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Abstract

We derive a lower bound for the size of the permanent component of investors’ marginal
utility of wealth, or more generally, asset pricing kernels. The bound is based on return
properties of long-term zero-coupon bonds, risk-free bonds, and other risky securities. We
find the permanent component of the pricing kernel to be very large; its volatility is about at
least as large as the volatility of the stochastic discount factor. We also show that, for many
cases where the pricing kernel is a function of consumption, innovations to consumption
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1 Introduction

The absence of arbitrage opportunities implies the existence of a pricing kernel, that is, a

stochastic process that assigns values to state-contingent payments. As is well known, asset

pricing kernels can be thought of as investors’ marginal utility of wealth in frictionless markets.

Since the properties of such processes are important for asset pricing they have been the focus of

much recent research.1 In particular, for long-lived securities the persistence properties of pricing

kernels are important determinants of their prices.

The main result of this paper is to derive and estimate a lower bound for the size of the

permanent component of asset pricing kernels. The bound is based on return properties of long-

term zero-coupon bonds, risk-free bonds, and other risky securities. We find the permanent

component of pricing kernels to be very large; its volatility is about at least as large as the

volatility of the stochastic discount factor.

Our results complement the seminal work by Hansen and Jagannathan (1991). They use no-

arbitrage conditions to derive bounds on the volatility of pricing kernels as a function of observed

asset prices. They find that, to be consistent with the high Sharpe ratios in the data, stochastic

discount factors have to be very volatile. We find that, to be consistent with the low returns on

long-term bonds relative to equity, the permanent component of the pricing kernel has to be very

large.

Asset pricing models link pricing kernels to the underlying economic fundamentals. Thus, our

analysis provides some insights into the long-term properties of these fundamentals and into the

functions linking pricing kernels to the fundamentals. Along this dimension, we have two sets of

results.

First, under some assumptions about the function of the marginal utility of wealth, we derive

sufficient conditions on consumption so that the pricing kernel has no permanent innovations. We

present several examples of utility functions for which the existence of an invariant distribution

of consumption implies pricing kernels with no permanent innovations. Thus, these examples

are inconsistent with our main findings. This result is useful for macroeconomics because, for

some issues, the persistence properties of the processes specifying economic variables can be

very important. For instance, on the issue of the welfare costs of economic uncertainty, see

1A few prominent examples of research in this line are Hansen and Jagannathan (1991), Cochrane and Hansen

(1992), Luttmer (1996).

2



Dolmas (1998) and Alvarez and Jermann (2000a); on the issue of the volatility of macroeconomic

variables such as consumption, investment, and hours worked, see Hansen (1997); and on the

issue of international business cycle comovements, see Baxter and Crucini (1995).

Following Nelson and Plosser (1982) a large body of literature has tested macroeconomic

time-series for stationarity versus unit roots. Asset prices have also been included in multivariate

analyses of persistence of GDP and consumption, see for instance, Lettau and Ludvigson (2001).

We introduce new information about persistence by focusing on prices of long-term bonds. Prices

of long-term bonds are particularly informative about the persistence of pricing kernels because

they are the market’s forecasts of the long-term changes in the pricing kernel.

Second, measuring the size of the permanent component in consumption directly and com-

paring it to the size of the permanent component of pricing kernels provides guidance for the

specification of functions of the marginal utility of wealth.2 Specifically, we find the size of the

permanent component of consumption to be lower than that of pricing kernels. This suggests the

use of utility functions that magnify the permanent component.

The rest of the paper is structured as follows. Section 2 contains definitions and theoretical

results. Section 3 presents empirical evidence. Section 4 relates pricing kernels and aggregate

consumption. Section 5 concludes. Proofs are in Appendix A. Appendix B describes the data

sources. Appendix C addresses a small sample bias.

2 Definitions and Theoretical Results

We start by stating some results about long-term discount bonds. Specifically, we present an

inequality linking the term spread of interest rates to the excess returns on any security. This

inequality holds for pricing kernels that have no permanent innovations. We then consider the

case of a pricing kernel whose innovations have permanent and transitory components, and we

present a lower bound for the size of the permanent component. We show how to interpret this

lower bound for some classes of lognormal processes. We end this section with a result stating

the conditions under which a decomposition into permanent and transitory components exist.

Let Dt+k be a state-contingent dividend to be paid at time t + k and let Vt (Dt+k) be the

current price of a claim to this dividend. Then, as can be seen, for instance, in Duffie (1996),

2See Daniel and Marshall (2001) on the related issue of how consumption and asset prices are correlated at

different frequencies.
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arbitrage opportunities are ruled out in frictionless markets if and only if a strictly positive pricing

kernel or state-price process, {Mt}, exists so that

Vt (Dt+k) =
Et[Mt+k ·Dt+k]

Mt
.3 (2.1)

For our results, it is important to distinguish between the pricing kernel,Mt+1, and the stochastic

discount factor, Mt+1/Mt.
4 We use Rt+1 for the gross return on a generic portfolio held from t to

t+ 1; hence,(2.1) implies that

1 = Et

·
Mt+1

Mt
·Rt+1

¸
. (2.2)

We define Rt+1,k as the gross return from holding from time t to time t + 1 a claim to one unit

of the numeraire to be delivered at time t+ k,

Rt+1,k =
Vt+1 (1t+k)

Vt (1t+k)
.

The holding return on this discount bond is the ratio of the price at which the bond is sold,

Vt+1 (1t+k), to the price at which it was bought, Vt (1t+k). With this convention, Vt (1t) ≡ 1.

Thus, for k ≥ 2 the return consists solely of capital gains; for k = 1, the return is risk free.

Finally, we define the continuously compounded term premium for a k-period discount bond as

ht (k) ≡ Et
(
log

"
Rt+1,k
Rt+1,1

#)
,

that is, the expected log excess return on the k-period discount bond.

We now define a condition for pricing kernels that turns out to be key for the properties of

long-term bonds.

Definition 1 We say that a pricing kernel has no permanent innovations at t, if

lim
k→∞

Et

(
log

Et+1 [Mt+k]

Et [Mt+k]

)
= 0. (2.3)

Under regularity conditions, this definition is equivalent to assuming that

lim
k→∞

Et+1 [Mt+k]

Et [Mt+k]
= 1 (2.4)

in distribution.5 This can be seen by using Jensen’s inequality and the law of iterative expec-

3As is well known, this result does not require complete markets, but assumes that portfolio restrictions do

not bind for some agents. This last condition is sufficient, but not necessary, for the existence of a pricing kernel.

For instance, in Alvarez and Jermann (2000b), portfolio restrictions bind most of the time; nevertheless, a pricing

kernel exists that satisfyies (2.1).
4For instance, in the Lucas representative agent model, the pricing kernel Mt is given by βtU 0 (ct) , where β is

the preference time discount factor and U 0 (ct) is the marginal utility of consumption. In this case, the stochastic

discount factor, Mt+1/Mt, is given by βU 0 (ct+1) /U 0 (ct).
5It is sufficient that 0 < x ≤ Et+1 [Mt+k] /Et [Mt+k] ≤ x <∞ for all k.

4



tations. Thus, condition (2.3) can only be satisfied if the ratio of expectations converges to its

(constant) mean. We say that there are no permanent innovations because, as the forecasting

horizons k become longer, information arriving at t+ 1 will not lead to revisions of the forecasts

made with current period t information. Alternatively, condition (2.3) says that innovations in

the forecasts of the pricing kernel have limited persistence, since their effect vanishes for large

k. Formally, we will use the definition in condition (2.3) because it requires no further auxiliary

assumptions; it also turns out to be easier to check in our examples.

A. Pricing kernels with no permanent innovations

In this section we state an important result for zero-coupon bonds if pricing kernels have no

permanent innovations and we discuss some of its implications.

Proposition 2 If a pricing kernel has no permanent innovations, then

ht (∞) ≡ lim
k→∞

ht (k) ≥ Et
"
log

Ã
Rt+1
Rt+1,1

!#
, (2.5)

where Rt+1 is the holding return on any asset.

Proposition 2 states that without permanent innovations, the term spread is the highest (log)

risk premium.

We present here an intuitive proof of Proposition 2 that uses the slightly stronger notion of

no permanent innovations than the one defined in condition (2.3). A formal proof of Proposition

2 is in Appendix A.

The holding return to a k-period discount bond can be written as

Rt+1,k =
Vt+1 (1t+k)

Vt (1t+k)
=

Mt

Mt+1

· Et+1[Mt+k]

Et[Mt+k]
.

