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Portfolio and Consumption Decisions under
Mean-Reverting Returns: An Exact Solution for
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Abstract

This paper solves, in closed form, the optimal portfolio choice problem for an investor with
utility over consumption under mean-reverting returns. Previous solutions either require
approximations, numerical methods, or the assumption that the investor does not consume
over his lifetime. This paper breaks the impasse by assuming that markets are complete.
The solution leads to a new understanding of hedging demand and of the behavior of the
approximate log-linear solution. The portfolio allocation takes the form of a weighted aver-
age and is shown to be analogous to duration for coupon bonds. Through this analogy, the
notion of investment horizon is extended to that of an investor who consumes at multiple
points in time.

I. Introduction

Recent empirical work demonstrates that stock returns are predictable by
scaled price measures. For example, Campbell and Shiller (1988) and Fama and
French (1989) demonstrate that the dividend-price ratio predicts excess returns on
the market. There is related evidence that stock returns exhibit mean reversion.
Poterba and Summers (1988) demonstrate that the variance of stock returns is
reduced at longer horizons.

What are the consequences of predictability in returns for portfolio choice?
A recent literature, beginning with Brennan, Schwartz, and Lagnado (1997), Camp-
bell and Viceira (1999), and Kim and Omberg (1996), analyzes the consequences
of this empirical fact for financial decisions. Barberis (2000) generalizes the set-
up to account for parameter uncertainty, while Balduzzi and Lynch (1999) ac-
count for transaction costs. Brandt (1999) derives a portfolio rule that is robust
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to distributional assumptions. Xia (2001) documents the effect of learning about
predictability.

These papers, with the exception of Campbell and Viceira (1999) and Kim
and Omberg (1996) solve the investor’s problem numerically. Campbell and Vi-
ceira assume an infinitely-lived investor, and derive an approximate analytical
solution. Kim and Omberg (1996) derive an exact solution by specializing the
problem to the case where the investor cannot consume over his lifetime, and has
utility over terminal wealth only.

This paper departs from the literature above by deriving an exact, closed-
form solution for portfolio weights when the investor has utility over consump-
tion. To solve the problem in closed form, it is necessary to assume that the
predictor variable and the stock return are perfectly negatively correlated. In this
setting, the perfect negative correlation implies that markets are complete. In the
case of return predictability, perfect negative correlation is realistic: Empirical
studies have found this correlation to be close to �1. Moreover, even perfectly
correlated continuous-time processes are imperfectly correlated when measured
in discrete time. Thus, assuming perfect negative correlation lends insight into
the problem investors actually face.

Assuming utility over consumption allows the portfolio choice problem to
be connected to the decisions of investors in a way that assuming terminal wealth
does not. A key property emerging from the literature on predictability and portfo-
lio choice is that for levels of risk aversion exceeding those implied by logarithmic
utility, the allocation to stocks increases with the investment horizon. This result
has received much attention because it redeems the popular, but much criticized
advice of investment professionals. While this result is well understood for the
case of terminal wealth, it is not clear how to interpret it for the case of utility over
consumption. For example, when an investor is saving not only for retirement, but
for education and a house, previous results cannot be applied.

Intuitively, one would think that the more consumption is weighted toward
the present, the more the investor behaves as if he has a short horizon. One might
also think of the investor as saving, for instance, for three different future events,
holding a separate portfolio for each one. The analytical results in this paper make
this intuition precise, and at the same time, demonstrate its limits.

The solution has a novel economic interpretation. The portfolio allocation
is shown to take the form of a weighted average, where the averaged terms are
stock allocations for investors with utility over terminal wealth and the weights
depend on the present discounted value of consumption. This formula is shown
to be analogous to the duration formula for coupon bonds, which consists of a
weighted average of the duration of the underlying zeros. The analogy to coupon
bonds is used to generalize the notion of horizon to the investor with utility over
consumption. Besides the central question of investment horizon, the formula also
has implications for the sign and the magnitude of hedging demand, the conver-
gence of the solution at long horizons, and discrepancies between the approximate
solution of Campbell and Viceira (1999) and the actual solution.

This paper is related to recent work by Liu (1999). Independently and con-
currently, Liu shows that the investor’s problem can be characterized by a series
of ordinary differential equations under several sets of assumptions. This paper
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considers a case to which Liu’s assumptions do not apply. Liu also provides an
economic analysis, but focuses on the case of an investor with utility over terminal
wealth rather than consumption.

The organization of this paper is as follows. Section II defines the optimiza-
tion problem, both for utility over terminal wealth and over consumption, and lays
out the assumptions on asset returns. Section III solves the portfolio choice prob-
lem using the martingale method of Cox and Huang (1989), Karatzas, Lehoczky,
and Shreve (1987), and Pliska (1986). Section IV gives an economic interpreta-
tion of the solution, while Section V discusses how the solution might be extended
to the case of incomplete markets.

II. The Consumption and Portfolio Choice Problem under
Mean-Reverting Returns

This section lays out the assumptions on asset returns and states the opti-
mization problem of interest.

Let wt denote the standard, one-dimensional Brownian motion. Assume that
the price S of the risky security follows the process

dSt

St
= �t dt + � dwt;(1)

and let

Xt =
�t � rt

�
;

where rt is the riskless interest rate. The process Xt determines the price of risk
in the economy, or the reward, in terms of expected return, of taking on a unit of
risk. Assume that Xt follows an Ornstein-Uhlenbeck process,

dXt = ��X (Xt � X̄) dt� �Xdwt:(2)

The volatilities � and �X are assumed to be constant and strictly positive, and
�X is assumed to be greater than or equal to zero. Note that the stock price and
the state variable (Xt) are perfectly negatively correlated. To isolate the effects
of time variation in expected returns, the risk-free rate is assumed to be constant
and equal to r � 0, but this assumption can be relaxed. These assumptions are
like those in Kim and Omberg (1996), except that Kim and Omberg allow for im-
perfect correlation, and thus incomplete markets. In the empirical applications of
Campbell and Viceira (1999) and Barberis (2000), X t is taken to be the dividend-
price ratio. The model is meant to capture the fact that the dividend-price ratio
is strongly negatively correlated with contemporaneous returns (Barberis finds a
correlation of�0.93), but is positively correlated with future returns. Appendix C
shows these assumptions imply that stock returns are mean reverting for realistic
parameter values.

Merton (1971) considers a model that is analytically similar to the above, but
he assumes that Xt is perfectly positively correlated with St, so the interpretation
is quite different. Merton also solves for consumption and portfolio choice, but
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under the assumption that utility is exponential and the time horizon infinite. In
line with the more recent literature described in the Introduction, in what follows,
the agent is assumed to have power utility and a finite horizon. Section V shows
the results can be extended to the infinite horizon case by taking limits.

