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Abstract

We propose a model of the financial system in which banks are individually prone
to runs and connected through fire sales. Strategic complementarities within and
across banks amplify each other, making heterogeneity in bank risks a key factor
shaping the fragility of each bank and the entire system. As long as different banks
are interconnected, an increase in heterogeneity stabilizes all banks. Reductions in
asset commonality, bank-specific disclosures, and even broad-based policies such as
asset purchases and liquidity requirements can enhance stability by increasing bank
heterogeneity.
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1 Introduction

The global financial crisis of 2007–2008 put the correlation in risks across financial

institutions (for short, banks) in the limelight. The concern emphasized by policymakers

(Haldane, 2009; Yellen, 2013) is that the joint failure of many banks presents a big threat

to the economy. Therefore, several measures have been developed to track comovement

in banks’ risks.1 What is less clear is whether the correlation between banks makes

them more prone to failure overall. This is critical for evaluating the importance of tail

comovement. After all, if banks were more correlated in their failures, but at the same

time less likely to fail overall, then the implications of comovement for financial fragility

would be much less severe. The model presented in this paper uncovers a new channel

through which risk correlation makes banks overall more fragile. Based on this channel,

we develop new implications for financial policy aimed at minimizing fragility.

Our model features banks that are individually fragile, due to the provision of liq-

uidity transformation, and indirectly interconnected through fire-sale spillovers.2 When

facing withdrawals, banks liquidate their assets in a common market, thereby imposing

negative fire-sale externalities on one another. We define financial fragility as the uncon-

ditional probability of individual banks to suffer a run. We show that the degree of bank

heterogeneity—the extent to which different banks experience runs in different states and

a measure of tail-risk dispersion in our setting—is a key indicator of financial stability of

individual banks and the system as a whole. We further argue that boosting heterogene-

ity, at least to a certain point, is a natural goal for regulators aiming at minimizing real

losses caused by financial fragility and inefficient fire sales.

Why does bank heterogeneity reduce fragility? The main economic force behind this

result is a two-layered coordination problem that naturally arises in our setting. First,

typical to a bank-run model, there is a within-bank strategic complementarity. Investors

who withdraw money from a bank early cause costly asset liquidations and impose neg-

1Popular systemic risk measures are based on tail comovement among financial institutions, e.g. Huang,
Zhou, and Zhu (2009), Adrian and Brunnermeier (2016), Acharya, Pedersen, Philippon, and Richardson
(2017), Brownlees and Engle (2017).

2We refer to individual institutions as banks, but our analyses can be applied to other types of institutions
with runnable liabilities (e.g., corporate bond mutual funds, Goldstein, Jiang, and Ng, 2017).
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ative externalities on those who stay. Second, there is a cross-bank strategic complemen-

tarity due to fire-sale spillovers. Key to our results is that these two complementarities

amplify each other. An investor is more concerned about withdrawals in her bank when

she expects investors of other banks to withdraw in their banks, forcing premature liq-

uidations and driving up the fire-sale discount. Therefore, if withdrawals from different

banks coincide with each other, cross-bank fire-sale spillovers are particularly detrimental

to bank stability. As withdrawals become more dispersed, fire-sale spillovers are attenu-

ated and become less detrimental to stability. There exists a natural limit to this result:

If runs are sufficiently dispersed, investors become certain about run situations in other

banks. In that case, the strength of fire-sale spillovers is effectively fixed, and bank

heterogeneity no longer affects fragility.

It is important to highlight that our theory offers very distinct insights compared to

existing theories about systemic risk, which typically feature a tension between systemic

risk and risks of individual institutions. In particular, as interconnectedness rises, banks

are more likely to fail together but weaker banks are less likely to fail.3 In our paper,

such tension does not normally exist, since larger heterogeneity across banks makes each

one of them less likely to fail in the first place. Hence, heterogeneity is a first-order

concern. This highlights the need to track heterogeneity. Ignoring the impact of policies

on heterogeneity would lead to an imprecise assessment of their effect on financial stability.

How can regulators affect bank heterogeneity? To answer this question, we identify

main factors contributing to heterogeneity and point out how various policies affect it.

First, if banks hold different assets, they are exposed to different fundamental shocks,

which naturally leads to dispersion in withdrawals. Policies that reduce asset common-

ality, such as ring fencing, can thus increase heterogeneity. Second, because investors are

the ones who make withdrawal decisions, what matters for runs is perceived rather than

physical asset commonality. By mandating disclosure of bank-specific information, regu-

lators can reduce investors’ perceived asset commonality and boost heterogeneity. Third,

since run decisions are shaped by investors’ beliefs about the magnitude of the fire-sale dis-

3See, for example, Cabrales, Gottardi, and Vega-Redondo (2017) in the context of financial networks
and Bouvard, Chaigneau, and Motta (2015) in the context of bank disclosure.
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count, liquidity conditions in the asset market also play an important role. We show that

secondary market liquidity injections and liquidity requirements have a stronger positive

effect on liquidity conditions perceived by investors of banks with stronger fundamentals

and thus increase heterogeneity.

We now describe the model and the results in more detail. As is typical for models

of financial fragility, run decisions of bank investors are characterized by run thresholds.

Specifically, run happens if and only if the aggregate fundamental falls below a bank-

specific threshold. Therefore, low run thresholds indicate low fragility. In our model, all

bank-specific thresholds are determined jointly in equilibrium. When deciding whether

to withdraw their funds early, investors assess run situations in all banks in the financial

system. To pin down equilibrium run thresholds, we thus need to characterize investors’

beliefs about run decisions of other investors in their banks and investors in other banks.

Analytical characterization of these beliefs in a setting featuring interacting within- and

cross-bank complementarities is one contribution of our paper.

There are two main factors that shape run thresholds. The first one is bank fundamen-

tals. In the model, bank asset returns are subject to aggregate and idiosyncratic shocks.

Idiosyncratic shocks separate banks into two types ex post: strong banks receive a pos-

itive shock and weak banks receive a negative shock. Strong banks are relatively more

stable, and a worse aggregate shock is needed to trigger runs on these banks. Hence, they

have a lower run threshold. Second, run thresholds depend on investors’ beliefs about

the fire-sale discount. Marginal strong-bank investors expect a higher fire-sale discount

than marginal weak-bank investors do. This is because if strong-bank investors are on

the margin of running or not, they expect that weak banks are experiencing severe run

problems. Conversely, marginal investors of weak banks expect fewer runs on strong

banks. Overall, reflecting both the fundamental effect and the fire-sale effect, the run

thresholds of both types of banks are determined in equilibrium. The distance between

the run thresholds of strong and weak banks captures bank heterogeneity.

Our main theoretical result is that an increase in bank heterogeneity makes both weak

and strong banks more resilient to panic runs by weakening the reinforcement between
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within- and cross-bank complementarities. A larger heterogeneity implies that strong

banks’ stability is challenged by a greater downward pressure that weak banks impose

on liquidation prices, and weak banks’ fragility is alleviated by a lower pressure that

strong banks impose. The key to the decrease in the overall fragility is that the effect

on weak banks dominates that on strong banks. This is a direct result of the fact that

within- and cross-bank complementarities are mutually reinforcing. In particular, given

that weak banks are more internally fragile, their investors are more strongly affected by

the alleviated fire-sale pressure than strong-bank investors are affected by the intensified

fire-sale pressure. Hence, fragility is lower when heterogeneity increases.

When heterogeneity becomes too large, however, a further increase in it has no ef-

fect on fragility. In this case, strong banks and weak banks are effectively disconnected.

Specifically, investors in strong (weak) banks become certain that all (none) investors

in weak (strong) banks will run. Therefore, when investors decide whether to run, they

face uncertainties only regarding run situations in the same type of banks. As a result,

an increase in heterogeneity no longer affects cross-bank spillovers. These extreme sce-

narios with two non-interacting groups of banks are less interesting from a theoretical

standpoint. Furthermore, they are also difficult to reconcile with experiences from re-

cent financial crises that featured substantial uncertainties about the health of various

financial institutions among market participants.

After establishing the key insight about heterogeneity and fragility, we proceed to pol-

icy analyses. We show that in our model, reducing bank fragility is welfare-improving

because runs are associated with real resource losses due to fire sales. Thus, stabiliz-

ing financial sector is a natural goal for the regulator. We consider four policies, often

discussed as part of financial regulation, and study their effect on fragility through the

heterogeneity channel.

First, we consider a ring-fencing policy that separates bank balance sheets into dif-

ferent divisions according to business or geographic focus. Such a policy increases the

dispersion in asset returns across different bank divisions. In the model, this corresponds

to an increase in the ex-post difference between weak and strong banks and, hence, a
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higher bank heterogeneity. As argued above, an increase in heterogeneity is beneficial

for stability of all banks (unless heterogeneity is already too large). The existing liter-

ature that examines the relation between asset commonality and financial stability has

mainly focused on cascades of fundamental defaults in which investors play a passive role.

This literature suggests that asset differentiation reduces systemic bank failures at the

expense of more individual failures of weak banks (Shaffer, 1994; Wagner, 2010 and 2011;

Ibragimov, Jaffee, and Walden, 2011). Simulation analyses suggest that purely funda-

mental default cascades are unlikely in modern financial systems (Elsinger, Lehar, and

Summer, 2006; Upper, 2011). Differently, we consider panic-based runs with investors

actively withdrawing because of concerns about others’ withdrawals, precipitating illiq-

uidity which then spreads across banks through fire-sale spillovers. Importantly, we show

that in our environment asset differentiation can make both strong and weak banks more

resilient to panic-driven runs.

Second, we consider regulatory disclosure that affects the quality of bank-specific infor-

mation available to investors. We extend the model by adding noise to investors’ informa-

tion about bank-specific shocks. In this extended setting, we show that what matters for

heterogeneity is perceived differences between bank asset returns. In an opaque financial

system, investors can hardly distinguish between strong and weak banks, resulting in an

effectively homogeneous financial system. Disclosing bank-specific information enlarges

heterogeneity and stabilizes the financial system.4 While existing literature argues that

disclosing bank-specific information can undermine the stability of weak banks (e.g., Bou-

vard et al., 2015 and Goldstein and Leitner, 2018), our results suggest that disclosure can

stabilize the entire financial sector, including weak banks, by alleviating fire-sale pressure

on particularly fragile institutions.5

The third policy we examine is secondary market liquidity injections, widely used

by regulators during market turmoils in the 2007–2008 financial crisis and the COVID-

4A contemporaneous paper by Dai, Luo, and Yang (2021) argues that disclosure of banks’ systemic risk
exposures—but not their idiosyncratic risks—can mitigate financial fragility. In our framework with
reinforcing complementarities, disclosing bank-specific information can enlarge heterogeneity which is
beneficial for overall stability.

5In a one-bank setting, Parlatore (2015) shows that an increase in transparency can worsen coordination
problem among depositors and thus undermine stability.
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19 pandemic. Unlike ring-fencing and disclosure policies, a liquidity injection does not

affect (perceived) dispersion in bank fundamentals. However, it does affect heterogeneity

by reshaping investors’ beliefs about the fire-sale discount. In the model, a liquidity

injection reduces the fire-sale discount for any amount of long-term assets liquidated by

banks. Surprisingly, even though an injection is broad-based—that is, the regulator does

not purchase assets owned by a particular group of banks—it tends to reduce the fire-

sale discount perceived by strong-bank investors more prominently. The reason is that

strong banks start to experience runs when weak banks are already forced to liquidate

a lot of their assets; that is, strong banks are under runs when liquidity conditions are

particularly dire. A liquidity injection therefore provides a greater relief to strong-bank

investors, thereby boosting heterogeneity and stabilizing the financial system.

Different from ring-fencing and disclosure policies that influence financial fragility only

through changing heterogeneity, liquidity injections also have a direct stabilizing effect—

that is, a reduction in the fire-sale discount following a liquidity injection benefits banks

even with fixed heterogeneity. A calibration exercise based on data of U.S. banks during

the 2007–2008 crisis suggests the indirect effect working through changing bank hetero-

geneity is nontrivial.

The last policy we explore is liquidity requirements. We consider an extension that

allows banks to hold both cash and long-term assets. Cash serves as a liquidity buffer

against early withdrawals and can be used to acquire assets sold by other banks. Similar

to liquidity injection by regulators, required liquidity buffers improve liquidity conditions

and directly enhance the stability of the financial system. In addition to that, since strong

banks utilize their liquidity buffers under worse liquidity conditions, the same amount

of liquidity buffer has a greater stabilizing effect on strong banks than on weak banks.

As a result, liquidity requirements can also enhance stability indirectly by boosting bank

heterogeneity.

Literature Our model, featuring interconnected fragile banks, builds on two large

strands of literature on financial fragility. The first one studies fragility of financial

institutions due to strategic complementarities among investors and panic-driven runs
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(Diamond and Dybvig, 1983). Settings with strategic complementarities typically feature

multiple equilibria if there is no uncertainty about bank fundamentals, with the same

policies potentially having different effects in different equilibria. We use the global

games technique (Rochet and Vives, 2004; Goldstein and Pauzner, 2005) to pin down

a unique equilibrium. Specifically, bank investors in our model are uncertain about the

aggregate fundamental and thus cannot perfectly foresee run situations in their own

and other banks. The global games approach allows us to characterize the strategic

beliefs of bank investors about run situations in their own banks and other banks in the

financial system. This approach is particularly appealing for policy analysis as it ties

the endogenous likelihood of a crisis to economic fundamentals, which allows us to make

precise predictions about costs and benefits of different policy interventions.

The fact that fragilities of individual banks are interrelated through fire sales connects

our paper to the second strand of literature that studies contagion through fire-sale

spillovers. Early contributions (Cifuentes, Ferrucci, and Shin, 2005; Diamond and Rajan,

2005) emphasize existence of cross-bank spillovers due to a limited liquidity pool. Uhlig

(2010) discusses microfoundations of fire-sale discounts faced by banks. A few papers

examine the coordination problem across homogeneous financial institutions induced by

fire-sale externality. For example, Parlatore (2016) shows that sponsors’ support of money

market funds complements each other because lower asset prices caused by fire sales make

support costlier; Kuong (2021) demonstrates that a tightening of collateral requirements

by lenders causes borrowers to default, which results in fire-sale discounts for collateral.

Different from these papers, our model features both cross- and within-bank strategic

complementarities that intensify each other. More closely related to us are works by Liu

(2016, 2018) and Eisenbach (2017) who study models in which bank runs are connected

through secondary markets in the absence of uncertainty about the liquidation price.

However, their focus is different from ours: Eisenbach (2017) studies the effectiveness of

rollover risk as a market disciplinary device in the presence of fire-sale spillovers, and Liu

(2016, 2018) shows that fire-sale spillovers might lead to equilibrium multiplicity. We

instead emphasize heterogeneous effects of the feedback loop between bank runs and fire
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sales on different banks in the financial system, and uncover bank heterogeneity as a key

determinant of the feedback strength and thus fragility.6

A few papers emphasize that regulators should target agents that impose a stronger

externality on others in one-complementarity coordination games. Sákovics and Steiner

(2012) consider a coordination game with heterogeneous agents and study optimal tar-

geted policies. Shen and Zou (2020) propose policies that screen agents based on their

heterogeneous information in global games and illustrate the efficiency of such policies in

targeting agents with medium beliefs. Cong, Grenadier, and Hu (2020) argue that saving

small banks is cheaper and can generate stronger informational externalities. Proba-

bly the closest to us is Choi (2014). He argues that regulators should support strong

banks because the fragility of strong banks affects weak banks on the margin but not

vice versa. In our setting, fragilities of weak and strong banks always affect each other

simultaneously.7 We show that the reinforcement between within- and cross-bank comple-

mentarities, which is absent in Choi (2014), makes heterogeneity beneficial for all banks.

This economic mechanism is behind our novel policy analyses. In particular, we show

that even broad-based policies such as liquidity injections and liquidity requirements can

boost heterogeneity and enhance financial stability.

Our paper is also related to a series of studies on the role of asset commonality for

systemic risk (Shaffer, 1994; Acharya, 2009; Stiglitz, 2010; Ibragimov et al., 2011; Wagner,

2010 and 2011; Allen, Babus, and Carletti, 2012; Cabrales et al., 2017; Kopytov, 2023).8

As discussed above, these papers focus on correlated fundamental bank defaults. They

emphasize a trade-off between losses due to failures of individual institutions and systemic

crises, which means that whether asset diversification is desirable might depend on the

distribution of shocks. For example, Cabrales et al. (2017) argue that fully diversified

6Settings with multilayered complementarities have been used to study other questions, e.g. capital and
liquidity regulation (Carletti, Goldstein, and Leonello, 2020) and twin crises (Goldstein, 2005). Given
their different focus, these papers do not talk about heterogeneity and its importance for fragility.

7The difference arises because Choi (2014) uses a binary payoff structure similar to Morris and Shin
(1998), while we use Diamond and Dybvig (1983)-like payoffs. In addition, he shows that, depending
on the parameters, it can be optimal to support both types of banks or only weak banks. His main
result emerges in the continuous-time model where the noise in investors’ signals has bounded support.

8A recent paper by Song and Thakor (2022) shows how an endogenously arising interbank market can
make ex-ante identical banks ex-post different and improve intermediation efficiency.
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systems are socially desirable if negative shocks are expected to be small, but asset

dispersion is beneficial if shocks are large. In contrast, we focus on panic-driven runs.

We show that what matters for financial stability is bank heterogeneity, that is, the

dispersion of runs across banks, rather than the dispersion of asset returns. Furthermore,

in our framework dispersion in asset returns can reduce run probability for all banks

irrespective of distributional assumptions on shocks. This is consistent with empirical

findings of Huang et al. (2009) who document that an increase in asset correlation among

large U.S. banks leads to an increase in their individual default probabilities.

More generally, our paper makes a theoretical contribution to the global games litera-

ture pioneered by Carlsson and van Damme (1993) and later developed into various topics

such as currency attacks (Morris and Shin, 1998; Hellwig, Mukherji, and Tsyvinski, 2006)

and bank runs (Rochet and Vives, 2004; Goldstein and Pauzner, 2005). A key feature

of a standard global games setting is the Laplacian property (Morris and Shin, 2003): A

marginal investor is uninformed about the rank of her signal, and her belief about the

mass of runners is uniform. Even when investors have heterogeneous payoffs, a version of

the Laplacian property holds for the weighted average belief of marginal investors of dif-

ferent types (Sákovics and Steiner, 2012). In those settings, increasing heterogeneity has

no impact on investors’ run decisions on average, as the optimism of weak-bank investors

about the actions of strong-bank investors is exactly offset by the pessimism of strong-

bank investors. This is no longer true in our model featuring two types of interacting

strategic complementarities. In our setting, the overall fragility depends on the weighted

average of beliefs about the interaction between fire-sale pressure and runs in individual

banks. These interaction terms are not symmetric across bank types and depend on the

degree of heterogeneity.

The remainder of the paper is organized as follows. Section 2 lays out the model.

Section 3 presents the main theoretical results on the relationship between heterogeneity

and fragility. Section 4 discusses how policies affect heterogeneity and, in turn, stability

and welfare. Section 5 concludes.
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2 Model

The economy is populated with three types of risk-neutral agents: banks, bank in-

vestors, and outside investors. There are three periods, t = 0, 1, 2, and no time discount-

ing.

2.1 Banks

There is a continuum of banks indexed by i ∈ [0, 1]. At t = 0, bank i collects one

unit of capital from a unit mass of investors in the form of demandable debt and makes

long-term investment that generates a gross return of zi = θ+ ζi at t = 2, where θ is the

aggregate component shared by all banks and ζi is the bank-specific component.9 The

cumulative distribution function of the aggregate fundamental Fθ (·) has a support [θ, θ̄],

where ∞ ≥ θ̄ > θ > 0. The bank-specific shock ζi is a zero-mean random variable that

takes values η ≥ 0 and −η with equal probabilities.10 The size of bank-specific shocks

is restricted to be such that overall productivity is always positive for all banks, i.e.,

θ − η > 0. Both θ and ζi are unknown at t = 0.

Upon shock realizations at t = 1 banks become heterogeneous. There are two groups

of banks: strong banks with ζi = η and weak banks with ζi = −η. The masses of the two

groups are identical. Parameter η governs the ex-post difference between performances

of strong and weak banks and reflects dispersion in bank asset returns, or simply asset

dispersion. From an ex-ante perspective, η affects the pairwise correlation between bank

fundamentals, i.e., Corr (zi, zj) = Vθ
Vθ+Vζi = Vθ

Vθ+η2
, where V denotes variance. As η in-

creases, the relative importance of aggregate shocks declines and asset returns of banks i

and j become less correlated.

At t = 1, after both aggregate and bank-specific productivities are realized, bank in-

vestors may choose to withdraw their funds early. Throughout most of the paper, we

assume that banks invest all their capital in long-term projects, and so any early with-

9Throughout the paper we take the contracts issued by banks to investors as given. Specifically, unlike
Diamond and Dybvig (1983), we do not microfound why banks issue demandable debt. The focus of our
paper is therefore on within- and cross-bank interactions of bank investors given the contract structure
observed in reality.

10In Appendix C.5, we show that our main results extend to the case in which ζi is a zero-mean random
variable that can take an arbitrary number of values with arbitrary probabilities.
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drawals from a given bank force this bank to liquidate some of its long-term investment

in the asset market. Section 4.4 and Appendix C.7 consider extensions in which banks

can hold liquid assets that can be used to repay early withdrawals.

2.2 Outside investors and the asset market

At t = 1, if a mass mi of investors withdraw their funds early from bank i, bank i

needs to raise funds of amount mi by partially liquidating its long-term investment. This

means that bank i has to liquidate mi

pi
units of its long-term investment, where pi is an

endogenous liquidation price.

The asset market is competitive and populated with a unit mass of identical outside

investors. Reminiscent of the cash-in-the-market pricing (Allen and Gale, 1994), liquidity

is scarce in the asset market, which can cause asset prices to fall below their fundamental

values. In particular, in order to purchase a portfolio {ki}i∈[0,1] of bank assets, an outside

investor has to raise L =
∫
pikidi units of external funds by incurring a financing cost.

We summarize the financing cost with a simple functional form g(L) ≥ L, where the

spread g(L)− L represents the amount of real losses due to financial imperfections such

as agency costs (Gomes, 2001). We assume that g(·) is an increasing and convex function

with g(0) = 0 and g′(0) = 1. The convexity captures an increasing marginal cost of

liquidity.11

Definition 1. Given masses of runners m = {mi}i∈[0,1] and bank fundamentals z =

{zi}i∈[0,1], an equilibrium in the asset market consists of outside investors’ demand func-

tions {ki(p, z)}i∈[0,1] and liquidation prices p = {pi(m, z)}i∈[0,1] such that:

1. Given the liquidation prices p, outside investors’ demand functions {ki(p, z)}i∈[0,1]

maximize their expected payoffs: max
ki,i∈[0,1]

∫
zikidi− g

(∫
pikidi

)
.

