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Abstract

Habit utility has been the focus of a large and growing body of literature in financial economics. This
study investigates ways of accurately and efficiently solving the Campbell and Cochrane [1999. Journal
of Political Economy 107, 205-251] external habit model. Solutions for this model based on a grid of
values for the state variable are shown to converge as the grid becomes increasingly fine. Convergence is
substantially faster if the price—dividend ratio is computed as a series of “zero-coupon equity” claims rather
than as the fixed point of the Euler equation. Fitting the model to the term structure as well as to equity
moments (as in [Wachter, J.A., 2005. A consumption-based model of the term structure of interest rates.
Journal of Financial Economics, in press]) also results in faster convergence.

0 2005 Elsevier Inc. All rights reserved.

JEL classification: C61; C63; G12; G13

Keywords. Habit formation; Numerical solution methods; Catching up with the Joneses

Introduction

Habit utility has been the focus of a large and growing body of literature in financial eco-
nomics.Constantinides (199@ndSundaresan (1988how that habit preferences, which assume
an agent's previous consumption affects his utility from current consumption, can help explain
the high equity premium documenteddghra and Prescott (1983#bel (1990)shows that pref-
erences where the agent evaluates consumption relative to past aggregate consumption (“catching
up with the Joneses”) can also help resolve the equity premium puzzle. In both types of models,
consumption is evaluated relative to a time-varying reference point, however, in the Abel model
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this reference point is external in that the agent’s current consumption choice does not affect
future utility. For this reason, “catching up with the Joneses” preferences are sometimes referred
to as external habit formation. Building on these contributi@@anpbell and Cochrane (1999)
show that a model where utility is a function of consumption minus external habit is capable of
reconciling the low standard deviation of consumption growth with a high equity premium, high
volatility of returns, and a low and smooth riskfree rate. Recently, external habit models have
been extended to address a broad range of phenomena (se&bel§1,999) Brandt and Wang
(2003) Buraschi and Jiltsov (2003Campbell and Cochrane (200@han and Kogan (2002)
Dai (2000) Lettau and Uhlig (2000Menzly et al. (2004)Pastor and Veronesi (20Q3)achter
(2005), and tested in a variety of ways (see, e@hen and Ludvigson (2003puffee (2004)
Gomes and Michaelides (20Q®orniotis (2005) Li (2001), Tallarini and Zhang (200%)Given
the enduring interest in external habit models, it is important to investigate ways of solving such
models accurately and efficiently.

This study focuses on the external habit modelCaimpbell and Cochrane (1998hd its
extension inWachter (2005)Both papers solve for the price—dividend ratio by iterating on a grid
of values for the state variable. While choosing a grid that is too coarse can lead to inaccuracies,
this study shows that for both calibrations of the model (Campbell and Cochrane; Wachter),
the solution for the price—dividend ratio converges as the grid becomes finer. Convergence is
substantially faster if the price—dividend ratio is computed as a series of “zero-coupon equity”
claims, rather than as the fixed point of the Euler equation. Fitting the model to the term structure
as well as to equity moments (asWachter (2005)also results in faster convergence.

The remainder of this paper is organized as follows. Sectibniefly describes the model
for the representative agent and the aggregate endowment. Sedesaribes the solution tech-
niques explored in this paper, Sectidithe calibration, and Sectichthe results. Extensions to
the basic model are considereddppendices A and B

1. Modé
This section briefly describes the external habit mod& afpbell and Cochrane (199%0d

its extension inMachter (2005)Identical investors are assumed to have utility over consumption
relative to a reference poiiM;:

e’} 1—
C,—x)t7r -1
E§ 3f( 1= Xo) , (1)
t=0

1-y

wheres > 0 is the time preference parameter and 0 is the curvature parameter. Habit,, is
defined through surplus consumptisn where

Sl = Cl _ X[ .
C;
It is assumed that, = In S; follows the process
sir1=(1—@)s + s + A(s,)(Ac,_,_l - E(ACH-l)), (2

wheres is the unconditional mean of, ¢ is the persistence, and(s;) is the sensitivity to
changes in consumption. In what followssand A (s;) will be specified in terms of the primitive
parameters. Aggregate consumpt@nfollows a random walk:

Aci+1 =g+ V41, 3
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wherec; =InC; andv, 41 isaN (0, avz) shock that is independent across time.