Two optimization problems are considered. In the first, the investor is as-
sumed to care only about wealth at some finite horizon T. At each time, the
investor allocates wealth between the risky asset (a stock) and a riskless bond.
It is assumed that there are no transaction costs, and that continuous trading is
possible. Let �t denote the allocation to the risky asset. The investor solves

supE

"
W1�

T

1� 

#
(3)

s.t.
dWt

Wt
= (�t(�t � r) + r) dt + �t� dwt:(4)

In the second optimization problem, the investor cares about consumption
between now and time T. At each time, besides allocating wealth between assets,
the investor also decides what proportion of wealth to consume. The investor
solves

supE

"Z T

0
e��t c1�

t

1� 
dt

#
(5)

s.t. dWt = (�t(�t � r) + r)Wt dt + �t�Wt dwt � ct dt;(6)

WT � 0:

The first problem is that considered by Kim and Omberg (1996) and Bren-
nan, Schwartz, and Lagnado (1997). The second problem is a continuous-time,
finite horizon version of Campbell and Viceira (1999). In both cases,  is assumed
to be greater than one, i.e., investors have greater risk aversion than that implied
by log utility. This assumption insures that a solution to these problems exists,
and, as the literature on the equity premium puzzle shows (see, e.g., Mehra and
Prescott (1985)), it is the empirically relevant case.

The precise form of (5) is assumed for notational simplicity. As will be
clear in the derivation that follows, introducing a bequest function involves no
additional complications.

III. An Exact Solution

The link between (3) and (5) is by no means apparent. In the first problem,
the investor makes an allocation decision, subject to a linear budget constraint.
This does not imply that the first problem is easy to solve. But it is less compli-
cated than the second, in which the investor has two decisions to make at each
time, and the budget constraint is nonlinear.

Previous literature only reinforces the differences among these problems.
The papers that assume terminal wealth (e.g., Brennan, Schwartz, and Lagnado
(1997), Kim and Omberg (1996)) do not mention intermediate consumption, much
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less hint at how their results might be generalized. Campbell and Viceira (1999)
derive an approximate solution for the investor with utility over consumption.
They discuss in detail a special case for which their solution is exact, namely the
case where the investor has unit elasticity of intertemporal substitution. But this
special case is much less rich than the one considered here because the ratio of
consumption to wealth is non-stochastic. That is, the investor behaves myopically
as far as the consumption decision is concerned.1 More recently, Xia (2001) nu-
merically compares the allocation for utility over terminal wealth to that for utility
over consumption. The analytical results below confirm these results.

The assumption of complete markets turns out to be exactly what is needed
to make the consumption problem tractable and, at the same time, relate it to the
terminal wealth problem. This result is most easily seen using the martingale
method of Cox and Huang (1989), Karatzas, Lehoczky, and Shreve (1987), and
Pliska (1986), and is laid out in Section III.A. Section III.B solves for the in-
vestor’s wealth, as well as the consumption-wealth ratio; Section III.D uses the
results of the previous two to derive the formula for the optimal allocation.

A. The Martingale Method

The martingale method relies on the existence of a state price density � t with
the convenient property that

Et[�sSs] = �tSt s > t:

The process �t can be interpreted as a system of Arrow-Debreu prices. That is, the
value of �t in each state gives the price per unit probability of a dollar in that state.
The price of the asset is given by the sum of its payoffs in each state, multiplied
by the price of a dollar in that state, times the probability of the state occurring.

No arbitrage and market completeness imply that � t exists and is unique. In
addition, under technical assumptions on the parameters, � t can be derived from
the price processes (see Harrison and Kreps (1979) and the textbook treatment of
Duffie (1996)). Novikov’s condition suffices,

E

�
exp

�
1
2

Z T

0
X2

t dt

��
< 1:(7)

When (7) applies, �t is given by

d�t

�t
= �r dt� Xt dwt:

Using the state price density �, the dynamic optimization problem of Mer-
ton (1971) can be recast as a static optimization problem. In particular, budget
constraints (4) and (6) are equivalent to the static budget constraints,

E [WT�T ] = W0(8)

1Campbell and Viceira (1999) assume the utility function of Epstein and Zin (1989), a generaliza-
tion of power utility that allows the elasticity of intertemporal substitution to be separated from risk
aversion.
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and

E

�Z T

0
ct�t dt

�
= W0;(9)

respectively. Equations (8) and (9) express the idea that consumption in different
states can be regarded as separate goods. These equations state that the amount
the investor allocates to consumption in each state multiplied by the price of con-
sumption in that state must equal his total wealth. Proofs of this well-known result
can be found in Cox and Huang (1991) and Karatzas and Shreve (1998).

The investor’s optimal policies follow from setting the marginal utility of
consumption (or terminal wealth) equal to marginal cost, as determined by the
static budget constraints above. Strictly speaking, this is true as long as the solu-
tions can first be shown to exist. This is done in Appendix A. For (3),

W�

T = (k�T )
�

1
 :(10)

For (5),

c�t = (l�t)
�

1
 e�

1

�t
;(11)

and terminal wealth is zero. The constants k and l are Lagrange multipliers deter-
mined by substituting the optimal policy into the appropriate static budget con-
straint.

The portfolio policy is derived from the need for wealth to finance the con-
sumption plan (11). Because markets are complete, any contingent payoff (satis-
fying certain regularity conditions) can be financed by dynamically trading in the
existing assets, in this case a stock and a riskless bond. The first step in deriving
portfolio policies is to derive the process for the investor’s wealth implied by (11).
The value of wealth at time t is as follows,

Wt = �
�1
t Et

�Z T

t
�sc

�

s ds

�
:(12)

Equation (12) can also be interpreted as the present discounted value of future
consumption, where the discounting is accomplished by the state price density.

Define a new variable,

Zt = (l�t)
�1
:(13)

By Ito’s Lemma,

dZt

Zt
=

�
r + X2

t

�
dt + Xt dwt:(14)

To solve expectation (12), it is convenient to express W t as a function of the vari-
ables Xt and Zt. Because Xt and Zt together form a strong Markov process, X t

and Zt are all the investor needs to know to evaluate moments of Z s at time t.
Therefore, define

G(Zt;Xt; t) � Wt(15)

= ZtE

�Z T

t
Z

1

�1

s e�
�


s ds

����Xt; Zt

�
:(16)
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The second equation follows from substituting (13) and (11) into (12).
Now consider the investor with utility over terminal wealth. From (10), up

to a constant, wealth is equal to2

F(Zt;Xt; t ; T) = ZtEt

�
Z

1

�1

T

����Xt; Zt

�
:(17)

Clearly there is nothing special about T; one could equally imagine an investor
with utility over wealth at time s < T. For this investor, the wealth process equals

F(Zt;Xt; t ; s) = ZtEt

�
Z

1

�1

s

����Xt; Zt

�
:

When the expectation is brought inside the integral sign in (12), W t becomes a
sum of expressions of the form (17), adjusted to take into account the rate of time
preference,

G(Zt;XT ; t) =

Z T

t
F (Zt;Xt; t ; s) e�

�


s ds:(18)

The terms inside the integral in (18) equal the value of consumption at each
point in time. Wealth is like a bond that pays consumption as its coupon; the total
value of wealth is simply the sum over all future consumption values.

B. Optimal Wealth and the Consumption-Wealth Ratio

Determining the precise functional form of F and G means solving the ex-
pectation (16). In the case of mean-reverting returns, the expectation can be
solved in closed form.