2. The liquidation prices satisfy the market-clearing conditions: mi = piki ∀i ∈ [0, 1].

The key feature of the asset market is that fire-sale externalities can spill over across

banks. One interpretation of this feature is that banks face the same group of buyers

11Appendix C.1 provides an alternative microfoundation for fire-sale losses—that is, outside investors
are less efficient than banks in managing assets or incur inventory costs when holding them (Shleifer
and Vishny, 1992; Kiyotaki and Moore, 1997). We show that that the pricing function in that case
takes the same form as in Lemma 1.
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of their assets. Even if asset markets for different banks are separated, arbitrage capital

might flow across these markets, leading to comoving fire-sale discounts.

The following lemma summarizes the key properties of the liquidation prices.

Lemma 1. Given masses of runners m and bank fundamentals z, the equilibrium liqui-

dation price for bank i’s assets is pi = p(zi,m) = zi/λ(m) ∀i ∈ [0, 1], where m ≡
∫
midi

is the total mass of runners in the economy and λ(m) ≡ g′(m) is a strictly increasing

function.

Proof. See Appendix B.1.

The liquidation prices of bank assets are proportional to their productivities zi’s and

are subject to a common fire-sale discount factor λ(m). The discount factor λ(m) in-

creases in the total mass of runners in the entire financial system. Intuitively, if more

bank investors withdraw their funds early, banks have to raise more liquidity in the asset

market. Because the marginal cost of liquidity is an increasing function, i.e. g′′(·) > 0,

the price discount factor λ(m) increases if more bank investors withdraw early. This is

akin to the key property of cash-in-the-market pricing: asset prices fall as the liquidity

demand exceeds what is available in the market.12

2.3 Bank investors and runs

This section describes the behavior of bank investors. For each bank i, there is a unit

mass of infinitesimal investors indexed by l ∈ [0, 1]. At t = 0, each investor contributes

one unit of capital to her bank. At that point, bank-specific fundamentals are unknown

and so investors are indifferent regarding which bank to invest in.

At t = 1, an investor l of bank i observes the bank-specific fundamental ζi and receives

12In Allen and Gale (1994), g(L) = ∞ if L exceeds a certain threshold L̄, so outsiders are constrained
by the amount of their cash reserves. We allow outsiders to raise additional funds when they run out
of cash, so that banks’ demand for liquidity can always be satisfied.
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a noisy private signal sil about the aggregate fundamental θ,13

sil = θ + σϵil. (1)

The signal noise ϵil has a cumulative distribution function Fϵ(·), which is differentiable and

strictly increasing on its support [ϵ, ϵ̄]. The corresponding probability density function is

denoted by fϵ(·). In what follows, we work with a bounded noise support, −∞ < ϵ < ϵ̄ <

∞, but our analyses carry through if it is unbounded. The signal noise ϵil has a zero mean

and a unit variance, i.e. Eϵil = 0 and Vϵil = 1, so that σ is the standard deviation of the

private signal conditional on the aggregate fundamental θ. This information structure

follows a conventional global games setup.

With probability m̄ ∈ (0, 1), investor l is “non-sleepy” and may withdraw her funds

from her bank at t = 1.14 With probability 1− m̄, investor l is “sleepy” and neglects the

option to withdraw early. Therefore, bank i needs to liquidate at most a fraction m̄
pi

of its

assets if all “non-sleepy” investors withdraw their funds early. We rule out bank failures

by assuming that m̄
pi

≤ 1 (as in Chen, Goldstein, and Jiang, 2010). Goldstein and Pauzner

(2005) show that the possibility of bank failure creates a region of strategic substitution,

making the analysis much more technically involved. Importantly, while the assumption

on investors’ limited attention rules out complete bank failures, the key property of runs

is preserved—they reduce the amount of funds to stayers and are socially undesirable

because they trigger fire sale losses. In Appendix C.4, we show that our main results

hold even if bank failures are possible.

In the absence of bank failures, investors who withdraw early are guaranteed to get

their funds back at t = 1. At t = 2, the investment return to bank i is equally distributed

among investors who have not withdrawn their funds at t = 1. A “non-sleepy” investor

13Section 4.2 extends the model by allowing for partially informative signals about bank-specific fun-
damentals. Under imperfect information about the aggregate fundamental θ, there exist strategic
uncertainties both within and across banks, which allows investors to coordinate and supports equilib-
rium uniqueness. Under perfect information about θ, multiplicity is possible (Liu, 2016).

14We assume that investors who withdraw early do not redeposit their funds to other banks. Appendix
C.6 considers a simple extension in which redepositing is allowed. It shows, in particular, that our
main results hold if some investors who withdraw early do not redeposit their funds to other banks.
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l’s payoff conditional on her decision to withdraw early ail ∈ {run, stay} from bank i is

ui(ail) =


1 if ail = run,

zi

(
1− mi

pi

)
1−mi

if ail = stay.

Plugging in the market-clearing liquidation price pi derived in Lemma 1, we can express

the incremental payoff from staying as

π(zi,mi,m) ≡ ui (stay)− ui (run) =
zi −miλ(m)

1−mi

− 1. (2)

In particular, a “non-sleepy” investor l of bank i runs if and only if the expected incre-

mental payoff given her signal is negative,15

E[π(zi,mi,m)|sil] < 0. (3)

Equation (2) reveals two types of strategic complementarities featured by our model.

First, there is a within-bank strategic complementarity : an investor’s incremental payoff

from staying declines if more investors in her own bank run.16 On top of that, the fire-sale

externalities in the asset market give rise to a cross-bank strategic complementarity : an

investor’s incremental payoff from staying declines if more investors in other banks run.

More importantly, these two complementarities amplify each other, namely,

∂2π(zi,mi,m)

∂mi∂m
= − λ′(m)

(1−mi)2
< 0. (4)

Banks that encounter more runs (higher mi’s) have to liquidate more assets, which natu-

rally makes the payoff to staying investors more sensitive to a reduction in the liquidation

price and therefore the total mass of runners in the economy m. In Section 3.3, we discuss

this feature in detail and explain its importance for our results.

15We assume that bank investors make their withdrawal decisions before liquidation prices are realized.
As a result, bank investors only receive exogenous private signals (1) about the aggregate fundamental.
Consequently, although liquidation prices are endogenous in our model, they do not serve as endogenous
public signals to bank investors (as in e.g. Angeletos and Werning, 2006).

16Note that when λ(m) < zi, the fire-sale discount is small relative to long-term asset return, so the
incremental payoff function (2) implies within-bank strategic substitution. However, as we show in
Appendix D, the incremental payoff function satisfies a single-crossing property, which, together with
mild assumptions on the noise distribution, are sufficient for the uniqueness of threshold equilibrium.
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2.4 Timeline and equilibrium definition

Figure 1 depicts the timeline of our model.

Banks receive
funding and invest

t = 0

θ and ζi’s
are realized

t = 1

Investors receive
private signals

“Non-sleepy”
investors decide
whether to run

Banks liquidate
assets to repay

runners
Investors who
stay get repaid

t = 2

Figure 1: Timeline

Denote by {ail(sil, ζi)}i,l∈[0,1] the set of strategies of “non-sleepy” investors that map

bank-specific fundamentals ζi and their private signals about the aggregate fundamental

sil to their action space ail ∈ {run, stay}.

Definition 2. Bank investors’ strategies {ail(sil, ζi)}i,l∈[0,1], outside investors’ demand

functions {ki(p, z)}i∈[0,1], liquidation prices p = {pi(m, z)}i∈[0,1], and masses of runners

m = {mi(θ, ζi)}i∈[0,1] constitute an equilibrium if

1. Given m and z, {ki(p, z)}i∈[0,1] and p constitute an equilibrium in the asset market

as in Definition 1;

2. Given her private signal and the bank-specific fundamental of her bank, each “non-

sleepy” investor forms beliefs about p and m and runs if and only if (3) holds;

3. mi(θ, ζi) =
∫
1 {ail(sil, ζi) = run} dl.

2.5 Global games and threshold equilibrium

We focus on threshold equilibria in which investor l of bank i runs when sil < θ∗i and

stays when sil ≥ θ∗i .
17 We characterize the threshold equilibrium in this section and prove

its uniqueness in Appendix D. Throughout most of the paper, we focus on the limiting

case of infinitely precise signals, σ → 0, as is typical in the global games literature. As

such, run thresholds should be understood as limits with σ → 0. However, for brevity

and when it does not cause confusion, we do not explicitly write endogenous variables

17Because the incremental payoff function (2) does not always imply within-bank strategic complemen-
tarity, non-threshold equilibria cannot be ruled out. However, under additional assumptions on the
noise distribution—e.g., if it is uniform—it can be shown that non-threshold equilibria do not exist.
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as limits. For example, in most cases we write a bank i’s run threshold as θ∗i , not as

lim
σ→0

θ∗i (σ). We show that our results are robust to non-negligible noise in Appendix C.3.

A threshold investor with a signal sil = θ∗i is indifferent between running and staying,∫ 1

0

θ(x) + ζi − λ (mtot
i (x)) m̄x

1− m̄x
dx = 1, (5)

where x is the fraction of “non-sleepy” investors running on bank i. As is standard in

global games models, a threshold investor with a signal θ∗i has a Laplacian belief. That is,

she believes that the mass of runners within her own bank, m̄x = m̄Fϵ

(
θ∗i −θ

σ

)
, is uniformly

distributed (Morris and Shin, 2003). Crucially, because her signal is informative about

the aggregate productivity, she also makes inference about actions of investors of other

banks. Given her belief about the fraction of “non-sleepy” investors running on her bank

x, her belief about the aggregate fundamental is θ(x) = θ∗i − σF−1
ϵ (x) and the amount

of runs on bank j is m̄Fϵ

(
θ∗j−θ(x)

σ

)
. The total mass of runners in the economy from the

perspective of this investor is then

mtot
i (x) = m̄

∫
Fϵ

(
θ∗j − θ(x)

σ

)
dj = m̄

∫
Fϵ

(
θ∗j − θ∗i

σ
+ F−1

ϵ (x)

)
dj. (6)

Taking the limit σ → 0 in (5) and using (6), we can write thresholds θ∗i for investors

of all banks in the economy. Given the binary structure of bank-specific shocks, the run

thresholds of strong and weak banks, denoted as θ∗s and θ∗w, are determined by

θ∗s + η =
1∫ 1

0
1

1−m̄x
dx

(1 + Is(∆)) , (7)

θ∗w − η =
1∫ 1

0
1

1−m̄x
dx

(1 + Iw(∆)) , (8)

where

Is(∆) ≡
∫ 1

0

λ
(m̄
2
x+

m̄

2
Fϵ

(
∆+ F−1

ϵ (x)
)) m̄x

1− m̄x
dx, (9)

Iw(∆) ≡
∫ 1

0

λ
(m̄
2
x+

m̄

2
Fϵ

(
−∆+ F−1

ϵ (x)
)) m̄x

1− m̄x
dx, (10)
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and

∆ ≡ lim
σ→0

θ∗w − θ∗s
σ

. (11)

Here Is(∆) and Iw(∆) represent expected fire-sale losses borne by threshold investors

with Laplacian beliefs in strong and weak banks, respectively. In what follows, we refer

to Is(∆) and Iw(∆) as fire-sale pressure on strong and weak banks. Notably, fire-sale

pressure on a given bank is exerted by all banks, including banks of its own group.

The endogenous variable ∆ is the distance between the two run thresholds. It measures

the extent to which runs (and, hence, tail risks) are dispersed across strong and weak

banks. Therefore, we call ∆ bank heterogeneity, or simply heterogeneity. It is straight-

forward to verify that ∆ ≥ 0.18 If ∆ = 0, the financial system is homogeneous—that is,

each threshold investor believes that all banks in the economy face the same amount of

runs. If ∆ > 0, runs are heterogeneous, and threshold investors of strong (weak) banks

believe that weak (strong) banks face more (less) severe run problems.

Bank heterogeneity ∆ governs cross-bank interactions in this economy. Because banks

impose fire-sale externalities on one another, investors need to evaluate the run situa-

tions in all banks simultaneously to make their own decisions whether to withdraw early.

Consider a threshold investor of a strong bank as an example. As shown in Equation

(9), if a fraction x of “non-sleepy” investors run on strong banks, she expects a fraction

Fϵ (∆ + F−1
ϵ (x)) ≥ x of “non-sleepy” investors to run on weak banks. ∆ plays an impor-

tant role in shaping investors’ beliefs about the total amount of runs in the economy and

thus the fire-sale discount, which in turn governs their own run decisions.

3 Heterogeneity and stability

The key premise of our model is that within-bank run problems and cross-bank com-

plementarities due to fire-sale spillovers are mutually reinforcing. This observation is by

no means novel in the literature.19 The main novelty of our paper is that the strength

18To see that, suppose that ∆ < 0 and hence θ∗w < θ∗s . Then Equations (9) and (10) imply that
Iw(∆) ≥ Is(∆). From Equations (7) and (8) and the fact that η ≥ 0 it then follows that θ∗w ≥ θ∗s ,
which is a contradiction.

19See, among others, Parlatore (2016), Liu (2016, 2018), Eisenbach (2017), Kuong (2021).
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of the complementarity reinforcement—and hence the overall financial fragility—depends

on the structure of the financial system. Our main insight is that differentiating banks

moderates the adverse effects of the complementarity reinforcement and thus stabilizes

individual banks and the financial system as a whole. To emphasize the importance of

heterogeneity, we start by considering a homogeneous benchmark in Section 3.1 and then

analyze the role of heterogeneity in Sections 3.2 and 3.3.

3.1 Homogeneous benchmark

Consider the homogeneous benchmark in which all banks have the same bank-specific

productivities, that is, η = 0. Bank heterogeneity is then ∆ = 0, and investors of all

banks follow the same threshold strategy with the threshold θ∗0. From (5), this threshold

is implicitly given by ∫ 1

0

θ∗0 − λ(m̄x)m̄x

1− m̄x
dx = 1. (12)

Even in the absence of heterogeneity, complementarity reinforcement is at play and runs

on individual banks are aggravated by the fire-sale externalities. To illustrate this point,

we consider an alternative setting in which the fire-sale discount is fixed at the average

level λ̄ =
∫ 1

0
λ(m̄x)dx, so that there are no complementarity interactions. In this case,

the run threshold θ̂∗0 is implicitly given by∫ 1

0

θ̂∗0 − λ̄m̄x

1− m̄x
dx = 1. (13)

Comparing Equations (12) and (13), we obtain the following.

(
θ∗0 − θ̂∗0

)∫ 1

0

1

1− m̄x
dx =

∫ 1

0

λ(m̄x)m̄x

1− m̄x
dx−

∫ 1

0

λ̄m̄x

1− m̄x
dx =

E
[
λ(m̄x)

m̄x

1− m̄x

]
− E [λ(m̄x)]E

[
m̄x

1− m̄x

]
=

Cov

(
λ(m̄x),

m̄x

1− m̄x

)
> 0,

where expectations and covariance are taken with respect to a random variable x that is

uniformly distributed on [0, 1], and where the covariance is positive because λ(m̄x) and

m̄x
1−m̄x

are both increasing functions of x.
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We can see that the model with the complementarity interaction features a higher

fragility, θ∗0 > θ̂∗0. With the complementarity reinforcement, runs are particularly detri-

mental to stayers when the fire-sale discount is high. If a threshold investor expects the

within-bank run problem to be severe and the fire-sale discount to be large in the same

states of the world, her expected payoff from staying is low. If, in contrast, within-bank

runs and the fire-sale discount are uncorrelated—as is the case in the alternative model

without complementarity interaction—a threshold investor is more likely to stay.

This simple example illustrates that the interacting within- and cross-bank comple-

mentarities are detrimental for stability in a homogeneous financial system. In what

follows, we show that heterogeneity can be helpful to alleviate the complementarity re-

inforcement. In particular, we emphasize the importance of bank heterogeneity ∆ and

analyze how various model primitives affect ∆ and, ultimately, financial stability.

3.2 Heterogeneity and stability: Characterizing the relation

We decompose our analyses into two cases. In the first case, bank heterogeneity ∆ is

not too large, ∆ < ∆̄ ≡ ϵ̄ − ϵ, and the financial system features nontrivial cross-bank

strategic uncertainties. In this case, threshold investors of strong banks are uncertain

about run behavior of weak-bank investors, and vice versa. Formally speaking, it implies

that the fire-sale pressure terms Is(∆) and Iw(∆), given by (9) and (10), depend on ∆.

In the second case, ∆ ≥ ∆̄, and the fire-sale pressure terms are constants. In this case,

threshold strong-bank investors are certain that all “non-sleepy” weak-bank investors

are running, and threshold weak-bank investors are certain that none of strong-bank

investors are running. We think of such a lack of cross-bank strategic uncertainty to be

less empirically relevant, as in practice it is hard for investors to precisely assess the run

situations in other banks during financial turmoils. In comparison, the first case is more

empirically relevant and also more interesting from a theoretical standpoint.
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Nontrivial cross-bank strategic interactions Using Equations (7) and (8), we can

write average fragility θ∗ ≡ 1
2
θ∗s +

1
2
θ∗w as

θ∗ =
1∫ 1

0
dx

1−m̄x

(
1 +

1

2
Is(∆) +

1

2
Iw(∆)

)
, (14)

where bank heterogeneity ∆ is implicitly given by

η =
1

2
∫ 1

0
dx

1−m̄x

(Is(∆)− Iw(∆)) . (15)

By definition of bank heterogeneity in the limit of negligible information friction (11),

a finite ∆ implies that the run thresholds of weak and strong banks are infinitely close

to each other, i.e. lim
σ→0

θ∗ = lim
σ→0

θ∗s = lim
σ→0

θ∗w. The result that individual run thresholds

are infinitely close is a typical feature of global games with heterogeneous players and

infinitely precise signals (Frankel, Morris, and Pauzner, 2003).20

The fact that θ∗s and θ∗w are infinitely close to each other implies that, from the t = 0

point of view, fragilities of both weak and strong banks are characterized by just one

threshold θ∗. Therefore, θ∗ measures the ex-ante fragility of all banks in this economy.

Importantly, although θ∗s and θ∗w are infinitely close to each other, there can still be

a nontrivial difference between them from investors’ perspective at the moment of runs.

This is because investors receive infinitely precise signals about the aggregate fundamental

at t = 1 and thus can distinguish between θ∗s and θ∗w even if they are infinitely close. As

a result, bank heterogeneity ∆, which by (11) is the distance between θ∗w and θ∗s in units

of σ, can still be finite. Crucially, as ∆ determines the strength of cross-bank strategic

interactions, it has a first-order effect on the common run threshold θ∗.

Equation (14) shows how θ∗ is affected by bank heterogeneity ∆ and model primitives,

whereas (15) implicitly defines ∆ as a function of model primitives. Naturally, such

a formulation allows us to decompose the effect of any regulatory policy on financial

stability into two parts. Holding ∆ fixed, a change in any policy-related parameter v

can have a direct effect on θ∗. This channel captures policy impact holding cross-bank

20With non-negligible information friction (σ > 0), run thresholds of weak and strong banks are distinct
and centered around the average threshold, θ∗s(σ) < θ∗(σ) < θ∗w(σ). We show in Appendix C.3 how
our results extend to this case.
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interactions fixed. Furthermore, a policy can affect θ∗ indirectly through reshaping cross-

bank interactions and thus bank heterogeneity ∆. That is,

dθ∗

dv
=

∂θ∗

∂v︸︷︷︸
Direct effect

+
∂θ∗

∂∆

d∆

dv︸ ︷︷ ︸
Indirect effect

. (16)

The focus of our paper is on the indirect effect, which has received much less attention

in the existing literature. The sign of the indirect effect depends on two components.

First, it depends on the relationship between heterogeneity and fragility ∂θ∗

∂∆
. Proposition

1 below uses Equation (14) to establish that financial systems with higher bank hetero-

geneity are more stable, namely, ∂θ∗

∂∆
< 0. Section 3.3 discusses the key economic force

behind this result, that is, reinforcing within- and cross-bank complementarities. Second,

the indirect effect depends on how the policy variable affects heterogeneity, that is, on

d∆
dv
. Equation (15) reveals various determinants of heterogeneity, such as asset dispersion

η and liquidity conditions in the asset market that shape the fire-sale discount faced by

strong and weak banks. In Section 4, we examine several regulatory policies and discuss

how they affect stability both directly and indirectly.

Proposition 1. When ∆ < ∆̄ = ϵ̄ − ϵ, run thresholds of strong and weak banks are

infinitely close to the average threshold θ∗, which captures the fragility of the financial

system. Moreover, θ∗ = θ∗(∆) decreases in bank heterogeneity ∆.

Proof. See Appendix B.2.

Equation (14) reveals that the common run threshold θ∗ is determined by the average

fire-sale pressure on strong and weak banks, 1
2
Is(∆) + 1

2
Iw(∆). Recall that, by definition

of heterogeneity (11), ∆ is the normalized distance between run thresholds of weak and

strong banks. From the perspective of strong-bank investors, weak banks become more

fragile as ∆ goes up. As a result, strong-bank investors expect a larger fire-sale externality

imposed by weak banks. Mathematically, it is captured by the fact that the fire-sale

pressure on strong banks Is(∆) increases in ∆. At the same time, in the view of weak-

bank investors, strong banks become more stable, and so these investors expect lower

fire-sale pressure Iw(∆). Proposition 1 shows that the latter effect is more substantial
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than the former, that is, the average fire-sale pressure and the run threshold θ∗ decrease

with ∆. Intuitively, this is because weak banks suffer from more severe runs in any state

of the world and are therefore more sensitive to changes in the fire-sale pressure than

strong banks. Section 3.3 illustrates in detail that the key force behind this result is

mutually reinforcing within- and cross-bank complementarities.

It is worth emphasizing that both weak and strong banks become more stable as

the difference between their fragilities ∆ enlarges. This can be clearly seen in the case

with negligible information friction as weak and strong banks have infinitely close run

thresholds. In Appendix C.3, we analyze the non-limiting case where the run thresholds

of weak and strong banks decouple. In that case, the average fragility still declines in ∆,

and both weak and strong banks tend to benefit from a large ∆ unless the signal noise is

too large.

Trivial cross-bank strategic interactions When the financial system features large

heterogeneity, ∆ ≥ ∆̄, there are no strategic uncertainties between investors of weak and

strong banks. In particular, threshold investors of strong banks are certain that all “non-

sleepy” investors of weak banks will run; conversely, threshold investors of weak banks

are certain that no investor in strong banks will run. Therefore, when investors make

their run decisions, they only need to make inferences about the behavior of investors in

the same type of banks. In this case, fire-sale pressure on both strong and weak banks,

Is(∆) and Iw(∆), no longer depend on ∆, and runs in strong and weak banks can be

analyzed separately.

