 1.24 1.43 1.14 3.75 13.06 6.19

E[∆d] 2.06 2.65 3.93 5.22 -3.54 2.30 4.70 1.66

σ(∆d) 6.95 5.33 6.22 7.15 5.70 12.35 39.56 19.23

Notes: Parameters are as follows: average disaster probability λ̄ = 0.0218, discount rate

β = 0.01, risk aversion γ = 3, normal time consumption growth µc = 0.0195, consumption

growth volatility σc = 0.0125, dividend growth µd = 0.04, idiosyncratic volatility σi = 0.05,

leverage φ = 3, and mean-reversion κλ = 0.12, and volatility σλ = 0.08.
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Table A.4: The equity premium – EIS=1 and constant disaster probability

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

E[Rb] 1.24 0.81 0.81 0.81 -0.18 0.81 0.81 0.56

σ(Rb) 2.57 0.00 0.00 0.00 0.00 0.00 6.62 2.90

E[Re −Rb] 7.69 3.93 5.28 6.63 1.91 4.27 6.10 4.13

σ(Re) 17.72 5.65 6.60 7.61 6.13 10.66 17.29 11.58

Sharpe ratio 0.44 0.59 0.80 1.04 0.12 0.40 0.91 0.36

exp(E[p− d]) 33.33 55.98 55.98 55.98 55.98 55.98 55.98 55.98

σ(p− d) 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AR1(p− d) 0.91 0.68 0.84 0.92 0.68 0.84 0.92 0.89

E[∆c] 1.93 1.68 1.94 2.20 -0.30 1.37 2.07 1.18

σ(∆c) 1.25 1.07 1.24 1.43 1.15 3.97 12.78 6.17

E[∆d] 2.06 2.65 3.93 5.20 -2.90 2.15 4.60 1.62

σ(∆d) 6.95 5.33 6.22 7.15 5.78 12.95 38.69 19.18

Notes: Parameters are as follows: average disaster probability λ̄ = 0.0218, discount rate

β = 0.01, risk aversion γ = 3, normal time consumption growth µc = 0.0195, consumption

growth volatility σc = 0.0125, dividend growth µd = 0.04, idiosyncratic volatility σi = 0.05,

leverage φ = 3, and mean-reversion κλ = 0.12, and volatility σλ = 0.00.
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Table A.5: EIS=2 and time-varying disaster probability.

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

E[Rb] 1.24 -0.80 0.61 1.29 -2.56 0.01 1.13 -0.27

σ(Rb) 2.57 0.60 1.20 2.45 0.74 2.17 7.20 3.68

E[Re −Rb] 7.69 5.50 7.91 11.83 4.86 7.86 12.68 8.19

σ(Re) 17.72 12.04 17.13 24.60 13.66 20.94 30.86 22.07

Sharpe ratio 0.44 0.36 0.47 0.59 0.23 0.39 0.55 0.37

exp(E[p− d]) 33.33 27.24 34.21 38.39 22.70 32.01 37.58 30.92

σ(p− d) 0.42 0.11 0.21 0.40 0.13 0.26 0.50 0.34

AR1(p− d) 0.91 0.54 0.77 0.90 0.59 0.81 0.93 0.88

E[∆c] 1.93 1.69 1.94 2.20 -0.53 1.43 2.09 1.16

σ(∆c) 1.25 1.07 1.24 1.43 1.14 3.72 13.06 6.32

E[∆d] 2.06 2.64 3.93 5.20 -3.55 2.32 4.70 1.60

σ(∆d) 6.95 5.34 6.21 7.15 5.69 12.26 39.57 19.61

Notes: Parameters are as follows: average disaster probability λ̄ = 0.0218, discount rate

β = 0.01, risk aversion γ = 3, normal time consumption growth µc = 0.0195, consumption

growth volatility σc = 0.0125, dividend growth µd = 0.04, idiosyncratic volatility σi = 0.05,

leverage φ = 3, and mean-reversion κλ = 0.12, and volatility σλ = 0.08.
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Table A.6: EIS=2 and constant disaster probability

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

E[Rb] 1.24 0.53 0.53 0.53 -0.46 0.53 0.53 0.28

σ(Rb) 2.57 0.00 0.00 0.00 0.00 0.00 6.61 2.88

E[Re −Rb] 7.69 3.91 5.26 6.64 1.89 4.26 6.10 4.16

σ(Re) 17.72 5.64 6.58 7.57 6.11 10.62 17.29 11.48

Sharpe ratio 0.44 0.59 0.80 1.04 0.12 0.40 0.91 0.36

exp(E[p− d]) 33.33 66.27 66.27 66.27 66.27 66.27 66.27 66.27

σ(p− d) 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AR1(p− d) 0.91 0.68 0.84 0.92 0.68 0.84 0.92 0.89

E[∆c] 1.93 1.68 1.94 2.20 -0.30 1.37 2.07 1.19

σ(∆c) 1.25 1.07 1.25 1.43 1.15 3.96 12.78 6.11

E[∆d] 2.06 2.65 3.92 5.22 -2.89 2.15 4.61 1.68

σ(∆d) 6.95 5.33 6.22 7.13 5.78 12.93 38.67 18.99

Notes: Parameters are as follows: average disaster probability λ̄ = 0.0218, discount rate

β = 0.01, risk aversion γ = 3, normal time consumption growth µc = 0.0195, consumption

growth volatility σc = 0.0125, dividend growth µd = 0.04, idiosyncratic volatility σi = 0.05,

leverage φ = 3, and mean-reversion κλ = 0.12, and volatility σλ = 0.00.
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