The process fos, is heteroscedastic and perfectly conditionally correlated with innovations
in consumption growth. The sensitivity functiass,) is specified so that the real riskfree rate is
linear and that fos, ~ 5, x; is a deterministic function of past consumption. These considerations
imply that

As) = (1/8)y/1—2(s, —5) — 1, (4)

T / 14
S=oy 41—¢—b/y’ %)

whereb is a preference parameter that determines the behavior of the riskfree rate. In order that
the quantity within the square root remains positivg,) is set to be 0 whesy, > smay, for

1 _
SmaX=§+ E(l—SZ) (6)

In Campbell and Cochrane (1999) is chosen to be zero to produce a constant real riskfree
rate.Wachter (2005shows that values df > 0 allow the model to capture aspects of the term
structure of interest rates.

Because habit is external, the investor’s intertemporal marginal rate of substitution is given by

Si+1 Crv1\ "
Miy1=36 7
=2y @
Any asset returiR; 1 must satisfy
E(Mi11R 1] =1 8)
Let Rtf+1 denote the one-period real riskfree rate betwesmds +1, andrtJrl =In Rtf—i-l Because

R/ 41 Is known att, applying(8) implies

,+1 = In(l/Et Mt+l]) 9)
Y202
L (14 (). (10)

Strictly speaking(10) is an approximation, as it assumes there is a zero probabilityrifing
abovesmax. Because; > smax OCcurs very rarely for relevant parameter values, the approxima-
tion in (10)is highly accurate, as shown in what follows. Substituting the equatiok(fpy into
(10) produces the equation

y(1—-9)

. _b B
r{+l=—|n5+yg—f+b(s—s,). (11)

Thus(4) implies a riskfree rate that is linear §p.
The aggregate market is represented as the claim to the future consumption stré@am. If
denotes the ex-dividend price of this claim, ti@himplies that in equilibriumP; satisfies

P, C
o (P56)] -
t

which can be rewritten as

Pt+1 Ct+1 P
E M 1) —/] | = —. 12
tl: H_1<Cz+1 * > C; C; ( )
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Becausé’, is the dividend paid by the aggregate marky,C; is the price—dividend ratib.

The model is simulated by drawing from the consumption pro¢@sdeeding these draws
through(2) to obtain draws fos;, and then using the values to obtain draws for the riskfree
rate and the price—dividend ratio. Returns on the aggregate market are simulated using

m _ (Pg1/Cry1) +1Cr
SE e C

Whatever difficulties lie in solving the model lie in solviig2) for the price—dividend ratio as a
function ofs,, and, to a lesser extent, solvi(@) for the riskfree rate.

(13)

2. Solution methods

The riskfree rate can be computed directly by solving the expectati(®),iwhere

o0
E/[My 1] = 5e— V& +A=9)G=s50) / p(v)e? G0+ gy (14)
—00
andp(v) is the probability density function of a normal distribution with mean zero and standard
deviationo, .2 Computing the price—dividend ratio is less straightforward. One method, used by

Campbell and Cochrane (19980d referred to here as tffiged-point method, involves solving
(12) recursively. Conjecturing a solutia@®(s;), G(s,) is obtained on a grid of values fer as

Cii1
G

Gs1) = E [MIH(GO(M) +1)

= 5=y (1=¢)G5—s1)

x / p)eI VTRV (GO((1— §)5 + dsy + A(s)v) + 1) dw. (15)

—00

More generally, giverG*, G¥+1 satisfies

1 Itis possible to model aggregate dividends as separate from aggregate consu@gtipbell and Cochrane (1999)
introduce a dividend proced3;, whered; = In D; and explore a model with

Adpr1 =g+ w1,

wherew, 1 is correlated withy, ;1. Wachter (2000)following Campbell (1986andAbel (1999) allows dividends to
be a levered claim on consumption:

D =c?.

Prices for these claims can be determined by straightforward modificati¢h8)t®oth have the potential disadvantage
that the consumption—dividend ratio is non-stationary: either the claim to dividends or the claim to consumption eventu-
ally takes over the economy. An alternative is to assume that consumption and dividends are co-integpatedix A
shows how to modify{12) to such a model.