Under the slightly stronger version of no permanent innovations, as defined in equation (2.4), we

can write the limiting holding return as Rt+1,∞ =Mt/Mt+1. Then, for any return Rt+1, for which

Et
³
Mt+1

Mt
Rt+1

´
= 1, we have by Jensen’s inequality that Et log

³
Mt+1

Mt
Rt+1

´
≤ logEt

³
Mt+1

Mt
Rt+1

´
=

log (1) = 0 and thus

Et logRt+1 ≤ Et log Mt

Mt+1
,

with equality if Rt+1 =Mt/Mt+1.

Proposition 2 essentially restates results presented in earlier studies in such a way as to allow

for our subsequent extensions. Kazemi (1992) shows that in a Markov economy with a limiting
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stationary distribution, the return on the discount bond with the longest maturity equals the

stochastic discount factor. Growth optimal returns were analyzed in Cochrane (1992) and Bansal

and Lehmann (1997). Campbell, Kazemi, and Nanisetty (1999) note the relationship between

the growth optimal portfolio and the return on asymptotic discount bonds.

We illustrate Proposition 2 for a kernel whose logarithm follows an infinite moving-average

process with normal innovations. We show that if this process is covariance stationary, then

condition (2.3) is satisfied, that is, there are no permanent innovations. Assume that

Mt = β (t) exp

 ∞X
j=0

αjεt−j

 ,
with εt ∼ N (0, σ2), α0 = 1, and β (·) a function of time. Then

Et log
Et+1 [Mt+k]

Et [Mt+k]
= −1

2
(αk−1)

2 σ2.

If Mt/β (t) is covariance stationary, so that the variance is finite and independent of time, we

have that limk→∞ (αk−1)
2 = 0, and the condition of no permanent innovations is satisfied. It also

follows directly that

E [ht (∞)] = σ2

2
.

Recall that σ is the conditional volatility of the discount factor or, equivalently, the volatility of

the innovations of the pricing kernel. This last equation illustrates that if a pricing kernel has no

permanent innovations, then the volatility of the innovations of the pricing kernel is tightly linked

to the term premium. Hansen and Jagannathan (1991) and Cochrane and Hansen (1992) show

that the conditional volatility of the discount factor is quite large, so a pricing kernel without

permanent innovations will produce a counterfactually large term premium.

B. Pricing kernels with permanent and transitory components

So far, we have focused on kernels that have either permanent innovations or not. We now

assume that kernels have both a permanent and a transitory component, with the objective to

quantify the size of the permanent component. In the spirit of Beveridge and Nelson (1981)

and Cochrane (1988), we assume that the permanent component is a martingale. As the main

theoretical result of the paper, we bound the volatility of the permanent component of the discount

factor relative to the total volatility.

Assume that the kernel satisfiesMt =M
T
t M

P
t whereM

T
t is the transitory component andM

P
t

is the permanent component. We assume that for MT
t (2.3) holds, and that M

P
t is a martingale,
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so that EtM
P
t+1 =M

P
t . Let the scaled conditional covariance vt,t+k be defined as

vt,t+k ≡
covt

h
MT
t+k, M

P
t+k

i
Et
h
MT
t+k

i
Et
h
MP
t+k

i .
For the next proposition, we assume that vt,t+k satisfies the following regularity condition

lim
k→∞

Et

"
log

(1 + vt+1,t+k)

(1 + vt,t+k)

#
= 0 almost surely. (2.6)

Using Jt (xt+1) ≡ logEtxt+1 − Et log xt+1, and J (xt+1) ≡ logExt+1 − E log xt+1 as measures of
conditional and unconditional volatility of xt+1, we show the following result.

Proposition 3 Assume that the pricing kernel has temporary and permanent components as

stated above, and that regularity condition (2.6) holds. Then (i) the conditional volatility of the

permanent component satisfies

Jt

Ã
MP
t+1

MP
t

!
≥ Et log Rt+1

Rt+1,1
− ht (∞) , (2.7)

for any return Rt+1. Furthermore, if −E [ht (∞)] ≤ J (1/Rt+1,1), (ii) the unconditional volatility
of the permanent component satisfies,

J
µ
MP
t+1

MP
t

¶
J
³
Mt+1

Mt

´ ≥ E
h
log Rt+1

Rt+1,1

i
−E [ht (∞)]

E
h
log Rt+1

Rt+1,1

i
+ J (1/Rt+1,1)

, (2.8)

for any return Rt+1, and otherwise J
µ
MP
t+1

MP
t

¶
/ J

³
Mt+1

Mt

´
> 1.

Inequality (2.7) bounds the conditional volatility of the permanent component in the same

units as J . Inequality (2.8) bounds the unconditional volatility of the permanent component

relative to the one of the stochastic discount factor, and hence it is similar to the variance ratio

used in Cochrane (1988).

To better understand the measure of volatility J (x), note that if var (x) = 0, then J (x) =

0; the reverse is not true, as higher-order moments than the variance also affect J (x). More

specifically, the variance and J (x) are special cases of the general measure of volatility f (Ex)−
Ef (x), where f (·) is a concave function. The statistic J (x) is obtained by making f (x) = log x,
while for the variance, f (x) = −x2. It follows that if a random variable x1 is more risky than

x2 in the sense of Rothschild-Stiglitz, then J (x1) ≥ J (x2) and, of course, var (x1) ≥ var (x2).
6

As a special case, if x is lognormal, then J (x) = 1/2 var(log x).

6Recall that x1 is more risky than x2 in the sense of Rothschild and Stiglitz if, for E (x1) = E (x2), E (f (x1)) ≤
E (f (x2)) for any concave function f .
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The next example illustrates Proposition 3 for the case where the two components are lognor-

mal with arbitrary correlation. In logs the permanent component is a random walk with drift and

the transitory component is covariance stationary. This type of process has often been used in

the measurement of the size of the permanent component for linear time series. See, for instance,

Watson (1986) and Cochrane (1988). In this case, it is easy to check that the regularity condition

for the scaled covariance (2.6) is satisfied. Moreover, as explained above, the J 0s are replaced by

one half the variance of the log.

Example 4 Assume that

logMP
t+1 = logMP

t −
1

2
σ2P + ε

P
t+1,

logMT
t+1 =

∞X
i=0

αiε
T
t+1−i + (t+ 1) log β,

where α is a square summable sequence, and εPt+1 and ε
T
t+1 are i.i.d. normal with zero mean,

variance σ2P and σ
2
T respectively, and with arbitrary covariance σTP . Direct computation gives

log
(1 + vt+1,t+k)

(1 + vt,t+k)
= −αk−1σTP ,

hence, (2.3) is satisfied, since limk→∞ αk−1 = 0 because α is square summable. Furthermore,

Jt

Ã
MP
t+1

MP
t

!
=
1

2
σ2P ≥ Et log

Rt+1
Rt+1,1

− ht (∞)

and

J
µ
MP
t+1

MP
t

¶
J
³
Mt+1

Mt

´ = σ2P

var
³
log Mt+1

Mt

´ ≥ E
h
log Rt+1

Rt+1,1

i
− E [ht (∞)]

E
h
log Rt+1

Rt+1,1

i
+ 1

2
σ2logRt+1,1

,

where σ2logRt+1,1 denotes the log of the one-period interest rate.

The following proposition establishes the existence of a decomposition of the pricing kernel

into a transitory component, satisfying (2.3), and a permanent component that is a martingale.

We make the following assumption on {Mt}. First, (i) there is a number β such that

0 < lim
k→∞

Vt (1t+k) /β
k <∞

all t, where Vt (1t+k) = Et [Mt+k/Mt] is the price of a k−period zero-coupon bond. Second, (ii)
that for each t+ 1, there is a random variable xt+1 such that³

Mt+1/β
t+1
´
Vt+1 (1t+k) /β

k ≤ xt+1,

with Etxt+1 finite for all k. Finally, (iii) we assume that lims→∞ βs/Vt (1t+s) has no permanent

innovations, that is, (2.3) holds.
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Proposition 5 Under assumptions (i), (ii) and (iii), a decompositionMt =M
T
t M

P
t , with EtM

P
t+1 =

MP
t and M

T
t having no permanent innovations exist, with

MP
t = lim

k→∞
EtMt+k/β

t+k.

Assumption (i) and (ii) are regularity conditions. Assumption (iii), roughly speaking, requires

interest rates to be stationary. The existence result in proposition (5) is an analog to the one

in Beveridge and Nelson (1981). There are two main differences between our decomposition and

Beveridge and Nelson’s: in our case, the permanent component is a martingale as opposed to a

random walk, and the decomposition is multiplicative instead of additive. Condition (iii) above

is the analog of the assumption in the Beveridge and Nelson (1981) that the process be difference

stationary.

