Disaster risk and its implications for asset pricing —

Online appendix*

Jerry Tsai Jessica A. Wachter
University of Oxford University of Pennsylvania
and NBER

December 12, 2014

A The iid model

This section derives some useful results for the iid model. The utility is given by
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Proposition 1. When consumption growth is iid, along the optimal consumption path, utility

satisfies
1—y
G

where j > 0 and given by

(o Db -2 pesie))

Proof of Proposition 1 Conjecture:

where 0 = (1 —~v)/(1 — i)

For convenience, let J; = J(C;). The HJB equation is:
DJ + f(Cy, Jy) = 0.
Plug (A.5) into (A.2) we get:

F(Cov i) = B9 |57 = 1],

and by Ito’s Lemma:

DJ  1(dJ 10%T _, Z

The HJB can be rewritten as:
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Solving this, we get

(Db -2 ))

Proposition 2. When consumption growth is iid,
o C 7.

That is, the state-price density is proportional to C; " with a positive constant of proportion-

ality.

Proof. 1t follows from the form of f(Cy, V;) that
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where the second line follows from Proposition 1. m

Proposition 3. When consumption growth is iid, the riskfree rate is equal to

r=p+ iu - % (’y + %) o? + \E, {—(em -1+ (1 - %) (=% — 1)} - (A9)

Proof of Proposition 3 In the i.i.d case:
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Therefore,

t 1—
Ty = exp (—/0 B (9 + p 9) ds) BlC K (A.10)
By Ito’s Lemma:
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Substituting j using (A.4) in the main text and rearrange:

O (DI S B

It also follows from no-arbitrage that

=y — )\El,[e_7Zf —1]

=B+ %u — % (”y + %) o’ +\E, [—(e”zﬁ —1)+ (1 — 5) (e(l’W)Zt — 1)] .

Proposition 4. When consumption growth is wid, and dividend is D; = C’f’

dD
D—t = pp dt + po dB; + (e?? — 1) dN;.
-

Let S; denote the price of the dividend claim,then the price-dividend ratio is given by
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Proof of Proposition 4 Section A in the Appendix in the main text gives the general



no-arbitrage condition:
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Conjecture:
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therefore S; = GD, and by Ito’s Lemma:
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In the iid case

Ty X Ct—’Y’
therefore

Opr = —70,
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Substituting (A.12) and (A.14)-(A.16) into (A.13) implies
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_ (1 _ 1) \E, [e(l—w)Zt _ 1} + \E, [e(aﬁ—v)Zt _ 1} = 0.

Rearranging this verifies the conjecture and the dividend-price ratio is:
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B Data and results for time-varying disaster probabil-
ities model

We use annual data from 1948 to 2013. The aggregate market data come from CRSP. The
market return is the gross return on the NYSE/AMEX/NASDAQ value-weighted index.
Dividend growth is computed from the dividends on this index. The price-dividend ratio
is price divided by the previous 12 months of dividends to remove the effect of seasonality
in dividend payments (in computing this dividend stream, we assume that dividends on the
market are not reinvested). For the government bill rate, we use real returns on the 3-month
Treasury Bill. We compute market returns, dividend growth, and government bill returns in
real terms by adjusting for inflation using changes in the consumer price index (also available
from CRSP). We also compute consumption growth using real, per capital expenditures on
non-durables and services for the U.S., available from the Bureau of Economic Analysis.
Table A.1-A.6 reports results for the time varying disaster probability case. Parameters
are as follows: using the 15% cutoff for disasters we set the average disaster probability
A = 0.0218, and assume that there is a 40% probability of default on government bills in
the case of a disaster. Discount rate f = 0.01 to match the low risk-free rate. Normal
time consumption growth and volatility are set to match the postwar data, 4 = 0.0195, and
o = 0.0125. We set dividend growth pp = 0.04 to get realistic price-dividend ratios and
idiosyncratic volatility o; = 0.05 to match the postwar dividend growth volatility. We set
risk aversion v = 3 and leverage ¢ = 3 to match the equity premium and return volatility.
The mean-reversion k), = 0.12 to match persistence for price-dividend ratio. We look at six
cases — time additive utility (EIS = 1/3), EIS = 1 and EIS = 2, for each of the three cases,
we compare results with time-varying disaster probability, oy = 0.08!, to ones with constant

disaster probability, o) = 0.00%.