2 Solving this integral requires a choice of bounds on the shock, as well as a choice of numerical integration routine.
Here, and in the rest of this paper, Gauss—Legendre 40-point quadrature is used, and the integral is bou@detiby
+8 standard deviations. Increasing the number of standard deviations in the integral has a negligible effect on the results.
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Gk+1(S,) = §eI=1)g—v(1=9)5—s1)

[e¢]

X / p(v)e(lf}')”ﬂ’)‘(“")”(Gk ((1 — )5 + s + )L(s,)v) + 1) dv.

—00

The procedure is repeated untift! and G* differ by at most 10%. The resulting fixed point
is the solutionG(s;) to (12). Chen et al. (2004show that this recursive definition of the
price—dividend ratio is well defined, continuous, and smooth in a wide interval. Each step in
this recursion requires computing the function obtained in the previous step at a set of points
{(L - ¢)5s + ¢s; + v;} (where{v;} is determined by the numerical integration routine) for
each value of,. These points generally lie outside of the grid. To evalu@teat these points,
Campbell and Cochrane (19983e log-linear interpolation. That is, they assume th&t“lris
approximately linear in Is,.

A second way of solving for the price—dividend ratio also take?) as the starting point.

Iterating(12) N times produces
N Cron
} + E; [( I1 M,+,-) o G°<sz+N>}, (16)

j=1 '

GN(s)—XN:E ﬁM N\ Cign
t) = t t+j Ct

n=1 j=1

— Sivj Citj =V : i ini
whereM;, ; = S(Sw_il T[il) for j > 1. Assuming one has chosen an initizfl such that

N

. Cian 0

NlinooEl|:(1_[1M’+j) C G (s:+N):|=0,
j=

(16) implies a convenient characterization of the price—dividend ratio as an infinite sum of ex-
pectations:

. o n C "
G(s) = lim GN(s,)=ZEt|:<HM,+j) ’C+ } (17)
—00 t

n=1 j=1

Each term in(17) is the time¢ price of a claim to the aggregate dividencperiods from now
divided by the dividend today. This can be thought of as “zero-coupon equity” with maturity

Equation(17) suggests another way of solving for the price—dividend ratio: computing each
expectation on the right-hand side @f7), or at least enough terms so that what remains is
sufficiently small. This can be done recursively, using the Euler equéjohet F, (s;) denote
thenth term in this expectation:

n C ;
Fu(si) = E{(]‘[ Mt+,~> o ] (18)
j=1 !

F,(s;)C; is then the price of zero-coupon equity that matures jreriods. Because this security
pays no dividends, its one-period return equals

Fu—1(st+1)Cry1

R =
it Fu(s)C;

and(8) implies

C
F,(s;) = E; [Mt+l 8_1 Fn—l(St+l):|~ (19)

t
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Finally, when the equity matures it pays the aggregate dividend. Ther&gare = 1.2 Finally,

o0
G(s) =) Falso).
n=1
Similar computations to solve for the aggregate price—dividend ratio have been empléyed in
and Liu (2004) Bekaert et al. (2004 andLettau and Wachter (2005)

Iterating on(19) (using Fo(s;) = 1 to start the process), and summing the terms is a second
method of solving for the price—dividend ratio of the aggregate market. | call thiseties
method. Like the fixed-point method, the series method must also be implemented numerically.
The recursior(19) has no closed-form solution, and is solved on a grid of values;fdgiven
Fn_1(sy),

o0
Fy(sy) = de! 7787 (=06=s0) / p@)TVTIHENE, (L= )5 + ¢si + A(si)v) dv.
—00

As in the fixed-point methodf,,_1((1 — ¢)s + ¢s; + v) is found by interpolating between grid
points.