As the investor’s wealth is a tradeable asset it must obey a no-arbitrage con-
dition. Namely, the instantaneous expected return in excess of the risk-free rate
must equal the market price of risk times the instantaneous variance. A differential
equation analogous to that used to price bonds (and derived in the same manner,
see e.g., Cox, Ingersoll, and Ross (1985)) appears here. From Ito’s lemma, the
instantaneous expected return on the investor’s wealth equals

LG +
@G
@t

+ Z
1


t e�
�


t
;(19)

where

LG =
1
2
@

2G
@X2

�
2
X +

1
2
@

2G
@Z2

Z2X2 �
@

2G
@Z@X

ZX�X

+
@G
@X

(��X(X � X̄)) +
@G
@Z

Z(r + X2
):

2Assuming both investors start with the same initial wealth W0, the constant is given by

�
l

k

� 1


=
E
R T

0 �
1� 1



t e�
�


t dt

E

�
�

1� 1


T

� :

Alternatively, initial wealth could be chosen for each investor so that the constant equals one.
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The last term in (19) comes from the consumption coupon that is payed each
period. No arbitrage requires that

LG +
@G
@t

+ Z
1


t e�
�


t � rG =

�
@G
@Z

ZtXt �
@G
@X

�X

�
Xt:(20)

G also obeys the boundary condition,

G(ZT ;XT ; T) = 0:

This partial differential equation is solved by first “guessing” a general form
for the solution. Equation (18) suggests that G can be written as an integral of
functions F. Because F(Zt;Xt; t ; t) = Z(1=)

t , it is reasonable to guess that F
equals Z(1=)

t multiplied by a function of Xt. Finally, bond prices under an affine
term structure can be expressed as exponentials of the underlying state variables.
Following the bond pricing literature, therefore, a reasonable guess for the form
of a solution for each “coupon” F is the exponential of a polynomial,

F(Zt;Xt; t ; T) = Z
1


t e
�


(T�t)H(Xt; T � t);

where

H(Xt; �) � exp

�
1


�
A1(�)X

2
t =2 + A2(�)Xt + A3(�)

��
:

From the relationship between G and F described in (18), it is clear that

G(Zt;Xt; t) = Z
1


t e�
�


t
Z T�t

0
H(Xt; �) d�:(21)

Substituting (21) back into (20) and matching coefficients on X 2, X, and the
constant term leads to a system of three differential equations in A 1, A2, and A3.
The method for solving these equations is standard, and is discussed in Kim and
Omberg (1996). The equation for A 1 is known as a Riccatti equation and can be
rewritten as Z

�

0

dA1

b1A2
1 + b2A1 + b3

= �;

where

b1 =
1� 


;(22)

b2 = 2

�
 � 1


�X � �X

�
;(23)

b3 =
1

�

2
X:(24)

The solution for the integral can be found in integration tables. Appendix B shows
that when  > 1, b2

2 � 4b1b3 > 0. Defining

� =

q
b2

2 � 4b1b3;
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the solution is given by

A1(�) =
1� 



2(1� e��� )
2� � (b2 + �)(1� e���)

;(25)

A2(�) =
1� 



4�XX̄(1� e���=2
)

2

� [2� � (b2 + �)(1� e���)]
:(26)

The explicit solution for A3 is more complicated and can be found by integrating
a polynomial in A1 and A2,

A3(�) =

Z �

0

1
2

1� 


A2

2 +
1
2
�

2
XA1 + �XX̄A2 + (1� )r � �:(27)

As mentioned earlier, very similar equations arise when studying term struc-
ture models (e.g., Cox, Ingersoll, and Ross (1985) and Duffie and Kan (1996)) and
in the portfolio choice model of Kim and Omberg (1996). Recently, Liu (1999)
and Schroder and Skiadas (1999) examine conditions under which the portfolio
choice problem reduces to solving a system of ordinary differential equations.
Appendix B demonstrates that G has the required derivatives for the equation for
wealth (15) and the portfolio rule (34) to be valid.

While the investor’s wealth depends on the variable Zt, the ratio of wealth to
consumption does not,

Wt

ct
=

Z T�t

0
exp

�
1


�
A1(�)X

2
t =2 + A2(�)Xt + A3(�)

��
d�:(28)

The analysis above allows the consumption-wealth ratio to be expressed in closed
form, using parameters that are all external to the model. This ratio provides a
mechanism to examine how investors trade off between consumption and savings
as a function of the state variable. The consumption vs. savings decision is at
least as important an aspect of the multi-period problem as the portfolio choice
decision. Assuming utility over terminal wealth captures only the second aspect
of the problem. Assuming utility over consumption captures both.

C. Indirect Utility

While the indirect utility function is not required as an intermediate step in
the martingale method, it is nonetheless an interesting quantity to compute. The
indirect utility function can be computed directly using dynamic programming,
as discussed in Section V. Alternatively, it can be derived from the results of the
previous section, as shown below.

Cox and Huang (1989) show that the indirect utility function J(W t;Xt; t) and
the function for wealth G(Zt;Xt; t) are related via the following formula,

@J
@W

=
1

G�1(Wt;Xt; t)
=

1
Zt
;(29)

where G�1 is defined implicitly by G�1
(G(Zt;Xt; t);Xt; t) = Zt. From (21) and

Wt = G(Zt;Xt; t), it follows that

@J
@W

= W�

t e��t

�Z T�t

0
H(Xt; �)

�

:
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Finally, the boundary condition J(WT ;XT ; T) = W1�
T =(1� ) implies

J(Wt;Xt; t) =
W1�

t

1� 
e��t

�Z T�t

0
H(Xt; �)

�

:(30)

The indirect utility function is an alternative way of summarizing future
investment opportunities. As (30) shows, the indirect utility function and the
wealth-consumption ratio are closely related: in fact, the term in the indirect util-
ity function involving Xt is simply the wealth-consumption ratio raised to the
power .

How is indirect utility assuming consumption related to indirect utility as-
suming terminal wealth? The indirect utility function (30) can be rewritten as

J(Wt;Xt; t) =
W1�

t

1� 
e��t(31)

�
�Z T�t

0

�
exp

�
A1(�)X

2
t =2 + A2(�)Xt + A3(�)

	� 1
 d�

�

:

By analogous reasoning, the indirect utility assuming terminal wealth is given by

W1�
t

1� 
exp

�
A1(�)X

2
t =2 + A2(�)Xt + A3(�)

	
:(32)

In contrast to the equation for wealth, indirect utility for consumption is not a
simple sum of indirect utility for terminal wealth. Rather, for  > 1, a concave
transformation is applied to terms of the form (32). This concave transformation
penalizes extreme values and rewards consistency.

D. Optimal Portfolio Allocation

Following the martingale method, the optimal portfolio rule is derived from
(21), the equation for optimal wealth. Alternatively, dynamic programming could
be used with the investor’s indirect utility (30). While the methods produce iden-
tical results, the former is more instructive.