!Given other parameters and disaster distribution, the existence of the value function imposes a constraint
on k) and o). In particular, the disaster probability process cannot be highly persistent and “too” highly
volatile at the same time. We choose k) and o) to best to match both the volatility of stock returns, the
persistence of the price-dividend ratio, and the volatility of Treasury Bill returns

2In order to solve the model using the general case, ¢ can not be exactly one and o can not be exactly



We simulate monthly data for 600,000 years to obtain population moments. We also sim-
ulate 100,000 65-year samples. In the tables, we report population values for each statistic,
percentile values from the small-sample simulations, and percentile values for the subset of
small-sample simulations that do not contain jumps. It is this subset of simulations that is

the most interesting comparison for postwar data.

C Production economy

This section solves the two models with endogenous consumption choice are considered by
Barro (2009). The first one allows for labor-leisure choice, and productivity is subject to
disaster shocks, we will show that this case is equivalent to the iid endowment case. Then

we will consider another case with capital accumulation.

C.1 Recursive utility in discrete time

Assume that continuation utility takes the following form:

‘/t:
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with intertemporal marginal rate of substitution (IMRS):
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For these preferences, Epstein and Zin (1989) show that the intertemporal marginal rate of

substitution (IMRS) can be expressed as:

<l
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zero, they are numbers very close to one and zero (1 + 1078 and 1078, respectively). Since oy is not exactly
zero, the autocorrelation of price-dividend ratios in Table A.4 and A.6 are not all equals one.



where § = (1 —~)/(1— i), and Ry is the gross return on an asset that delivers aggregate

consumption as its dividend.

C.2 Leisure-labor choice

This is the first case in Barro (2009). In this model, output is given by

where A; is productivity and L; is the quantity of labor employed. Here, assumptions on

the endowment process are replaced by assumptions on productivity, so that A, is given by:

Apr 0 if there is no disaster at ¢ + 1
= U+ e + (C.4)

Zyrq  if there is a disaster at ¢ + 1

where €, is an iid standard normal shock and disaster occurs with probability 1 —e™*. We

modify (C.1) by replacing C; with period utility that allows for preferences over leisure:

U, = Cy(1 — Ly)X. (C.5)

As we show in Section 6.1, a constant share («) of the consumption comes from labor
income, and the rest (1 — a)) comes from dividend. Therefore, consumption/output growth

and dividend growth both equal to technology growth:

Ciy1 — log Dy — log Yit — log App

1 .
TG, D, Y, A,



That is, log consumption growth process is the same as log productivity process?:

0 with prob. e™*
logCii1 =1logCy + pu+ €441 + (C.6)

Z,41  with prob. 1 —e™,

Period utility depends on both consumption and leisure in this model, as stated by (C.5).
In the iid case, however, labor share L;, is constant over time, it follows that the IMRS only
depends on consumption growth and return on consumption wealth.

Conjecture the consumption-to-wealth ratio is constant, that is, Cy/W; = cw for all t.

The budget constraint for the representative agent:

Wt+1 = RI/I/,t+1(Wt - Ct)v

can be written as

1 Cia
l—cw Cp
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And we can rewrite the IMRS by plugging (C.7) into (C.2):
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The Euler equation implies that the consumption-wealth ratio is determined by

Wi Cina Wi
E, |\ M, —— =— -1
' [ O G c,
or,
C 1 1
E, {Mm%—} =— -1,
t Cw cw

3Notice that this specification is almost the same as the one in the continuous time endowment econ-
omy. The only difference is the interpretation of p. In normal times, log consumption growth is normally
distributed with mean g in this discrete time model, and it is (u — %Uz)At in the continuous time model.



Substituting (C.8) into the IMRS and rearrange:

o—po (Gt o
Cy

= exp {—Gﬁ + (1 =)+ % (1— 7)2 02} (e’A +(1— ef)\)Ey [e(l’V)Zt}) .

(1—cw)’ = E,

Therefore,

log (1 —cw) = —B + (1 - %) A+ %% (1—7)0+ %log (e + (1 —eME, [e%]),
(C.9)

which verifies the conjecture. We are interested in the value when the time interval goes to

zero. Since A scale with the time interval, in the limit, A is close to zero and:

moreover, for z close to zero,
log(1+x) = —x|x_0:c =z.
Therefore the last term in (C.9),
log (e ™+ (1 —e ™M) E, [e""7]) mlog (1 = A+ AE, [e""7%]) ~ AE, [e!77 —1].
In the limit, Equation (C.9) can be written as:
log (1 —cw)~ -0+ (1 — i) o+ %% (1—7)20+ %)\El, [et=07 1] (C.10)

Next we can solve for the risk-free rates and returns on consumption claim in the economy;,
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and we will focus on the limit when time interval approaches zero:

log R{H = —log Ey[My4]

1
=08+ yu — 57202 —log (e "+ (1—eME, [e7]) + (6 — 1)log(1 — cw)

TR Y SE S Ak SR
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(C.11)

Comparing with the continuous time version, there is an extra =302 in the risk-free rate,

11
214

and this is because the mean of log consumption growth is p instead of u — %02.