Formally, Equations (7) and (8) for the run thresholds become

θ∗s =
1∫ 1

0
1

1−m̄x
dx

(
1 +

∫ 1

0

λ
(m̄
2
x+

m̄

2

) m̄x

1− m̄x
dx

)
− η, (17)

θ∗w =
1∫ 1

0
1

1−m̄x
dx

(
1 +

∫ 1

0

λ
(m̄
2
x
) m̄x

1− m̄x
dx

)
+ η. (18)

Because the run thresholds of weak and strong banks do not vary with ∆, the average

fragility of banks θ∗ does not vary with ∆ either.21

21In the case of trivial cross-bank strategic interactions, θ∗s and θ∗w are not infinitely close. Then by
definition (11), ∆ → ∞ in the limit of infinitely small σ. If σ is not infinitely small, then ∆ is finite
even in the case of trivial strategic interactions.
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3.3 Role of reinforcing complementarities

The key force behind Proposition 1 is that the within- and cross-bank complementar-

ities are mutually reinforcing, which in the model is captured by (4). Weak banks are

more sensitive to changes in the fire-sale discount because they experience more runs and

need to liquidate more assets. As we discussed in the previous section, when ∆ < ∆̄, an

increase in ∆ alleviates cross-bank fire-sale pressure on weak banks and worsens that on

strong banks. However, since weak banks are more sensitive to the change, the benefit

for weak banks outweighs the loss for strong banks, and the overall stability increases.

In this section, we illustrate this point formally by comparing marginal impacts of ∆ on

Iw(∆) and Is(∆).

First, consider the fire-sale pressure on strong banks. Equation (9) can be written as

Is(∆) =

∫ ϵ̄−∆

ϵ

λ
(m̄
2
Fϵ(ϵs) +

m̄

2
Fϵ (∆ + ϵs)

) m̄Fϵ(ϵs)

1− m̄Fϵ(ϵs)
dFϵ(ϵs)+∫ ϵ̄

ϵ̄−∆

λ
(m̄
2
Fϵ(ϵs) +

m̄

2

) m̄Fϵ(ϵs)

1− m̄Fϵ(ϵs)
dFϵ(ϵs),

where we change the variable of integration x = Fϵ(ϵs). Here, ϵs represents the realization

of signal noise for a threshold investor of a strong bank. From (1), ϵs =
θ∗s−θ
σ

for the strong-

bank investor receiving a threshold signal θ∗s . Because investors receiving worse signals

withdraw their funds prematurely, the mass of runners in each strong bank is m̄Fϵ(ϵs).

Similarly, the mass of runners on each weak bank is m̄Fϵ(∆ + ϵs).

An increase in heterogeneity bolsters the fire-sale pressure on strong banks,

∂Is
∂∆

=

∫ ϵ̄−∆

ϵ

fϵ(ϵs)︸ ︷︷ ︸
As,1

× m̄

2
fϵ(∆ + ϵs)︸ ︷︷ ︸

As,2

×λ′
(m̄
2
Fϵ(ϵs) +

m̄

2
Fϵ (∆ + ϵs)

) m̄Fϵ(ϵs)

1− m̄Fϵ(ϵs)︸ ︷︷ ︸
As,3

dϵs>0. (19)

The integrand can be decomposed into three parts. First, As,1 represents the probability

of a state in which a threshold investor receives a signal with a noise realization ϵs. As ∆

goes up, this investor expects a larger mass of runners on weak banks, which is captured

by the second term As,2. More runs on weak banks increase the fire-sale discount and

reduce the payoff to the threshold investor. The third term As,3 captures the marginal
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decrease in the payoff. Integrating over all possible states yields the total change in the

fire-sale pressure on a strong bank in response to a marginal increase in ∆.

At the same time, an increase in heterogeneity alleviates the fire-sale pressure on weak

banks,

∂Iw
∂∆

=−
∫ ϵ̄

ϵ+∆

fϵ(ϵw)
m̄

2
fϵ(−∆+ ϵw)λ

′
(m̄
2
Fϵ (−∆+ ϵw) +

m̄

2
Fϵ(ϵw)

) m̄Fϵ(ϵw)

1− m̄Fϵ(ϵw)
dϵw =

−
∫ ϵ̄−∆

ϵ

fϵ(∆ + ϵs)︸ ︷︷ ︸
Aw,1

× m̄

2
fϵ(ϵs)︸ ︷︷ ︸
Aw,2

×λ′
(m̄
2
Fϵ(ϵs) +

m̄

2
Fϵ (∆ + ϵs)

) m̄Fϵ(∆ + ϵs)

1− m̄Fϵ(∆ + ϵs)︸ ︷︷ ︸
Aw,3

dϵs< 0, (20)

where the second equality is obtained by changing the variable of integration, ϵs = ϵw−∆.

Same as (19) for the strong banks, the integrand can be decomposed into three parts.

Compare the magnitudes of a marginal impact of ∆ on strong and weak banks, that is,

the absolute values of (19) and (20). For a given realization of the aggregate fundamental

θ, if a threshold investor of a strong bank has a signal noise realization ϵs = θ∗s−θ
σ

, a

threshold investor of a weak bank must have a noise realization ϵw = θ∗w−θ
σ

= ∆ + ϵs.

These two investors hold the same beliefs about the run situations in the economy: The

mass of runs in all strong and all weak banks are m̄
2
Fϵ(ϵs) and

m̄
2
Fϵ(ϵs +∆), respectively.

From the perspective of these investors, changes in the masses of runners in response

to an increase in ∆ are symmetric, such that As,1 × As,2 = Aw,1 × Aw,2. Moreover,

since they hold the same view on the aggregate runs in the economy, they expect the

same marginal impact on the fire-sale discount, captured by λ′ ( m̄
2
Fϵ(ϵs) +

m̄
2
Fϵ (∆ + ϵs)

)
.

However, the resulting changes in their payoffs are different. Specifically, weak banks

experience more runs than strong banks, i.e. Fϵ(ϵw) = Fϵ(∆ + ϵs) > Fϵ(ϵs). Due to

reinforcing within- and cross-bank complementarities, the same change in the fire-sale

cost has a more profound effect on weak-bank investors than on strong-bank investors,

which implies that Aw,3 > As,3. Because this is true for any realization of the aggregate

fundamental, we have ∣∣∣∣∂Iw∂∆

∣∣∣∣ > ∣∣∣∣∂Is∂∆

∣∣∣∣ .
From Equation (14), it then follows that ∂θ∗

∂∆
< 0, that is, financial systems in which
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runs are more dispersed across banks are more stable. This result has important policy

implications, as reflected by the indirect effect in Equation (16). The fact that the two

types of complementarities are mutually reinforcing plays a decisive role for this result.

In our model, mutually reinforcing complementarities is a natural implication of the

existence of asset fire sales and a standard Diamond and Dybvig (1983) payoff structure.

The following proposition formally establishes, with a more general payoff function, the

importance of mutually reinforcing complementarities for our result in Proposition 1.

Proposition 2. Consider an investor of bank i whose incremental payoff from staying

is π(zi,mi,m) = ziπ1(mi) + π2(mi,m), where π1(mi) is positive. In any threshold equi-

librium, if ∆ < ∆̄, run thresholds of strong and weak banks are infinitely close to the

average threshold θ∗. Moreover, if ∂2π
∂m∂mi

⪋ 0 then ∂θ∗(∆)
∂∆

⪋ 0.

Proof. See Appendix B.2.

In the baseline setting, π1(mi) = 1
1−mi

and π2(mi,m) = −λ(m)mi

1−mi
, so we have two

complementarities reinforcing each other, ∂2π
∂m∂mi

< 0. Appendix C.2 further generalizes

Proposition 2 by imposing even milder restrictions on the incremental payoff function.

Note that if ∂2π
∂m∂mi

= 0, then ∆ does not affect the common threshold θ∗. This result

echoes Sákovics and Steiner (2012). They show that in global games with heterogeneous

agents, the weighted average belief about the aggregate action—economy-wide amount of

runs in our model—is uniformly distributed. Moreover, in the absence of the interaction

between the within- and cross-bank complementarities, only this weighted average belief

matters for the common run threshold. Heterogeneity therefore does not affect the run

threshold.

When the two complementarities do interact, the run threshold depends on the inter-

action terms between the amounts of runs in the whole economy and within a particular

bank. Therefore, the powerful result of Sákovics and Steiner (2012) does not hold in

our setting, making the analyses much more cumbersome. By comparing (19) and (20),

we can see that the interaction terms are not symmetric across weak and strong banks:

a reduction in the fire-sale discount benefits weak banks more than an increase in the
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fire-sale discount of the same size hurts strong banks. A resulting sizable reduction in

fragility of weak banks has a positive effect on strong banks, thus pushing the whole

financial system to an equilibrium with a higher financial stability.

4 Regulatory policies and heterogeneity

The previous section shows that heterogeneity has important effects on financial sta-

bility in the presence of reinforcing complementarities. Notably, moving from stability to

welfare is straightforward in our model. Since all agents are risk-neutral, welfare at t = 0

can be measured as the expected output from banks’ long-term projects net of the losses

due to inefficient fire sales. Specifically,

W =

∫
θdFθ(θ)︸ ︷︷ ︸

Expected output

− Fθ(θ
∗
s) (g(m̄)− m̄)︸ ︷︷ ︸

Losses if all banks are under run

− (Fθ (θ
∗
w)− Fθ (θ

∗
s))

(
g

(
1

2
m̄

)
− 1

2
m̄

)
︸ ︷︷ ︸

Losses if only weak banks are under run

, (21)

where Fθ(·) is the cumulative distribution function of the aggregate fundamental θ at

t = 0. If strategic interactions between investors of weak and strong banks are nontrivial

and the information friction is negligible, θ∗s and θ∗w are infinitely close (Proposition 1),

and (21) simplifies to

W =

∫
θdFθ(θ)− Fθ(θ

∗) (g(m̄)− m̄) . (22)

Equations (21) and (22) imply that reducing bank fragilities—that is, reducing run

thresholds—is welfare-improving. In this section, we look into policies that are widely

adopted by regulators in order to make the financial system more resilient. We emphasize

that many policies, by affecting heterogeneity, have an indirect effect on stability (see

Equation (16)) that has been previously overlooked. Interestingly, as we will show in this

section, even though some policies are generally considered broad-based, they can impact

certain banks more than others, thus changing heterogeneity.

Section 4.1 studies ring-fencing that affects bank asset dispersion. Section 4.2 extends

the model by allowing for imperfect information about bank-specific fundamentals and

studies disclosure of bank-specific fundamentals. Section 4.3 examines liquidity injections
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into the asset market. Section 4.4 allows banks to hold cash to acquire liquidated assets

of their peers and examines effects of required liquidity buffers.

4.1 Ring-fencing

Ring-fencing refers to separating large banks’ balance sheets and restricting fund real-

locations across ring-fenced subsidiaries. It is typically conducted along two dimensions.

First, separations can take place according to the service divisions. In the United States,

the Volcker Rule restricts proprietary trading by commercial banks, essentially spinning

off their investment banking activities. Similarly, starting from 2019, largest U.K. banks

are required to separate core businesses in retail banking from investment banking.22

Second, separations can be carried out according to geographic locations. For example,

the Fed requires foreign banking organizations with more than $50 billion in U.S. sub-

sidiary assets to put all their U.S. subsidiaries under an intermediate holding company

(Kreicher and McCauley, 2018). Geographic ring-fencing has also been pursued by the

European regulator through imposing heavier restrictions on foreign-owned subsidiaries

and restricting intragroup cross-border asset transfers (Enria, 2018).

In the context of our model, a regulator separating banks into subsidiaries with differ-

ent business or geographic focuses effectively increases the dispersion of asset returns η.

For instance, consider splitting a large bank issuing mortgages in New York and San Fran-

cisco into two separate banks, one of which operating only in New York while the other

one only in San Francisco. As long as regional shocks of New York and San Francisco

are not perfectly correlated, the two separate banks are exposed to larger bank-specific

shocks than the conglomerate.

The comparative statics of the run thresholds with respect to η are established in

Proposition 3 and illustrated in Figure 2. For the rest of this section, we express run

thresholds and bank heterogeneity as functions of η.

22Ring-fencing was first introduced through the Financial Services (Banking Re-
form) Act 2013, followed by adjustments in further legislation. See a summary at
https://www.gov.uk/government/publications/ring-fencing-information/ring-fencing-information.
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Proposition 3. Define

η̄ ≡ 1

2
∫ 1

0
dx

1−m̄x

∫ 1

0

[
λ
(m̄
2
x+

m̄

2

)
− λ

(m̄
2
x
)] m̄x

1− m̄x
dx > 0. (23)

If η ∈ (0, η̄), then cross-bank strategic interactions are nontrivial, ∆(η) < ∆̄, and run

thresholds of strong and weak banks are infinitely close to θ∗ (η). Moreover, ∆(η) in-

creases in η and θ∗ (η) decreases in η.

Proof. See Appendix B.3.

When asset performances of weak and strong banks are not too dispersed, η < η̄, cross-

bank interactions are nontrivial, ∆ < ∆̄, and the run thresholds of strong and weak banks

are infinitely close to each other. It is straightforward to verify from Equation (15) that

an increase in η raises heterogeneity, i.e. d∆
dη

> 0. Moreover, by Proposition 1, ∂θ∗

∂∆
< 0.

Combining these results together, we can see that the effect of η on θ∗ is negative. In other

words, when assets become more bank-specific, all banks become more stable, including

those whose asset performances end up being weaker. Therefore, by (22), increasing η up

to η̄ is unambiguously welfare-improving. Notably, existing literature studying downsides

of asset commonality typically argues that a larger degree of asset dispersion is associated

with fewer systemic crises but more defaults of weak banks (e.g. Wagner, 2010 and 2011;

Ibragimov et al., 2011; Cabrales et al., 2017). Different from these papers that focus on

fundamental defaults, we study panic-driven runs and emphasize that more diverse asset

performances are associated with lower fragility even for weak banks due to alleviation

of cross-bank fire-sale externalities.

Corollary 1. If η ≥ η̄, then cross-bank interactions are trivial, ∆ ≥ ∆̄. Run threshold

of strong banks θ∗s(η) decreases in η. Run threshold of weak banks θ∗w(η) increases in η.

The average fragility θ∗(η) does not change with η.

Proof. See Appendix B.3.

Proposition 3 and Corollary 1 show that the effect of η on fragility is not “symmetric” in

the following sense. If η < η̄, an increase in η leads to a higher bank heterogeneity ∆, lower
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Run thresholds θ∗(η), θ∗s(η), θ
∗
w(η)

Figure 2: Run thresholds of strong (θ∗s) and weak (θ∗w) banks, and their average (θ∗ = 1
2θ

∗
s + 1

2θ
∗
w) as

functions of the size of bank-specific shock η. Parametrization: m̄ = 0.55, λ(m) = 1 + m2, Fϵ(·) is
truncated standard normal over [−1, 1], η varies from 0 to 0.05.

fragility for all banks and, hence, higher welfare. If η > η̄, an increase in η has different

implications for strong and weak banks. Specifically, if η increases beyond η̄, banks

become so different that cross-bank strategic interactions become trivial, i.e. ∆ > ∆̄. As

there are no strategic uncertainties across investors of different banks, the run thresholds

of strong and weak banks decouple. That is, the run thresholds θ∗s and θ∗w, given by (17)

and (18), are not infinitely close and no longer depend on ∆. A further increase in η does

not affect cross-bank fire-sale externalities but only further strengthens (weakens) asset

performances of strong (weak) banks. As a result, the strong-bank run threshold keeps

declining while the weak-bank run threshold starts to increase (see Figure 2). Moreover,

since an increase in η does not change the average bank fundamentals, average fragility

θ∗ remains constant. Overall, our results suggest that the planner should seek to set η

to be at least as high as η̄. Whether welfare (21) increases or decreases in η when η > η̄

depends on the ex-ante distribution of the aggregate fundamental.

Another issue that ring-fencing policies intend to address is a “too-big-to-fail” problem.

The following corollary points out that size per se is not the key to financial stability in

our model and downsizing banks into identical clones has no impact.23 Behind the result

is that investors of ring-fenced subsidiaries are still interconnected through the asset

23Given the focus of this paper is on cross-bank interactions, certain features that are important to study
a “too-big-to-fail” issue, such as banks’ moral hazard, are absent from our model.
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market. The fire-sale complementarity across these subsidiaries resembles the bank-run

complementarity across a large group of investors in the merged bank. The objective of

ring-fencing, therefore, should not be only to downsize banks’ balance sheets but also to

achieve an optimal level of asset dispersion across institutions.

Corollary 2. If ring-fencing does not affect η, then it does not affect fragility.

Proof. The corollary follows directly from the scale invariance of π(zi,mi,m).

4.2 Disclosure of bank-specific information

In this section, we extend the model by allowing for noisy information about bank-

specific fundamentals. We then analyze disclosure policies that affect the quality of

bank-specific information available to bank investors.

In particular, investor l of bank i receives two distinct noisy signals. The signal about

the aggregate fundamental is the same as in the baseline model, sil = θ+σϵil. In addition,

she receives a signal di about the bank-specific component ζi. This signal takes two values,

G and B, with a probability mass function specified below.

P(di = G|ζi = η) = P (di = B |ζi = −η) = α ∈
[
1

2
, 1

]
.

Parameter α captures the quality of bank-specific information. Under this signal struc-

ture, a regulator can vary α by changing the stringency of bank disclosure policy. Below,

we discuss how α affects fragility and welfare.

Denote the posterior belief about the probability of bank i being strong as pG if di = G

and pB if di = B. We have pG = α ≥ 1
2
≥ pB = 1 − α. The equality holds if and only

if α = 1
2
, that is, signals are uninformative about bank-specific fundamentals. Another

special case is perfect bank-specific information as in our baseline setting, α = 1.

Proposition 4. The model with imperfect information about bank-specific fundamentals

is equivalent to the main model in which bank-specific shocks take values ηeff (α) with

probability 1
2
and −ηeff (α) with probability 1

2
, where ηeff (α) = (2α− 1)η.

Proof. See Appendix B.4.
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The main takeaway from Proposition 4 is that besides reshaping asset dispersion di-

rectly, regulators can improve stability by manipulating investors’ beliefs about it. If

signals about bank-specific fundamentals are uninformative, then bank investors perceive

strong and weak banks as homogeneous, ηeff
(
1
2

)
= 0. Run decisions of investors of strong

and weak banks are then completely synchronized, and the financial system is fragile. If

signals are informative, α > 1
2
, investors are able to differentiate between banks. In that

case, runs become heterogeneous, ∆ > 0. A more stringent disclosure policy improves the

quality of bank-specific information α and enlarges the perceived difference between bank

asset performances ηeff (α). In the presence of nontrivial cross-bank strategic interactions,

this increases heterogeneity, enhances stability of the financial system by Proposition 3,

and improves welfare given by (22). In particular, the planner should always seek to set

α such that ηeff (α) is not smaller than η̄ that is given by (23).

Existing literature on disclosure policies highlights various costs and benefits of dis-

closing bank-specific information. We highlight a novel benefit of disclosing bank-specific

information: It enhances financial stability by boosting bank heterogeneity. Notably,

some papers argue that disclosure should be state-dependent so that bank information is

opaque in good times and transparent in bad times (e.g. Bouvard et al., 2015; Goldstein

and Leitner, 2018). Specifically, disclosing bank-specific information in bad times induces

weak banks to fail but, at the same time, saves strong banks. In our model, disclosing

bank-specific information makes weak-bank investors aware of the weak fundamentals of

their banks but, at the same time, less worried about spillovers from strong banks. The

latter effect dominates in the presence of reinforcing complementarities, and weak-bank

investors’ run incentives weaken. As a result, instead of inducing runs, disclosure reduces

fragility of even weak banks.

Naturally, in the absence of cross-bank strategic uncertainty, disclosure can no longer

indirectly stabilize weak banks because fire-sale pressure from strong banks is already at

its minimum level. Specifically, when ηeff (α) > η̄, cross-bank strategic interactions are

trivial, and disclosing more bank-specific information stabilizes strong banks, destabilizes

weak banks and has no impact on the average fragility (see Figure 2). In this case,
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whether additional disclosure is desirable depends on the ex-ante distribution of the

aggregate fundamental.

4.3 Asset market interventions

One of the distress resolution approaches that regulators frequently turn to during

economic downturns is a liquidity injection into asset markets. Prominent examples in-

clude the U.S. government’s purchases of distressed assets during the 2007–2008 financial

crisis and corporate bonds and bond ETFs via the Secondary Market Corporate Credit

Facility during the COVID-19 pandemic. In our framework, such policies reduce fire-sale

discounts. Keeping bank heterogeneity fixed, a reduction in fire-sale discounts stabilizes

banks directly. As we show below, such policies also impact bank heterogeneity and thus

affect fragility indirectly.24

We consider an extension of our baseline model in which the regulator injects L ∈ [0, m̄)

into the asset market. Specifically, asset prices remain at their fundamental levels if the

aggregate liquidity needs do not exceed L. Any liquidity needs beyond this point are

fulfilled by outside investors as in the baseline model. As a result, the fire-sale discount

factor in the asset market is

λ̂(m,L) =


1 if m < L,

λ (m− L) if m ≥ L,

where λ(·) is the fire-sale discount factor in the baseline model and m is the total mass

of runners in the economy. To evaluate the impacts of liquidity injections, we establish

comparative statics with respect to L in Proposition 5.

Proposition 5. Suppose that λ′′(·) ≥ 0 and η ∈ (0, η̄), where η̄ is defined in Equation

(23). There exists a decreasing function L̄(η) > 0 such that if L ∈
(
0, L̄ (η)

)
, then cross-

bank interactions are nontrivial, ∆ < ∆̄, and run thresholds of strong and weak banks are

infinitely close to θ∗. Moreover, dθ∗

dL
= ∂θ∗

∂L
+ ∂θ∗

∂∆
d∆
dL

, where

1. The direct effect is stabilizing, ∂θ∗

∂L
< 0;

24Regulators often act as lenders of last resort (LOLR) and inject liquidity to financial institutions.
Similar to a liquidity injection into the asset market, a LOLR intervention stabilizes the financial
system both directly and indirectly.
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2. The indirect effect is stabilizing, ∂θ∗

∂∆
< 0 and d∆

dL
> 0.

Proof. See Appendix B.5.

Different from ring-fencing and disclosure policies that influence fragility only through

their impacts on bank heterogeneity, a liquidity injection has a direct stabilizing effect,

captured by ∂θ∗

∂L
< 0. Importantly, even though liquidity injections are broad-based—

that is, the regulator does not restrict the purchase to assets owned by a particular

group of banks—strong and weak banks are affected differently. The reason is that

strong-bank investors expect to receive a higher implicit subsidy in the event of a run.

In our model, what determines the run threshold for a given bank is the belief of this

bank’s marginal investor. Given strong banks receive a positive bank-specific shock, a

strong-bank investor is on the margin of running when the market liquidity conditions

are particularly dire. In contrast, a weak-bank investor is on the margin of running under

milder fire-sale pressure. Formally, from Equation (9), if a strong-bank marginal investor

expects a fraction x of “non-sleepy” strong-bank investors to run, then she expects a

larger fraction Fϵ (∆ + F−1
ϵ (x)) > x of “non-sleepy” weak-bank investors to run. In

contrast, from Equation (10), a weak-bank marginal investor expecting a fraction x of

“non-sleepy” weak-bank investors to run expects a smaller fraction Fϵ (−∆+ F−1
ϵ (x)) < x

of “non-sleepy” strong-bank investors to run. Therefore, inefficient liquidations, occurring

when the total mass of runs in the economy exceeds the liquidity injection size L, are

more likely from the marginal strong-bank investor’s perspective than from the marginal

weak-bank investor’s perspective. Consequently, an increase in the liquidity injection

size reduces fire-sale pressure on strong banks in a larger number of states, which implies

∂Is
∂L

< ∂Iw
∂L

< 0.25 This further strengthens strong banks relative to weak banks, thereby

increasing bank heterogeneity, d∆
dL

> 0, and stabilizing the financial system indirectly,

∂θ∗

∂∆
< 0.