These calculations rely on numerical methods to evaluate the solution for the price—dividend
ratio. Having a closed-form solution would obviate the need for these methods, but such a so-
lution is not apparent. The lack of an explicit expression does not arise from the assumption of
discrete time, a&\ppendix Bshows. While the stochastic discount factdy, 1, as well as the

riskfree rate[’:rl share certain similarities with continuous-time, affine term structure models of
the Cox et al. (1985form they are in fact quite different. In continuous time, a version of the
formula(10) for the riskfree rate is exact rather than approximate. However, this is a minor gain,
as the discussion below makes clear. The solution for zero-coupon claims satisfies a differential
equatioq ins; and the maturity, but this differential equation does not have an exponential-affine
solution:

3. Calibration

To address the accuracy of the fixed-point and series methods, it is necessary to choose rea-
sonable parameter values. Two sets of parameter values are considered. The first set is from
Campbell and Cochrane (1999ampbell and Cochrane choose this set of parameters to fit the
mean and volatility of consumption growth, the average riskfree rate, the Sharpe ratio, and the
persistence of the price—dividend ratio in annual data from 1947 until 1995. The paranseter
setto zero, and therefore the (real) riskfree rate is constant. Campbell and Cochrane calculate the
price—dividend ratio using the fixed-point method, simulate the model at a monthly frequency,
and aggregate the data to an annual frequency.

The second set of parameters is frivachter (2005)Wachter chooses this set to fit the same
equity moments as in Campbell and Cochrane, but in quarterly data from 1952 until 2004. A more
important difference is that is allowed to differ from zero to match the upward-sloping yield
curve for nominal Treasury bonds. This choice of parameters is shown to account for features of

3 These relations can also be derived directly frid).
4 Menzly et al. (2004ppecify a different process for surplus consumptpnin their specification, it is possible to
find a closed-form solution in continuous time.
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Table 1
Parameter choices
CC value Wachter value
Mean consumption growth (%g) 1.89 220
Standard deviation of consumption growth (&%) 1.50 086
Utility curvaturey 2.00 200
Coefficient on—s; in the riskfree raté 0.00 0011
Habit persistence 0.87 089
Discount rates 0.90 093

Note. This table reports the assumed parameteSampbell and Cochrane (1998)C) andWachter (2005)The CC
specification is simulated at a monthly frequency while the Wachter specification is simulated at a quarterly frequency.
Parameters are annualized, e.g.g1212x, ¢12 and§12 for the CC values, andgd 2o, ¢# ands4 for the Wachter
values.

the term structure of interest rates. This model is simulated at a quarterly frequency. Parameter
values for both calibrations are reportediable 1

4, Results

To assess the accuracy of the fixed-point and series methods, | first calculate the solution under
each method using three different grids, and under botiCtrepbell and Cochrane (19%nd
Wachter (2005kalibrations. The first grid (“Grid 1”) is identical to that used by Campbell and
Cochrane. To form this grid, 12 points are chosen at equally spaced intervals between 0 and
Smax- Smax IS included in the grid for a total of 13 points. Zero is not included because log-linear
interpolation requires taking the log 6f. To capture non-linear behavior of the price—dividend
ratio nearSmayx, additional points are added at intervals of 0.01, for a total of 17 grid pdints.

The second grid (“Grid 2") starts with Grid 1 and extends it to include values ofoser to
zero by adding points 0.0005, 0.0015, 0.0025, 0.0035, and 0.0045. Finally, the third grid (“Grid
3") is finer and includes values much closer to zero. This grid is constructed in two parts, an
upper segment and a lower segment. The upper segment consists of 101 equally spaced points
S; between 0 andmax With Smax included. The lower segment consists of 900 logarithmically
spaced points between the lowest point in the upper segment (e.Q#20for the Campbell
and Cochrane parameter values), arR00.

Figure lillustrates the solution for the price—dividend ratio computed using each method
(fixed-point or series) and each grid. The top panel shows resultsdombell and Cochrane
(1999)parameter values and the bottom panel shows resuk¥dohter (2005parameter values.
Triangles denote the solution obtained with the fixed-point method; circles denote the solution
obtained with the series method. Symbols are decreasing in size from the coarsest grid (Grid 1)
to the finest grid (Grid 3). For the Campbell and Cochrane parameter values, the solution is the
same for the fixed-point and the series method as long as the finest grid is used. However, the
coarser grids produce solutions for the price—dividend ratio that are different from one another,
and different from the solution produced by the finest grid. These differences are substantially
smaller for the series method as compared to the fixed-point method.