Following Cochrane and Hansen (1992, pp 134-137) one can derive the following lower bound

on the fraction of the variance of the stochastic discount factor accounted for by its innovations:

E
h
vart

³
Mt+1

Mt

´i
var

³
Mt+1

Mt

´ ≥ 1− 1³
E|Rt+1−Rt+1,1|

σ(Rt+1)

´2 var [Vt (1t+1)](E [Vt (1t+1)])
2

for any return Rt+1. This lower bound takes a value of about 0.99 when Rt+1 is an asset with a

Sharp ratio of 0.5 and one-period interest volatility is low, such as var [Vt (1t+1)] = 0.05
2. Although

informative about some aspects of persistence, one-period interest rates with low volatility are

consistent with any size of the permanent component of the pricing kernel. For instance, a pricing

kernel with no permanent innovations can still have one-period interest rates with arbitrary small

variance.

(i) Yields and forward rates: Alternative measures of term spreads For empirical implementa-

tion, we want to be able to extract as much information from long-term bond data as possible. For

that reason, we show here that for asymptotic zero-coupon bonds, the unconditional expectations

of the yields and the forward rates are equal to the unconditional expectations of the holding

returns.

Consider forward rates. The k-period forward rate differential is defined as the rate for a

one-period deposit maturing k periods from now relative to a one-period deposit now:

ft (k) ≡ − log
Ã
Vt (1t+k)

Vt (1t+k−1)

!
− log 1

Vt,1
.

Forward rates and expected holding returns are also closely related. They both compare prices

of bonds with a one-period maturity difference, the forward rate does it for a given t, while
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the holding return considers two periods in a row. Assuming that bond prices have means that

are independent of calendar time, so that EVt (1t+k) = EVτ (1τ+k) for every t and k, then, it is

immediate that E [ht (k)] = E [ft (k)].

We define the continuously compounded yield differential between a k-period discount bond

and a one-period risk-free bond as

yt (k) ≡ log
Ã
Vt (1t+1)

Vt (1t+k)
1/k

!
.

The next proposition shows that under regularity conditions, the three measures of the term

spreads are equal for the limiting zero-coupon bonds.

Proposition 6 If the limits of ht (k), ft (k) , and yt (k) exist, the unconditional expectations of

holding returns are independent of calendar time; that is,

E [logRt+1,k] = E [logRτ+1,k] for all t, τ, k

and holding returns and yields are dominated by an integrable function, then

E
·
lim
k→∞

ht (k)
¸
= E

·
lim
k→∞

ft (k)
¸
= E

·
lim
k→∞

yt (k)
¸
.

In practice, these three measures may not be equally convenient to estimate for two reasons.

One is that the term premium is defined in terms of the conditional expectation of the holding

returns. But this will have to be estimated from ex post realized holding returns, which are

very volatile. Forward rates and yields are, according to the theory, conditional expectations of

bond prices. While forward rates and yields are more serially correlated than realized holding

returns, they are substantially less volatile. Overall, they should be more precisely estimated.

The other reason is that, while results are derived for the limiting maturity, data is available only

for finite maturities. All the previous results could have been derived for a finite k by assuming

that limiting properties are reached at maturity k, except Proposition 6. In these cases, yields

are equal to averages of forward rates (or holding returns), and the average only equals the last

element in the limit. For this reason, yield differentials, y, might be slightly less informative for

k finite than the term spreads estimated from forward rates and holding returns.

3 Empirical Evidence

The main objective of this section is to estimate a lower bound for the size of the permanent

component of pricing kernels. We also present two additional results that help interpreting these
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estimates. First, we present a simple example of a process for pricing kernels. Second, we measure

the part of the permanent component due to inflation.

A. The size of the permanent component

We estimate the lower bound of the size of the permanent component of pricing kernels derived

in Proposition 3:

J
µ
MP
t+1

MP
t

¶
J
³
Mt+1

Mt

´ ≥ E
h
log Rt+1

Rt+1,1

i
−E [ht (∞)]

E
h
log Rt+1

Rt+1,1

i
+ J (1/Rt+1,1)

. (3.1)

Tables 1, 2, and 3 contain the estimates of the right-hand side of (3.1) obtained by replacing each

expected value with its sample analog for different data sets.

In Table 1, we report estimates of the lower bound given in equation (3.1), of each of the three

quantities entering into it, its numerator and the p-value that the numerator is negative. We

present estimates using zero-coupon bonds for maturities 25 and 29 years, for various measures

of the term spread (based on yields, forward rates and holding returns), and for holding periods

of one year and one month. As return Rt+1 we use the CRSP value-weighted index covering the

NYSE, Amex and NASDAQ. The data is monthly, from 1946:12 to 1999:12. Standard errors of

the estimated quantities are presented in parentheses; for the size of the permanent component,

we use the delta method. The variance-covariance of the estimates is computed by using a Newey

and West (1987) window with 36 lags to account for the overlap in returns and the persistence

of the different measures of the spreads.7

The asymptotic probability that the term spread is larger than the log equity premium is very

small, in most cases well below 1%. Hence, as implied by Proposition (2) the hypothesis that

the pricing kernel has no permanent innovation is clearly rejected. Not only is there a permanent

component, it is very large. We find that the lower bound of the size of the permanent component

is about 100%; none of our estimates are below 75%. The estimates are precise, standard errors

are below 10%, except for holding returns.

7For maturities longer than 15 years, we do not have a complete data set for zero-coupon bonds. In particular,

long-term bonds have not been consistently issued during this period. For instance, for zero- coupon bonds

maturing in 29 years, we have data for slightly more than half of the sample period, with data missing at the

beginning and in the middle of our sample. The estimates of the various expected values on the right-hand side

of (3.1) are based on different numbers of observations. We take this into account when computing the variance-

covariance of our estimators. Our procedure gives consistent estimates as long as the periods with missing bond

data are not systematically related to the magnitudes of the returns.
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Two points about the result in Table 1 are noteworthy. First, the choice of the holding period,

and hence the level of the risk-free rate, has some effects on our estimates. For instance, using

yields with a yearly holding period the size of the permanent component is estimated to be about

87%. Instead, using yields and a monthly holding period we estimate it to be 77%. This difference

is due, mainly, to the fact that monthly yields are about 1% below annual yields, affecting the

estimate of the denominator of the lower bound.8 Second, by estimating the right-hand side of

equation (3.1) as the ratio of sample means, our estimates are consistent but biased in small

samples because the denominator has nonzero variance. In Appendix C, we present estimates of

this bias. They are quantitatively negligible, on the order of about 1% in absolute value terms.

Since (3.1) holds for any return Rt+1, we select portfolios with high E
h
log Rt+1

Rt+1,1

i
in Table

2 to sharpen the bounds based on the equity premium in Table 1. Table 2 contains the same

information as Table 1, except that Table 2 covers only bonds with 25 years of maturity. We find

estimates of E
h
log Rt+1

Rt+1,1

i
of up to 22.5% compared to 7.6% in Table 1. The smallest estimate of

the lower bound in Table 2 is 89% as opposed to 77% in Table 1.

As a benchmark case, panel A reproduces the results of Table 1. In panel B we let Rt+1

be a fixed weight portfolio of aggregate equity with the risk-free that maximizes E
h
log Rt+1

Rt+1,1

i
.

Depending on the choice of the holding period, E
h
log Rt+1

Rt+1,1

i
is up to 9% larger than the premium

presented in panel A, with a share of equity of 2.14 or 3.47. In panel C, we choose a fixed-weight

portfolio from the menu of the 10 CRSP size decile portfolios. This leads to a log excess return

of up to 22.5%.

Table 3 extends the sample period to over 100 years and adds an additional country, the U.K.

For the U.S., given data availability, we use coupon bonds with about 20 years of maturity. For

the U.K., we use consols. For the U.S., we estimate the size of the permanent component between

78% and 93%, depending on the time period and whether we consider the term premium or the

yield differential. Estimated values for the U.K. are similar to those for the U.S.

A natural concern is whether 25- or 29-year bonds allow for good approximations of the

limiting term spread, E [ht (∞)]. From Figure 1, which plots term structures for three definitions
of term spreads, we take that the long end of the term structure is either flat or decreasing.

Extrapolating from these pictures, suggests, if anything, that our estimates of the size of the

permanent component presented in Tables 1 and 2 are on the low side. In this figure, the

8Our data set does not contain the information necessary to present results for monthly holding periods for

forwards rates and holding returns.
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standard error bands are wider for longer maturities, which is due to two effects. One is that

spreads on long-term bonds are more volatile, especially for holding returns. The other is that

for longer maturities, as discussed before, our data set is smaller.