For completeness, the corollary below summarizes the case with trivial cross-bank

interactions. In this case, heterogeneity ceases to have an effect and liquidity injection

25Although this effect arises even if the fire-sale discount function λ(·) is linear, it becomes more pro-
nounced if it is convex. In that case, an increase in L is particularly helpful for strong banks because
their marginal investors expect a large fire-sale discount on average.
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functions only through the direct effect.

Corollary 3. If η ≥ η̄ or L ≥ L̄(η), cross-bank interactions are trivial, ∆ ≥ ∆̄. Liquidity

injection reduces the average fragility and fragilities of strong and weak banks through the

direct effect only, dθ∗

dL
= ∂θ∗

∂L
< 0, dθ∗s

dL
= ∂θ∗s

∂L
< 0, dθ∗w

dL
= ∂θ∗w

∂L
< 0.

Proof. See Appendix B.5.

Given that liquidity injections can stabilize the financial system both directly and

indirectly, it is important to understand how the latter effect compares to the former

quantitatively. We conduct a simple numerical exercise in the context of the Great

Recession. In particular, we pick the size of bank-specific shocks η = 0.025 to match

the cross-sectional dispersion in annual returns on assets of U.S. banks during the 2007–

2008 financial crisis (our data is from the FR Y-9C filings; see Appendix A for more

details). We set m̄ = 0.57, corresponding to the fraction of bank liabilities that is not

covered by deposit insurance in 2007Q4 and is thus subject to runs. We parametrize

λ (m− L) = 1 + (m − L)2. Under such a choice, when a systemic bank run occurs in

the absence of any government liquidity injections, that is, m = m̄ and L = 0, asset

prices are 25% below their fundamental values. This value is in line with the estimates of

James (1991) and Granja, Matvos, and Seru (2017) who document comparable discounts

in prices paid for assets of failed banks during the Savings and Loan Crisis and the 2007–

2008 financial crisis, respectively.26 Finally, we choose the uniform noise distribution with

a support [−1, 1]. Our results are not sensitive to this choice.

We normalize the aggregate amount of bank assets to one and vary the liquidity injec-

tion size L from 0 to 0.01. Our parametrization implies nontrivial cross-bank interactions

for all L ∈ [0, 0.01]. We investigate how the common run threshold θ∗ = θ∗ (L) changes

with the size of liquidity injection in two scenarios. In the baseline case, bank hetero-

geneity ∆ = ∆(L) adjusts as L increases such that θ∗ (L) changes both due to direct and

indirect effects. This case is illustrated by the blue solid line in the left panel of Figure 3.

26Our parametrization of the fire-sale discount function is conservative. For example, during the 2007–
2008 crisis, the government actively intervened in the financial sector, likely having prevented more
widespread runs. In the absence of such interventions, a collapse in asset prices might have been much
more substantial.
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Run threshold θ∗(L) Ex-ante run probability Fθ (θ
∗(L)) [%]

Figure 3: Run threshold θ∗ (left panel) and ex-ante probability of a systemic crisis Fθ (θ
∗) (right panel; in

percentage) as functions of the liquidity injection size L. In the “Baseline” case, heterogeneity ∆ = ∆(L)
adjusts as L changes. In the “Fixed ∆” case, bank heterogeneity is fixed at its initial level ∆ (0). See
text for parametrization.

The red dashed line shows how the run threshold changes with L if bank heterogeneity is

held fixed, ∆ = ∆(0). Therefore, it reflects only the direct effect. The difference suggests

that the indirect effect accounts for about 15% of the total reduction in the average run

threshold as L changes from 0 to 0.01.

To map the change in the run threshold to that in the probability of a crisis, we need

to calibrate the prior distribution of the aggregate fundamental Fθ(·). We assume that

the prior distribution of θ is log-normal with parameters µθ and σθ. Using the FR Y-9C

filings, we calibrate σθ = 0.01 to match the standard deviation of the average returns on

assets for U.S. banks in the pre-crisis years of 1991–2006. We pick µθ = 0.0715 so that

the annual frequency of systemic crises in the model is Fθ (θ
∗) = 2%, a number consistent

with the historical data (e.g. Jordà, Schularick, and Taylor, 2017; Romer and Romer,

2017). The right panel of Figure 3 shows how the ex-ante run probability Fθ (θ
∗ (L))

changes with the size of liquidity injection when bank heterogeneity adjusts with L (solid

blue line) and when bank heterogeneity is held fixed at ∆ = ∆(0) (red dashed line). We

observe that an increase in L from 0 to 0.01 implies a significant decline in the ex-ante

run probability from 2% to 1%. The indirect effect accounts for a nontrivial part of

this decline: If bank heterogeneity is held fixed, the run probability declines from 2% to

1.13%.

35



4.4 Liquidity buffers

In our baseline model, we assume that banks invest all capital they raise from investors

in long-term assets. As a result, if banks face runs at t = 1, they have to liquidate some

of their long-term assets. Furthermore, banks are unable to acquire each other’s assets.

In reality, stronger banks frequently acquire assets of failing banks. This is often seen

as a desirable outcome because banks are likely more efficient users of those assets than

outside investors. In this section, we extend our model by allowing banks to hold a

fraction l ∈ [0, m̄) of their capital in cash that has a unit return. We treat l as an

exogenous parameter and study how changes in l affect bank heterogeneity and fragility.

This exercise can be seen as investigating the impacts of changing liquidity requirements

on the economy. In Appendix C.7, we solve for an endogenous l and discuss why banks

underinvest in liquid assets relative to the social optimum.

More specifically, suppose that bank i invests a fraction l of its assets in cash and the

remaining 1− l fraction in a long-term project. If the mass of early withdrawals is mi > l,

the bank has to liquidate some of its long-term assets. If, on the contrary, mi < l, then

the bank can repay runners without liquidating its long-term assets. Furthermore, it can

acquire assets liquidated by other banks (if any). We assume that banks are efficient

users of liquidated assets. As such, bank i acquiring one unit of bank j’s long-term assets

expects to get a gross return zj. Therefore, the price bank i is willing to pay for each

unit of bank j’s assets is zj.

In this extended setup, strong banks acquire assets of weak banks in some states

of the world. If a marginal weak-bank investor believes that a fraction x of “non-

sleepy” weak-bank investors run, then her perceived mass of runners in strong banks

is m̄Fϵ (−∆+ F−1
ϵ (x)) < m̄x. Thus, even if a marginal weak-bank investor expects that

her bank is unable to fully repay runners using its liquidity buffer, i.e. m̄x > l, then

strong banks can step in and acquire at least part of liquidated assets. In particular, if

m̄x < l < m̄Fϵ (−∆+ F−1
ϵ (x)), weak banks do not face any inefficient liquidations be-

cause strong banks fully satisfy weak banks’ liquidity needs. If m̄Fϵ (−∆+ F−1
ϵ (x)) > l,

strong banks are unable to acquire all assets liquidated by weak banks. Still, they allevi-

36



ate fire-sale pressure on weak banks by reducing the amount of assets outside investors

have to absorb.

In contrast, weak banks never acquire assets of strong banks. If a marginal strong-

bank investor believes that a fraction x of “non-sleepy” strong-bank investors run, then

her perceived mass of runners in weak banks is m̄Fϵ (∆ + F−1
ϵ (x)) > m̄x. Therefore, if a

marginal strong-bank investor expects that her bank is unable to fully repay runners using

its liquidity buffer, i.e. m̄x > l, then weak banks are also unable to do so, and liquidated

assets are absorbed by inefficient outside investors. Nevertheless, liquidity buffers held

by weak banks reduce fire-sale pressure on strong banks because weak banks can cover

part of early withdrawals with their internal funds and thus sell fewer assets to outside

investors. This has a large beneficial effect on strong banks because they experience runs

when market liquidity conditions are particularly dire.

The following proposition establishes how changes in the liquidity buffer size affect

financial fragility.

Proposition 6. Suppose that λ′′(·) ≥ 0 and η ∈ (0, η̄), where η̄ is defined in Equation

(23). There exists a decreasing function l̄(η) > 0 such that if l ∈
(
0, l̄ (η)

)
, then cross-

bank interactions are nontrivial, ∆ < ∆̄, and run thresholds of strong and weak banks are

infinitely close to θ∗. Moreover, dθ∗

dl
= ∂θ∗

∂l
+ ∂θ∗

∂∆
d∆
dl
, where

1. The direct effect is stabilizing, ∂θ∗

∂l
< 0;

2. The indirect effect is stabilizing, ∂θ∗

∂∆
< 0 and d∆

dl
> 0.

Proof. See Appendix B.6.

Proposition 6 shows that the impact of an increase in the liquidity buffer size l on

fragility is qualitatively analogous to that of an increase in the liquidity injection size L

discussed in Section 4.3. Naturally, a higher l stabilizes banks directly, ∂θ∗

∂l
< 0, because it

implies that banks have to liquidate fewer long-term assets if runs occur. A higher l also

stabilizes banks indirectly. Similar to the intuition behind Proposition 5, a strong-bank

investor is on the margin of running under worse liquidity conditions than a weak-bank
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marginal investor. Therefore, an increase in l has a stronger positive effect on a strong-

bank marginal investor than on a weak-bank marginal investor, leading to a higher bank

heterogeneity, ∂∆
∂l

> 0.

For completeness, the corollary below summarizes the case with trivial cross-bank

interactions where heterogeneity ceases to have an effect.

Corollary 4. If η ≥ η̄ or l ≥ l̄(η), cross-bank interactions are trivial, ∆ ≥ ∆̄. Liquidity

buffer reduces the average fragility and fragilities of strong and weak banks through the

direct effect only, dθ∗

dl
= ∂θ∗

∂l
< 0, dθ∗s

dl
= ∂θ∗s

∂l
< 0, dθ∗w

dl
= ∂θ∗w

∂l
< 0.

Proof. See Appendix B.6.

5 Concluding remarks

This paper analyzes interactions between fragile banks through asset fire sales. Such

interactions can lead to a spread of panics across institutions and thus a systemic cri-

sis. The key feature of our model is the reinforcement between within- and cross-bank

complementarities, that is, bank runs and fire sales. We highlight the key factor—bank

heterogeneity—that governs cross-bank interactions and plays an important role in de-

termining the fragility of the entire financial system.

The broad message of our policy analyses is that in a financial system featuring inter-

connected fragilities, various factors can affect financial stability through changing bank

heterogeneity. Regulators should take this indirect effect into account when monitoring

bank activities and developing intervention strategies. Without doing so, policies may

undermine financial stability by making runs more synchronized.

For instance, regulatory policies that narrow the dispersion in bank asset performances

can be harmful for stability. One example is mergers and acquisitions in the banking

system. Another example is direct financial support—or a belief about it shared by

market participants—biased toward weak banks. Although such financial support directly

enhances weak banks’ resilience to negative shocks, its effectiveness can be hindered by

the resulting commonality in (perceived) asset performances. Furthermore, when banks

face multiple capital regulations, regulatory arbitrage incentive pushes banks to converge
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in their business models and asset holdings (Greenwood, Stein, Hanson, and Sunderam,

2017).

Stress tests is another widely-used policy tool that can lead to an unintended reduction

in heterogeneity. Currently, regulators test bank resilience against a common set of stress

scenarios. Banks that are more likely to fail these tests—weak banks in our paper—are

required by regulators to increase their liquidity buffers or equity cushions, which can

raise their similarity to strong banks. Furthermore, anticipating such corrective actions,

weak banks might act preemptively and strengthen their balance sheets against stress test

scenarios, again making the financial system more homogeneous. As a result of higher

similarity across banks, heterogeneity diminishes, which can undermine the effectiveness

of stress tests. Our paper suggests that a certain difference between banks’ resistance to

a common set of stress scenarios is desirable.

Relatedly, regulators should closely monitor aggregate market conditions and conduct

interventions in a timely manner. Recall that when strong banks are forced to liquidate

their assets, the asset market is already highly stressed due to massive liquidations by

weak banks. If regulators commit to intervene in situations when fire-sale discounts are

especially high, then this can be particularly helpful to strong banks. As our results in

Section 4.3 suggest, this can have a sizeable stabilizing effect through enlarging hetero-

geneity and alleviating the vicious loop between bank runs and deteriorating liquidity

conditions.

Overall, various bank activities and regulatory policies might affect heterogeneity and,

thus, impact financial stability. Regulators should take a holistic approach and combine

different regulatory tools to maintain a certain level of heterogeneity in the financial

system.
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A Data appendix for Section 4.3

Our data on U.S. bank holding companies is from the FR Y-9C filings and covers

the period between 1991 and 2018. Each year, we focus on 100 largest parent-level

bank holding companies to reduce the role of outliers; our results are not sensitive to

this cutoff. Each year t, we compute returns on assets Rit for each bank i as the sum

of interest and nontinterest income net of noninterest expense, divided by the last-year

total assets. In the model, θ is the aggregate productivity of bank assets before payments

to investors and in the absence of any inefficient liquidations. Therefore, to estimate

σθ, we compute time-series standard deviation of the cross-bank average of Rit in the

years before the 2007–2008 financial crisis. The parameter η governs the cross-sectional

standard deviation in productivities of bank assets. Since this standard deviation can be

time-varying and since our focus is on understanding investors’ run decisions, we pick η

to match the cross-sectional standard deviation in Rit during the 2007–2008 period.

B Proofs

B.1 Liquidation price

This appendix proves Lemma 1.

Proof. Outside investors solve the problem

max
{ki}i∈[0,1]

∫
zikidi− g

(∫
pikidi

)
.

The first-order condition implies that the liquidation price of bank i’s assets pi is propor-

tional to its fundamental zi,

pi =
zi

g′ (L)
∀i ∈ [0, 1], (24)

where L ≡
∫
pikidi. Aggregation of the market clearing conditions for individual banks

implies that the total liquidity demand m equals to the liquidity supply L:

mi = piki ⇒ m =

∫
pikidi = L.
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Therefore, we obtain the equilibrium asset prices

pi(zi,m) =
zi

λ(m)
,

where λ(m) ≡ g′(m). Since λ′(m) = g′′(m) > 0, the liquidation price pi(zi,m) is a

decreasing function of the total mass of runners m for any i ∈ [0, 1].

B.2 Role of two complementarities

We prove Proposition 2. Note that Proposition 1 is a special case of Proposition 2

with π1(mi) =
1

1−mi
and π2(mi,m) = −λ(m)mi

1−mi
. In Appendix C.2, we explore a general

net payoff function π(zi,mi,m) without imposing a specific functional form.

Proof. If ∆ ≡ lim
σ→0

θ∗w−θ∗s
σ

< ∆̄, the model features nontrivial cross-bank strategic interac-

tions. The analogues of Equations (7) and (8) from the main text are∫ 1

0

[
(θ∗s + η)π1(m̄x) + π2

(
m̄x,

m̄

2
x+

m̄

2
Fϵ

(
∆+ F−1

ϵ (x)
))]

dx = 0, (25)∫ 1

0

[
(θ∗w − η)π1(m̄x) + π2

(
m̄x,

m̄

2
x+

m̄

2
Fϵ

(
−∆+ F−1

ϵ (x)
))]

dx = 0. (26)

Since we focus on the limiting case with vanishing information friction, the two run

thresholds are infinitely close to the average threshold θ∗ ≡ 1
2
θ∗s +

1
2
θ∗w.

Differentiating (25) and (26) with respect to ∆, we can derive

∂θ∗s
∂∆

= −
m̄
2

∫ Fϵ(ϵ̄−∆)

0
∂
∂m

{
π2

(
m̄x, m̄

2
x+ m̄

2
Fϵ (∆ + F−1

ϵ (x))
)}

fϵ (∆ + F−1
ϵ (x)) dx∫ 1

0
π1 (m̄x) dx

, (27)

∂θ∗w
∂∆

=

m̄
2

∫ 1

Fϵ(ϵ+∆)
∂
∂m

{
π2

(
m̄x, m̄

2
x+ m̄

2
Fϵ (−∆+ F−1

ϵ (x))
)}

fϵ (−∆+ F−1
ϵ (x)) dx∫ 1

0
π1 (m̄x) dx

=

m̄
2

∫ Fϵ(ϵ̄−∆)

0
∂
∂m

{
π2

(
m̄Fϵ (∆ + F−1

ϵ (y)) , m̄
2
Fϵ (∆ + F−1

ϵ (y)) + m̄
2
y
)}

fϵ (∆ + F−1
ϵ (y)) dy∫ 1

0
π1 (m̄x)dx

,(28)

where (28) is obtained by changing the variable of integration x → Fϵ (∆ + F−1
ϵ (y)),

which implies, in particular, dx = dFϵ (∆ + F−1
ϵ (y)) = fϵ(∆+F−1

ϵ (y))

fϵ(F−1
ϵ (y))

dy.

The impact of bank heterogeneity ∆ on θ∗ is

∂θ∗

∂∆
=

1

2

(
∂θ∗s
∂∆

+
∂θ∗w
∂∆

)
.
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Comparing (27) and (28), we can see that

∂2π

∂m∂mi

=
∂2π2

∂m∂mi

⪋ 0 ⇒ −∂θ∗w
∂∆

⪌
∂θ∗s
∂∆

⇒ ∂θ∗

∂∆
⪋ 0.

B.3 Ring-fencing

This appendix proves Proposition 3 and Corollary 1.

B.3.1 Proposition 3

Proof. Recall that when cross-bank strategic interactions are nontrivial (∆ < ∆̄), bank

heterogeneity ∆ is implicitly defined by Equation (15), which we repeat below,

η =
1

2
∫ 1

0
dx

1−m̄x

(Is(∆)− Iw(∆)) . (29)

From Equations (9) and (10), it is clear that Is(∆) increases in ∆ and Iw(∆) decreases

in ∆. Hence, ∆(η) is an increasing function. Moreover, ∆(0) = 0 and ∆(η̄) = ∆̄.

Therefore, when η ∈ (0, η̄), we have ∆ ∈ (0, ∆̄), and cross-bank strategic interactions

are nontrivial. From Equation (14), θ∗(η) = θ∗(∆(η)). Since ∆(η) increases in η on (0, η̄),

by Proposition 1, run thresholds of strong and week banks are infinitely close to θ∗(η)

which decreases in η on (0, η̄).

B.3.2 Corollary 1

Proof. If η ≥ η̄, Equation (29) does not have a solution ∆ = ∆(η). Therefore, run

thresholds θ∗s and θ∗w cannot be infinitely close to each other. Then they are given by

(17) and (18), respectively. From these equations, it is clear that θ∗s (η) is a decreasing

function, θ∗w (η) is an increasing function, and 1
2
θ∗s(η)+

1
2
θ∗w (η) does not depend on η.

B.4 Noisy information about bank-specific fundamentals

We prove Proposition 4 in this appendix.

Proof. Fraction α of strong-bank investors and fraction 1 − α of weak-bank investors

receive signal G. Therefore, fraction 1
2
α + 1

2
(1 − α) = 1

2
of all investors receive this

signal. These investors run if their signals about the aggregate fundamental are below
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θ∗G. Similarly, fraction 1
2
(1−α)+ 1

2
α = 1

2
of all investors receive signal B. These investors

run if their signals about the aggregate fundamental are below θ∗B. The run thresholds

for investors receiving signals G and B are determined by

θ∗G + pGη − (1− pG)η =
1∫ 1

0
1

1−m̄x
dx

(
1 +

∫ 1

0

λ(mG(x,∆))m̄x

1− m̄x
dx

)
,

θ∗B + pBη − (1− pB)η =
1∫ 1

0
1

1−m̄x
dx

(
1 +

∫ 1

0

λ(mB(x,∆))m̄x

1− m̄x
dx

)
,

where ∆ = lim
σ→0

θ∗B−θ∗G
σ

and

mG(x,∆) =
1

2
m̄x+

1

2
m̄Fϵ(∆ + F−1

ϵ (x)),

mB(x,∆) =
1

2
m̄Fϵ(−∆+ F−1

ϵ (x)) +
1

2
m̄x.

Define

ηeff (α) = pGη − (1− pG)η = (2α− 1) η.

It straightforward to see that the model described in Section 4.2 boils down to our baseline

setting with redefined η. Therefore, the results of Section 3.2 generalize to the case of

noisy bank-specific signals.

B.5 Asset market interventions

This appendix proves Proposition 5 and Corollary 3. Throughout this appendix, we

make the following assumption.

Assumption 1. λ(·) is a weakly convex function, that is, λ′′(·) ≥ 0.

B.5.1 Proposition 5

With the modified fire-sale discount function λ̂(m,L), we can express the fire-sale

pressure terms as

Îs(∆, L) =

∫ 1

xs(∆,L)

λ
(m̄
2
x+

m̄

2
Fϵ

(
∆+ F−1

ϵ (x)
)
− L

) m̄x

1− m̄x
dx+

∫ xs(∆,L)

0

m̄x

1− m̄x
dx, (30)

Îw(∆, L) =

∫ 1

xw(∆,L)

λ
(m̄
2
x+

m̄

2
Fϵ

(
−∆+ F−1

ϵ (x)
)
− L

) m̄x

1− m̄x
dx+

∫ xw(∆,L)

0

m̄x

1− m̄x
dx,(31)
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where xs(∆, L) and xw(∆, L) are the critical fractions of strong- and weak-bank runners

below which perceived fire-sale discount is zero, i.e.

xs (∆, L) =


0 if L ≤ m̄

2
Fϵ (∆ + ϵ) ,

x̂s :
m̄
2
x̂s +

m̄
2
Fϵ (∆ + F−1

ϵ (x̂s)) = L if L > m̄
2
Fϵ (∆ + ϵ) ,

(32)

xw (∆, L) =


x̂w : m̄

2
x̂w + m̄

2
Fϵ (−∆+ F−1

ϵ (x̂w)) = L if L < m̄
2
+ m̄

2
Fϵ (−∆+ ϵ̄) ,

1 if L ≥ m̄
2
+ m̄

2
Fϵ (−∆+ ϵ̄) .

(33)

The run thresholds for strong and weak banks are implicitly given by∫ 1

0

θ∗s + η

1− m̄x
dx− Îs (∆, l) = 1, (34)∫ 1

0

θ∗w − η

1− m̄x
dx− Îw (∆, l) = 1. (35)

As in the baseline model, if cross-bank strategic interactions are nontrivial, run thresh-

olds of strong and weak banks are infinitely close to the average threshold

θ∗ =
1∫ 1

0
dx

1−m̄x

[
1 +

1

2
Îs(∆, L) +

1

2
Îw(∆, L)

]
, (36)

where bank heterogeneity ∆ = ∆(L, η) is implicitly defined by

η =
1

2
∫ 1

0
dx

1−m̄x

[
Îs(∆, L)− Îw(∆, L)

]
. (37)

In equilibrium, there exist nontrivial cross-bank interactions if (37) has a solution ∆ =

∆(L, η) < ∆̄.