The bottom panel dfig. 1shows analogous results for parameter values fManhter (2005)

Once again, the solution is the same whether one uses the fixed-point or series method as long

5 For example, for the Campbell and Cochrane calibration, the vajuiesluded in Grid 1 are [0.0072 0.0144 0.0217
0.0289 0.0361 0.0433 0.0506 0.0578 0.0650 0.0722 0.0794 0.0867 0.0902 0.0911 0.0920 0.0930 0.0939].
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Campbell and Cochrane (1999) Parameter Values
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Fig. 1. The price—dividend ratio as a function of surplus consumpfjoander Grids 1 (coarse), 2, and 3 (fine). FP
denotes the fixed-point method and Ser. denotes the series method.

as the finest grid is used. Moreover, the series method produces accurate solutions for all three
grids at these parameter values. Slight inaccuracies are present for the fixed-point method when
Grids 1 and 2 are used, but on the whole the differences for the solutions across grids and methods
are small.

Figure 1shows that the solution for the price—dividend ratio depends on the choice of grid.
Tables 2 and 3how the consequences of this dependence for statistics in simulated data. For both
sets of parameters, | simulate 100,000 years of dafale 2reports results for th€ampbell and
Cochrane (199%alibration: the equity premiurg (+" — r/), wherer™ = In R™, the standard
deviation ofr” — r/ and the Sharpe ratio (the equity premium divided by the standard deviation).
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Table 2

Simulation resultsCampbell and Cochrane (199&libration

Moment/Grid Fixed point Series Data
1 2 3 1 2 3

EG™ —rl) (%) 6.59 518 389 444 419 390 669

o™ —rl) (%) 1505 1180 823 951 900 825 1570

Sharpe ratio o4 044 047 047 047 047 043

Skewness 6 012 004 007 006 004 —0.53

Kurtosis 458 387 337 349 344 337 335

E(rf) (%) 0.94 094 094 094 094 094 094

explE(p —d)} 1862 2435 3466 2930 3143 3452 2470

o(p—d) 0.27 021 013 016 015 013 026

Corr(p —d) 0.86 085 084 084 084 084 087

Notes. 100,000 years of artificial data are simulated based on the Campbell and Cochrane calibElae ifor the

fixed-point and series methods, and for Grids 1 (coarse), 2, and 3 (fine) as described in&dd¢i®mmodel is simulated

at a monthly frequency and results are aggregated to an annual frequency. Data moments are calculated using annual data
from 1947 to 1995.

Table 3

Simulation resultstWachter (2005¢alibration

Moment/Grid Fixed point Series Data
1 2 3 1 2 3

E@™ — rf) (%) 5.86 543 564 565 564 565 521

o (™ —rT) (%) 17.24 1607 1610 1614 1611 1614 1593

Sharpe ratio (B4 034 035 035 035 035 033

Skewness 33 032 033 033 033 033 —0.95

Kurtosis 404 386 383 383 383 383 491

EGT) (%) 147 147 147 147 147 147 146

explE(p —d)} 20.68 2231 2139 2134 2135 2133 3150

o(p—d) 0.34 031 031 031 031 031 033

Corr(p — d) 0.97 097 097 097 097 097 097

Notes. 400,000 quarters of artificial data are simulated based on the Wachter calibrafadsierifor the fixed-point and

series methods, and for Grids 1 (coarse), 2, and 3 (fine) as described in Sedtiemodel is simulated at a quarterly
frequency. Results are reported in annual terms (expected returns are multiplied by 4, and the standard deviation of
returns is multiplied by 2). Data moments are calculated using quarterly data from 1952 to 2004.

This table also reports the skewness and kurtosis of returns, the mean of the riskfree rate, and the
mean, standard deviation, and persistence of the log of the price—dividend ratio.

As Table 2shows, the differences in the price—dividend ratio across grids lead to noticeable
differences in simulated data. The first column contains results using Grid 1 and the fixed-point
method® The Sharpe ratio is 0.44, the equity premium is 6.6% per annum and the volatility of
excess returns is 15%. The standard deviation of the price—dividend ratio is 0.27. When Grid 3 is
used with the fixed-point method, the Sharpe ratio is 0.47, the equity premium is 3.9%, and the
volatility is 8.2%. The standard deviation of the price—dividend ratio is 0.13.