Note that for the bound in Equation (3.1) to be well defined, specifically for J (1/Rt+1,1) to

be finite, we have assumed that interest rates are stationary.9 While the assumption of stationary

interest rates is confirmed by many studies (for instance, Ait Sahalia (1996)), others report the

inability to reject unit roots (for instance, Hall, Anderson, and Granger (1992)). To some extent,

if interest rates were nonstationary, this would seem to further support the idea that the pricing

kernel itself is nonstationary. Also, consistent with the idea that interest rates are stationary and

therefore J (1/Rt+1,1) finite, Table 3 shows lower estimates for the very long samples than for the

postwar period.

B. An example of a pricing kernel

We present here an example that illustrates the power of bond data to distinguish between

similar levels of persistence. In particular, the example shows that even for bonds with maturities

between 10 and 30 years, one can obtain strong implications for the degree of persistence. Alter-

natively, the example shows that, in order to explain the low observed term premia for long-term

bonds at finite maturities with a stationary pricing kernel, the largest root has to be extremely

close to 1.

Assume that

logMt+1 = log β + ρ logMt + εt+1

with εt+1 ∼ N(0, σ2ε). Simple algebra shows that

ht (k) =
σ2ε
2

³
1− ρ2(k−1)

´
. (3.2)

This expression suggests that if the volatility of the innovation of the pricing kernel, σ2ε , is large,

then values of ρ only slightly below 1 may have a significant quantitative effect on the term

spread. In Table 4, we calculate the level of persistence, ρ, required to explain various levels of

term spreads for discount bonds with maturities of 10, 20, and 30 years. As is clear from Table

4, ρ has to be extremely close to 1.

9Equation (2.7), which defines a bound for the size of the permanent component in absolute terms, does not

require this assumption.
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For this calculation we have set σ2ε = 0.4, for the following reasons. Based on Proposition 3

and assuming lognormality, we get

var
µ
log

Mt+1

Mt

¶
≥ 2 · E log Rt+1

Rt+1,1
+ var (logRt+1,1) ,

where Rt+1 can be any risky return. Based on our estimates in Table 2, the growth optimal excess

return should be at least 20%, so that var
³
log Mt+1

Mt

´
≥ 0.4. Finally, for ρ close to 1 we can write

var
µ
log

Mt+1

Mt

¶
=

2

1 + ρ
σ2ε ' σ2ε .

C. Nominal versus real pricing kernels

Because we have so far used bond data for nominal bonds, we have implicitly measured the size

of the permanent component of nominal pricing kernels, that is, the processes that price future

dollar amounts. We present now two sets of evidence showing that the permanent component is

to a large extent real, so that we have a direct link between the size of the permanent component

of pricing kernels and real economic fundamentals.

First, assume, for the sake of this argument, that all of the permanent movements in the

(nominal) pricing kernel come from the aggregate price level. Specifically, assume that Mt =³
1
Pt

´
MT
t , where Pt is the aggregate price level. Thus 1

Pt
converts nominal payouts into real

payouts and MT
t prices real payouts. Because, Pt is directly observable, we can measure the size

of its permanent component directly and then compare it to the estimated size of the permanent

component of pricing kernels reported in Tables 1, 2, and 3. It turns out that the size of the

permanent component in Pt is estimated at up to 100 times smaller than the lower bound of

the size of the permanent component in pricing kernels estimated above. This suggests that

movements in the aggregate price level have a minor importance in the permanent component of

pricing kernels, and thus, permanent components in pricing kernels are primarily real.

The next proposition shows how to estimate the size of the permanent component based on

the J (.) measure.

Proposition 7 Assume that the process Xt can be decomposed into a permanent component

XP
t > 0 and a transitory component X

T
t > 0, so that (i)

Xt = X
P
t X

T
t ,
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(ii) the permanent component is a martingale, that is, Et
h
XP
t+1

i
= XP

t for all t, (iii) the process

XT
t has no permanent innovations, that is,

lim
k→∞

Et log
Et+1X

T
t+k

EtXT
t+k

= 0.

Additionally, assume the following regularity conditions: (a) the covariance between XT
t and

XP
t stabilizes, that is,

lim
k→∞

Et

"
log

(1 + vt+1,t+k)

(1 + vt,t+k)

#
= 0 almost surely

with vt,t+k defined as vt,t+k ≡ covt
h
XT
t+k, X

P
t+k

i
/
h
EtX

T
t+k EtX

P
t+k

i
, (b) Xt+1

Xt
is strictly stationary,

(c) the following limit exists:

lim
k→∞

E
·
logEt

·
Xt+k
Xt

¸
− logEt

·
Xt+k−1
Xt

¸¸
,

and (d) limk→∞ 1
k
J
³
EtXt+k
Xt

´
= 0. Then

J

Ã
XP
t+1

XP
t

!
= lim

k→∞
1

k
J
µ
Xt+k
Xt

¶
. (3.3)

The usefulness of this proposition is that J
³
XP
t+1/X

P
t

´
is a natural measure for the size of

the permanent component. However, it cannot directly be estimated if only Xt is observable, but

XP and XT are not observable separately. The quantity limk→∞ 1
k
J (Xt+k/Xt) can be estimated

with knowledge of only Xt. This result is analogous to a result in Cochrane (1988), with a main

difference that he uses the variance as a measure of volatility.

Cochrane (1988) proposes a simple method for correcting for small sample bias and for com-

puting standard errors when using the variance as a measure of volatility. Thus, we will focus

our presentation of the results on the variance, having established first that, without adjusting

for small sample bias, the variance equals approximately one-half of the J (.) estimates, which

would suggest that departures from lognormality are small. Overall, we estimate the size of the

permanent component of inflation to be below 0.5% based on data for 1947—99 and below 0.8%

based on data for 1870—1999. This compares to the lower bound of the (absolute) size of the

permanent component of the pricing kernel,

J

Ã
MP
t+1

MP
t

!
≥ E

"
log

Rt+1
Rt+1,1

− ht (∞)
#
, (3.4)

that we have estimated to be up to about 20% as reported in column 5 in Tables 1, 2, and 3.
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Table 5 contains our estimates of the permanent component of inflation. The first two rows

display results based on estimating an AR1 or AR2 for inflation and then computing the size of

the permanent component as one-half of the (population) spectral density at frequency zero. For

the postwar sample, 1947—99, we find 0.21% and 0.15% for the AR1 and AR2, respectively. The

third row presents the results using Cochrane’s (1988) method that estimates var
³
logXP

t+1/X
P
t

´
using limk→∞ (1/k) var (logXt+k/Xt). For the postwar period, the size of the permanent com-

ponent is 0.43% or 0.30%, depending on whether k = 20 or 30.10 The table also shows that

J (Xt+k/Xt) /var (logXt+k/Xt) is approximately 0.5. Note that the roots of the process for infla-

tion reported in Table 5 are far from one, supporting our implicit assumption that inflation rates

are stationary.

A second view about the size of the permanent component can be obtained from inflation-

indexed bonds. Such bonds have been traded in the U.K. since 1982. Considering that an

inflation-indexed bond represents a claim to a fixed number of units of goods, its price provides

direct evidence about the real pricing kernel. However, because of the 8-month indexation lag

for U.K. inflation-indexed bonds, it is not possible to obtain much information about the short

end of the real term structure. Specifically, an inflation-indexed bond with outstanding maturity

of less than eight months is effectively a nominal bond. For our estimates, this implies that we

will not be able to obtain direct evidence of E (logRt+1,1) and J (1/Rt+1,1) in the definition of

the size of the permanent component as given in equation (2.8). Because of this, we focus on

the bound for the absolute size of the pricing kernel as given in equation (3.4). For the nominal

kernel, we use average nominal equity returns for E logRt+1, and for E logRt+1,∞, we use forward

rates and yields for 20 and 25 years, from the Bank of England’s estimates of the zero-coupon

term structures, to obtain an estimate of the right-hand side of

J

Ã
MP
t+1

MP
t

!
≥ E [logRt+1 − logRt+1,∞] . (3.5)

For the real kernel, we take the average nominal equity return minus the average inflation rate

to get E logRt+1; for E logRt+1,∞, we use real forwards rates and yields from a zero-coupon

term structure of inflation-indexed bonds. The right-hand side of (3.5) differs for nominal and

real pricing kernels only if there is an inflation risk premium for long-term nominal bonds. If

long-term nominal bonds have a positive inflation risk premium then the lower bound for the

10Cochrane’s (1988) estimator is defined as bσ2k = 1
k

³
1

T−k
´³

T
T−k+1

´
· PT

j=k

£
xj − xj−k − k

T (xT − x0)
¤2
, with

T the sample size, x = logX, and standard errors given by
¡
4
3
k
T

¢0.5 bσ2k.
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permanent component for real kernels will be larger than for nominal kernels.