Below, we prove several lemmas that together imply Proposition 5.

Lemma 2. Suppose that there exist nontrivial cross-bank strategic interactions and ∆ =

∆(L, η) solves (37). Then it must be that L < m̄
2
+ m̄

2
Fϵ (−∆(L, η) + ϵ̄). Moreover,

d∆
dL

≥ 0, with the inequality being strict if L > 0 or λ′′(·) > 0.

Proof. Suppose that L and ∆ are such that L ≥ m̄
2
+ m̄

2
Fϵ (−∆+ ϵ̄). Then, using the
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definitions (32) and (33), we get

xs (∆, L) =
2L

m̄
− 1 ≥ Fϵ (−∆+ ϵ̄)

and xw (∆, L) = 1. Then the fire-sale pressure terms (30) and (31) become

Îs (∆, L) =

∫ 1

min{ 2L
m̄

−1,1}
λ
(m̄
2
x+

m̄

2
− L

) m̄x

1− m̄x
dx+

∫ min{ 2L
m̄

−1,1}

0

m̄x

1− m̄x
dx,

Îw (∆, L) =

∫ 1

0

m̄x

1− m̄x
dx.

In this case, the derivative of the right-hand side of (37) with respect to ∆ is 0, that is,

the right-hand side of (37) does not depend on ∆. In other words, the fire-sale pressure

terms do not depend on bank heterogeneity ∆, i.e. there are no cross-bank strategic

uncertainties, which is a contradiction.

Therefore, it must be that L < m̄
2
+ m̄

2
Fϵ (−∆+ ϵ̄). Suppose that ∆ = ∆(L, η) solves

(37). Then L < m̄
2
+ m̄

2
Fϵ (−∆+ ϵ̄), which implies 0 ≤ xs (∆, L) < Fϵ (−∆+ ϵ̄) and

xs (∆, L) ≤ xw (∆, L) < 1. Then, using the expressions for the fire-sale pressure terms

(30) and (31), we can straightforwardly establish that

∂Îs
∂∆

> 0 and
∂Îw
∂∆

< 0.

Moreover,

∂Îs
∂L

− ∂Îw
∂L

= −
∫ 1

xs(∆,L)

λ′
(m̄
2
x+

m̄

2
Fϵ

(
∆+ F−1

ϵ (x)
)
− L

) m̄x

1− m̄x
dx+∫ 1

xw(∆,L)

λ′
(m̄
2
x+

m̄

2
Fϵ

(
−∆+ F−1

ϵ (x)
)
− L

) m̄x

1− m̄x
dx ≤ 0.

The latter inequality holds because xs (∆, L) ≤ xw (∆, L) and λ(·) is weakly convex.

Moreover, this inequality is strict if L > 0 (because then xs (∆, L) < xw (∆, L)) or if

λ′′(·) > 0.

By the implicit function theorem, it then follows that

d∆

dL
= −

∂Îs
∂∆

− ∂Îw
∂∆

∂Îs
∂L

− ∂Îw
∂L

> 0.

51



Lemma 2 implies, in particular, that if Equation (37) has a solution ∆ (L, η) for some

L, then it also has a solution ∆(L̃, η) < ∆(L, η) for any L̃ ∈ [0, L).

Recall that η̄, defined in (23), can be written as

η̄ =
1

2
∫ 1

0
1

1−m̄x
dx

∫ 1

0

[
λ
(m̄
2
x+

m̄

2

)
− λ

(m̄
2
x
)] m̄x

1− m̄x
dx.

Lemma 3. For each η ∈ (0, η̄), there exists L̄ = L̄ (η) such that if L < L̄, then cross-bank

interactions are nontrivial, ∆ = ∆(L, η) < ∆̄. Moreover, L̄ (η) is a decreasing function

such that sup
η∈(0,η̄)

L̄ (η) = m̄ and inf
η∈(0,η̄)

L̄ (η) = 0.

Proof. Lemma 2 implies that if (37) has a solution ∆ = ∆(L, η), then ∆ = ∆(L, η)

increases in L. Define the supremum value of ∆ (L, η) by ∆∗ (η). Two cases are possible.

Case 1: ∆∗ (η) = ∆̄.

Suppose that L = L̄ (η) such that ∆ = ∆∗ (η) = ∆̄. By Lemma 2, it must be that

L̄ ≤ m̄

2
+

m̄

2
Fϵ

(
−∆̄ + ϵ̄

)
=

m̄

2
. (38)

Using the definitions (32) and (33), we find xs

(
∆̄, L̄

)
= 0 and xw

(
∆̄, L̄

)
= 2L̄

m̄
. Plugging

these into (37), we obtain

η =
1

2
∫ 1

0
1

1−m̄x
dx

×[∫ 1

0

λ
(m̄
2
x+

m̄

2
− L̄

) m̄x

1− m̄x
dx−

∫ 1

2L̄
m̄

λ
(m̄
2
x− L̄

) m̄x

1− m̄x
dx−

∫ 2L̄
m̄

0

m̄x

1− m̄x
dx

]
.

This equation defines L̄ = L̄ (η) implicitly. It is easy to verify that the right-hand side

decreases in L̄ if λ(·) is weakly convex. Therefore, L̄ (η) is a decreasing function. Define

η̂ =
1

2
∫ 1

0
1

1−m̄x
dx

∫ 1

0

[
λ
(m̄
2
x
)
− 1
] m̄x

1− m̄x
dx. (39)

Note that if λ(·) is weakly convex, then η̄ > η̂.

It is easy to see that L̄ (η̂) = m̄
2
and L̄ (η̄) = 0. Furthermore, if η < η̂, then L̄ (η) > m̄

2
,

which contradicts (38).

Case 2: ∆∗ (η) < ∆̄.
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Suppose that L = L̄ (η) such that ∆ = ∆∗ (η) < ∆̄. By Lemma 2, it must be that

L̄ ≤ m̄

2
+

m̄

2
Fϵ (−∆∗ + ϵ̄) . (40)

Suppose that this inequality holds strictly. Then, using the definitions (32) and (33),

we get xs

(
∆∗, L̄

)
< Fϵ (−∆∗ + ϵ̄) and xw

(
∆∗, L̄

)
< 1. But then the right-hand side of

(37) strictly increases in ∆ and strictly decreases in L in the neighborhood of
(
∆∗, L̄

)
.

Therefore, for a given η, a marginal increase in L̄ implies a marginal increase in ∆∗.

Moreover, such changes do not violate (40). Therefore, ∆∗ is not the supremum value of

∆ (L, η) for a given η. Therefore, it must be that (40) holds as equality, i.e.,

L̄ =
m̄

2
+

m̄

2
Fϵ (−∆∗ + ϵ̄) . (41)

Under (41), we get xs

(
∆∗, L̄

)
= Fϵ (−∆∗ + ϵ̄) and xw

(
∆∗, L̄

)
= 1 from (32) and (33).

Plugging these into (37), we obtain

η =
1

2
∫ 1

0
1

1−m̄x
dx

∫ 1

Fϵ(−∆∗+ϵ̄)

[
λ
(m̄
2
(x− Fϵ (−∆∗ + ϵ̄))

)
− 1
] m̄x

1− m̄x
dx.

This equation defines ∆∗ = ∆∗ (η) implicitly. Clearly, ∆∗ (η) is an increasing function.

From (41) it then follows that L̄ (η) is a decreasing function. Note that ∆∗ < ∆̄ = ϵ̄−ϵ ⇔

η < η̂, where η̂ is defined by (39). Finally, ∆∗ (0) = 0 and ∆∗ (η̂) = ∆̄, and so L̄ (0) = m̄

and L (η̂) = m̄
2
.

The analyses of cases 1 and 2 imply that if L = L̄ (η) then (37) has a solution ∆ =

∆∗ (η). Therefore, by Lemma 2, (37) has a solution ∆ (L, η) < ∆∗ (η) for any L ∈

[0, L̄ (η)).

Finally, we establish

Lemma 4. Suppose that η ∈ (0, η̄) and L < L̄ (η). Then ∂θ∗

∂L
< 0 and ∂θ∗

∂∆
< 0.

Proof. From Lemmas 2 and 3 it follows that if L < L̄ (η) then 0 ≤ xs (∆, L) < Fϵ (−∆+ ϵ̄)

and xs (∆, L) ≤ xw (∆, L) < 1. Therefore, using the definitions of the fire-sale pressure
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terms (30) and (31), we get

∂Îs
∂L

< 0 and
∂Îw
∂L

< 0,

which together imply that ∂θ∗

∂L
< 0, where θ∗ is defined by (36).

In the absence of liquidity injections, ∂θ∗

∂∆
< 0 by Proposition 1. Below we show that

this result holds if L ∈
(
0, L̄ (η)

)
.

∂θ∗

∂∆
∝
∫ Fϵ(−∆+ϵ̄)

xs(∆,L)

λ′
(m̄
2
x+

m̄

2
Fϵ

(
∆+ F−1

ϵ (x)
)
− L

)
fϵ
(
∆+ F−1

ϵ (x)
) m̄x

1− m̄x
dx−∫ 1

max{xw(∆,L),Fϵ(∆+ϵ)}
λ′
(m̄
2
x+

m̄

2
Fϵ

(
−∆+ F−1

ϵ (x)
)
− L

)
fϵ
(
−∆+ F−1

ϵ (x)
) m̄x

1− m̄x
dx,

where ∝ denotes proportionality up to a positive multiplicative term. By changing the

variable of integration in the second integral, y = Fϵ (−∆+ F−1
ϵ (x)), we can rewrite the

expression as

∂θ∗

∂∆
∝
∫ Fϵ(−∆+ϵ̄)

xs(∆,L)

λ′
(m̄
2
x+

m̄

2
Fϵ

(
∆+ F−1

ϵ (x)
)
− L

)
fϵ
(
∆+ F−1

ϵ (x)
)
×(

m̄x

1− m̄x
− m̄Fϵ(∆ + F−1

ϵ (x))

1− m̄Fϵ(∆ + F−1
ϵ (x))

)
dx < 0.

Proposition 5 follows from Lemmas 2, 3 and 4.

B.5.2 Corollary 3

Proof. The proof of Lemma 3 implies that if η ≥ η̄ or L ≥ L̄(η), then cross-bank inter-

actions are trivial, ∆ ≥ ∆̄. Plugging ∆ ≥ ∆̄ in (30) and (31), we obtain

Îs(L) =

∫ 1

xs(L)

λ
(m̄
2
x+

m̄

2
− L

) m̄x

1− m̄x
dx+

∫ xs(L)

0

m̄x

1− m̄x
dx,

Îw(L) =

∫ 1

xw(L)

λ
(m̄
2
x− L

) m̄x

1− m̄x
dx+

∫ xw(L)

0

m̄x

1− m̄x
dx,
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where from (32) and (33)

xs (L) =


0 if L ≤ m̄

2
,

2
m̄
L− 1 if L > m̄

2
,

xw (L) =


2
m̄
L if L < m̄

2
,

1 if L ≥ m̄
2
.

Therefore, the average fragility θ∗ no longer depends on ∆,

θ∗ =
1∫ 1

0
dx

1−m̄x

(
1 +

1

2
Îs(L) +

1

2
Îw(L)

)
.

Since θ∗ no longer depends on ∆, ∂θ∗

∂∆
= 0. Nonetheless, liquidity injection reduces fire-

sale pressure directly, i.e. dÎs(L)
dL

< 0 and dÎw(L)
dL

< 0. Therefore, liquidity injection reduces

fragility only through its direct effect, dθ∗

dL
= ∂θ∗

∂L
< 0. Furthermore, from (34) and (35),

dθ∗s
dl

= ∂θ∗s
∂l

< 0 and dθ∗w
dl

= ∂θ∗w
∂l

< 0.

B.6 Liquidity buffers

This appendix proves Proposition 6 and Corollary 4. Throughout this appendix, we

assume that Assumption 1 holds.

B.6.1 Proposition 6

Define

Îs (∆, l) =

∫ 1

l
m̄

λ
(
m̄
2
x+ m̄

2
Fϵ (∆ + F−1

ϵ (x))− l
)
(m̄x− l)

1− m̄x
dx−

∫ l
m̄

0

l − m̄x

1− m̄x
dx, (42)

Îw (∆, l) =

∫ 1

xw(∆,l)

λ
(
m̄
2
x+ m̄

2
Fϵ (−∆+ F−1

ϵ (x))− l
)
(m̄x− l)

1− m̄x
dx−

∫ xw(∆,l)

0

l − m̄x

1− m̄x
dx, (43)

where xw (∆, l) is the critical fraction of weak-bank runners below which all assets liqui-

dated by weak banks are absorbed by strong banks. It is given by

xw (∆, l) =


x̂w : m̄

2
x+ m̄

2
Fϵ (−∆+ F−1

ϵ (x)) = l if l < m̄
2
+ m̄

2
Fϵ (−∆+ ϵ̄) ,

1 if l ≥ m̄
2
+ m̄

2
Fϵ (−∆+ ϵ̄) .

(44)
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The run thresholds for strong and weak banks are implicitly given by∫ 1

0

(θ∗s + η) (1− l)

1− m̄x
dx− Îs (∆, l) = 1, (45)∫ 1

0

(θ∗w − η) (1− l)

1− m̄x
dx− Îw (∆, l) = 1. (46)

As in the baseline model, if cross-bank strategic interactions are nontrivial, run thresh-

olds of strong and weak banks are infinitely close to the average threshold

θ∗ =
1∫ 1

0
1−l

1−m̄x
dx

(
1 +

1

2
Îs (∆, l) +

1

2
Îw (∆, l)

)
, (47)

where bank heterogeneity ∆ = ∆(l, η) is implicitly given by

η =
1

2
∫ 1

0
1−l

1−m̄x
dx

(
Îs (∆, l)− Îw (∆, l)

)
. (48)

In equilibrium, there exist nontrivial cross-bank interactions if (48) has a solution ∆ =

∆(l, η) < ∆̄.

Below, we prove several lemmas that together imply Proposition 6.

Lemma 5. Suppose that there exist nontrivial cross-bank strategic interactions and ∆ =

∆(l, η) solves (48). Then it must be that l < m̄
2
+ m̄

2
Fϵ (−∆(l, η) + ϵ̄). Moreover, d∆

dl
≥ 0,

with the inequality being strict if l > 0 or λ′′ (·) > 0.

Proof. Suppose that l and ∆ are such that

l ≥ m̄

2
+

m̄

2
Fϵ (−∆+ ϵ̄) . (49)

Then Equations (42) and (43) become

Îs (∆, l) =

∫ 1

l
m̄

λ
(
m̄
2
x+ m̄

2
Fϵ (∆ + F−1

ϵ (x))− l
)
(m̄x− l)

1− m̄x
dx−

∫ l
m̄

0

l − m̄x

1− m̄x
dx, (50)

Îw (∆, l) = −
∫ 1

0

l − m̄x

1− m̄x
dx.

Note that (49) implies that l
m̄

≥ Fϵ (−∆+ ϵ̄). Therefore, if x ≥ l
m̄
then Fϵ (∆ + F−1

ϵ (x)) =

1, and so the right-hand side of (50) does not depend on ∆. Hence, the right-hand side

of (48) also does not depend on ∆, i.e. there are no cross-bank strategic uncertainties,
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which is a contradiction.

Suppose now that l and ∆ are such that l < m̄
2
+ m̄

2
Fϵ (−∆+ ϵ̄). Then l

m̄
≤ xw (∆, l) < 1

and Îw (∆, l) is a decreasing function of ∆. If l
m̄

≥ Fϵ (−∆+ ϵ̄) then Îs (∆, l) does not

depend on ∆. If l
m̄

< Fϵ (−∆+ ϵ̄) then Îs (∆, l) is an increasing function of ∆. Denote the

right-hand side of (48) by T (∆, l). We have ∂T
∂∆

> 0. By the implicit function theorem,

d∆

dl
= −

∂T
∂l
∂T
∂∆

=
1
∂T
∂∆

T1 + T2

2 (1− l)2
∫ 1

0
dx

1−m̄x

,

where

T1 = (1− l)×

(∫ xw(∆,l)

l
m̄

λ′ ( m̄
2
x+ m̄

2
Fϵ (∆ + F−1

ϵ (x))− l
)
(m̄x− l)

1− m̄x
dx+

∫ 1

xw(∆,l)

(
λ′ ( m̄

2
x+ m̄

2
Fϵ (∆ + F−1

ϵ (x))− l
)
− λ′ ( m̄

2
x+ m̄

2
Fϵ (−∆+ F−1

ϵ (x))− l
))

(m̄x− l)

1− m̄x
dx

)
,

and

T2 =

∫ xw(∆,l)

l
m̄

[
λ
(m̄
2
x+

m̄

2
Fϵ

(
∆+ F−1

ϵ (x)
)
− l
)
− 1
]
dx+∫ 1

xw(∆,l)

(
λ
(m̄
2
x+

m̄

2
Fϵ

(
∆+ F−1

ϵ (x)
)
− l
)
− λ

(m̄
2
x+

m̄

2
Fϵ

(
−∆+ F−1

ϵ (x)
)
− l
))

dx.

Note that T2 ≥ 0 and T1 ≥ 0 under Assumption 1. Therefore, d∆
dl

≥ 0. Furthermore, this

inequality is strict if l > 0 (because then xw (∆, l) > l
m̄

and T2 > 0) or if λ′′(·) > 0.

Lemma 5 implies, in particular, that if Equation (48) has a solution ∆ (l, η) for some

l > 0, then it also has a solution ∆(l̃, η) < ∆(l, η) for any l̃ ∈ [0, l).

Recall that η̄, defined in (23), can be written as

η̄ =
1

2
∫ 1

0
1

1−m̄x
dx

∫ 1

0

[
λ
(m̄
2
x+

m̄

2

)
− λ

(m̄
2
x
)] m̄x

1− m̄x
dx.

Lemma 6. For each η ∈ (0, η̄), there exists l̄ = l̄ (η) such that if l < l̄, then cross-bank

interactions are nontrivial, ∆ = ∆(l, η) < ∆̄. Moreover, l̄ (η) is a decreasing function

such that sup
η∈(0,η̄)

l̄ (η) = m̄ and inf
η∈(0,η̄)

l̄ (η) = 0.
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Proof. Lemma 5 implies that if (48) has a solution ∆ = ∆(l, η), then ∆ (l, η) increases

in l. Define supremum value of ∆ (l, η) by ∆∗ (η). Two cases are possible.

Case 1: ∆∗ (η) = ∆̄.

Suppose that l = l̄ (η) such that ∆ = ∆∗ (η) = ∆̄. By Lemma 5, it must be that

l̄ ≤ m̄

2
+

m̄

2
Fϵ

(
−∆̄ + ϵ̄

)
=

m̄

2
. (51)

Using the definition (44), we find xw

(
∆̄, l̄
)
= 2l̄

m̄
. Then (48) can be rewritten as

η =

∫ 1
l
m̄

λ( m̄
2
x+ m̄

2
−l̄)(m̄x−l̄)

1−m̄x
dx−

∫ 1
2l̄
m̄

λ( m̄
2
x−l̄)(m̄x−l̄)
1−m̄x

dx+
∫ 2l̄

m̄
l
m̄

l̄−m̄x
1−m̄x

dx

2
∫ 1

0
1−l̄

1−m̄x
dx

.

This equation defines l̄ = l̄ (η) implicitly. By the implicit function theorem,

dl̄

dη
= − 1

2
(
1− l̄

) ∫ 1

0
dx

1−m̄x

×[
1

1− l̄

(∫ 2l̄
m̄

l
m̄

(
λ
(m̄
2
x+

m̄

2
− l̄
)
− 1
)
dx+

∫ 1

2l̄
m̄

(
λ
(m̄
2
x+

m̄

2
− l̄
)
− λ

(m̄
2
x− l̄

))
dx

)
+

∫ 2l̄
m̄

l
m̄

λ′ ( m̄
2
x+ m̄

2
− l̄
) (

m̄x− l̄
)

1− m̄x
dx+

∫ 1

2l̄
m̄

(
λ′ ( m̄

2
x+ m̄

2
− l̄
)
− λ′ ( m̄

2
x− l̄

)) (
m̄x− l̄

)
1− m̄x

dx

]
< 0.

Therefore, l̄ (η) is a decreasing function. Define

η̂ =
1

2
∫ 1

0

1− m̄
2

1−m̄x
dx

(∫ 1

1
2

λ
(
m̄
2
x
) (

m̄x− m̄
2

)
1− m̄x

dx+

∫ 1

1
2

m̄
2
− m̄x

1− m̄x
dx

)
. (52)

It is easy to see that l̄ (η̂) = m̄
2
and l̄ (η̄) = 0. Furthermore, if η < η̂, then l̄ (η) > m̄

2
,

which contradicts (51).

Case 2: ∆∗ (η) < ∆̄.

Suppose that l = l̄ (η) such that ∆ = ∆∗ (η) < ∆̄. By Lemma 5, it must be that

l̄ ≤ m̄

2
+

m̄

2
Fϵ (−∆∗ + ϵ̄) . (53)

Suppose that this inequality holds strictly. Then the definition (44) implies that xw

(
∆∗, l̄

)
<
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1. But then the right-hand side of (48) strictly increases in ∆ and strictly decreases in l

in the neighborhood of
(
∆∗, l̄

)
. Therefore, for a given η, a marginal increase in l̄ implies

a marginal increase in ∆∗. Moreover, such changes do not violate (53). Therefore, ∆∗ is

not the supremum value of ∆ (l, η) for a given η, and so (53) must hold as equality, i.e.,

l̄ =
m̄

2
+

m̄

2
Fϵ (−∆∗ + ϵ̄) >

m̄

2
. (54)

Under (54), xw

(
∆∗, l̄

)
= 1 and l̄

m̄
= 1

2
+ 1

2
Fϵ (−∆∗ + ϵ̄) > Fϵ (−∆∗ + ϵ̄). Then (48) can

be rewritten as

η =
1

2
∫ 1

0
1−l̄

1−m̄x
dx

∫ 1

l̄
m̄

[
λ
(m̄
2
x+

m̄

2
− l̄
)
− 1
] m̄x− l̄

1− m̄x
dx.

This equation defines l̄ = l̄ (η) implicitly. By the implicit function theorem,

dl̄

dη
= −

(
1− l̄

) ∫ 1
l̄
m̄
λ′ ( m̄

2
x+ m̄

2
− l̄
)

m̄x−l̄
1−m̄x

dx+
∫ 1

l̄
m̄

[
λ
(
m̄
2
x+ m̄

2
− l̄
)
− 1
]
dx

2
(
1− l̄

)2 ∫ 1

0
dx

1−m̄x

< 0.

Therefore, l̄ (η) is a decreasing function. Clearly, l̄ (0) = m̄ and l̄ (η̂) = m̄
2
, where η̂ is

given by (52). Furthermore, if η > η̂ then l̄ (η) < m̄
2
, which contradicts (54).

The analyses of cases 1 and 2 imply that if l = l̄ (η) then (48) has a solution ∆ = ∆∗ (η).