For the portfolio rule to finance the consumption plan, changes in the port-
folio value must correspond one-to-one with changes in the value of future con-
sumption. That is, the diffusion terms must be equal. This consideration deter-
mines �, the allocation to the risky asset,

�tG� =
@G
@Z

ZtXt �
@G
@X

�X :(33)

The right-hand side follows from applying Ito’s lemma to the function G, and
from (2) and (14). The left-hand side is the dollar amount invested in the risky
asset multiplied by the volatility.

Rearranging,

�t =

�
@G
@Z

Z
G

�
Xt

�
�
�
@G
@X

1
G

�
�X

�
:(34)
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It follows immediately from (21) that (@G=@Z)(Z=G) = 1=. Moreover, X t by
definition equals the Sharpe ratio (� t � r)=�. Therefore, the first term is the
myopic allocation as defined in Merton (1973), namely the allocation that an in-
vestor would choose if he ignored changes in the investment opportunity set. This
can also be seen directly by setting �X to zero: when �X is zero, the investment
opportunity set is constant, and the second term disappears.

The second term, hedging demand, is more complicated and interesting.
Substituting in for G from (21) leads to the equation,

�t =
1


�
�t � r
�2

�
�

�X

�

R T�t
0 H(Xt; �)(A1(�)Xt + A2(�)) d�R T�t

0 H(Xt; �) d�
:(35)

The derivation of the investor’s allocation under terminal wealth is similar and
easier. The allocation under terminal wealth equals

1


�
�t � r
�2

�
�

�X

�
(A1(T � t)Xt + A2(T � t)) :(36)

Together, equations (28) and (35) solve the investor’s optimal consumption
and portfolio choice problem. The economic consequences of these equations are
explored in Section IV.

IV. Discussion

This section derives consequences of (35) and provides economic insight
into the solution. Section IV.A discusses how (35) can be expressed as a weighted
average and the implications of this form for the decision making of investors.
Section IV.B analyzes the sign of the hedging demand term and links it to the
behavior of the consumption-wealth ratio. Section IV.C compares the solutions
for terminal wealth and for consumption, and answers the question posed in the
Introduction: How is horizon to be interpreted in the case of utility over consump-
tion? In addition, the convergence of the solution at long horizons is established.
Section IV.D uses the formula for the portfolio choice rule to understand where
and why the log-linear solution goes wrong.

A. A Weighted Average Formula

At first glance, the difference between the allocation under terminal wealth
and under consumption (35) appears large indeed. While myopic demand is the
same in both cases, hedging demand is a linear function of X t under terminal
wealth, but a much more complicated, nonlinear function under consumption.
However, a closer look reveals an intriguing relation. Hedging demand in (35)
take the form of a weighted average. The functions that are averaged equal hedg-
ing demand in (36) for different values of the horizon. The weights depend on the
functions H.
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To better understand this result, it is helpful to rewrite the portfolio allocation
for the investor with utility over consumption as

�t =

Z T�t

0

H(Xt; �)R T�t
0 H (Xt; �

0) d� 0
(37)

�
�

1


�
�t � r
�2

�
�

�X

�
(A1(�)Xt + A2(�))

�
d�:

Note that the myopic term is also a weighted average, except in this case all the
averaged terms are equal.

What does the function H represent? From (28), the ratio of wealth to con-
sumption equals

Wt

ct
=

Z T�t

0
H(Xt; �) d�:(38)

Thus H is the value, scaled by today’s consumption, of consumption in � periods.
The weights in (37) correspond to the value of future consumption in each period.

More will be said about the economics behind (37) in Section IV.C. How-
ever, an immediate economic implication of (37) and (38) is that the investor with
utility over consumption allocates wealth as if saving for each consumption event
separately. To each future consumption event, the investor applies the terminal
wealth analysis. Thus, it is correct to think of the investor as holding separate
accounts for retirement and a house. The allocation in the overall portfolio equals
an average of the allocation in the “retirement” portfolio, the “house” portfolio,
etc. The average is weighted by the amount the investor has saved in each of the
portfolios.

B. Hedging Demand and the Consumption-Wealth Ratio

Before discussing horizon effects, it is necessary to establish whether mean
reversion increases or decreases the demand for stocks, relative to the case of
constant investment opportunities. As discussed in Section III.D, the first term in
the optimal allocation (35) gives the myopic demand, or the percent the investor
would allocate to stocks if investment opportunities were constant. The key term
in analyzing this question is therefore the second, hedging demand. Campbell
and Viceira (1999) and Balduzzi and Lynch (1999) demonstrate, for particular
parameter values, that hedging demand under utility for consumption is positive
and quite substantial. However, there is no general result available, even for the
approximate analytical solution of Campbell and Viceira (1999).

While (35) may first appear complicated, it can be used to prove a result
on hedging demand that holds for any set of parameter values, such that X t is
perfectly negatively correlated with stock returns.

Property 1. For  > 1, mean reversion increases the demand for stocks when-
ever the risk premium, �t � r, is greater than zero. Equivalently, when  > 1 and
the risk premium is positive, hedging demand is positive.
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Appendix B shows that A1(�) and A2(�) are negative when  > 1. Property 1
follows from this result, from the equation for the optimal allocation (35), and
from the fact that Xt has the same sign as the risk premium.

While a similar result holds in the terminal wealth case, it is more difficult to
interpret in economic terms. The intuition behind hedging demand, first given by
Merton (1973) and frequently repeated, is that the additional demand for stocks
is used to hedge changes in the investment opportunity set. More precisely, an
increase in Xt affects current consumption relative to wealth in two directions. By
increasing investment opportunities, an increase in Xt allows the investor to afford
more consumption. This is known as the income effect, and it causes consumption
to rise relative to current wealth. But there is also a substitution effect: putting
money aside is more powerful, the greater the investment opportunities. When
 > 1, the income effect dominates. Namely, the consumption-wealth ratio rises
when investment opportunities are high and falls when investment opportunities
are low. To keep consumption stable, the investor must choose his portfolio to
have more wealth in states with poorer investment opportunities. Finally, because
stocks pay off when investment opportunities are poor, the investor with  > 1
will hold more of them relative to the myopic case.

This analysis ties hedging demand to the consumption-wealth ratio. When
hedging demand is positive, the consumption-wealth ratio must be increasing in
Xt; when it is negative, the ratio must be decreasing. This is what the next property
shows.

Property 2. The consumption-wealth ratio is increasing in X t when the risk pre-
mium is positive and  > 1.

The derivative of the ratio of wealth to consumption with respect to X t equals the
negative of hedging demand (see equation (34)). Thus, whenever hedging demand
is positive, the wealth-consumption ratio is falling in Xt and the consumption-
wealth ratio is rising in Xt.