Table 2also shows that results in simulated data are virtually identical for the fixed-point and
series methods, as long as the finest grid (Grid 3) is used. Agirl, the series method gives
more accurate results than the fixed-point method. Using Grid 1, for example, the equity premium

6 slight differences fronCampbell and Cochrane (1998 due to simulation noise.
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under the series method is 4.4%, close to 3.9%, its value under Grid 3. Although differences
in grids imply differences in equity moments, they do not result in differences for the riskfree
rate. Under the&Campbell and Cochrane (199&alibration, the riskfree rate is constant, so the
mean of the riskfree rate is identically equal to its value.TAble 2shows, this value is always

0.94, regardless of which method or grid is used (indeed, 0.94 is also the value produced by
the approximatior{10)). It is not surprising that the choice of grid and method matters for the
computation of the price—dividend ratio and not for the riskfree rate. The riskfree rate is computed
using only one integral, while the price—dividend ratio is computed iteratively. This iterative
procedure allows small errors to compound.

Table 3contains analogous results for tiéachter (2005kalibration. The series method is
again more accurate than the fixed-point method, and in fact the results are indistinguishable
across all three grids when the series method is applied. At these parameter values, the model
can match the equity premium, return volatility, and the volatility of the price—dividend ratio.
Wachter shows that these parameter values also enable the model to capture important aspects c
the term structure of interest rates. However, as notethbigrini and Zhang (2005}his type of
model produces returns that are skewed in the opposite direction as returns in the data, and tha
exhibit less kurtosis than in the data.

I now turn to the question of whether the solution for the price—dividend ratio converges as the
grid becomes increasingly fine. This is important in establishing both that Grid 3 is sufficiently
fine (i.e. constructing an even finer grid would not produce a substantially different solution) and
as a means of determining how coarse the grid can be without producing unacceptable errors.

To address the question of convergence, grids are varied along three dimensions. These di-
mensions are suggested by the construction of Grid 3. As described above, Grid 3 has an upper
and a lower segment. The upper segment consists of equally spaced points betwe&mH.and
The lower segment consists of logarithmically spaced points between a minimum value and the
natural log of the lowest point in the upper segment. When viewed as a gfid tre resulting
grid is evenly spaced in the upper segment, and more dense in the lower segment, with the density
increasing as; declines to zero. When viewed as a gridspe= In S;, the grid is evenly spaced
in the lower segment, and more dense in the upper segment, with the density increasing as
rises towardmax. TO assess convergence, the grids are varied by decreasing the minimum value,
increasing the density of the lower segment, and increasing the density of the upper segment.
For each grid and method, the solution for the price—dividend ratio is compared to the solution
computed using Grid 3 and the corresponding method. More precisely, the solution is subtracted
from the solution computed using Grid 3. This quantity is divided by the solution computed us-
ing Grid 3 and multiplied by 100. For purposes of comparison the solutions are evaluagd at
Repeating the exercise usifgather tharsmax yields results that are nearly identical; they are
omitted for brevity.

Figure 2shows the results of altering the minimum value, keeping other aspects of the grid
the same as in Grid 3 (the number of points in the upper segment is maintained at 100 and the
number of points in the lower segment is set at three times the minimum value, so that the density
remains constant even as the minimum value changes). The least fine grid has a minimum value
of zero, so there are no points in the lower segment. The finest grid has a minimum value of
—300, and so is equal to Grid 3. The top graph shows results fo€#mepbell and Cochrane
(1999) parameter values and the bottom graph shows results foigohter (2005parameter
values. Thec-axis is in terms of the log of the minimum value. This figure shows that the solution
converges to its Grid-3 value as the minimum value approa€ct3€® for both calibrations and



220 J.A. Wachter / Finance Research Letters 2 (2005) 210-226

Campbell and Cochrane (1999) Parameter Values
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Fig. 2. Percent difference in the price—dividend ratio between the grid with the lowest minimum value and grids with
greater minimum values. Lines with triangles denote computations with the fixed-point (FP) method, lines with circles
denote computations with the series method. The number of grid points in the lower segment is equal to three times the

minimum value. The number of grid points in the upper segment is equal to 100. The difference is evalSaigd at
The y-axis scale differs for the upper and lower graphs.