Therefore, by Lemma 5, (48) has a solution ∆ (l, η) < ∆∗ (η) for any l ∈ [0, l̄ (η)).

Finally, we establish

Lemma 7. Suppose that η ∈ (0, η̄) and l < l̄ (η). Then ∂θ∗

∂l
< 0 and ∂θ∗

∂∆
< 0.

Proof. From Lemmas 5 and 6 it follows that if l < l̄ (η) then cross-bank strategic inter-

actions are nontrivial and l < m̄
2
+ m̄

2
Fϵ (−∆+ ϵ̄). By definition (44), l

m̄
≤ xw (∆, l) < 1.

Using (42) and (43), we can write the derivative of the average threshold (47) with
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respect to l as

∂θ∗

∂l
= − 1

2 (1− l)
∫ 1

0
1

1−m̄x
dx

×

[∫ 1

l
m̄

λ′ ( m̄
2
x+ m̄

2
Fϵ (∆ + F−1

ϵ (x))− l
)
(m̄x− l)

1− m̄x
dx+∫ 1

xw(∆,l)

λ′ ( m̄
2
x+ m̄

2
Fϵ (−∆+ F−1

ϵ (x))− l
)
(m̄x− l)

1− m̄x
dx+

1

1− l

∫ 1

l
m̄

(
λ
(m̄
2
x+

m̄

2
Fϵ

(
∆+ F−1

ϵ (x)
)
− l
)
− 1
)
dx+

1

1− l

∫ 1

xw(∆,l)

(
λ
(m̄
2
x+

m̄

2
Fϵ

(
−∆+ F−1

ϵ (x)
)
− l
)
− 1
)
dx

]
< 0.

Next, suppose that l
m̄

≥ Fϵ (−∆+ ϵ̄). Then the right-hand side of (42) does not

depend on ∆, and so

∂θ∗

∂∆
= −

∫ 1

xw(∆,l)

m̄
2
fϵ(−∆+F−1

ϵ (x))λ′( m̄
2
x+ m̄

2
Fϵ(−∆+F−1

ϵ (x))−l)(m̄x−l)

1−m̄x
dx

2
∫ 1

0
1−l

1−m̄x
dx

< 0.

Suppose now that l
m̄

< Fϵ (−∆+ ϵ̄). From (44) it then follows that xw (∆, l) ≤

Fϵ

(
∆+ F−1

ϵ

(
l
m̄

))
< 1. Then

∂θ∗

∂∆
∝
∫ 1

l
m̄

m̄
2
fϵ (∆ + F−1

ϵ (x))λ′ ( m̄
2
x+ m̄

2
Fϵ (∆ + F−1

ϵ (x))− l
)
(m̄x− l)

1− m̄x
dx−∫ 1

xw(∆,l)

m̄
2
fϵ (−∆+ F−1

ϵ (x))λ′ ( m̄
2
x+ m̄

2
Fϵ (−∆+ F−1

ϵ (x))− l
)
(m̄x− l)

1− m̄x
dx,

where ∝ denotes proportionality up to a positive multiplicative term. By changing the

variable of integration in the first integral, y = Fϵ (∆ + F−1
ϵ (x)), we can rewrite the

expression as

∂θ∗

∂∆
∝
∫ 1

Fϵ(∆+F−1
ϵ ( l

m̄))

m̄

2
fϵ
(
−∆+ F−1

ϵ (x)
)
λ′
(m̄
2
Fϵ

(
−∆+ F−1

ϵ (x)
)
+

m̄

2
x− l

)
×[

m̄Fϵ (−∆+ F−1
ϵ (x))− l

1− m̄Fϵ (−∆+ F−1
ϵ (x))

− m̄x− l

1− m̄x

]
dx−∫ Fϵ(∆+F−1

ϵ ( l
m̄))

xw(∆,L)

m̄
2
fϵ (−∆+ F−1

ϵ (x))λ′ ( m̄
2
x+ m̄

2
Fϵ (−∆+ F−1

ϵ (x))− l
)
(m̄x− l)

1− m̄x
dx < 0.

Proposition 6 follows from Lemmas 5, 6 and 7.
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B.6.2 Corollary 4

Proof. The proof of Lemma 6 implies that if η ≥ η̄ or l ≥ l̄(η), then cross-bank interac-

tions are trivial, ∆ ≥ ∆̄. Plugging ∆ ≥ ∆̄ in (42) and (43), we obtain

Îs (l) =

∫ 1

l
m̄

λ
(
m̄
2
x+ m̄

2
− l
)
(m̄x− l)

1− m̄x
dx−

∫ l
m̄

0

l − m̄x

1− m̄x
dx,

Îw (l) =

∫ 1

xw(l)

λ
(
m̄
2
x− l

)
(m̄x− l)

1− m̄x
dx−

∫ xw(l)

0

l − m̄x

1− m̄x
dx,

where from (44)

xw (l) =


2l
m̄

if l < m̄
2
,

1 if l ≥ m̄
2
.

Therefore, the average fragility θ∗ no longer depends on heterogeneity ∆,

θ∗ =
1∫ 1

0
1−l

1−m̄x
dx

(
1 +

1

2
Îs (l) +

1

2
Îw (l)

)
.

Since θ∗ no longer depends on ∆, ∂θ∗

∂∆
= 0. Nonetheless, liquidity buffer requirement

reduces fire-sale pressure directly, i.e. dÎs(l)
dl

< 0 and dÎw(l)
dl

< 0. Therefore, using the same

approach as in proof of Lemma 7, one can show that the liquidity buffer requirement

reduces fragility only through its direct effect, dθ∗

dl
= ∂θ∗

∂l
< 0. Furthermore, from (45)

and (46), dθ∗s
dl

= ∂θ∗s
∂l

< 0 and dθ∗w
dl

= ∂θ∗w
∂l

< 0.

C Robustness and model extensions

C.1 Inefficient asset management

In Section 2.2, the fire-sale discount is a result of liquidity shortage in the asset market.

In this section, we consider an alternative setup of the asset market to illustrate that

the fire-sale discount can arise when liquidity is abundant but outside investors are less

efficient in managing assets than banks.

Assume that outside investors have abundant liquidity, i.e., g(L) = L. However, they

are less efficient in managing assets. In particular, under banks’ management, in the
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absence of premature liquidations, a portfolio {ki}i∈[0,1] generates y ≡
∫
zikidi at t = 2.

In contrast, if the same portfolio is managed by outside investors, the return is subject to

a discount: instead of receiving y, outside investors only get f(y), where f(y) < y for all

y > 0 and f(0) = 0. In addition, we assume that f ′(·) > 0 and f ′′(·) < 0 so that outsiders’

inefficiency in production increases in the amount of assets they absorb. Furthermore,

we assume that yf ′(y) is increasing in y to guarantee equilibrium uniqueness in the asset

market at t = 1. These assumptions on f(·) are typical in the literature on fire sales (e.g.,

Lorenzoni, 2008).

The outside investors’ problem therefore becomes

max
{ki}i∈[0,1]

f

(∫
zikidi

)
−
∫

pikidi.

The first-order conditions of the outside investors’ problem imply that

pi =
∂f(y)

∂y
zi ∀i ∈ [0, 1], (55)

where y ≡
∫
zikidi. After imposing the market clearing conditions, ki =

mi

pi
∀i ∈ [0, 1],

we obtain

mi = ziki
∂f(y)

∂y
⇒ m ≡

∫
midi = y

∂f(y)

∂y
.

Since by assumption yf ′(y) is an increasing function of y, there is a unique solution

y = h(m) to the equation above. Moreover, h′(·) > 0. Plugging this into (55), we obtain

the equilibrium prices of the same form as in Lemma 1,

pi(zi,m) = zi
m

h(m)
=

zi
λ(m)

,

where λ(m) ≡ h(m)
m

.

Moreover, the liquidation price for any asset i is a decreasing function of the total

mass of early withdrawers m. Indeed, using (55), we can write

pi(zi,m) = zi
∂f(y)

∂y

∣∣∣∣
y=h(m)

⇒ ∂pi
∂m

= zi
∂2f(y)

∂y2

∣∣∣∣
y=h(m)

×∂h(m)

∂m
< 0.
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C.2 General payoff function

Consider a general incremental payoff function π(zi,mi,m) of an investor of bank i

that chooses not to withdraw her funds early. It depends on her bank’s productivity zi,

mass of runners on her bank mi, and overall mass of runners in the whole economy m. In

the main model, π(zi,mi,m) = zi−λ(m)mi

1−mi
− 1. In Section 3.3, we consider π(zi,mi,m) =

ziπ1(mi) + π2(mi,m) to illustrate the role of two complementarities. In this appendix,

we do not assume a specific functional form for π(·, ·, ·). We denote partial derivatives of

the π(·, ·, ·) function by subscripts. We assume that the payoff function is smooth and

that it satisfies the following monotonicity properties: πz ≡ ∂π
∂zi

> 0, πm ≡ ∂π
∂m

< 0.

Below, we show that if πmim ≤ 0, πzm ≥ 0, πzz ≥ 0, our main result in Proposition 1

holds, i.e. ∂θ∗

∂∆
≤ 0. We focus on the case of nontrivial cross-bank strategic interactions,

that is, ∆ ≡ lim
σ→0

θ∗w−θ∗s
σ

∈
(
0, ∆̄

)
. The analogues of Equations (7) and (8) from the main

text are ∫ 1

0

π
(
θ∗s + η, m̄x,

m̄

2
x+

m̄

2
Fϵ

(
∆+ F−1

ϵ (x)
))

dx = 0,∫ 1

0

π
(
θ∗w − η, m̄x,

m̄

2
x+

m̄

2
Fϵ

(
−∆+ F−1

ϵ (x)
))

dx = 0.

Define

mtot(x,∆) =
m̄

2
x+

m̄

2
Fϵ

(
∆+ F−1

ϵ (x)
)
.

Note that mtot(x,∆) > m̄x > mtot(x,−∆). By the implicit function theorem,

∂θ∗s
∂∆

= −
m̄
2

∫ Fϵ(ϵ̄−∆)

0
πm (θ∗s + η, m̄x,mtot(x,∆)) fϵ (∆ + F−1

ϵ (x)) dx∫ 1

0
πz (θ∗s + η, m̄x,mtot(x,∆)) dx

> 0,

∂θ∗w
∂∆

= −
− m̄

2

∫ 1

Fϵ(ϵ+∆)
πm (θ∗w − η, m̄x,mtot(x,−∆)) fϵ (−∆+ F−1

ϵ (x)) dx∫ 1

0
πz (θ∗w − η, m̄x,mtot(x,−∆)) dx

< 0.

Then the impact of ∆ on the average threshold θ∗ ≡ 1
2
θ∗s +

1
2
θ∗w is

∂θ∗

∂∆
=

1

2

∂θ∗s
∂∆

+
1

2

∂θ∗w
∂∆

=
1

2

∂θ∗s
∂∆

(
∂θ∗w
∂∆
∂θ∗s
∂∆

+ 1

)
.
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When σ → 0 and ∆ < ∆̄, θ∗s → θ∗ and θ∗w → θ∗, so that

∂θ∗

∂∆
∝

∂θ∗w
∂∆

∣∣
θ∗w=θ∗

∂θ∗s
∂∆

∣∣
θ∗s=θ∗

+ 1 = A1 × A2 + 1,

where ∝ denotes proportionality up to a positive multiplicative term,

A1 =

∫ 1

0
πz (θ

∗ + η, m̄x,mtot(x,∆)) dx∫ 1

0
πz (θ∗ − η, m̄x,mtot(x,−∆)) dx

πzm≥0

≥∫ 1

0
πz (θ

∗ + η, m̄x,mtot(x,−∆)) dx∫ 1

0
πz (θ∗ − η, m̄x,mtot(x,−∆)) dx

πzz≥0

≥ 1,

and

A2 =−

∫ 1

Fϵ(ϵ+∆)
πm (θ∗ − η, m̄x,mtot(x,−∆)) fϵ (−∆+ F−1

ϵ (x)) dx∫ Fϵ(ϵ̄−∆)

0
πm (θ∗ + η, m̄x,mtot(x,∆)) fϵ (∆ + F−1

ϵ (x)) dx
=

−

∫ 1

Fϵ(ϵ+∆)
πm (θ∗ − η, m̄x,mtot(x,−∆)) fϵ (−∆+ F−1

ϵ (x)) dx∫ 1

Fϵ(ϵ+∆)
πm (θ∗ + η, m̄Fϵ (−∆+ F−1

ϵ (x)) ,mtot(x,−∆)) fϵ (−∆+ F−1
ϵ (x)) dx

πzm≥0

≤

−

∫ 1

Fϵ(ϵ+∆)
πm (θ∗ + η, m̄x,mtot(x,−∆)) fϵ (−∆+ F−1

ϵ (x)) dx∫ 1

Fϵ(ϵ+∆)
πm (θ∗ + η, m̄Fϵ (−∆+ F−1

ϵ (x)) ,mtot(x,−∆)) fϵ (−∆+ F−1
ϵ (x)) dx

πmim≤0

≤

−

∫ 1

Fϵ(ϵ+∆)
πm (θ∗ + η, m̄x,mtot(x,−∆)) fϵ (−∆+ F−1

ϵ (x)) dx∫ 1

Fϵ(ϵ+∆)
πm (θ∗ + η, m̄x,mtot(x,−∆)) fϵ (−∆+ F−1

ϵ (x)) dx
= −1.

Therefore, ∂θ∗

∂∆
≤ 0. Moreover, if one of the inequalities {πmim ≤ 0, πzm ≥ 0, πzz ≥ 0}

holds strictly, then ∂θ∗

∂∆
< 0.

In the micro-founded case considered in the main text πzz = 0, πzm = 0 and πmim < 0.

Therefore, the crucial underlying economic mechanism behind Propositions 1 and 2 is

mutually reinforcing within- and cross-bank complementarities.

C.3 Finite signal precision

In this appendix, we allow the precision of investors’ private signals about the aggregate

fundamental to be finite, that is, we allow the signal noise σ to be not infinitely close

to zero. To keep the analysis tractable, we maintain the assumption that signals are

infinitely more precise than any prior information that investors have about the aggregate

fundamental θ. Formally, this implies an uninformative prior about θ. In Appendix C.3.2,
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we consider a numerical example to demonstrate that the results hold even if the prior is

informative.27

When the prior is uninformative, there exists a unique threshold equilibrium in which

investors of strong and weak banks withdraw prematurely if and only if their signals are

below θ∗s and θ∗w, respectively. With a non-negligible σ, the equations defining the run

thresholds (7) and (8) become

θ∗s + η =
1∫ 1

0
1

1−m̄x
dx

(
1 + Is(∆) + σ

∫ 1

0

F−1
ϵ (x)

1− m̄x
dx

)
,

θ∗w − η =
1∫ 1

0
1

1−m̄x
dx

(
1 + Iw(∆) + σ

∫ 1

0

F−1
ϵ (x)

1− m̄x
dx

)
,

where the term σ
∫ 1

0
F−1
ϵ (x)
1−m̄x

dx arises because signals are not infinitely close to the aggregate

fundamental when σ is non-negligible; the fire-sale pressure terms Is(∆) and Iw(∆) are

defined by (9) and (10), respectively; and ∆ ≡ θ∗w−θ∗s
σ

is bank heterogeneity.

Recall that in the main model with negligible σ, weak and strong banks’ run thresholds

are infinitely close to the average run threshold when bank heterogeneity is not too large

(∆ < ∆̄) and cross-bank strategic interactions are nontrivial. In contrast, if σ is non-

negligible, the run thresholds θ∗s and θ∗w are different as long as bank assets are not entirely

the same, i.e. η ̸= 0. In what follows, we first characterize how the average fragility of

the financial system, θ∗ = 1
2
θ∗s +

1
2
θ∗w, depends on ∆ and then consider fragilities of strong

and weak banks separately.

The average fragility of the financial system is

θ∗ ≡ 1

2
θ∗s +

1

2
θ∗w =

1∫ 1

0
1

1−m̄x
dx

(
1 +

1

2
Is(∆) +

1

2
Iw(∆) + σ

∫ 1

0

F−1
ϵ (x)

1− m̄x
dx

)
, (56)

where ∆ is implicitly defined by

η =
σ∆

2
+

1

2
∫ 1

0
dx

1−m̄x

(Is(∆)− Iw(∆)) .

These two equations generalize (14) and (15) to the case of finite signal precision. Anal-

ogous to our benchmark analysis, average fragility declines in bank heterogeneity as long

27As discussed in detail by Morris and Shin (2003), for equilibrium to be unique in global games settings,
private signals should be sufficiently more precise than the prior information.
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Run thresholds θ∗(∆), θ∗s(∆), θ∗w(∆)

Figure 4: Run thresholds of strong (θ∗s) and weak (θ∗w) banks, and their average (θ∗ = 1
2θ

∗
s + 1

2θ
∗
w) as

functions of bank heterogeneity ∆. Parametrization: m̄ = 0.55, λ(m) = 1 + m2, Fϵ(·) is truncated
standard normal over [−1, 1], σ = 0.0075, η varies from 0 to 0.05.

as there are nontrivial cross-bank strategic interactions.

Proposition 7. In the model with finitely precise signals about the aggregate fundamental

θ, the average run threshold θ∗(∆) is a decreasing function of ∆ when ∆ < ∆̄. When

∆ ≥ ∆̄, θ∗(∆) is constant.

Proof. See Appendix C.3.1.

Figure 4 illustrates Proposition 7. When cross-bank interactions are nontrivial, ∆ < ∆̄,

the average run threshold (the solid blue line) declines in heterogeneity. In the region

where cross-bank strategic uncertainty disappears, ∆ ≥ ∆̄, the threshold does not depend

on heterogeneity.

The run thresholds of strong and weak banks can be written as

θ∗s = θ∗(∆)− 1

2
σ∆,

θ∗w = θ∗(∆) +
1

2
σ∆.

When signals have finite precision, individual and average thresholds are no longer in-

finitely close. Clearly, strong banks become less fragile as ∆ increases. However, this does

not always hold for weak banks. Nonetheless, as ∆ increases, the force that alleviates

fire-sale pressure on weak banks and stabilizes them is still at work. If σ is finite but
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sufficiently small, an increase in bank heterogeneity stabilizes all banks, including the

weak ones. The reason is that, unless σ is too large, θ∗w stays close to θ∗ and thus tends

to decline with bank heterogeneity. To illustrate that, Figure 4 shows the run thresholds

θ∗s and θ∗w as functions of bank heterogeneity. As is clear from the graph, if bank hetero-

geneity is neither too small or too large, an increase in it drives down both run thresholds.

Therefore, our key result that bank heterogeneity undermines stability carries through.

C.3.1 Proof of Proposition 7

Proof. The average fragility is given by Equation (56):

θ∗ =
1

2
θ∗s +

1

2
θ∗w =

1∫ 1

0
1

1−m̄x
dx

(
1 +

1

2
Is(∆) +

1

2
Iw(∆) + σ

∫ 1

0

F−1
ϵ (x)

1− m̄x
dx

)
.

Therefore,

∂θ∗

∂∆
∝ ∂ (Is(∆) + Iw(∆))

∂∆
,

where ∝ denotes proportionality up to a positive multiplicative term.

From Equations (9) and (10) defining Is(∆) and Iw(∆), it is clear that these terms do

not depend on ∆ when ∆ ≥ ∆̄. If ∆ < ∆̄, we have

∂ (Is(∆) + Iw(∆))

∂∆
∝∫ Fϵ(ϵ̄−∆)

0

λ′
(m̄
2
x+

m̄

2
Fϵ

(
∆+ F−1

ϵ (x)
))

fϵ
(
∆+ F−1

ϵ (x)
) m̄x

1− m̄x
dx−∫ 1

Fϵ(ϵ+∆)

λ′
(m̄
2
x+

m̄

2
Fϵ

(
−∆+ F−1

ϵ (x)
))

fϵ
(
−∆+ F−1

ϵ (x)
) m̄x

1− m̄x
dx =∫ 1

Fϵ(ϵ+∆)

λ′
(m̄
2
Fϵ

(
−∆+ F−1

ϵ (x)
)
+

m̄

2
x
) m̄Fϵ (−∆+ F−1

ϵ (x))

1− m̄Fϵ (−∆+ F−1
ϵ (x))

fϵ
(
−∆+ F−1

ϵ (x)
)
dx−

∫ 1

Fϵ(ϵ+∆)

λ′
(m̄
2
x+

m̄

2
Fϵ

(
−∆+ F−1

ϵ (x)
))

fϵ
(
−∆+ F−1

ϵ (x)
) m̄x

1− m̄x
dx < 0,

where we change the variable of integration x → Fϵ (−∆+ F−1
ϵ (x)) in the first integral.
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C.3.2 Informative prior

In this appendix, we explore the case in which standard deviation of signal noise σ

is finite and the prior about the aggregate fundamental θ is informative. Morris and

Shin (2003) show that the results obtained under the improper prior assumption can be

continuously extended to the case in which signals are sufficiently, but not necessarily

infinitely, more precise than the prior. In what follows, we assume that signals are suffi-

ciently precise, such that the model features unique threshold equilibrium. In particular,

the run thresholds of strong- and weak-bank investors solve∫
π
(
θ + η, m̄Fϵ

(
θ∗s−θ
σ

)
, 1
2
m̄Fϵ

(
θ∗s−θ
σ

)
+ 1

2
m̄Fϵ

(
θ∗w−θ
σ

))
fθ (θ) fϵ

(
θ∗s−θ
σ

)
dθ∫

fθ (θ) fϵ

(
θ∗s−θ
σ

)
dθ

= 0,

∫
π
(
θ − η, m̄Fϵ

(
θ∗w−θ
σ

)
, 1
2
m̄Fϵ

(
θ∗s−θ
σ

)
+ 1

2
m̄Fϵ

(
θ∗w−θ
σ

))
fθ (θ) fϵ

(
θ∗w−θ
σ

)
dθ∫

fθ (θ) fϵ

(
θ∗w−θ
σ

)
dθ

= 0,

where investors of weak and strong banks run if their signals are below θ∗w and θ∗s , re-

spectively; π (zi,mi,m) is the net benefit of not running defined in (2); fθ(·) and fϵ(·) are

probability density functions of the prior and signal noise, respectively.

We consider the following parametrization: m̄ = 0.55; λ(m) = 1+2m2; noise distribu-

tion is standard normal; σ = 0.005; the prior is normal with a mean of 2 and a standard

deviation of 0.15. The distribution is truncated, with a lower bound of 0.7 and an upper

bound of 2.75. Figure 5 shows the run thresholds as functions of bank heterogeneity

∆. As in the main text, heterogeneity is beneficial for stability of both weak and strong

banks as long as it is not too large or small.

Figure 6 compares the cases in which the prior is informative and uninformative.

In the former case, the parametrization is the same as above. In the latter case, the

only difference is the prior distribution. In these two cases bank heterogeneities are not

directly comparable, in the sense that the same values of the model primitives correspond

to different ∆’s. Because of that, we analyze how the run thresholds depend on the ex-

post difference between asset performances of weak and strong banks η. In both models,

an increase in η corresponds to an increase in bank heterogeneity ∆ (panel (a) of Figure
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Run thresholds θ∗(∆), θ∗s(∆), θ∗w(∆)

Figure 5: Run thresholds of strong (θ∗s) and weak (θ∗w) banks, and their average (θ∗ = 1
2θ

∗
s + 1

2θ
∗
w) as

functions of bank heterogeneity ∆. The prior is informative. See text for the numerical values used to
get these graphs.