Figures 1 and 2 plot hedging demand and the consumption-wealth ratio for
 = 10,  = 4,  = 1, and horizons T equal to 30, 10, and five years. The pa-
rameters for these plots are given in Table 1. Appendix D describes the details of
this calibration. The integrals in (28) and (35) are computed via 40-point Gauss-
Legendre quadrature. As Properties 1 and 2 state, the consumption-wealth ratio is
increasing when Xt > 0, and the hedging demand is also positive in this case. For
most values of Xt < 0, the consumption-wealth ratio is decreasing, and hedging
demand is negative. This makes sense: for Xt < 0, decreases in Xt represent an
increase in the investment opportunity set, because the investor can short stocks.
However, there is a region below zero for which hedging demand is positive and
the consumption-wealth ratio is decreasing. Kim and Omberg (1996) report a
similar result for utility over terminal wealth and offer an explanation based on
the asymmetry in the distribution for Xt. When Xt is below zero, it must pass
through zero to return to its long-run mean. In other words, for X t negative but
close to zero, increases may actually represent improvements in the investment
opportunity set.
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FIGURE 1

Hedging Demand for the Investor with Utility over Consumption

Hedging demand as a function of the Sharpe ratio Xt for risk aversion  = 10 (solid),  = 4 (dash),
and  = 1 (dots), and for horizons T = 30, T = 10, and T = 0 years. The vertical lines indicate X̄ �

(2�X )=
p

1 � (1 � �X )2. Parameter values are derived from discrete-time counterparts in Appendix D
and given in Table 1.

TABLE 1

Parameter Values

Rate of time preference � 0.0052
Risk-free rate r 0.0014
Volatility of stock prices � 0.0436
Volatility of Xt �X 0.0189
Mean reversion parameter �X 0.0226
Unconditional mean of Xt X̄ 0.0788

Parameters are calculated based on those in Barberis (2000) and Campbell and Viceira (1999). Ap-
pendix D describes the details of this calculation. All parameters are in monthly units.

Figure 2 shows that the consumption-wealth ratio is non-monotonic in .
The ratio for =10 lies between that for =4 and =1. As explained by Camp-
bell and Viceira (1999), this effect arises from the fact that  acts as both the
coefficient of relative risk aversion and the inverse of the elasticity of intertempo-
ral substitution. It is also interesting to observe, in Figure 1, the hedging demand
is still quite high, even at  = 10. While myopic demand declines at the rate of
1=, hedging demand remains high, even when risk aversion is large.

Hedging demand is also related to indirect utility. Merton (1971) shows that
�t is also characterized by

�t =
1


�
�t � r
�2

�
+

@
2J

@W@X

�
@

2J
@W2

�W

�
�1

�X

�
;

where J is the indirect utility function. It is straightforward to show that this equa-
tion, combined with (30) produces the same function for � as given by (35). Thus,
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FIGURE 2

The Consumption-Wealth Ratio

The consumption-wealth ratio as a function of the Sharpe ratio Xt for risk aversion  = 10 (solid),  = 4
(dash), and  = 1 (dots), and for horizons T = 30, 10, and 0 years. The vertical lines indicate X̄ �

(2�X )=
p

1 � (1 � �X )2. Parameter values are derived from discrete-time counterparts in Appendix D
and given in Table 1.

hedging demand can be interpreted as the investor’s attempts to hedge marginal
(indirect) utility of wealth. That is, the investor wants more wealth in states when
the marginal utility is higher. This interpretation is closely related to the one given
above: the states with high marginal utility are none other than those where the
consumption-wealth ratio is low.

C. What is the Meaning of the Investor’s Horizon?

This section addresses one of the central questions raised in the Introduction.
How should the investor’s horizon be interpreted when the investor has utility over
consumption?

The relation between the investment horizon and allocation is addressed by
Brennan, Schwartz, and Lagnado (1997), Barberis (2000), and Kim and Omberg
(1996). Kim and Omberg, whose approach is analytical, state the following result.

Property 3. For the investor with utility over terminal wealth and  > 1, the op-
timal allocation increases with the investment horizon as long as the risk premium
is positive (Kim and Omberg (1996)).

Appendix B shows that (@A1=@�) and (@A2=@�) have negative sign when  > 1.
Property 3 follows from this and the equation for the optimal allocation (35).

Property 3 has a nice ring to it; it states that investors with longer horizons
should invest more in stocks than investors with shorter horizons. This appears
to fit with the advice of investment professionals that allocation to stocks should
increase with the investor’s horizon.
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At closer inspection, however, Property 3 appears to be more of a mathemat-
ical curiosity than a useful tool for investors. Actual investors do not consume all
their wealth at a single date. Even assuming that the account in question is a re-
tirement account, the date of retirement is not an appropriate measure of horizon.
The horizon may in fact be much longer, and clearly should be determined by the
timing of consumption after the investor enters retirement. If the investor plans to
dip into savings for major expenditures before retirement, the answer may be still
more inaccurate.

Figure 3 quantitatively compares the allocation assuming utility over con-
sumption with the allocation assuming utility over terminal wealth. The alloca-
tion for consumption and T = 30 lies below the allocation for terminal wealth
and T = 10 as long as the risk premium is positive. The investor with utility over
consumption and T = 30 has, in effect, a horizon of less than 10. The allocation
for consumption is typically less than half of that for terminal wealth.

FIGURE 3

Allocation as a Function of the Sharpe Ratio

Optimal allocation as a function of the Sharpe ratio Xt for utility over consumption (circles) and over
terminal wealth, for horizons T = 30, 10, and 0 years. Risk aversion  = 10. The vertical lines indicate
X̄�(2�X )=

p
1 � (1 � �X )2. Parameter values are derived from discrete-time counterparts in Appendix

D and given in Table 1.

While the discrepancy between the solutions is greater, the greater the value
of T, it is still large for all but the very smallest values of T. Figure 4 plots the
allocation against the horizon for utility over consumption and terminal wealth,
and for X equal to its mean, and one unconditional standard deviation above and
below its long-term mean. Only for the very shortest horizons are the allocations
close at all.
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FIGURE 4

Allocation as a Function of Horizon

Optimal allocation as a function of horizon for utility over consumption (circles) and utility over terminal
wealth. Risk aversion  = 10. For the center plot, the Sharpe ratio X = X̄ . For the top and bottom plots,
X = X̄ + �X =

p
1 � (1 � �X )2 and X = X̄ � �X=

p
1 � (1 � �X )2. Parameter values are derived from

discrete-time counterparts in Appendix D and given in Table 1.

Clearly a more general notion of horizon is needed. Fortunately the analogy
to fixed income developed in Sections III.A and III.B provides just such a notion.
From (28), it follows that

Wt

ct
=

Z T�t

0
H(Xt; �) d�:

The investor’s wealth is analogous to a coupon bond that pays in units of
consumption. The value of wealth is simply the sum of the underlying “zeros,”
namely bonds that pay optimal consumption at each date. The natural measure of
horizon for bonds is duration, which equals the negative of the sensitivity of the
bond to changes in the interest rate. Here, the appropriate state variable is not the
interest rate, but Xt. The duration for wealth with respect to Xt is given by

�
@F
@X

1
F

= � (A1(�)Xt + A2(�))

in the case of terminal wealth and

�
@G
@X

1
G

= �

R T�t
0 H(Xt; �)(A1(�)Xt + A2(�)) d�R T�t

0 H(Xt; �) d�

in the case of consumption. Comparing with the portfolio allocation (35) demon-
strates the following.

Property 4. Hedging demand equals the duration of the investor’s consumption
stream with respect to Xt.