The return on consumption claim is given by (C.7):

1
log Ei[Rw+1]) = 1 — 502 +log (e + (1 — e ME, [¢”]) —log(1 — cw)

1 1
—ﬁ+—u+%<72 (1—5(1—72))

(&
+ log (e—)\ +(1—e™ME, [ezt]) _ %bg (e—A +(1-eNE, [6(1_7)2,,])
~ B+ %u + %02 <1 — %(1 — 72)) B, [(ezt _ 1) _ % (e(l‘W)Zf/ _ 1)
(C.12)

Next we can calculate the risk premium for the consumption claim. Using (C.11) and
(C.12):
log Ey[Rw| —log R = vo® — AE, [(e 77 — 1) (" —1)]. (C.13)

Notice that the equity premium on consumption claim in the continuous time limit is the

same as the one we obtain in the iid endowment economy (Section 3.1).

11



C.3 Capital accumulation

In the second case of Barro (2009), output is given by:

}/;5 = AKt7

where K, is the capital stock. Productivity A is constant in this model while capital evolves

according to:

K=K+ I — 61 K,

where d,,1 is depreciation. Depreciation has a normal time and disaster component:

0 if there is no disaster at t
Opy1 =0 +

1 — e? if there is a disaster at t.

First, conjecture a constant investment-to-capital ratio ( = [;/K;, consumption growth

equals capital growth, thus investment growth:

Cri1 _ (A= QK _ Ky
Ct (A= QK Ky

Similar to the previous case, we can conjecture and verify that the consumption-wealth ratio

oo (Cen )
Cy 7

with (C.14), the right hand side is a constant.

1s constant:

(1—cw)’ = E,

In this case, return on capital equals return on wealth:

Ry = Rts+1 =1+ A~ 0441,

12



and the Euler equation can be written as:

7]
_ C v 0
e ME < 51) (RY,) | =1. (C.15)
We can rewrite (C.15) as:
R, [(1 FC— b)) P+ A 5t+1)9] —1,
or
_06 0
B9 + log (E [(1 FC— b)) (1 + A=) ]) —0. (C.16)

We are interested in the limit when time interval goes to zero:

B, [(14¢=0) 81+ A= 8|

—eM14+¢=0) F(1+A-8)"+(1-eNE, [(1+g—5+ezf 1) V(1 + A=+ e — 1)9]

0

<l
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0

(7 + (=0 (" + A 5)9])
(1+¢=0)»(1+A=0)°

~(1HC—0) P14+ A=) [1-A+AE, (eZt+¢—5>—j<eZt+A_5)9]>
(1+C—08) #(1+A—6)
— (14 C—6) P14+ A-0)(1+AE, (‘fzi+<—5)_j(ezf+A—5)9_1]>'
(1+¢—=08)v(1+A—05)°
Therefore:

log ((1 FC—8) v (1+A-5) (1 +AE,

(% +¢—0)"
(1+¢—9)"
((=06)+0(A—0)+\E, [eT% —1].

~
~
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We can then solve for the investment-capital ratio ¢ using (C.16):
= ()’

((=8)+0(A—0)+ B, [e% —1]

0

5o - 2
=3
(C.17)

and
inﬂ(v_l))\E,, [e% — 1] + 5+ ¢ (A—5—B).

Next we can also solve for the risk-free rate using the Euler equation:

2]
- Cip1) ¥ -
l=c¢ ’BGEV (%tl) (Rts+1)9 lRf

— e "RIE, [(1 FC— ) P+ A 6t+1)9‘1}

Similar to the above calculation, the Euler condition becomes:

—59+rf—§(<—5)+(9—1)(A—5)+AEV [e77 —1] =0,

where log R' = log(1 + r/) ~ r/. Plugging in ¢ using (C.17):

rl = A—G§+\E, [e 77 (e” —1)],

~1].

or
RN =14 A=6+)\E, [e7% (™

Recall that the expected return on equity is a constant:

E[R°]=1+A—0+)\E, [¢” —1],

hence the equity premium for consumption claim is:
—1)(e” —1)].