6). As ∆ increases, the average fragility declines. Moreover, as long as ∆ is not too large

and there exist meaningful cross-bank strategic interactions, an increase in ∆ tends to

benefit both weak and strong banks. These results hold in both versions of the model

(panels (b) and (c) of the same figure). One difference between the two models is that

the run thresholds are overall lower when the prior is informative. This is because, for

our choice of parameters, investors’ prior information about the aggregate fundamental

is plausible, and worse signals are required to trigger runs.

(a) Bank heterogeneity ∆(η) (b) Run thresholds as functions
of η, uninformative prior

(c) Run thresholds as functions
of η, informative prior

Figure 6: Panel (a): Bank heterogeneity ∆ as a function of the size of bank-specific shock η for the cases
in which prior about the aggregate fundamental is uninformative and informative. Panels (b) and (c):
Run thresholds of strong (θ∗s) and weak (θ∗w) banks, and their average (θ∗ = 1

2θ
∗
s +

1
2θ

∗
w) as functions of

asset dispersion η for the cases of uninformative and informative priors, respectively. In panels (b) and
(c), the Y-axes are aligned. See text for the numerical values used to get these graphs.
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C.4 Bank failures

In the main model, we assume that bank i does not fail even if all “non-sleepy” investors

withdraw their funds early, mi = m̄. In this appendix, we consider the model in which

m̄ is sufficiently high such that bank failures are possible. If bank i fails, it liquidates all

assets and gets zi
λ(m)

from outside investors. This amount is then split between all runners

equally. The incremental payoff from staying (the analogue of Equation (2) in the main

model) is

π =


zi −miλ (m)

1−mi

− 1 if miλ (m) ≤ zi,

− zi
λ (m)mi

if miλ (m) > zi.

As in Goldstein and Pauzner (2005), the possibility of failures creates a region of

strategic substitution if miλ (m) > zi. Furthermore, the possibility of failures implies

that the within-bank and cross-bank strategic complementarities are no longer mutu-

ally reinforcing for all possible mi and m. Specifically, we have ∂π
∂m

∣∣
mi→( zi

λ(m))
− < 0 and

∂π
∂m

∣∣
mi→( zi

λ(m))
+ > 0. The proofs of Propositions 1 and 2 show that the complementarity

reinforcement for all possible mi and m is a sufficient condition under which bank het-

erogeneity is stabilizing, that is, ∂θ∗

∂∆
< 0. Without this property, we no longer can prove

this result analytically. However, as we show below numerically, even if the two com-

plementarities are not mutually reinforcing everywhere, bank heterogeneity still tends to

be associated with higher stability. Therefore, the complementarity reinforcement for all

possible mi and m is not a necessary condition for our main result.

Specifically, we focus on threshold equilibria and solve the following equations for θ∗
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and ∆ numerically.∫ xs(θ∗,∆)

0

(
θ∗ + η − λ

(
m̄
2
x+ m̄

2
Fϵ (∆ + F−1

ϵ (x))
)
m̄x

1− m̄x
− 1

)
dx− (57)∫ 1

xs(θ∗,∆)

θ∗ + η

λ
(
m̄
2
x+ m̄

2
Fϵ (∆ + F−1

ϵ (x))
)
m̄x

dx = 0,

∫ xw(θ∗,∆)

0

(
θ∗ − η − λ

(
m̄
2
x+ m̄

2
Fϵ (−∆+ F−1

ϵ (x))
)
m̄x

1− m̄x
− 1

)
dx− (58)∫ 1

xw(θ∗,∆)

θ∗ − η

λ
(
m̄
2
x+ m̄

2
Fϵ (−∆+ F−1

ϵ (x))
)
m̄x

dx = 0,

where

xs (θ
∗,∆) =

1 if θ∗ > m̄λ
(
m̄
2
+ m̄

2
Fϵ (∆ + ϵ̄)

)
− η,

x̂s : m̄x̂sλ
(
m̄
2
x̂s +

m̄
2
Fϵ (∆ + F−1

ϵ (x̂s))
)
= θ∗ + η otherwise,

and

xw (θ∗,∆) =
1 if θ∗ > m̄λ

(
m̄
2
+ m̄

2
Fϵ (−∆+ϵ̄)

)
+ η,

x̂w : m̄x̂wλ
(
m̄
2
x̂w+

m̄
2
Fϵ (−∆+F−1

ϵ (x̂w))
)
= θ∗− η otherwise.

Here xs (θ
∗,∆) and xw (θ∗,∆) are the critical fractions of “non-sleepy” strong- and weak-

bank runners below which strong and weak banks do not fail. For example, if θ∗ and

∆ are such that xs (θ
∗,∆) < 1, it means that strong banks fail if a sufficiently large

proportion of “non-sleepy” investors withdraw their funds early. If there is no solution

for (57)-(58) in which ∆ < ∆̄, we solve (57) for θ∗s and (58) for θ∗w assuming ∆ = ∆̄. In

that case, we define θ∗ = 1
2
θ∗s +

1
2
θ∗w.

We consider the following parametrization: m̄ ∈ {0.55, 0.75, 0.90}; λ(m) = 1 + m2;
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Bank heterogeneity, ∆(η) Average run threshold, θ∗(η)

Figure 7: Bank heterogeneity ∆(η) (left panel) and average run threshold θ∗(η) (right panel) as functions
of asset dispersion η. Parametrization: m̄ ∈ {0.55, 0.75, 0.90}; λ(m) = 1 + m2; noise distribution is
standard normal over [−1, 1]; η varies from 0 to 0.175.

noise distribution is standard normal over [−1, 1]; η varies from 0 to 0.175. Under our

parametrization, there are no bank failures if m̄ = 0.55; however, bank failures are possible

if m̄ = 0.75 and m̄ = 0.90. We plot ∆ (η) and θ∗ (η) in Figure 7. We find that an increase

in η is associated with a higher bank heterogeneity ∆ and lower average run threshold θ∗

in all three cases (when there are nontrivial cross-bank strategic interactions, ∆ < ∆̄).

Not surprisingly, we also find that the run problem is exacerbated if a larger fraction of

investors are able to withdraw their funds early, that is, θ∗ (m̄) is an increasing function.

C.5 Many bank types

Our baseline model assumes that bank-specific shocks take values η or −η with equal

probabilities. In this section, we show how our analyses can be extended to the case in

which bank-specific shocks take N ≥ 2 values.

The structure of the economy stays the same as in Section 2. The only difference is

that bank-specific shock ζi can take N ≥ 2 values, η1 ≥ η2 ≥ · · · ≥ ηN , η = {ηn}n=1...N ,

with probabilities ω1, ω2, . . . , ωN , respectively, where ωn ∈ (0, 1) ∀n ∈ {1, . . . , N} and∑N
n=1 ωn = 1. Without loss of generality, we assume that bank-specific shock is zero on

average,
∑N

n=1 ωnηn = 0.

Bank investors follow threshold strategies, that is, investors of a bank receiving a shock

ηn withdraw early if their signals are below θ∗n and do not do so otherwise. An indifference
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condition for an investor receiving a threshold signal θ∗n is

θ∗n + ηn =
1∫ 1

0
1

1−m̄x
dx

(
1 +

∫ 1

0

λ

(
m̄

N∑
τ=1

ωτFϵ

(
∆nτ + F−1

ϵ (x)
)) m̄x

1− m̄x
dx

)
, (59)

where, as in the baseline model, signal noise is negligible, σ → 0. ∆nτ = lim
σ→0

θ∗τ−θ∗n
σ

is the

bank heterogeneity between banks receiving shocks ηn and ητ , and ∆nτ ≥ 0 ∀n < τ . A

system of N equations (59) is a generalized version of Equations (7)-(8). In what follows,

we focus on an interesting case of nontrivial cross-bank strategic interactions. That is,

∆nτ < ∆̄ ∀n < τ . In this case, run thresholds are infinitely close to each other with the

average run threshold given by

θ∗ ≡
N∑

n=1

ωnθ
∗
n =

1∫ 1

0
1

1−m̄x
dx

(
1 +

∫ 1

0

N∑
n=1

ωnλ

(
m̄

N∑
τ=1

ωτFϵ

(
∆nτ + F−1

ϵ (x)
)) m̄x

1− m̄x
dx

)
. (60)

The following proposition generalizes Proposition 1.

Proposition 8. Suppose that ∆nτ < ∆̄ ∀n < τ . In the limit of negligible information

friction (σ → 0), run thresholds of all banks are infinitely close to θ∗. Moreover, any

change in bank heterogeneity that i) weakly increases ∆nτ ∀n < τ and ii) strictly increases

∆n′τ ′ for some n′ < τ ′ leads to a decline in θ∗.

Proof. See Appendix C.5.1.

Bank heterogeneity, described by pairwise distances between run thresholds ∆nτ , is

endogenous. As discussed in the previous sections, it depends on various primitives

of the model, such as asset dispersion, information structure, and liquidity conditions.

Given that this section generalizes the structure of bank-specific shocks, we focus on

characterizing how differences in asset dispersion affect bank heterogeneity and hence the

overall financial stability. The following proposition is a version of Proposition 3 in this

more general model.

Proposition 9. There exists an η > 0 such that if |ηn| < η ∀n, then in the limit of

negligible information friction (σ → 0), run thresholds of all banks are infinitely close to
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θ∗(η), which reaches a (local) maximum at η = 0.

Proof. See Appendix C.5.2.

If asset performances of all banks are identical, i.e. η = 0, then all run thresholds are

exactly the same and the system is homogeneous. By continuity, all run thresholds stay

infinitely close to each other for any small change in η. Pairwise heterogeneity terms

∆nτ , however, adjust. In particular, if ηn > ητ , then ∆nτ > 0. According to Proposition

9, such diversity in bank asset performances enhances stability of all banks.

As in the main model with two types of banks, there is a limit to which increasing

diversity in bank-specific productivities is unequivocally stabilizing. In particular, if bank

asset performance becomes sufficiently divergent—so that banks’ behaviors in the asset

market are fully decoupled and there are no strategic interactions across investors of

different banks—further divergence hurts relatively weaker banks.

C.5.1 Proof of Proposition 8

Proof. From (59), the run threshold for a bank receiving a shock ηn is

θ∗ = −ηn +
1∫ 1

0
1

1−m̄x
dx

(
1 +

∫ 1

0

λ

(
m̄

N∑
τ=1

ωτFϵ

(
∆1τ −∆1n + F−1

ϵ (x)
)) m̄x

1− m̄x
dx

)
,

where we impose that the run threshold θ∗n is infinitely close to the average threshold θ∗.

By definition, ∆nτ = ∆1τ −∆1n. Notice that

ηn > ητ ⇔ ∆1n < ∆1τ and ηn = ητ ⇔ ∆nτ = 0.

Recall that η1 ≥ η2 ≥ · · · ≥ ηN . Heterogeneity in the financial system is fully described

by N−1 variables 0 ≤ ∆12 ≤ ∆13 ≤ · · · ≤ ∆1N . A marginal increase in heterogeneity that

(weakly) increases ∆nτ ∀n < τ corresponds to a change 0 ≤ d∆12 ≤ d∆13 ≤ · · · ≤ d∆1N .

Recall that the average fragility θ∗ is given by Equation (60), which can be rewritten as

θ∗ =
1∫ 1

0
1

1−m̄x
dx

(
1 +

∫ 1

0

∑
n

ωnλ

(
m̄
∑
τ

ωτFϵ

(
∆1τ −∆1n + F−1

ϵ (x)
)) m̄x

1− m̄x
dx

)
.
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Denote

I (∆12, . . . ,∆1N) =

∫ 1

0

f (x)
∑
n

ωnλ

(
m̄
∑
τ

ωτFϵ

(
∆1τ −∆1n + F−1

ϵ (x)
))

dx,

where for brevity we denote f(x) = m̄x
1−m̄x

. Differentiating I (∆12, . . . ,∆1N) with respect

to ∆1k, we get

∂I

∂∆1k

= m̄ωk

N∑
n=1

ωnInk,

where

Ink =

∫ 1

0

[
f (x)− f

(
Fϵ

(
∆1k −∆1n + F−1

ϵ (x)
))]

fϵ
(
∆1k −∆1n + F−1

ϵ (x)
)
×

λ′

(
m̄
∑
τ

ωτFϵ

(
∆1τ −∆1n + F−1

ϵ (x)
))

dx.

Clearly, Ikk = 0 and I1k ≤ 0 ∀k ∈ {2, . . . , N}. Furthermore, if k > n, ∆1k ≥ ∆1n and

hence Ink ≤ 0. By changing the variable of integration x → Fϵ (∆1k −∆1n + F−1
ϵ (x)), it

is straightforward to derive that Ink = −Ikn.

The impact of change in heterogeneity 0 ≤ d∆12 ≤ · · · ≤ d∆1N on I (∆12, . . . ,∆1N) is

dI =
N∑
k=2

∂I

∂∆1k

d∆1k = m̄
N∑
k=2

N∑
n=1

ωkωnInkd∆1k =

m̄

N∑
k=2

ωkω1I1kd∆1k + m̄

N∑
k=2

N∑
n=2

ωkωnInkd∆1k ≤ 0.

The inequality holds because I1k ≤ 0 ∀k ∈ {1, . . . , N} and Inkd∆1k + Iknd∆1n =

Ink (d∆1k − d∆1n) ≤ 0. The latter is true because if k > n, Ink ≤ 0 and d∆1k ≥ d∆1n,

and if k < n, Ink ≥ 0 and d∆1k ≤ d∆1n.

Therefore, a marginal change in heterogeneity that does not reduce pairwise hetero-

geneities ∆nτ ∀n < τ and increases ∆n′τ ′ for some n′ < τ ′ leads to a lower I (∆12, . . . ,∆1N)

and hence a lower θ∗.

C.5.2 Proof of Proposition 9

Proof. If all bank-specific productivities are identical, i.e. η = 0, the banking system is

homogeneous. Therefore, ∆nτ = 0 ∀n, τ , and all investors run if their signals are below
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θ∗(0). By continuity of λ(·) and Fϵ(·), there must exist an η > 0 such that if |ηn| < η ∀n,

then investors of all banks share the same run threshold θ∗(η).

Consider an η ̸= 0 with |ηn| < η ∀n. For such η, without loss of generality we

can write η1 ≥ η2 ≥ · · · ≥ ηN , with at least one inequality being strict. Therefore,

0 ≤ ∆12 ≤ ∆13 ≤ · · · ≤ ∆1N , with at least one inequality being strict. By Proposition 8,

θ∗ (η) < θ∗(0).

C.6 Cross-bank deposit flows

In our model, bank investors who withdraw their funds early do not redeposit them to

other banks. As such, our paper directly applies to situations in which capital outflows

form the entire banking system. In practice, some of weak-bank depositors may run to

strong banks, as was the case, for example, during the 2023 banking crisis. Strong banks

then can use new deposits to acquire assets liquidated by weak banks. While an in-depth

modeling of such cross-bank runs is outside the scope of this paper, a simple way to

accommodate such a possibility in our framework is as follows.

The model extends the one described in Section 2. The timeline of the extended model

is in Figure 8. Specifically, suppose that at t = 1 the total mass of runs is m, and suppose

that a mass n ≤ m of runners redeposit their money at a deposit rate of one right upon

withdrawal. That is, they expect to receive a payoff of one at t = 2 for each unit of

investment. They are willing to accept such a deposit rate at t = 1 because they do not

discount the future.

To repay runners, banks sell their long-term assets to outside investors. However,

unlike our main model, banks can use redeposited money to immediately acquire some

of the liquidated assets from outsiders. We assume that outside investors do not incur

any losses if they have to hold assets for only a short period of time. However, if they

have to raise L to acquire long-term assets and hold them to maturity, they incur a cost

g(L) ≥ L.

We assume that banks are efficient users of liquidated assets. Then bank i acquiring

one unit of bank j’s long-term assets expects to get a gross return zj. The price bank i is

willing to pay for each unit of bank j’s assets is zj. Note that in this simple model, it is
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not important which banks receive deposits from runners at t = 1—the key is that they

stay with banks who are efficient users of other banks’ assets.

In this setting, if the mass of runs in the economy at t = 1 is m, the total amount of

liquidity outside investors need to raise to acquire held-to-maturity long-term assets is

[m − n]+ = max {m− n, 0}. The incremental payoff from staying for bank investors is

therefore

π(zi,mi,m) =
zi −miλ([m− n]+)

1−mi

− 1.

Notice that an increase in n affects run incentives in the same way as liquidity injections

considered in Section 4.3. In particular, larger the mass of runners who redeposit their

funds to other banks, less severe the fire-sale problem is, and more stable the financial

system is (by Proposition 5, dθ∗

dn
< 0).

Banks receive
funding, invest

t = 0

1)θ and ζi’s are realized;
2)investors receive signals;
3)“non-sleepy” investors
may run

t = 1

1)n runners redeposit
their money;
2)money to repay m− n runners
are raised from outsiders;
3)outsiders incur a cost g(m− n)

1)Investors who did
not run split payoff
from long-term assets;
2)n runners get payoff of 1

t = 2

Figure 8: Timeline

Of course, this simple model has several important limitations. For example, we do not

model how investors who withdraw their funds at t = 1 decide whether to redeposit their

money. In practice, their decisions are likely driven by their beliefs about redepositing

behavior of other investors and information about economic fundamentals they receive

after their initial withdrawal decisions. Furthermore, we assume that if bank i has to

liquidate its assets but sells them to other banks, it does not incur any fire-sale losses. In

practice, such a bank needs to sell quickly which likely weakens its bargaining position.

In that case, the price bank i will receive is likely below zi even if the acquiring bank is

an efficient user of bank i’s assets. We believe that it would be interesting to incorporate

these realistic features in a more detailed model to study cross-bank deposit flows in

depth.
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C.7 Endogenous liquidity buffers

In this appendix, we consider a model in which banks pick their liquidity buffers

endogenously. As in Section 4.4, we assume that the fire-sale discount function is weakly

convex, that is, λ′′(·) ≥ 0. To keep the analysis concise, we assume that the support of

the noise is unbounded such that ϵ = −∞ and ϵ̄ = ∞.

Bank i chooses the liquidity buffer size li before observing its bank-specific shock and

before any signals about the aggregate fundamentals are realized. The bank’s objective

is to maximize its total expected payout to investors (see Equation (65) below).

We focus on symmetric threshold equilibria so that bank i expects all other banks

to pick the liquidity buffer size l (recall that liquidity buffer sizes are chosen before any

shocks are realized, and all banks are identical at that point). After bank-specific shocks

are realized and bank investors receive signals about the aggregate fundamental, they

may decide to withdraw their funds early. If a fraction x of “non-sleepy” investors run on

bank i, then the total mass of runs in the economy is mi
tot(x) =

m̄
2
Fϵ

(
θ∗s−θ∗i

σ
+ F−1

ϵ (x)
)
+

m̄
2
Fϵ

(
θ∗w−θ∗i

σ
+ F−1

ϵ (x)
)
, where θ∗s and θ∗w are the run thresholds for banks that choose l

as their liquidity buffer size and that have bank-specific shocks of η and −η, respectively,

and θ∗i is the run threshold for bank i. Note that, because banks are atomistic, the total

mass of runs mi
tot(x) does not depend on the mass of runs on bank i.

The incremental payoff from staying for investors of bank i is

πi(x) =
(θ∗i + ζi − σF−1

ϵ (x)) (1− li)

1− m̄x
+

li − m̄x

1− m̄x
1 {li ≥ m̄x}− (61)

λ
(
[mi

tot(x)− l]
+
)
(m̄x− li)

1− m̄x
1 {li < m̄x} − 1.

If the liquidity buffer size of bank i exceeds the mass of runs on this bank, li ≥ m̄x, then

it does not need to liquidate any assets. Furthermore, if the total mass of runs in the

economy does not exceed the aggregate liquidity buffer, mi
tot(x) ≤ l, then bank i does

not face any discount even if it is forced to liquidate its assets. In that case, other banks

have enough liquidity to acquire assets liquidated by bank i.

The following proposition states the main result of this appendix. In particular, it
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compares marginal benefits of increasing the size of a liquidity buffer from the perspective

of an individual bank and from the perspective of the planner. The planner is assumed

to maximize aggregate output by choosing l that is common to all banks (see Equation

(67) below).

Proposition 10. Suppose that the long-run technology is more productive than liquid

assets,
∫
θdFθ(θ) > 1. In a symmetric equilibrium, li = l, θ∗i = θ∗s if ζi = η, and θ∗i = θ∗w

if ζi = −η. There exists σ̄ such that if σ < σ̄ then the liquidity buffer chosen by banks

l∗eq does not exceed the liquidity buffer chosen by the planner l∗pl, 0 ≤ l∗eq ≤ l∗pl < m̄.

Furthermore, l∗eq = l∗pl only if l∗eq = l∗pl = 0.

Proposition 10 implies that individual banks choose a lower liquidity buffer relative to

the planner (unless the planner chooses l = 0, in which case individual banks also choose

l = 0). An individual bank internalizes that a higher l means that a smaller fraction

of capital is invested in long-term assets. It also internalizes that a higher l means that

its investors are less likely to run and that it will have to sell fewer assets at a fire-sale

discount if the run does happen. However, it does not internalize how its actions affect

stability of other banks. Specifically, if an individual bank i increases its liquidity buffer,

it marginally reduces fire-sale discounts for all other banks. Their investors are then less

likely to run, which is beneficial for bank i as her investors then expect a smaller fire-sale

discount. As a result, individual banks underinvest in liquid assets.28

Proof. Part I: Individual bank

The run threshold for bank i is implicitly determined by
∫ 1

0
πi(x)dx = 0, where πi(x)

is given by (61). Specifically,29

θ∗i + ζi =

∫ 1
li
m̄

λ
(
[mi

tot(x)−l]
+
)
(m̄x−li)

1−m̄x
dx+ 1−

∫ li
m̄

0
li−m̄x
1−m̄x

dx∫ 1

0
1−li
1−m̄x

dx
+

σ
∫ 1

0
F−1
ϵ (x)
1−m̄x

dx∫ 1

0
dx

1−m̄x

.

28In our model, markets are incomplete, and so the pecuniary externality can have real consequences
(Greenwald and Stiglitz, 1986).

29All the derivations in this proof are made under the assumption that signals are much more precise
than any prior information that investors have about the aggregate fundamental θ. As we are going
to focus on the case of small σ, this is without loss of generality.
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Denote the right-hand side of the above expression by T . Then

dθ∗i
dli

=
∂T
∂li

1− ∂T
∂θ∗i

, (62)

where

∂T

∂li
=

−
∫ 1

li
m̄

(
λ
(
[mi

tot(x)− l]
+
)
− 1
)
dx

(1− li)
2
(∫ 1

0
1

1−m̄x
dx
) ≤ 0,

∂T

∂θ∗i
= −

m̄
2

1
σ∫ 1

0
1−li
1−m̄x

dx

∫ 1

li
m̄

λ′ (mi
tot(x)− l) (m̄x− li)

1− m̄x
×(

fϵ

(
θ∗s − θ∗i

σ
+ F−1

ϵ (x)

)
+ fϵ

(
θ∗w − θ∗i

σ
+ F−1

ϵ (x)

))
1
{
mi

tot(x)− l ≥ 0
}
dx ≤ 0.