2/7/2002–coded–JFQA #37:1 Wachter Page 80

80 Journal of Financial and Quantitative Analysis

Property 3 and Figure 4 show that duration has the properties one would ex-
pect. Namely, the duration for the investor with terminal wealth increases mono-
tonically with the horizon. Moreover, the duration for the investor with utility
over consumption equals the weighted average of the duration of the underlying
zeros, namely the values of consumption at each future date.

Thus, the more consumption is weighted toward the present, the more the in-
vestor’s allocation is shrunk toward the myopic allocation, just like intermediate
coupons shrink the duration of a coupon-paying bond. 3 The further out consump-
tion goes, the higher the duration of the consumption stream and the greater the
allocation. Property 5 is a natural consequence of this analogy.

Property 5. For the investor with utility over consumption and  > 1, the opti-
mal allocation increases with the investment horizon as long as � t � r > 0 and
Xt is perfectly negatively correlated with St. Moreover, the solution always lies
below that for terminal wealth.

It is useful to prove the second statement first. Every element in the average
is less than the allocation to terminal wealth at T, and thus the whole average is
less. That is,

�A1(T � t) > �
R

H(Xt; �)A1(�) d�R
H(Xt; �) d�

;(39)

and the same for A2(�). To prove the first statement, note that the effect of
“adding” more consumption at the end of the horizon pulls up the overall average.
Formally, the derivative of �

R
H(Xt; �)A1(�)=

R
H(Xt; �) equals

�
H(Xt; T � t)R T�t

0 H(Xt; �) d�

�
A1(T � t)�

R
H(Xt; �)A1(�) d�R

H(Xt; �) d�

�
:

From (39), the derivative is always positive.

Finally, the question of whether the results extend to infinite horizons is ad-
dressed. The key question is whether the portfolio rule converges as the horizon
approaches infinity. Barberis (2000) notes this property in his numerical solution.
From Figures 1 and 2, it is evident that convergence also occurs in the model con-
sidered here. The plots for T = 30 appear to be closer to those for T = 10 than the
plots for T = 10 are to T = 5. Moreover, in Figure 4, convergence is noticeable
even at T = 10. While the numerical result of Barberis is strongly suggestive, it
cannot demonstrate that convergence is guaranteed at all relevant parameter val-
ues. Based on the closed-form solutions for the portfolio choice rule (35), it is
possible to demonstrate just such a result.

Property 6. As the investor’s lifetime approaches infinity, the allocation to stocks
converges to a finite limit.

3Because the myopic allocation is the same at all horizons, it does not affect the horizon analysis.
Therefore, all the statements in the paragraph above can be said to apply equally to the allocation
itself.
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The proof is contained in Appendix B. Besides its inherent interest, an addi-
tional benefit of this result is that it allows the exact solution (35) to be compared
to the approximate infinite-horizon solution of Campbell and Viceira. This is done
in the following section.

D. Nonlinearities in the Solution

Campbell and Viceira (1999) solve an infinite-horizon version of the in-
tertemporal consumption and portfolio choice problem by taking a log-linearized
approximation of the budget constraint. Like the allocation for terminal wealth,
(36), the allocation that Campbell and Viceira find is linear. In Campbell and
Viceira’s model, the linearity occurs as a direct result of the approximation; it is
“hard-wired” into the model.

The framework in this paper can be used to address the performance of the
log-linear approximation, and why it works well in some cases and not in others.
Figure 1 demonstrates that hedging demand (and therefore the overall allocation)
is close to a linear function near X̄. For large values of X, hedging demand appears
to flatten out. For these values, the allocation to stocks is actually less sensitive
to changes in the state variable than the analysis of Campbell and Viceira (1999)
would imply.

This finding is consistent with that of Campbell, Cocco, Gomes, Maenhout,
and Viceira (2002). Campbell et al. solve the infinite horizon consumption prob-
lem numerically and find that the exact numerical solution flattens out for large
values of Xt. However, because their analysis is purely numerical, Campbell et al.
cannot shed light on why the discrepancy occurs.

In contrast, the exact closed-form solution (35) can help to understand the
discrepancies between the log-linear and the actual solution. From (35), it fol-
lows that there are two ways changes in Xt can affect the portfolio rule. The first
is directly, through A1(�)Xt + A2(�), just as in the linear case. The second is
indirectly, through changes in the weights H(Xt; �). This first effect is what the
change would be if the solution were actually linear, namely, if H(X t; �) were a
constant,

d�lin
t

dXt
=

1
�

�
1� �X

R
H(Xt; �)A1(�)


R

H(Xt; �)

�
:(40)

This term is always positive because A1(�) < 0 when  > 1 (Appendix B).
However, H(Xt; �) is not a constant in Xt. The difference between the true

derivative and (40) equals

d�t

dXt
�

d�lin
t

dXt
=

�X

2�

"�R
H(Xt; �)(A1(�)Xt + A2(�))R

H(Xt; �)
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(41)

�
R

H(Xt; �)(A1(�)Xt + A2(�))
2R

H(Xt; �)

�
:

This term corresponds to the effect of changes in X t on the weights and is always
negative because the square is a convex function.
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Figure 5 plots the “linear term,” (40), and the derivative itself (the sum of (40)
and (41)) for =10. The figure shows that (40) is nearly a constant, demonstrating
that it indeed represents a linear effect on changes on � t. However, the derivative
itself slopes down dramatically. The effect is more dramatic, the higher the value
of T.

FIGURE 5

Nonlinearities in the Optimal Allocation

The derivative of the optimal allocation with respect to Xt (circles) compared to the derivative ignoring
the effects of Xt on the value of future consumption (see equation (40)), for horizons T = 30, 10, and 0
years. Risk aversion  = 10. The vertical lines indicate X̄ � (2�X )=

p
1 � (1 � �X )2. Parameter values

are derived from discrete-time counterparts in Appendix D and given in Table 1.

The fixed income analogy of the previous section is also useful in under-
standing this dramatic downward slope. The duration for coupon bonds decreases
as the interest rate increases (see, e.g., Campbell, Lo, and MacKinlay (1997),
chap. 10). This is because increases in the interest rate decrease the value of long-
term bonds more than the value of short-term bonds. The bonds with the higher
duration (long-term bonds) therefore receive less weight when interest rates fall.
As in the previous section, it is useful to think of H(Xt; �) as the value of a bond
paying in units of consumption at horizon � . Increases in X t cause the value of
H(Xt; �) to decrease more, the greater the value of � . The portfolio weight � is
given by a weighted average of A1(�)Xt + A2(�), where the weights are like the
values of discount bonds. Thus, (41) arises because increases in X t decrease the
weights on the terms with higher values of A1(�)Xt + A2(�).

V. The Case of Incomplete Markets

It is easy to lose sight of where, in the above arguments, the assumption of
complete markets is required. In Section III, the problem was solved by first solv-
ing for consumption and then deriving the portfolio rules from the need to finance
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consumption. Such portfolio rules exist because wealth satisfies (20), i.e., wealth
is a martingale under the equivalent martingale measure. As Pliska (1986) points
out, the defining feature of complete markets is that any (well-behaved) process
that is a martingale under the equivalent martingale measure can be financed by
trading in the underlying securities. When markets are incomplete, this equiva-
lence no longer holds. Thus, the set of consumption rules that can be financed is
more difficult to describe, and the technique of solving first for consumption is no
longer valid.