methods. This convergence is faster for the series method than for the fixed-point method and,

for theWachter (2005talibration, the errors are negligible for all grids under the series method.
Figures 3 and 4lisplay results for altering the density in the lower segment and the upper

segment respectively. In both cases, the log of the minimum value is ke0&. ForFig. 3, the

number of points in the upper segment is maintained at 100, whik&dod, the number of points

in the lower segment is maintained at 900. In both cases, the price—dividend ratio converges to the
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Fig. 3. Percent differences in the price—dividend ratio between the grid with the most density in the lower segment and
grids with less density in the lower segment. Lines with triangles denote computations with the fixed-point (FP) method,
lines with circles denote computations with the series method. The minimum value is egu88l@oThe number of grid

points in the upper segment is equal to 100. The difference is evaluasg@yat

Grid-3 value. The convergence is faster for Wachter (2005parameter values and the series
method again results in substantially faster convergence as compared to the fixed-point method.

5. Conclusion

This paper has investigated two related methods of solving for the equilibrium price—dividend
ratio in theCampbell and Cochrane (1998)odel and its extension ifachter (2005)Both
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Fig. 4. Percent difference in the price—dividend ratio between the grid with the most points in the upper segment and
grids with fewer points in the upper segment. Lines with triangles denote computations with the fixed-point (FP) method,
lines with circles denote computations with the series method. The minimum value is egu8l@oThe number of grid

points in the lower segment is equal to 900. The difference is evaluatighat

methods involve solving for the price—dividend ratio of the consumption claim on a grid of val-
ues. The series method computes the price—dividend ratio as a sum of claims to individual future
dividend payments. The fixed-point method computes the price—dividend ratio as a fixed point
of the investor’s Euler equation. If each method could be applied without error, they would give
identical solutions. However, because both methods involve numerical approximations, there
may be differences. This paper has shown that the two methods indeed give the same answer if
the grid used in the approximation is sufficiently fine. Moreover, the solution is shown to con-
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verge for both methods as the grid becomes finer. The speed of this convergence is shown to
depend on the calibration: when the model is calibrated to the term structure of interest rates as
well as equity moments (as Wachter (2005) the solution converges more quickly. For both
calibrations, the series method leads to substantially faster convergence and greater accuracy fol
any given grid.
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Appendix A

This appendix solves the model in the case of cointegrated consumption and dividends. Let
7 = ¢; — dy, the consumption—dividend ratio, and assume that

Z+1= A= Y)Z+ Yz + w1,
wherew; 1 is iid and jointly normally distributed with, 1. Let p denote the correlation between
v;+1 and w,41 andoy, the standard deviation af,1. The ex-dividend price of the claim to
dividends,P?, satisfies
Pl 4+ Dy
Et|: 1 t+ ]

+
Mt+l :
Py

Pfil can be expressed as the sum of claims to individual divid@fdhat satisfy

d d d
Fur _ E, |:MH_1M%i| —E, |:Mt+lMeg+vt+l_Azt+li|’ (A.1)
D, Dz+1 D, Dt+l
with boundary condition
pd
o g,
Dy

The presence of; adds a complication, as in principle the integration for the recur@oh)
must be done over two variables. However, it turns out ifatan be written as

Pd
D= Fy! (s1) explAy + Buz1), (A2)
whereF¢ satisfies the one-dimensional recursion

Fl(s0) = E[Myqe8 T B Dre v pd (1)), (A.3)
with boundary conditiorF§ (s;) = 1.