Table 6 reports estimates for nominal and real kernels. The data are further described in

Appendix B. Consistent with our finding that the size of the permanent component of inflation

is very small, the differences in size of the permanent components for nominal and real kernels

are very small. Comparing columns (3) and (6), for three out of the four point estimates, the

size of the permanent component of real kernels is larger than the estimate for the corresponding

nominal kernels; for the fourth case, they are basically identical. The corresponding standard

errors are always larger than the differences between the results for nominal and real kernels.

4 Pricing Kernels and Aggregate Consumption

In many models used in the literature, the pricing kernel is a function of current or lagged

consumption. Thus, the stochastic process for consumption is a determinant of the process of the

pricing kernel. In this section, we present sufficient conditions on consumption and the function

mapping consumption into the pricing kernel so that pricing kernels have no permanent innova-

tions. We are able to define a large class of stochastic processes for consumption that, combined

with standard preference specifications, will result in counterfactual asset pricing implications.

We also present an example of a utility function in which the resulting pricing kernels have per-

manent innovations because of the persistence introduced through the utility function. Finally,

we estimate the size of the permanent component in consumption directly and compare it to our

estimates of the size of the permanent component of pricing kernels.

As a starting point, we present sufficient conditions for kernels that follow Markov processes

to have no permanent innovations. We then consider consumption within this class of processes.

Assume that

Mt = β (t) f (st) ,

where f is a positive function and that st ∈ S is Markov with transition function Q which has

the interpretation Pr (st+1 ∈ A|st = s) = Q (s,A).
We assume that Q has an invariant distribution λ∗ and that the process {st} is drawn at time

t = 0 from λ∗. In this case, st is strictly stationary, and the unconditional expectations are taken

with respect to λ∗. We use the standard notation,

³
T kf

´
(s) ≡

Z
S
f (s0)Qk (s, ds0) ,
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where Qk is the k-step ahead transition constructed from Q.

Proposition 8 Assume that there is a unique invariant measure, λ∗, and that³
T k−1f

´
(s0)

(T kf) (s)
≥ l > 0 for all k.

In addition, if either (i) limk→∞
³
T kf

´
(s) =

R
fdλ∗ > 0 or, in case limk→∞

³
T kf

´
(s) is not

finite, if (ii) limk→∞
h³
T k−1f

´
(s0)−

³
T kf

´
(s)
i
≤ A (s) for each s and s0, then

lim
k→∞

Et log
Et+1 [Mt+k]

Et [Mt+k]
= 0.

Remark 1 The uniform lower bound, l, is stronger than the strict positivity implied by no-

arbitrage. This bound is needed to pass the limit through the conditional expectation operator.

We are now ready to consider consumption explicitly. Assume that

Ct = τ (t) ct = τ (t) g (st) ,

where g is a positive function, st ∈ S is Markov with transition function Q, and τ (t) represents
a deterministic trend. We assume (a) that a unique invariant measure λ∗ exists. Furthermore,

assume (b) that

lim
k→∞

³
T kh

´
(s) =

Z
hdλ∗

for all h (.) bounded and continuous.

Proposition 9 Assume that Mt = β (t) f (ct, xt), with f (·) positive, bounded and continuous,
and that (ct, xt) ≡ st satisfies properties (a) and (b) with f (·) > 0 with positive probability. Then
Mt has no permanent innovations.

An example covered by this proposition is CRRA utility, 1
1−γ c

1−γ
t with relative risk aversion γ,

where f (ct) = c
−γ
t , with c ≥ ct ≥ ε > 0. If consumption would have a unit root, then properties

(a) and (b) would not be satisfied.

For the CRRA case, even with consumption satisfying properties (a) and (b), Proposition

(9) could fail to be satisfied because c−γt is unbounded if ct gets arbitrarily close to zero with

large enough probability. It is possible to construct examples where this is the case, for instance,

along the lines of the model in Aiyagari (1994). This outcome is driven by the Inada condition

u0 (0) =∞. Note also, the bound might not be necessary. For instance, if log ct = ρ log ct−1 + εt,
with ε ∼ N (0, σ2) and |ρ| < 1, then, log f (ct) = −γ log ct, and direct calculations show that
condition (2.3) defining the property of no permanent innovations is satisfied.
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A. Examples with additional state variables

There are many examples in the literature for which marginal utility is a function of additional

state variables, and for which it is straightforward to apply Proposition 9, very much like for the

CRRA utility shown above. For instance, the utility functions displaying various forms of habits

such as those used by Ferson and Constantinides (1991), Abel (1999) and Campbell and Cochrane

(1999). On the other hand, there are cases where Proposition 9 does not apply. For instance,

as we show below, for the Epstein-Zin-Weil utility function. In this case, even with consumption

satisfying the conditions required for Proposition 9, the additional state variable does not have

an invariant distributions. Thus, innovations to pricing kernels have always permanent effects.

Assume the representative agent has preferences represented by nonexpected utility of the

following recursive form:

Ut = φ (ct, EtUt+1) ,

where Ut is the utility starting at time t and φ is an increasing concave function. Epstein and Zin

(1989) and Weil (1990) develop a parametric case in which the risk aversion coefficient, γ, and the

reciprocal of the elasticity of intertemporal substitution, ρ, are constant. They also characterize

the stochastic discount factor Mt+1/Mt for a representative agent economy with an arbitrary

consumption process {Ct} as

Mt+1

Mt

=

"
β
µ
Ct+1
Ct

¶−ρ#θ " 1

Rct+1

#(1−θ)
(4.1)

with θ = (1− γ) / (1− ρ) where β is the time discount factor and Rct+1the gross return on the
consumption equity, that is the gross return on an asset that pays a stream of dividends equal to

consumption {Ct}.
Inspection of (4.1) reveals that a pricing kernel Mt+1 for this model is

Mt+1 = β
θ(t+1) Y θ−1t+1 C

−ρθ
t+1 , where Yt+1 = R

c
t+1 · Yt (4.2)

and Y0 = 1.

The next proposition shows that the nonseparabilities that characterize these preferences for

θ 6= 1 are such that, even if consumption is iid, the pricing kernel has permanent innovations.

More precisely, assume that consumption satisfies

Ct = τ
tct, (4.3)

19



where ct ∈ [c, c̄] is iid with cdf F . Let V ct be the price of the consumption equity, so that

Rct+1 =
³
V ct+1 + Ct+1

´
/V ct . We assume that agents discount the future enough so as to have a

well-defined price-dividend ratio. Specifically, we assume that

max
c∈[c,c̄]

βτ1−ρ

Z Ã

c0

c

!1−γ
dF (c0)


1/θ

< 1. (4.4)

Proposition 10 Let the pricing kernel be given by (4.2), let the detrended consumption be iid as

in (4.3), and assume that (4.4) holds. Then the price-dividend ratio for the consumption equity

is given by V ct /Ct = ψc
γ−1
t for some constant ψ > 0; hence, V ct /Ct is iid. Moreover,

xt+1,k ≡ Et+1Mt+k

EtMt+k
=

³
1 + 1

ψ
c
(1−γ)
t+1

´θ−1
Et

½³
1 + 1

ψ
c
(1−γ)
t+1

´θ−1¾ ; (4.5)

thus the pricing kernel has permanent innovations, that is Et log xt+1,k < 0, iff θ 6= 1, γ 6= 1, and
ct has strictly positive variance.

Note that θ = 1 corresponds to the case in which preferences are given by time separable ex-

pected discounted utility; and hence, with iid consumption, the pricing kernel has only temporary

innovations. Expression (4.5) also makes clear that for values of θ close to one, the size of the

permanent component is small.

B. The size of the permanent component in consumption

We present here estimates of the size of the permanent component of consumption, obtained

directly from consumption data. We end up drawing two conclusions. One is that the size of the

permanent component in consumption is about half the size of the overall volatility of the growth

rate, which is lower than our estimates of the size of the permanent component of pricing kernels.

This suggests that, within a representative agent asset pricing framework, preferences should be

such as to magnify the size of the permanent component in consumption. The other conclusion,

as noted in Cochrane (1988) for the random walk component in GDP, is that standard errors for

these direct estimates are large.

As in subsection C. for inflation, we use Cochrane’s method based on the variance, since

J (Xt+k/Xt) / var (logXt+k/Xt) is close to 0.5. Specifically, for k up to 35, it lies between 0.47

and 0.49. Our estimates for (1/k) var (logXt+k/Xt) / var (logXt+1/Xt), with associated standard

error bands, are presented in Figures 2 and 3 for the periods 1889—1997 and 1946—97, respectively.
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For the period 1889—1997, shown in Figure 2, the estimates stabilize at around 0.5 and 0.6 for k

larger than 15. For the postwar period, shown in Figure 3, standard error bands accommodate

any possibly reasonable number.