= —\E, [(e—th

E[R®] — Ry

14



The equity premium here again is the same as the one in the iid endowment economy model,

except for not having the volatility term.
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Table A.1: Power utility and time-varying disaster probability

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

E[RY 124 008 355 526  -3.17 236 489 1.79
o(RY) 257 151 303 600 18 449  9.57 6.00
E[R® — R"] 769 151 379 740 099 380 827 415
o(R?) 1772 571 668 769 612 1043 18.12 11.58
Sharpe ratio 044 023 057 113 008 038 0091 0.36
exp(Elp—d]) 3333 3452 3452 3452 3452 3452 34.52 34.52
o(p — d) 042 000 000 000 000 000 0.0 0.00
ARI(p — d) 091 100 100 100 100 100  1.00 1.00
E[Ad] 1.93 169 194 220  -049 142  2.09 1.21
o(Ac) 125 107 124 143 114 374 1297 6.08
E[Ad] 206 266 392 520 -344 231  4.69 1.73
o(Ad) 695 533 622 714 571 1233  39.34 18.90

Notes: Parameters are as follows: average disaster probability A = 0.0218, discount rate
£ = 0.01, risk aversion v = 3, normal time consumption growth u. = 0.0195, consumption
growth volatility o. = 0.0125, dividend growth pg; = 0.04, idiosyncratic volatility o; = 0.05,

leverage ¢ = 3, and mean-reversion k) = 0.12, and volatility o, = 0.08.
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Table A.2: Power utility and constant disaster probability

No-Disaster Simulations

All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population
E[RY 1.24 1.93 1.93 1.93 0.93 1.93 1.93 1.69
o(R?) 2.57 0.00 0.00 0.00 0.00 0.00 6.69 2.89
E[R® — R’ 7.69 3.98 5.35 6.73 1.91 4.31 6.19 4.25
o(R°) 1772 5.72 6.68 7.68 6.20  10.79  17.52 11.65
Sharpe ratio 0.44 0.59 0.80 1.04 0.12 0.40 0.92 0.36
exp(Elp—d]) 3333 3452 34.52 34.52 34.52 3452  34.52 34.52
o(p—d) 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AR1(p — d) 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00
E[Ac] 1.93 1.69 1.94 2.20 -0.30 1.37 2.07 1.20
o(Ac) 1.25 1.07 1.24 1.43 1.15 397  12.80 6.90
E[Ad] 2.06 2.65 3.94 5.22 -2.90 2.15 4.63 1.72
o(Ad) 6.95 5.33 6.23 7.14 5.78 1299  38.73 18.95

Notes: Parameters are as follows: average disaster probability A = 0.0218, discount rate

£ = 0.01, risk aversion v = 3, normal time consumption growth u. = 0.0195, consumption

growth volatility o. = 0.0125, dividend growth pg; = 0.04, idiosyncratic volatility o; = 0.05,

leverage ¢ = 3, and mean-reversion k) = 0.12, and volatility o, = 0.00.
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Table A.3: EIS=1 and time-varying disaster probability

No-Disaster Simulations

All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population
E[RY 1.24  -0.04 1.48 2.22 -1.84 0.84 2.05 0.58
o(R?) 2.57 0.65 1.31 2.65 0.80 2.34 7.36 3.78
E[R® — R’ 7.69 4.74 7.04 10.65 4.02 6.90 11.33 717
o(R°) 1772  10.75  15.05 21.34 12.16  18.83  28.00 19.73
Sharpe ratio 0.44 0.35 0.47 0.61 0.21 0.38 0.56 0.36
exp(Elp—d]) 3333 25.79 31.42 34.67 22.09 29.68 34.06 28.87
o(p—d) 0.42 0.09 0.18 0.34 0.11 0.22 0.44 0.30
AR1(p — d) 0.91 0.55 0.77 0.90 0.59 0.81 0.93 0.89
E[Ac] 1.93 1.69 1.94 2.20 -0.52 1.42 2.09 1.18
o(Ac) 1.25 1.07 1.24 1.43 1.14 3.75 13.06 6.19
E[Ad] 2.06 2.65 3.93 5.22 -3.54 2.30 4.70 1.66
o(Ad) 6.95 5.33 6.22 7.15 5.70  12.35  39.56 19.23

Notes: Parameters are as follows: average disaster probability A = 0.0218, discount rate

£ = 0.01, risk aversion v = 3, normal time consumption growth u. = 0.0195, consumption

growth volatility o. = 0.0125, dividend growth pg; = 0.04, idiosyncratic volatility o; = 0.05,

leverage ¢ = 3, and mean-reversion k) = 0.12, and volatility o, = 0.08.
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Table A.4: The equity premium — EIS=1 and constant disaster probability