I now verify Egs.(A.2) and (A.3)by substitutingA.2) into (A.1) and using the law of iterated

expectations. A similar argument is used to obtain expressions for nominal bokdschter
(2005) Substituting forPffl’lH/D,H inside the expectation yields

d
Pnt

D = E/[M1F ((s:41) €Xp{Ay—1 + By_12i41} €Xplg + V41 — Aziga}]
t
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=exp{An-1+ (Bi1 — DA =)z + Bu1y — ¥ + Dz}
X E[Myp1e8 ™ FY (s E[e Pt D0 [y 4], (A.4)

n

Conditional o, 41, (B,-1 — Dw;,+1 is normally distributed:

[oF
(Bu1— Dwis1 | vig ~ N((Bnl = Do, (Buoa — D205 (1- pz)),

v

so the inner expectation {\.4) can be written as

_ lof 1
E[ePrambms |y ] = exp{(Bn_l ~Dp—" vt + 5 (But — Do (1~ pz)}-

Oy

Define recursions

Ap=Ap_1+ (Byo1 — DA — )7 + 3(Bacr — D202 (1 - p?), (A.5)
Bn = Bn—lw - lﬁ + 1’ (A6)

and letAg = Bg = 0. By induction, it follows that(A.2) is satisfied. EquatiofA.6) and the
boundary condition imply

1—y"
11—y

Using the decompositiofA.2), it is possible to solve this model using the series method
described in Sectio®. The recursiorfA.3) is solved iteratively using quadrature. For any values
of the state variables, a price—dividend ratio can be produced by interpolating to find the correct
Fd(s;), and multiplying bye“»*2:% The price—dividend ratio for the aggregate market is equal
to

B,=(1-1v)

Pl Ky
oo =2 Fil s explAy + Byz).
! n=1

Note that a decomposition analogougAo2) does not hold for the market price—dividend ratio,
and thus solving this model would be quite difficult with the fixed-point method.

Appendix B

This appendix describes a continuous-time version of the economy in SéctiehZ, be a
one-dimensional Brownian motion, and assume that the log of consumption follows:

de;, =gdt+o0,dZ;.
Log surplus consumption = In[(C; — X;)/C;] is assumed to follow the process
dSt = (1 — ¢)(E — St)dt + )\,(St)UU dZt

Let ¢; denote the pricing kernel in this economy (d2effie, 1996 Chapter 6), which will be
determined endogenously in equilibrium. The pricing kernel follows the process

dg

= —rtf dt —n,dZ,,
&
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Wherer,f is the instantaneous riskfree rate (the continuous-time analogue to the one-period risk-
free rate in Sectio), andn;, is the price of risk.
Identical agents maximize

[e¢]

—x)l-r
E/(S’i(ct D
l1-vy

0
subject to

E|: CtCt:| = Wo, (B.1)
[

where Wy is the initial wealth in the economy. The condition for equilibrium equates marginal
utility with a constant multiplied by the pricing kernel (sBeffie, 1996 Chapter 10):

Bt(StCt)_V Zké‘t (BZ)

The constank adjusts such thgB.1) is satisfied. Applying Ito’s lemma to the left-hand side of
(B.2) and equating drift and diffusion terms implies

ne=vyou (14 A(sp),

and

2.2
Y o,

il =—Ins+yg+yA—9)G —s) — T (1+60)% B3

Unlike (10), (B.3)does not require an approximation.
Specifyingi(s;) as

AGs) =(1/8)V/1—2(s, —5) — 1

implies that(B.3) reduces tq11). In the continuous-time set-up, there is no need to require that
A(sy) be identically zero abovénay, as this will never occur.
To solve for the price of the consumption claim, note that any risky asset with pribeat
follows the process
dP;

—— =pupsdt+op;dZ;
Py

must satisfy the no-arbitrage condition

Mp.t _sz =0opNt- (B.4)

As in Section2, conjecture that the price of a zero-coupon consumption claim maturing at date
t + t takes the form

P(Cy, 51, 7) =Cr F (s, T) (B.5)

for some smooth functiof’. Applying Ito’s lemma tq(B.5) and substituting int¢B.4) indicates
that(B.5) is satisfied, and thaf solves the following partial differential equation:

F. 1F, F,
LR —ﬂk(st)zavz + Fsk(st)avz — rtf

+i2 B a_ge-s
ET5%TE ST T T TSR

2 v
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= (av + %O’UK(S;)> (l+ A(s,))yav, (B.6)

where Fy, F., F;; denote appropriate first and second derivativeg” oEquation(B.6) thus
characterizes prices of zero-coupon equity and provides an alternative route to a solution for the
model in Sectiorl.
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