5 Conclusions

The main contribution of this paper is to derive and estimate a lower bound for the size of

the permanent component of asset pricing kernels. We find that the permanent component is

about at least as volatile as the stochastic discount factor itself. This result is driven by the

historically low yields on long-term bonds. These yields contain the market’s forecasts for the

growth rate of the marginal utility of wealth over the period corresponding to the maturity of the

bond. We also relate the persistence of pricing kernels to the persistence of their determinants

in standard models, notably consumption. We present sufficient conditions for consumption and

preference specifications to imply a pricing kernel with no permanent innovations. We present

evidence that the permanent component of pricing kernels is determined, to a large extent, by real

as opposed to nominal factors. Finally, we present some evidence that the size of the permanent

component in consumption is smaller than the permanent component in pricing kernels. Within

a representative agent framework, this evidence points toward utility functions that magnify the

size of the permanent component.
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Appendix A: Proofs

Proposition 2. By definition,

ht (∞) = lim
k→∞

(
Et

Ã
log

"
Rt+1,k
Rt+1,1

#!)
= lim

k→∞

Et log
 Et+1[Mt+k]

Mt+1

Et[Mt+k]
Mt

Et [Mt+1]

Mt


= logEt [Mt+1]−Et logMt+1 + lim

k→∞
{Et logEt+1 [Mt+k]− logEt [Mt+k]} .

Without permanent innovations, we have,

ht (∞) = logEt
·
Mt+1

Mt

¸
− Et logMt+1

Mt
= − logRt+1,1 − Et logMt+1

Mt
. (A.1)

For any risky gross asset return Rt+1, we have that 1 = Et
h
Rt+1

Mt+1

Mt

i
, so that by taking logs on

both sides and using Jensen’s inequality

−Et
·
log

µ
Mt+1

Mt

¶¸
≥ Et [log (Rt+1)] .

Combining this expression with equation (A.1), we obtain the desired result.

Proposition 3. First note that

Et+1 [Mt+k] = Et+1
h
MT
t+k

i
Et+1

h
MP
t+k

i1 + covt+1
h
MT
t+k,M

P
t+k

i
Et+1

h
MT
t+k

i
Et+1

h
MP
t+k

i


= Et+1
h
MT
t+k

i
Et+1

h
MP
t+k

i
(1 + vt+1,t+k)

and likewise

Et [Mt+k] = Et
h
MT
t+k

i
Et
h
MP
t+k

i
(1 + vt,t+k) .

Hence,

log
Et+1 [Mt+k]

Et [Mt+k]
= log

Et+1
h
MT
t+k

i
Et
h
MT
t+k

i + log
Et+1

h
MP
t+k

i
Et
h
MP
t+k

i + log
(1 + vt+1,t+k)

(1 + vt,t+k)
.

Finally, given our hypothesis about vt,t+k we have that

ht (∞) = Et [logEt [Mt+1]− Et logMt+1] + lim
k→∞

(
Et log

Et+1 [Mt+k]

Et [Mt+k]

)

= Et [logEt [Mt+1]− Et logMt+1] + lim
k→∞

Et log Et+1
h
MP
t+k

i
Et
h
MP
t+k

i
 .

Then using Proposition 2 and the fact that MP is a martingale equation (2.7) follows directly.

We then use the result that J (xt+1) = EJt (xt+1) + Jt (Etxt+1), which can be derived through
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straightforward algebra. Equation (2.8) follows. The direction of the inequality is obtained by

differentiating with respect to the term representing the growth-optimal return.

Proposition 5. A(1) guarantees that 0 < MP
t < ∞. A(2) allows for the application of the

Lebesque Dominated Convergence theorem, which yields that EtM
P
t+1 = MP

t . Finally, A(3)

guarantees that MT
t has no permanent innovations.

Proposition 6. By definition,

ht (∞)− yt (∞) = lim
k→∞

Et logRt+1,k − lim
k→∞

(1/k)
kX
j=1

logRt+j,k−(j−1).

Taking unconditional expectations on both sides, we have that

E {ht (∞)− yt (∞)} = E lim
k→∞

Et logRt+1,k − E lim
k→∞

(1/k)
kX
j=1

logRt+j,k−(j−1).

Since by assumption expected holding returns and yields, Et logRt+1,k and

(1/k)
Pk
j=1 logRt+j,k−(j−1), are dominated by an integrable random variable and the limit of the

right-hand side exists, then by the Lebesgue dominated convergence theorem,

E lim
k→∞

Et logRt+1,k = lim
k→∞

E logRt+1,k,

E lim
k→∞

(1/k)
kX
j=1

logRt+j,k−(j−1) = lim
k→∞

(1/k)
kX
j=1

E logRt+j,k−(j−1).

Denote the limit

lim
k→∞

E logRt+1,k = r, (A.2)

which we assume to be finite. Since, by hypothesis, E logRt+j,k−(j−1) = E logRt+1,k−(j−1) for

all j, then

lim
k→∞

(1/k)
kX
j=1

E logRt+j,k−(j−1) = lim
k→∞

(1/k)
kX
j=1

E logRt+1,k−(j−1) = r

where the second inequality follows from (A.2). Thus, we have that

E {ht (∞)− yt (∞)} = lim
k→∞

E logRt+1,k − lim
k→∞

(1/k)
kX
j=1

E logRt+j,k−(j−1) = r − r = 0.

Proposition 7. Define ht (k) and yt (k) as

ht (k) ≡ Et

(
logEt+1

"
Xt+k
Xt+1

#
− logEtXt+k

Xt

)
+ logEt

Xt+1
Xt

yt (k) ≡ −
µ
1

k

¶
logEt

·
Xt+k
Xt

¸
+ logEt

·
Xt+1
Xt

¸
.
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Our proof goes through 3 steps. Step 1. Using the definitions of J and Jt and assumptions (i),

(ii), (iii) and (a) we obtain

J

Ã
XP
t+1

XP
t

!
= E

·
logEt

·
Xt+1
Xt

¸
− Et

·
log

Xt+1
Xt

¸¸
− lim
k→∞

E [ht (k)] .

Step 2. Using assumption (b) and taking limits we obtain

lim
k→∞

µ
1

k

¶
J
µ
Mt+k

Mt

¶
= E

·
logEt

·
Xt+1
Xt

¸
− Et

·
log

µ
Xt+1
Xt

¶¸¸
− lim
k→∞

E [yt (k)]

+ lim
k→∞

µ
1

k

¶
J
µ
Et

·
Xt+k
Xt

¸¶
.

Step 3. Using assumptions (c) and (d) we obtain limk→∞E [ht (k)] = limk→∞E [yt (k)]. Thus,

using (d), we conclude the proof. More details are provided in the working paper version Alvarez

and Jemann (2001).

Proposition 8. Define xt+1,k =
Et+1Mt+k

EtMt+k
. Given that Λt is Markov, under the stated assumptions,

we can write

lim
k→∞

Et log xt+1,k = lim
k→∞

Z
[log xk (s

0, s)]Q (s, ds0) ,

where

xt+1,k = xk (s
0, s) =

³
T k−1f

´
(s0)R

(T k−1) f (ŝ)Q (s, dŝ)
.

By Jensen’s inequality
R
[log xk (s

0, s)]Q (s, ds0) ≤ 0 since
Z
xk (s

0, s)Q (ds0, s) =

R ³
T k−1f

´
(s0)Q (s, ds0)R

(T k−1) f (ŝ)Q (s, dŝ)
= 1.

By our assumption, xk (s, s
0) ≥ l > 0; hence, for all k, s, s0,

−∞ < log l ≤ log (min {xk (s0, s) , 1 + ε}) ≤ log (1 + ε) <∞

for any arbitrary ε > 0. Because log (min {xk (s0, s) , 1 + ε}) is uniformly bounded, Lebesgue
dominated convergence applies. Note that we impose an artificial upper bound, log (1 + ε) to get

dominated convergence. With this bound, the integral can only get smaller. Thus, if we find that

the integral equals zero, its upper bound, the artificial bound could not have mattered. Thus,

Z
lim
k→∞

log (min {xk (s0, s) , 1 + ε})Q (s, ds0)

= lim
k→∞

Z
log (min {xk (s0, s) , 1 + ε})Q (s, ds0)

≤ lim
k→∞

Z
log (xk (s

0, s))Q (s, ds0) ≤ 0.
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Hence, it suffices to show that

Z
lim
k→∞

log (min {xk (s0, s) , 1 + ε})Q (s, ds0) = 0.

Under (i) or (ii),

lim
k→∞

xk (s
0, s) =

limk→∞
³
T k−1f

´
(s0)

limk→∞
R
(T k−1) f (ŝ)Q (s, dŝ)

=
limk→∞

³
T k−1f

´
(s0)

limk→∞ (T kf) (s)
= 1.