No-Disaster Simulations

All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population
E[RY 1.24 0.81 0.81 0.81 -0.18 0.81 0.81 0.56
o(R?) 2.57 0.00 0.00 0.00 0.00 0.00 6.62 2.90
E[R® — R’ 7.69 3.93 5.28 6.63 1.91 4.27 6.10 4.13
o(R°) 1772 5.65 6.60 7.61 6.13  10.66 17.29 11.58
Sharpe ratio 0.44 0.59 0.80 1.04 0.12 0.40 0.91 0.36
exp(E[p—d]) 3333 5598 55.98 55.98 55.98 5598  55.98 55.98
o(p—d) 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AR1(p — d) 0.91 0.68 0.84 0.92 0.68 0.84 0.92 0.89
E[Ac] 1.93 1.68 1.94 2.20 -0.30 1.37 2.07 1.18
o(Ac) 1.25 1.07 1.24 1.43 1.15 3.97  12.78 6.17
E[Ad] 2.06 2.65 3.93 5.20 -2.90 2.15 4.60 1.62
o(Ad) 6.95 5.33 6.22 7.15 5.78 1295  38.69 19.18

Notes: Parameters are as follows: average disaster probability A = 0.0218, discount rate

£ = 0.01, risk aversion v = 3, normal time consumption growth u. = 0.0195, consumption

growth volatility o. = 0.0125, dividend growth pg; = 0.04, idiosyncratic volatility o; = 0.05,

leverage ¢ = 3, and mean-reversion k) = 0.12, and volatility o, = 0.00.

19



Table A.5: EIS=2 and time-varying disaster probability.

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

E[RY] 124 -080 061 129  -256 001  1.13 -0.27
o(R) 257 060 120 245 074 217 720 3.68
E[R¢ — RY] 769 550 791 1183 486  7.86  12.68 8.19
o(R®) 1772 12.04 1713 2460  13.66 20.94 30.86 22.07
Sharpe ratio 044 036 047 059 023 039  0.55 0.37
exp(E[p—d]) 3333 2724 3421 3839 2270 32.01 37.58 30.92
o(p —d) 042 011 021 040 013 026  0.50 0.34
AR1(p — d) 091 054 077 090 059 081 093 0.88
E[Ad] 193 169 1.94 220  -053 143  2.09 1.16
o(Ac) 125 107 124 143 114 372  13.06 6.32
E[Ad] 206 264 393 520  -355 232  4.70 1.60
o(Ad) 695 534 621 715 569 1226 39.57 19.61

Notes: Parameters are as follows: average disaster probability A = 0.0218, discount rate
£ = 0.01, risk aversion v = 3, normal time consumption growth u. = 0.0195, consumption
growth volatility o. = 0.0125, dividend growth pg; = 0.04, idiosyncratic volatility o; = 0.05,

leverage ¢ = 3, and mean-reversion k) = 0.12, and volatility o, = 0.08.
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Table A.6: EIS=2 and constant disaster probability

No-Disaster Simulations

All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population
E[RY 1.24 0.53 0.53 0.53 -0.46 0.53 0.53 0.28
o(R?) 2.57 0.00 0.00 0.00 0.00 0.00 6.61 2.88
E[R® — R’ 7.69 3.91 5.26 6.64 1.89 4.26 6.10 4.16
o(R°) 1772 5.64 6.58 7.57 6.11 10.62  17.29 11.48
Sharpe ratio 0.44 0.59 0.80 1.04 0.12 0.40 0.91 0.36
exp(E[p—d]) 3333 66.27 66.27 66.27 66.27  66.27  66.27 66.27
o(p—d) 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AR1(p — d) 0.91 0.68 0.84 0.92 0.68 0.84 0.92 0.89
E[Ac] 1.93 1.68 1.94 2.20 -0.30 1.37 2.07 1.19
o(Ac) 1.25 1.07 1.25 1.43 1.15 3.96  12.78 6.11
E[Ad] 2.06 2.65 3.92 5.22 -2.89 2.15 4.61 1.68
o(Ad) 6.95 5.33 6.22 7.13 5.78 1293  38.67 18.99

Notes: Parameters are as follows: average disaster probability A = 0.0218, discount rate

£ = 0.01, risk aversion v = 3, normal time consumption growth u. = 0.0195, consumption

growth volatility o. = 0.0125, dividend growth pg; = 0.04, idiosyncratic volatility o; = 0.05,

leverage ¢ = 3, and mean-reversion k) = 0.12, and volatility o, = 0.00.
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