To illustrate where the method fails, let wt be a two-dimensional Brownian
motion. Following convention, wt is a column vector, and � and �X are row
vectors. The instantaneous volatility of St is therefore

p
��0. By analogy, Xt =

(�t � r)=
p
��0. The instantaneous correlation between the process for S t and that

of Xt equals ��0X=(
p
��0
p
�X�

0

X). Any process �t satisfying

��t = �t � r;(42)

is a valid price-of-risk process and, because this is a single equation in two un-
knowns, there are infinitely many solutions. Each value for � corresponds to a
different state price density �, where

d�t

�t
= �r dt� �t dt:

By the same reasoning used to derive (20), the investor’s wealth satisfies

LG +
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with boundary condition G(ZT ;XT ; T) = 0.
It is tempting to choose � such that (42) is satisfied, and such that this equa-

tion can be solved in closed form. For example,

� = �
0

(��
0

)
�1

(�t � r)

is a natural choice. Under this choice of �, the solution takes the same form
as (21), where the functions Ai take slightly different, but nonetheless tractable
forms.

Because this solution satisfies (43), it is a solution to the investor’s static
optimization problem. However, it does not correspond to the solution to the
dynamic problem because there is no portfolio rule to finance it. The portfolio
rule �t must satisfy

�tG� =
@G
@Z

Zt�t �
@G
@X

�X :(44)

This is a system of two equations in one unknown. A solution exists only if one
of the equations equals a constant times the other, that is, if the variables are
perfectly correlated. When there is a single asset, state-variable risk and market
risk cannot be perfectly hedged at the same time.
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There is a choice for � such that the two-dimensional system (44) can be
reduced to one dimension. Choose

� = �
0

(��)
�1

(�t � r) + �;(45)

where

�
0

=
@G
@X

�
@G
@Z
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�
�1 �
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0

(��
0

)
�1
�
�
:

Equation (45) represents the unique choice of � that solves (42), such that (44)
can be reduced to one dimension. The equation for � becomes

�t =
@G
@Z

Z
G
�t � r
��0

�
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@Z

�X�
0

��0
:

He and Pearson (1991) demonstrate rigorously that the static problem is equiva-
lent to the dynamic problem under this choice for �.

This fix is less helpful than it first appears. When (45) is substituted into the
differential equation for G, the solution can no longer take the form of (21). In
fact, the problem under incomplete markets is much harder to solve. 4

Can further progress be made in the incomplete markets case using the dy-
namic programming approach? The dynamic programming approach (like the
martingale approach extended using the equations above) delivers a closed-form
solution for the case of terminal wealth. But, as above, it is not possible to ex-
tend the solution to the case of consumption. The solution to the intertemporal
problem by dynamic programming requires solving a nonlinear partial differential
equation for the value function J. The differential equation is derived by Merton
(1971),

1
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This equation has a solution of the form (30) if and only if (�� 0

X)
2
=(�X�

0

X)(��
0

),
namely, if markets are complete.5

This result is not surprising. In this setting, the dynamic problem (solvable
by dynamic programming) is equivalent to the static problem (solvable by the

4The case of utility over terminal wealth encounters no such difficulties because the solution is the
exponential of a quadratic function of Xt , rather than the integral of such functions.

5By contrast, in the case of terminal wealth, the first term in the differential equation drops out. A
solution of the form (32) is therefore possible, even when markets are incomplete. Liu (1999) gives a
clear account of this result.
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martingale method). Thus, the portfolio and consumption policies must be the
same, no matter which method is applied. Moreover, Section V.C demonstrates
that the indirect utility function can be derived from the wealth function and vice-
versa. Thus, a closed-form solution for indirect utility can be easily transformed
into a closed-form solution for investor’s wealth.

Despite the lack of a closed-form solution, equation (43) does show that the
conclusions above are robust to small amounts of market incompleteness. While
a thorough examination of this issue is beyond the scope of this paper, some in-
formal conclusions can be drawn. Because � 0� and �X� are smooth functions of
the correlation, and because � 0�=��=0, (43) can be rewritten so that the coeffi-
cients are smooth functions of the correlation. Thus, for values of the correlation
sufficiently close to �1, the solutions will be close to the solution for complete
markets, and the intuition developed in the preceding sections will still apply.

VI. Conclusion

This paper demonstrates that, under mean reversion and complete markets,
the multi-period consumption and portfolio allocation problem can be solved in
closed form. This question has interested the literature for some time: there are
papers that solve the problem for terminal wealth, give numerical solutions for
consumption, or derive approximate analytical solutions. But a closed-form solu-
tion has eluded the literature.

As has been shown, the solution is more than a complicated formula. It
can be expressed as a weighted average that is analogous to the duration formula
for coupon bonds. It can be used to resolve questions that are posed by but not
solved in the current literature, such as the sign of hedging demand, the reason for
inaccuracies in the log-linear solution, and whether the solution converges at long
horizons. It raises and resolves issues that have been incorrectly ignored, such as
how horizon results are to be interpreted in the most realistic case, i.e., when the
investor has utility over consumption.

Although this paper focuses on the case where investment returns are mean
reverting, the methods in this paper are more general and can be applied to other
portfolio choice problems. Recent examples include Brennan and Xia (2002) and
Chacko and Viceira (2000).

The solution does require that markets be complete, unlike the solution for
terminal wealth. Though it generalizes the preferences, it requires more specific
assumptions on the data-generating process. It does give researchers seeking an
analytical solution the choice of requiring terminal wealth, using log-linearized
approximate solutions, or assuming complete markets. In the case of mean-
reverting returns, assuming complete markets is realistic because the correlation
in the data is nearly perfect. Ultimately, the choice of the least evil is up to the
researcher, but it is important to realize that there is a choice to be made.
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Appendix

Throughout the Appendix,  is assumed to be greater than one.

A. Proof that Solutions to (3) and (5) Exist

The proof has two steps. First, it is necessary to show that the Lagrange
multipliers k and l in (10) and (11) exist and are finite. Substituting the optimal
policies into the budget constraints yields

k = W�

0

�
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�
�

1� 1
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��
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�

:

By Jensen’s inequality, it suffices to show that E� t is finite and continuous for all
t.

By definition,

�t � exp

�
�
Z t

0
Xt dwt � rdt

�
:

Because
R t

0 Xt dwt is Gaussian (see, e.g., Duffie (1996), Appendix E), the right-
hand side is lognormal, implying that the expectation exists and is a continuous
function of time.

The second step is that the optimal policies satisfy regularity conditions. In
particular, it is enough to show that

E

�
�
�p 1



t

�
< 1

for some p > 1 (see Cox and Huang (1989)). Choose p < . Then

E

�
�
�p 1



t

�
�

�
E exp

�
q

p


�Z t

0
Xs dws � rt

��� 1
q

�
�

E exp

�
q0

p


1
2

Z t

0
X2

s ds

�� 1
q0

;

where (1=q) + (1=q0) = 1 and q; q0 > 1, by the Cauchy-Schwartz inequality.
Choose q0 so that q0(p=) < 1. The first term on the right-hand side is finite
because of the lognormality described above. The second term is finite because
of Jensen’s inequality and (7).