Thus, because log (min {xk (s0, s) , 1 + ε}) is bounded from below,

lim
k→∞

log (min {xk (s0, s) , 1 + ε}) = log lim
k→∞

(min {xk (s0, s) , 1 + ε})

= log
µ
min

½
lim
k→∞

xk (s
0, s) , 1 + ε

¾¶
= 0.

Proposition 9. Properties (a) and (b) define setwise convergence, and with f (.) bounded,

expected values converge.

Proposition 10. First, we show a lemma that consumption equity prices and consumption equity

dividend-price ratios are iid. Then we use the lemma to show that the kernel has permanent

innovations.

Lemma A.1. Assume that ct is iid with cdf F and that η < 1, where

η ≡ max
c∈[c,c̄]

βτ1−ρ

Z Ã

c0

c

!1−γ
dF (c0)


1/θ

.

Then the price of consumption equity, V ct /Ct = f
∗ (ct), where the function f∗is the unique solution

to

T ∗f∗ = f ∗, f∗ (c) = ψ cγ−1

for some constant ψ > 0 and the operator T is defined as

(Tf) (c) = βτ 1−ρ

Z Ã

c0

c

!1−γ
[f (c0) + 1]θ dF (c0)


1/θ

.

Moreover, V ct = τ
tv (ct) ≡ f (ct) · Ct.

Proof. Using the pricing kernel (4.2), we obtain that consumption equity must satisfy

[V ct ]
θ = Et

"β µτct+1
ct

¶−ρ#θ h
V ct+1 + τ

t+1ct+1
iθ .
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Guessing that V ct = vtτ
t, we obtain

vt =

Et
"τβ µτct+1

ct

¶−ρ#θ
[vt+1 + ct+1]

θ


1/θ

,

and dividing by ct on both sides, we can write

[Tf ] (c) = βτ1−ρ

Z Ã

c0

c

!(1−γ)
[f (c0) + 1]θ dF (c0)


1/θ

,

where f is the price-dividend ratio of the consumption equity: f (c) = v (c) /c. The operator

T can be shown to be a contraction: hence, it has a unique fixed point. Moreover, ψ is given by

Ψ = βτ 1−ρ
½Z

c0(1−γ) [f ∗ (c0) + 1]θ dF (c0)
¾1/θ

,

where f ∗ satisfies Tf ∗ = f ∗.

Using Lemma A.1, we can write the return on the consumption equity as

Rct+1 = τ
v (ct+1) + ct+1

v (ct)
(A.3)

Then using (4.2), (4.5), and through some algebra, we get

xt+1,k =
Et+1Mt+k

EtMt+k
=
Et+1

h
βθ(t+1) C−ρθt+1 Y

θ−1
t+1

i
Et
h
βθ(t+1) C−ρθt+1 Y

θ−1
t+1

i
=

Ã
1 +

1

ψ
cγ−1t+1

!θ−1
/Et

Ã1 + 1

ψ
cγ−1t+1

!θ−1 .
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Appendix B: Data

For Table 1, the data on monthly yields of zero-coupon bonds from 1946:12 to 1985:12 comes

from McCulloch and Kwon (1993), who use a cubic spline to approximate the discount function

of zero-coupon bonds using the price of coupon bonds. They make some adjustments based on

tax effects and for the callable feature of some of the long-term bonds. The data for 1986:1 to

1999:12 are from Bliss (1997). From the four methods available, we use the method proposed by

McCulloch and Kwon (1993). The second part of the sample does not use callable bonds and

does not adjust for tax effects. Forward rates and holding periods returns are calculated from the

yields of zero-coupon bonds. The one-month short rate is the yield on a one-month zero coupon

bond. Yields are available for bonds of maturities going from 1 to 30 years, although for longer

maturities, yields are not available for all years.

For Table 3, for the United States, equity returns are from Shiller (1998); short-term rates are

from Shiller (1998) before 1926, and from Ibbotson Associates (2000) after 1926; and long-term

rates are from Campbell (1996) before 1926, from Ibbotson Associates (2000) after 1926.

Ibbotson Associates’ (2000) short-term rate is based on the total monthly holding return for

the shortest bill not having less than one month maturity. Shiller (1998), for equity returns, used

the Standard and Poor Composite Stock Price Index. The short-term rate is the total return

to investing for six months at 4-6 month prime commercial paper rates. To adjust for a default

premium, we subtract 0.92% from this rate. This is the average difference between T-Bills from

Ibbotson Associates (2000) and Shiller’s (1998) commercial paper rates for 1926—98.

The data for the United Kingdom is from the Global Financial Data-base. Specifically, the

bill index uses the three-month yield on commercial bills from 1800 through 1899 and the yield

on treasury bills from 1900 on. The stock index uses Bank of England shares exclusively through

1917. The stock price index uses the Banker’s Index from 1917 until 1932 and the Actuaries

General/All-Share Index from 1932 on. To adjust for a default premium, we have subtracted

0.037% from the short rate for 1801—99. This is the average difference between the rates on

commercial bills and treasury bills for 1900—98.

For Table 5, the inflation rates are computed using a price index from January to December

of each year. Until 1926, the price index is the PPI; afterwards, the CPI index from Ibbotson

Associates (2000).

For Table 6, the aggregate equity index is from Global Financial Data, further described

above. Inflation is based on the CPI, given by Global Financial Data. The Bank of England

30



publishes estimates of nominal and real term structures for forward rates and yields. We use the

series corresponding to the Svensson method, because these are available for the whole sample

period, 1982—2000. See, http://www.bankofengland.co.uk/ and Anderson and Sleath (1999) for

details.

Appendix C: Small Sample Bias
We derive here an estimate of the size of the small sample bias in our estimates in Table 1.

For notational convenience, define

a

b
≡

E
h
log Rt+1

Rt+1,1

i
− E [ht (∞)]

E
h
log Rt+1

Rt+1,1

i
+ J (1/Rt+1,1)

.

In Table 1, we estimate this ratio as the ratio of the estimates ba/bb ≡ f ³ba, bb´. Using a second-order
Taylor series approximation around the population values and considering that ba is an unbiased
estimator of a, we can write

E
·babb
¸
' a

b
+
·µ
1

b2

¶µ
a

b
var

³bb´− cov ³ba,bb´¶¸+ ·
− a
b2
E
³bb− b´¸

' a

b
+ bias1 + bias2.

We estimate bias1 directly from the point estimates and the variance-covariance matrix of the

underlying sample means. We estimate bias2 by
1
2
â
b̂2
1
ĉ2
V ar (ĉ), with ĉ the sample mean of 1/Rt,t+1.

For forward rates, we estimate the size of the overall bias, bias1+bias2, as [−0.004, 0.0073,−0.0012]
for the three maturities in panel A of Table 1, where a negative number means that our es-

timate should be increased by that amount. Corresponding values for Panel B,C, and D are

[0.006, 0.0132, 0.0484], [−0.0072,−0.0079,−0.0115], and [−0.0132,−0.0163,−0.0207].
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Table 1
Size of Permanent Component Based on Aggregate Equity and Zero-Coupon Bonds

(1) (2) (3) (4) (5) (6)
Maturity Equity Term J(1/R1) Size of    (1)�(2) P[(5) < 0]

Premium Premium Adjustment Permanent
for volatility Component  E[log(R/R1)]

E[log(R/R1)] E[log(Rk/R1)] of short rate J(P)/J -E[log(Rk/R1)]

A. Forward Rates   E[f(k)] Holding Period is 1 Year

25 years 0.0664 -0.0004 0.0005 0.9996 0.0669 0.0003
(0.0182) (0.0049) (0.0002) (0.0710) (0.0195)

29 years -0.0040 1.0520 0.0704 0.0033
(0.0070) (0.1053) (0.0259)

B. Holding Returns   E[h(k)] Holding Period is 1 Year

25 years 0.0664 -0.0083 0.0005 1.1164 0.0747 0.0124
(0.0182) (0.0257) (0.0002) (0.3928) (0.0332)

29 years -0.0199 1.2899 0.0863 0.0206
(0.0353) (0.5611) (0.0423)

C. Yields   E[y(k)] Holding Period is 1 Year

25 years 0.0664 0.0082 0.0005 0.8701 0.0582 0.0017
(0.0182) (0.0033) (0.0002) (0.0541) (0.0199)

29 years 0.0082 0.8706 0.0582 0.0055
(0.0036) (0.0610) (0.0229)

D. Yields   E[y(k)] Holding Period is 1 Month

25 years 0.0763 0.0174 0.0004 0.7673 0.0588  0.0028
(0.0190) (0.0031) (0.0001) (0.0717) (0.0212)

29 years 0.0168 0.7755 0.0595    0.0066
(0.0033) (0.0796) (0.0240)