Clearly,
dθ∗i
dli

≤ 0.

Given the run threshold θ∗i and conditional on the aggregate state θ, the mass of

runs on bank i is m̄Fϵ

(
θ∗i −θ

σ

)
. The total mass of runs in the economy is mtot (θ) =

m̄
2
Fϵ

(
θ∗s−θ
σ

)
+ m̄

2
Fϵ

(
θ∗w−θ
σ

)
. Conditional on the bank-specific shock ζi, the expected payout

of bank i to its investors is

yi(ζi) =∫
m̄Fϵ

(
θ∗i − θ

σ

)
dFθ (θ) +

∫ ∞

θ∗i −σF−1
ϵ ( li

m̄)

[
(θ + ζi) (1− li) + li − m̄Fϵ

(
θ∗i − θ

σ

)]
dFθ (θ)+

∫ θ∗i −σF−1
ϵ ( li

m̄)

−∞

[
(θ + ζi) (1− li)− λ

(
[mtot (θ)− l]+

)(
m̄Fϵ

(
θ∗i − θ

σ

)
− li

)]
dFθ (θ) .

Taking derivatives of yi with respect to li and θ∗i , we get

∂yi
∂li

= −
∫

θdFθ (θ)− ζi +

∫ ∞

θ∗i −σF−1
ϵ ( li

m̄)
dFθ (θ) +

∫ θ∗i −σF−1
ϵ ( li

m̄)

−∞
λ
(
[mtot (θ)− l]+

)
dFθ (θ) ,

(63)

∂yi
∂θ∗i

= −
∫ θ∗i −σF−1

ϵ ( li
m̄)

−∞

(
λ
(
[mtot (θ)− l]+

)
− 1
)
m̄

1

σ
fϵ

(
θ∗i − θ

σ

)
dFθ (θ) . (64)

Bank i chooses li ≥ 0 to maximize

ytoti (li) =
1

2
yi (η) +

1

2
yi (−η) . (65)
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Using (62), (63), and (64), it is straightforward to derive the full derivative of (65) with

respect to li. The first-order conditions are

0 = γi +
1

2

∑
k∈{s,w}

(
∂yi
∂li

+
∂yi
∂θ∗i

dθ∗i
dli

) ∣∣∣∣
li=l,θ∗i =θ∗k,ζi=ζk

, (66)

0 = γili,

where ζk = η if k = s and ζk = −η if k = w. In the expressions above, γi ≥ 0 is the

Lagrange multiplier associated with the li ≥ 0 constraint.

Finally, from (63) it is clear that ∂yi
∂li

li→m̄→ 1−
∫
θdFθ(θ)− ζi, and from (64) ∂yi

∂θ∗i

li→m̄→ 0.

Therefore,
dytoti

dli

li→m̄→ 1 −
∫
θdFθ(θ). If the long-run technology is more productive than

liquid assets, i.e.
∫
θdFθ(θ) > 1, then l∗i = l∗eq < m̄.

Part II: Planner

The run thresholds for strong and weak banks are, respectively, θ∗s and θ∗w. Given

these run thresholds and conditional on the aggregate state θ, the masses of runs on each

strong and weak bank are, respectively, ms (θ) = m̄Fϵ

(
θ∗s−θ
σ

)
and mw (θ) = m̄Fϵ

(
θ∗w−θ
σ

)
,

with ms(θ) < mw(θ). The total mass of runs in the economy is then mtot (θ) =
1
2
ms (θ)+

1
2
mw (θ). The planner chooses l to maximize expected output Y given below.

Y = Y1 + Y2 + Y3 + Y4, (67)

where Y1 is the total payoff to runners,

Y1 =
1

2

∫
ms (θ) dFθ (θ) +

1

2

∫
mw (θ) dFθ (θ) ,

Y2 is the total payoff to strong-bank investors who do not run,

Y2 =
1

2

∫
(1−ms (θ))

[
(θ + η) (1− l)

1−ms (θ)
+

l −ms (θ)

1−ms (θ)
1 {ms (θ) ≤ l}−

λ (mtot (θ)− l) (ms (θ)− l)

1−ms (θ)
1 {ms (θ) > l}

]
dFθ (θ) ,
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Y3 is the total payoff to weak-bank investors who do not run,

Y3 =
1

2

∫
(1−mw (θ))

[
(θ − η) (1− l)

1−mw (θ)
+

l −mw (θ)

1−mw (θ)
1 {mtot (θ) ≤ l}−

λ (mtot (θ)− l) (mw (θ)− l)

1−mw (θ)
1 {mtot (θ) > l}

]
dFθ (θ) ,

and Y4 is the total payoff to outsiders,

Y4 =

∫
[(mtot (θ)− l)λ (mtot (θ)− l)− g (mtot (θ)− l)]1 {mtot (θ) > l} dFθ (θ) .

The derivative of Y with respect to l is

dY

dl
=

∂Y

∂l
+

∂Y

∂θ∗s

dθ∗s
dl

+
∂Y

∂θ∗w

dθ∗w
dl

. (68)

Taking partial derivatives of Y with respect to l, θ∗s and θ∗w, we get

∂Y

∂l
=−

∫
θdFθ (θ) +

1

2

∫
[1 {ms (θ) ≤ l}+ λ (mtot (θ)− l)1 {ms (θ) > l}] dFθ (θ)+

1

2

∫
[1 {mtot (θ) ≤ l}+ λ (mtot (θ)− l)1 {mtot (θ) > l}] dFθ (θ)+ (69)

1

2

∫
λ′ (mtot (θ)− l) (l −ms (θ))1 {ms (θ) ≤ l}1 {mtot (θ) > l} dFθ (θ) ,

and

∂Y

∂θ∗s
= −1

2

∫
m̄

1

σ
fϵ

(
θ∗s − θ

σ

)
[λ (mtot (θ)− l)− 1]1 {ms (θ) > l} dFθ (θ)− (70)

1

2

∫
m̄

2

1

σ
fϵ

(
θ∗s − θ

σ

)
λ′ (mtot (θ)− l) (l −ms (θ))1 {ms (θ) ≤ l}1 {mtot (θ) > l} dFθ (θ) ,

and

∂Y

∂θ∗w
= −1

2

∫
m̄

1

σ
fϵ

(
θ∗w − θ

σ

)
[λ (mtot (θ)− l)− 1]1 {mtot (θ) > l} dFθ (θ)− (71)

1

2

∫
m̄

2

1

σ
fϵ

(
θ∗w − θ

σ

)
λ′ (mtot (θ)− l) (l −ms (θ))1 {ms (θ) ≤ l}1 {mtot (θ) > l} dFθ (θ) .

Finally, we need to derive how the run thresholds θ∗s and θ∗w change with l. The run
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thresholds are given by

θ∗s + η =

∫ 1
l
m̄

λ( m̄
2
x+ m̄

2
Fϵ(∆+F−1

ϵ (x))−l)(m̄x−l)

1−m̄x
dx+ 1−

∫ l
m̄

0
l−m̄x
1−m̄x

dx∫ 1

0
1−l

1−m̄x
dx

+
σ
∫ 1

0
F−1
ϵ (x)
1−m̄x

dx∫ 1

0
dx

1−m̄x

, (72)

θ∗w − η =

∫ 1

xw(∆,l)

λ( m̄
2
x+ m̄

2
Fϵ(−∆+F−1

ϵ (x))−l)(m̄x−l)

1−m̄x
dx+ 1−

∫ xw(∆,l)

0
l−m̄x
1−m̄x

dx∫ 1

0
1−l

1−m̄x
dx

+
σ
∫ 1

0
F−1
ϵ (x)
1−m̄x

dx∫ 1

0
dx

1−m̄x

,

(73)

where ∆ = θ∗w−θ∗s
σ

and xw (∆, l) solves m̄
2
x + m̄

2
Fϵ (−∆+ F−1

ϵ (x)) = l. Note that there

always exists a unique solution xw (∆, l) ∈ [0, 1] if l ∈ [0, m̄].

We have

θ∗s = θ∗ − 1

2
σ∆,

θ∗w = θ∗ +
1

2
σ∆,

where θ∗ = 1
2
θ∗s +

1
2
θ∗w. Following the same steps as in the proof of Lemma 7, we can show

that ∂θ∗

∂l
< 0 and ∂θ∗

∂∆
< 0.

From (72) and (73),

σ∆ = 2η +
1∫ 1

0
1−l

1−m̄x
dx

(∫ 1

xw(∆,l)

λ
(
m̄
2
x+ m̄

2
Fϵ (−∆+ F−1

ϵ (x))− l
)
(m̄x− l)

1− m̄x
dx−

∫ xw(∆,l)

0

l − m̄x

1− m̄x
dx−

∫ 1

l
m̄

λ
(
m̄
2
x+ m̄

2
Fϵ (∆ + F−1

ϵ (x))− l
)
(m̄x− l)

1− m̄x
dx+

∫ l
m̄

0

l − m̄x

1− m̄x
dx

)
.

Denote the right-hand side of the expression above by B. Then

d∆

dl
= −

∂B
∂l

∂B
∂∆

− σ
.

Following the same steps as in the proof of Lemma 5, we can establish that ∂B
∂l

< 0 and

∂B
∂∆

> 0. Therefore, for a sufficiently small σ, d∆
dl

> 0.
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Therefore, we have

dθ∗s
dl

=
∂θ∗

∂l
+

∂θ∗

∂∆

d∆

dl
− 1

2
σ
d∆

dl
,

dθ∗w
dl

=
∂θ∗

∂l
+

∂θ∗

∂∆

d∆

dl
+

1

2
σ
d∆

dl
.

For a sufficiently small σ, we therefore have dθ∗s
dl

< 0 and dθ∗w
dl

< 0.

Using the expressions above, we can write the first-order conditions are for the planner’s

problem of the l choice as

0 = Γ +
∂Y

∂l
+

∂Y

∂θ∗s

dθ∗s
dl

+
∂Y

∂θ∗w

dθ∗w
dl

, (74)

0 = Γl,

where Γ ≥ 0 is the Lagrange multiplier associated with the l ≥ 0 constraint.

From (68) it is clear that ∂Y
∂l

l→m̄→ 1−
∫
θdFθ(θ), from (70) we have ∂Y

∂θ∗s

l→m̄→ 0, and from

(71) we have ∂Y
∂θ∗w

l→m̄→ 0. Therefore, dY
dl

l→m̄→ 1 −
∫
θdFθ(θ). If the long-run technology is

more productive than liquid assets, i.e.
∫
θdFθ(θ) > 1, then l∗ = l∗pl < m̄.

Part III: Comparison

The final step is to show that either l∗pl > l∗eq or l∗pl = l∗eq = 0. To do so, we are going

to compare the right-hand sides of (66) and (74). Specifically, we are going to show that

for a sufficiently small σ,

∂Y

∂l
+

∂Y

∂θ∗s

dθ∗s
dl

+
∂Y

∂θ∗w

dθ∗w
dl

>
1

2

∑
k∈{s,w}

(
∂yi
∂li

+
∂yi
∂θ∗i

dθ∗i
dli

) ∣∣∣∣
li=l,θ∗i =θ∗k,ζi=ζk

for any given value of l.

Using (63) and (69), we find

∂Y

∂l
− 1

2

∑
k∈{s,w}

∂yi
∂li

∣∣∣∣
li=l,θ∗i =θ∗k,ζi=ζk

=

1

2

∫
λ′ (mtot (θ)− l) (l −ms (θ))1 {ms (θ) ≤ l}1 {mtot (θ) > l} dFθ (θ) > 0.

Similarly, using (63), (70), and (71), one can show that ∂Y
∂θ∗s

< 1
2
∂yi
∂θ∗i

∣∣
li=l,θ∗i =θ∗s ,ζi=η

< 0

and ∂Y
∂θ∗w

< 1
2
∂yi
∂θ∗i

∣∣
li=l,θ∗i =θ∗w,ζi=−η

< 0. Finally, from (62),
dθ∗i
dli

→ 0 if σ → 0 because
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∂T
∂θ∗i

→ −∞, while from the planner’s perspective, dθ∗s
dl

and dθ∗w
dl

are strictly negative even

if σ is small.

All in all, the marginal benefit of increasing the size of the liquidity buffer is always

higher from the planner’s perspective than from individual bank’s perspective. If the

planner finds it optimal to set l to zero—for example, if the long-run technology is much

more productive than liquid assets,
∫
θdFθ(θ) ≫ 1—then individual banks also do so. If

the planner sets l = l∗pl > 0, then l∗eq < l∗pl.

D Global games proofs

In this appendix, we prove that our baseline model features a unique threshold equi-

librium. Our proof is relatively standard and based on Morris and Shin (2003).

For investors of bank i, the net benefit of not withdrawing funds early is

π (θ + ζi,mi,m) =
θ + ζi − λ(m)mi

1−mi

− 1 =
θ + ζi − 1− (λ(m)− 1)mi

1−mi

. (75)

Here mi is the mass of runners on bank i, and m =
∫
midi is the total mass of runners in

the whole economy. Idiosyncratic productivity ζi takes values η with probability 1
2
and

−η with probability 1
2
.

Investor l of bank i receives a signal about the aggregate fundamental θ,

sil = θ + σϵil.

Noise terms ϵil are independent across investors and have identical cumulative distribution

function Fϵ(·) that is increasing on the support [ϵ, ϵ̄], −∞ ≤ ϵ ≤ ϵ̄ ≤ ∞. As in the main

text, Eϵil = 0 and Vϵil = 1. In this appendix, we assume that noise is small, that is,

σ → 0. Using continuity arguments as in Morris and Shin (2003), one can easily show

that our results can be extended to the case in which signals are sufficiently, but not

necessarily infinitely, more precise than the prior.

Notice that the payoff function (75) is not always decreasing in mi, that is, it does not

always imply strategic complementarities across investors of the same bank. However, as

we show in what follows, it features a single-crossing property. As a result, under a set of
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standard assumptions outlined below, the game features a unique threshold equilibrium.

However, as in Morris and Shin (2003), we cannot rule out existence of non-threshold

equilibria.

Since we focus on threshold equilibria, we can rewrite the payoff function as

Π(zi,mi, ∆̂i) ≡ π
(
zi,mi,

mi

2
+

m̄

2
Fϵ

(
∆̂i + F−1

ϵ

(mi

m̄

)))
.

Here ∆̂i represents a signed distance between run thresholds normalized by σ. Specifically,

for strong banks ∆̂s = lim
σ→0

θ∗w−θ∗s
σ

, and for weak banks ∆̂w = −∆̂s. With this alternative

payoff expression, we can define single-crossing property as follows.

Definition 3. A payoff function π(zi,mi,m) satisfies a single-crossing property if for

any zi ∈ [θ − η, θ̄ + η] and any ∆̂i ∈ [ϵ− ϵ̄, ϵ̄− ϵ], there exists at most one m∗
i ∈ (0, m̄)

such that Π(zi,mi, ∆̂i) switches sign, i.e., Π ⪌ 0 if mi ⪋ m∗
i .

It is straightforward to verify that the payoff function in our main model, given by

(75), satisfies the single-crossing property.

As we show in the proof of Proposition 11 below, the unique threshold equilibrium

result can be generalized to any payoff function that satisfies the single-crossing property.

We make the following standard assumptions.

Assumption 2. (Dominance regions) There exist θLDR and θUDR such that π(θLDR +

η, 0, 0) < 0 and π(θUDR − η, m̄, m̄) > 0.

Assumption 3. (Monotone likelihood ratio property) Probability density function of

noise fϵ(·) is such that
fϵ(ξH−ϵ)
fϵ(ξL−ϵ)

increases in ϵ for any ξH > ξL.

Proposition 11. Given any payoff function π(zi,mi,m) that increases in zi, decreases

in m and satisfies the single-crossing property, there exists a unique threshold equilibrium

in which investors of strong and weak banks withdraw early if their signals are below θ∗s

and θ∗w, respectively, and do not withdraw early otherwise.

Proof. Define πs(s, ks, kw) as the net benefit of not running on her bank for a strong-bank

investor that observes signal s and believes that investors of strong and weak banks run
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if their signals are below ks and kw, respectively. Define πw(s, kw, ks) in an analogous

way but for a weak-bank investor.

πs(s, ks, kw) =

∫ s−σϵ

s−σϵ̄
π
(
θ + η, m̄Fϵ

(
ks−θ
σ

)
, m̄

2
Fϵ

(
ks−θ
σ

)
+ m̄

2
Fϵ

(
kw−θ

σ

))
fϵ
(
s−θ
σ

)
fθ(θ)dθ∫ s−σϵ

s−σϵ̄
fϵ
(
s−θ
σ

)
fθ(θ)dθ

,

πw(s, kw, ks) =

∫ s−σϵ

s−σϵ̄
π
(
θ − η, m̄Fϵ

(
kw−θ

σ

)
, m̄

2
Fϵ

(
ks−θ
σ

)
+ m̄

2
Fϵ

(
kw−θ

σ

))
fϵ
(
s−θ
σ

)
fθ(θ)dθ∫ s−σϵ

s−σϵ̄
fϵ
(
s−θ
σ

)
fθ(θ)dθ

,

where fθ(·) is the probability density function of the prior distribution of the aggregate

fundamental.

In what follows, we focus on strong banks. All derivations for weak banks are analo-

gous. Changing the variable of integration, z = θ−ks
σ

, we get

πs(s, ks, kw) =∫ s−ks
σ

−ϵ
s−ks

σ
−ϵ̄

π
(
ks + σz + η, m̄Fϵ (−z) , m̄

2
Fϵ (−z) + m̄

2
Fϵ

(
kw−ks

σ
− z
))

fϵ
(
s−ks
σ

− z
)
fθ(ks + σz)dz∫ s−ks

σ
−ϵ

s−ks
σ

−ϵ̄
fϵ
(
s−ks
σ

− z
)
fθ(ks + σz)dz

.

With infinitely small noise, we have

πs(s, ks, kw)
σ→0→ π̂s(s, ks, kw) =∫ s−ks

σ
−ϵ

s−ks
σ

−ϵ̄

π

(
ks + η, m̄Fϵ (−z) ,

m̄

2
Fϵ (−z) +

m̄

2
Fϵ

(
kw − ks

σ
− z

))
fϵ

(
s− ks
σ

− z

)
dz.

Denote

h (s, s′, ks, kw) =

∫ s−ks
σ

−ϵ

s−ks
σ

−ϵ̄

f̃ (z, s, ks) π̃ (z, s′, ks, kw) dz,
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where

f̃ (z, s, ks) = fϵ

(
s− ks
σ

− z

)
,

π̃ (z, s′, ks, kw) = π

(
s′ + η, m̄Fϵ (−z) ,

m̄

2
Fϵ (−z) +

m̄

2
Fϵ

(
kw − ks

σ
− z

))
.

First, f̃(z, s, ks) satisfies the monotone likelihood ratio property by Assumption 3, namely,

f̃(z,sH ,ks)

f̃(z,sL,ks)
increases in z for sH > sL. Second, π̃ (z, s′, ks, kw) satisfies the single-crossing

property. That is, for a given s′ there exists at most one z in which π̃ (z, s′, ks, kw)

switches sign. Therefore, by Lemma 5 in Athey (2002), h (s, s′, ks, kw) also satisfies single-

crossing, that is, if s < s∗ (s′, ks, kw) then h(s, s′, ks, kw) < 0 and if s > s∗ (s′, ks, kw) then

h(s, s′, ks, kw) > 0.

Suppose that h(s, s, ks, kw) = 0. Such s exists by Assumption 2. For any s′ < s we

have

h(s′, s′, ks, kw) < h(s′, s, ks, kw) < h(s, s, ks, kw) = 0,

where the first inequality holds because h(s, s′, ks, kw) increases in s′ and the second

inequality holds because h(s, s′, ks, kw) satisfies single-crossing. Analogously, for any s′ >

s we have

h(s′, s′, ks, kw) > h(s′, s, ks, kw) > h(s, s, ks, kw) = 0.

Then there exists a cutoff βs (ks, kw) such that π̂s (s, ks, kw) = h(s, s, ks, kw) is negative

(positive) if s is below (above) the cutoff and zero at the cutoff. Similarly, βw (kw, ks)

can be defined. In equilibrium, it must be that ks = βs (ks, kw) and kw = βw (ks, kw).

Therefore, the run thresholds are implicitly given by

π̂s(θ∗s , θ
∗
s , θ

∗
w) =∫ −ϵ

−ϵ̄

π

(
θ∗s + η, m̄Fϵ (−z) ,

m̄

2
Fϵ (−z) +

m̄

2
Fϵ

(
θ∗w − θ∗s

σ
− z

))
fϵ (−z) dz = 0.
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Changing the variable of integration, x = Fϵ (−z), we get∫ 1

0

π

(
θ∗s + η, m̄x,

m̄

2
x+

m̄

2
Fϵ

(
θ∗w − θ∗s

σ
+ F−1

ϵ (x)

))
dx = 0. (76)

Similarly, we can derive the indifference condition for marginal investors of weak banks:∫ 1

0

π

(
θ∗w − η, m̄x,

m̄

2
x+

m̄

2
Fϵ

(
−θ∗w − θ∗s

σ
+ F−1

ϵ (x)

))
dx = 0. (77)

There exists a unique solution (θ∗s , θ
∗
w) to equations (76) and (77). The existence follows

from Assumption 2. Below we prove the uniqueness by contradiction.

Suppose there exist two equilibria with distinct thresholds (θ∗s , θ
∗
w) and (θ̂∗s , θ̂

∗
w). With-

out loss of generality, suppose θ̂∗s > θ∗s . Since π(zi,mi,m) increases in zi and decreases in

m, Equation (76) implies that θ̂∗w−θ̂∗s
σ

> θ∗w−θ∗s
σ

. Similarly, according to Equation (77), this

implies θ̂∗w < θ∗w. Since the difference between two thresholds θ̂∗w − θ̂∗s > θ∗w − θ∗s , it then

must be θ̂∗s < θ∗s , which contradicts the premise that θ̂∗s > θ∗s . Therefore, the equilibrium

is unique.

Substituting in the payoff function (75), thresholds θ∗s and θ∗w are determined by

∫ 1

0

θ∗s + η − λ
(

m̄
2
x+ m̄

2
Fϵ

(
θ∗w−θ∗s

σ
+ F−1

ϵ (x)
))

m̄x

1− m̄x
dx = 1,

∫ 1

0

θ∗w − η − λ
(

m̄
2
x+ m̄

2
Fϵ

(
− θ∗w−θ∗s

σ
+ F−1

ϵ (x)
))

m̄x

1− m̄x
dx = 1.

These are Equations (7) and (8).

Note that this proof can be straightforwardly extended to the case in which bank-

specific productivity shock takes N ≥ 2 values.
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