2/7/2002–coded–JFQA #37:1 Wachter Page 87

Wachter 87

B. Properties of the Solution

1. Existence and Differentiability

For G(Zt;Xt; t), it is sufficient that b2
2�4b1b3 > 0. It follows from (22)–(24)

that

b2
2 � 4b1b3 = 4

�
�

2
X �

�
1� 



��
�

2
X � 2�X�X

��

> 4

�
 � 1


�
2
X +

 � 1


�
2
X �

�
 � 1


�
2�X�X

�

= 4
 � 1


(�X � �X)
2 � 0:

For the differential equation (20) to describe the solution, (@ 2G)=(@X@Z),
(@

2G)=@Z2, (@2G)=@X2, and @G=@t must exist and be continuous. From (21),
it suffices that A1, A2, and A3 be continuously differentiable. From (27), A 3 is
continuously differentiable as long as A1 and A2 are. Therefore, from (25) and
(26), it suffices to show that

2� � (b2 + �)
�
1� e���

�
> 0;(47)

for 0 � � � T, where � =

q
b2

2 � 4b1b3. From (22)–(24), it follows that

� � 2

s
 � 1


j�X � �X j

> 2
 � 1


(�X � �X)

> 2

�
 � 1


�X � �X

�
= b2:

(47) follows immediately.

2. Proof that the Functions A1(�), A2(�) and their Derivatives Have Sign 1� 

Define a(�) = 2� � (b2 + �)(1 � e��� ). As shown above, a(�) > 0. The
statement for A1 and A2 follows immediately from (25) and (26). Moreover,

dA1

d�
=

1� 



�
2�e���a(�) + 2(1� e��� )(b2 + �)�e���

a(�)2

�

=
1� 



�
2�2e���

a(�)2

�
;
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and

dA2

d�
=

1� 



4�XX̄
�

�

0
@
�

1� e�
��

2

��
e�

��

2

�
�a(�) + (1� e�

��

2 )
2
(b2 + �)e����

a(�)2

1
A

=
1� 



4�XX̄
�

0
@e�

��

2 �

�
1� e�

��

2

��
2� � (b2 + �)

�
1� e�

��

2

��
a(�)2

1
A :

The same reasoning used to show (47) implies that 2��(b 2+�)(1�e�(��=2)
) > 0.

3. Proof that the Allocation Converges at Long Horizons

It suffices to show that R T�t
0 H(Xt; �)A1(�) d�R T�t

0 H (Xt; �
0) d� 0

and the same equation for A2(�) converge to finite limits. First, A1(�) and A2(�)

are monotonic in � . Therefore, their averages over � are monotonic in T. To prove
convergence, it suffices to show that these sequences are bounded above. Because
A(�) is negative and increasing,

0 �

R T�t
0 H(Xt; �) jA1(�)j d�R T�t

0 H(Xt; �)
� jA1(T)j :

The corresponding inequality holds for jA 2(T)j. It follows immediately from (26)
and (25), that A1(T) and A2(T) are bounded above.

C. The Discrete-Time Process

The joint process for St and Xt can be rewritten in vector form as

 
d log St

dXt

!
=

0
@ 0 �

0 ��X

! 
log St

Xt

!
+

0
@ r �

�
2

2
�XX̄

1
A
1
A dt

+

 
�

��X

!
dwt:

As shown in Duffie ((1996), Appendix E), this linear differential equation implies
that  

log St

Xt

!
� N

  
mS(t)

mX(t)

!
;

 
VSS(t) VSX(t)

VSX(t) VXX(t)

!!
;
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where the means and the variances satisfy ordinary differential equations. The
solution for the mean is given by

mX(t) = X̄ + e��X t
(X0 � X̄)

mS(t) = S0 +

�
�X̄ + r �

�
2

2

�
t +

�

�X

�
1� e��X t

�
(X0 � X̄) :

The solution for the variance-covariance matrix is given by

VXX(t) =
�

2
X

2�X

�
1� e�2�Xt

�
;

VSX(t) =
��

2
X

2�2
X

�
1� e��Xt

�2
�

��X

�X

�
1� e��X t

�
;

VSS(t) = 2�
Z t

0
V12(s) ds + �

2t:

When
�X

2�X
< 1;(48)

VSX(t) < 0 for all values of t. Therefore, under (48), V SS(t) < �
2t. That is, the

variance of stock returns grows less than linearly with the horizon. This implies
that stock returns are mean reverting.

When �X � 0,6

mX(t) � X̄ + (1� �Xt) (X0 � X̄) ;(49)

mS(t) � S0 + (�X0 + r)t;(50)

VXX(t) � �
2
Xt;(51)

VSX(t) �
��

2
X

2
t2 � ��Xt;(52)

VSS(t) �
�

2
�

2
X

3
t3 � ��Xt2 + �

2t:(53)

D. Parameter Values

The parameters are taken from Barberis ((2000), Table 2) for the 1952–1995
sample. This section describes how these parameters are translated into model
parameters.

The discrete-time process for St and Xt is approximated by (49)–(53) above.
The time interval t = 1 is taken to be a month. For t = 1, the first term in (52) and
the first two terms in (53) are of second order (estimates of the volatilities � and
�X are on the order of 0.01). Therefore the approximate discrete-time process is
given by

�(log St+1) = �Xt + r �
1
2
�

2 + ��t+1;(54)

Xt+1 = �XX̄ + (1� �X)Xt � �X�t+1;(55)

6For �X � 0, (1 � e��X t
)=�X � t.
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where �t+1 � N(0; 1).
Barberis (2000) computes a VAR for stock returns and the dividend-price

ratio. He finds that the correlation between these two series is �0.935. In what
follows, this value is set to �1. With this modification, the VAR can be rewritten
as

�(log St+1) = a11 + a12Yt + �wt+1;(56)

Yt+1 = a21 + a22Yt � �Ywt+1:(57)

Comparing (54) with (56), it follows that Xt and Yt are related by

Yt =

�Xt + r �
�

2

2
� a11

a12
:

Substituting into (57) produces

Xt+1 =
a12a21

�
+

a22 � 1
�

�
r �

�
2

2
� a11

�
+ a22Xt �

a12�Y

�
wt+1:

Comparing with (55) allows the underlying parameters to be written in terms of
the regression parameters,

�X = 1� a22;

�X =
a12�Y

�
;

X̄ =
a12a21

�(1� a22)
+

1
�

�
a11 +

�
2

2
� r

�
:

The risk-free rate is the average real return on the three-month Treasury bill
over the sample period 1952–1995 in monthly terms.

Barberis (2000) assumes utility over terminal wealth, so by definition there is
no rate of time preference. Campbell and Viceira assume an annualized discount
rate of 0.062, translating into a monthly rate of 0.0052. Table 1 describes the
resulting parameter values.
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