For A., term premia (2) are given by one-year forward rates for each maturity minus one-year yields for each 
month. For B., term premia (2) are given by overlapping holding returns minus one-year yields for each month. 
For C., term premia (2) are given by yields for each maturity minus one-year yields for each month. For A., B., 
and C., equity excess returns are overlapping total returns on NYSE, Amex, and Nasdaq minus one year yields 
for each month. For D., short rates are monthly rates. Newey-West asymptotic standard errors using 36 lags 
are shown in parentheses. P values in (6) are based on asymptotic distributions. The data are monthly from 
1946:12 to 1999:12. See Appendix B for more details.                                                                                            



Table 2
Size of Permanent Component Based on Growth-Optimal Portfolios and 25-Year Zero-Coupon Bonds

(1) (2) (3) (4) (5) (6)
Growth Term J(1/R1) Size of    (1)-(2) P[(5) < 0]
Optimal Premium Adjustment Permanent

for volatility Component  E[log(R/R1)]
E[log(R/R1)] E[log(Rk/R1)] of short rate J(P)/J -E[log(Rk/R1)]

A. Market Portfolio

One-year holding period
Forward rates 0.0664 -0.0004 0.0005 0.9996 0.0681 0.0003

(0.0182) (0.0049) (0.0002) (0.0710) (0.0195)

Holding return -0.0083 1.1164 0.0759 0.0124
(0.0257) (0.3928) (0.0326)

Yields 0.0082 0.8701 0.0595 0.0017
(0.0033) (0.0541) (0.0198)

One-month holding period
Yields 0.0763 0.0174 0.0004 0.7673 0.0601 0.0028

(0.0190) (0.0031) (0.0001) (0.0717) (0.0212)

B. Growth-Optimal Leveraged Market Portfolio, (Portfolio weight: 3.47 for monthly holding period, 2.14 for yearly)

One-year holding period
Forward rates 0.1095 -0.0004 0.0005 0.9998 0.11 0.01

(0.0486) (0.0049) (0.0002) (0.0431) (0.0473)

Holding return -0.0083 1.0708 0.1178 0.0163
(0.0257) (0.2435) (0.0551)

Yields 0.0082 0.9210 0.1013 0.0169
(0.0033) (0.0386) (0.0477)

One-month holding period
Yields 0.1689 0.0174 0.0004 0.8946 0.1515 0.0315

(0.0818) (0.0031) (0.0002) (0.0518) (0.0814)

C. Growth-Optimal Portfolio Based on the 10 CRSP Size-Decile Portfolios

One-year holding period
Forward rates 0.1692 -0.0004 0.0005 0.9999 0.1697 0.0006

(0.0528) (0.0049) (0.0002) (0.028) (0.0525)

Holding return -0.0083 1.0459 0.1775 0.0021
(0.0257) (0.1551) (0.0621)

Yields 0.0082 0.9488 0.161 0.0009
(0.0033) (0.0202) (0.0518)

One-month holding period
Yields 0.2251 0.0174 0.0004 0.9209 0.2076 0.0086

(0.0876) (0.0031) (0.0002) (0.0318) (0.0872)



Table 3
Size of Permanent Component Based on Aggregate Equity and Coupon Bonds

(1) (3) (4) (5)
E[logR/R1] E[y] E[h] J(1/R1) J(P)/J (1)-(2) P[(5) < 0]
Equity Adjustment Size of Permanent
Premium Component

US 1872-1999 0.0494 0.0034 0.0003 0.9265 0.0461 0.0003
(0.0142) (0.0028) (0.0001) (0.054) (0.0136)

0.0043 0.9077 0.0452 0.0006
(0.0064) (0.1235) (0.0139)

1926-99 0.0652 0.014 0.0005 0.7792 0.0511 0.0049
(0.0202) (0.0023) (0.0001) (0.0691) (0.0198)

0.0136 0.7855 0.0516 0.0061
(0.0101) (0.1544) (0.0206)

1946-99 0.0715 0.0122 0.0004 0.8245 0.0593 0.0007
(0.0193) (0.0025) (0.0001) (0.0462) (0.0185)

0.006 0.9113 0.0656 0.0004
(0.0129) (0.1728) (0.0196)

(1) (3) (4) (5)
E[logR/R1] E[y] E[h] J(1/R1) J(P)/J (1)-(2) P[(5) < 0]
Equity Adjustment Size of Permanent
Premium Component

UK 1801-1998 0.0239 0.0002 0.0003 0.9781 0.0237 0.0014
(0.0083) (0.0020) (0.0001) (0.0808) (0.0079)

0.0036 0.8361 0.0202 0.0053
(0.0058) (0.2228) (0.0079)

1926-98 0.0550 0.0111 0.0008 0.7870 0.0439 0.0070
(0.0173) 0.0031 (0.0002) (0.0899) (0.0179)

0.0131 0.7516 0.0419 0.0091
0.0130 (0.2189) (0.0177)

1946-98 0.0604 0.0092 0.0007 0.8370 0.0511 0.0074
(0.0198) (0.0038) (0.0002) (0.0904) (0.0210)

0.0018 0.9583 0.0585 0.0006
(0.0143) (0.2289) (0.0181)

(1) Average annual log return on equity minus average short rate for the year.
(2) Average yield on long-term government coupon bond minus average short rate for the year.
(3) Average annual holding period return on long-term government coupon bond minus average short rate for the year.
Newey-West asymptotic standard errors with 5 lags are shown in parentheses.  See Appendix B for more details.

Term
Premium

Term 
Premium

(2)

(2)



Table 4
Required Persistence for Bonds with Finite Maturities

Maturity
(years) 0 0.50% 1% 1.50%

10 1.0000 0.9986 0.9972 0.9957
20 1.0000 0.9993 0.9987 0.9980
30 1.0000 0.9996 0.9991 0.9987

Table 5
The Size of the Permanent Component due to Inflation

1947-99 AR(1) AR(2) σ2 Size of permanent component

AR1 0.66 0.0005 0.0021 (0.0009)
AR2 0.87 -0.24 0.0004 0.0015 (0.0006)
(1/2k) var(log Pt+k/Pt) k=20 0.0043 (0.0031)

k=30 0.0030 (0.0027)

 J( Pt+k/Pt) / var(log Pt+k/Pt) (k=20) 0.46
(k=30) 0.45

1870-1999 AR(1) AR(2) σ2 Size of permanent component

AR1 0.28 0.0052 0.0049 (0.0013)
AR2 0.27 0.00 0.0052 0.0050 (0.0006)
(1/2k) var(log Pt+k/Pt) k=20 0.0077 (0.0035)

k=30 0.0067 (0.0038)

 J( Pt+k/Pt) / var(log Pt+k/Pt) (k=20) 0.47
(k=30) 0.48

For the AR(1) and AR(2) cases, the size of the permanent component is computed as one-half of the 
spectral density at frequency zero. The numbers in parentheses are standard errors obtained through 
Monte Carlo simulations. For (1/2k) var(log Pt+k/Pt ), we have used the methods proposed by Cochrane 
(1988) for small sample corrections and standard errors. See our discussion in the text for more details.

Term spread



Table 6
Inflation-Indexed Bonds and the Size of the Permanent Component of Pricing Kernels, U.K. 1982-99

(1) (3) (4) (6)
(1)-(2) (1)-(4)-(5)

Size of Size of
Maturity Equity Forward Yield Permanent Inflation Forward Yield Permanent
years Component Rate Component

E[log(R)] E[log(F)] E[log(Y)] J(P) E[log(π)] E[log(F)] E[log(Y)] J(P)

20 0.1706 0.0781 0.0924 0.0422 0.0343 0.0941
(0.0197) (0.0038) (0.0206) (0.0063) (0.0022) (0.0229)

0.0836 0.0870 0.0348 0.0936
(0.0053) (0.0193) (0.0017) (0.0223)

25 0.0762 0.0944 0.0342 0.0943
(0.0040) (0.0212) (0.0023) (0.0230)

0.0815 0.089 0.0347 0.0937
(0.0046) (0.0200) (0.0018) (0.0224)

(2)

Nominal Kernel Real Kernel

(5)

Real and nominal forward rates and yields are from the Bank of England. Stock returns and inflation rates are from 
Global Financial Data. Asymptotic standard errors, given in parenthesis, are computed with the Newey-West method 
with 3 years of lags and leads.
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Figure 1                                                 Average Forward Rates in Excess of One-Year Rate 
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Average Holding Returns on Zero-Coupon Bonds in Excess of One-Year Rate
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maturity, in years

U.S., 1946:12 - 1999:12. Bands showing 1 asymptotic standard error. 
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Figure 3 

Bands showing 1 asymptotic standard error 


