

Range anxiety hinders electric vehicle (EV) sales.

 EVs only make up <1% of the global vehicle fleet despite their environmental benefits — largely due to range anxiety. * 8.5 M

Global EV Fleet

1.2 B
Global Vehicle Fleet

Public charging stations mitigate range anxiety.

Central Question:

Does local public charging availability increase demand for EVs, and if so, where can new charging infrastructure be built to intentionally foster demand?

^{*} International Energy Agency, 2020

Ouestion	Data 9 Source
Question	Data & Source

Data Science Method Does local public charging New-build charging station T-test, availability increase demand time-series (Federal Gov.) Diff-in-Diff Test for EVs? Washington EV Registration Activity (State Gov.) If so, where can new Income Data (IRS) Regression charging infrastructure be **Educational Attainment** Prediction built to intentionally foster (Census) demand? Population Data (State Gov.)

New charging stations increase EV demand.

OLS Regression Results								
Dep. Variable:		count	R-square	ed:	0.404			
Model:		OLS A	dj. R-square	ed:	0.404			
Method:	Least So	quares	F-statist	ic:	2521.			
Date:	Thu, 03 Dec	2020 Pro	b (F-statisti	c):	0.00			
Time:	10	:43:08 L c	g-Likelihoo	od: -(56238.			
No. Observations:	i	22343	A	IC: 1.32	5e+05			
Df Residuals:	i	22336	В	IC: 1.32	5e+05			
Df Model:		6						
Covariance Type:	nonr	robust						
		coef	std err		P> t	[0.025	0.975]	
	const	-1579.5018	27.484	-57.470	0.000	-1633.372	-1525.632	
į	treatment	-0.5990	0.100	-6.015	0.000	-0.794	-0.404	
year	_indicator	0.7808	0.014	57.327	0.000	0.754	0.808	
i_treatment_post_fi	rst_station	0.4686	0.085	5.496	0.000	0.302	0.636	
	avg_agi	0.0021	0.000	4.422	0.000	0.001	0.003	
perc_	bach_plus	0.1497	0.002	64.695	0.000	0.145	0.154	
	POP	0.0001	2.33e-06	60.287	0.000	0.000	0.000	
		0.0001	2.552 00	00.207	0.000	0.000	0.000	

Key Takeaway

Building a zip code's first charging station has a statistically significant, positive effect on EV demand.

Charging stations could be more effective in some zip codes than others.

- Using **linear regression**, we can predict how many EVs *should* be in each zip code based on its demographic data (income, education, population).
- The difference between the predicted and actual EV population shows where charging stations are most needed.

Total: \$29.2 M

Top 5 eligible zip codes in Washington State:

state	zip	POP2020	avg_agi	perc_bach_plus	sum_vehicles	sum_charging_stations	diff	profit_potential
WA	99301	85,131.44	61.43	18.97	247.00	4.00	601.05	6,750,761.08
WA	98101	17,849.82	217.40	60.93	380.00	42.00	566.76	6,365,586.40
WA	98112	24,054.27	331.93	80.35	1,063.00	1.00	543.90	6,108,800.61
WA	99163	36,614.67	61.88	63.82	91.00	5.00	458.41	5,148,671.49
WA	98119	26,505.15	190.29	74.01	586.00	2.00	431.58	4,847,313.94

Stations likely generate enough demand to justify their cost.

Average Station Cost *: \$123,000

Average profit per EV **: \$54,500 ASP * 20.6% EBITDA margin = \$11,200

Required Demand Generation per Station = Station Cost / Profit per EV = ~11 EVs/Station

Is this believable?

Recall: Regression coefficient in Diff-in-Diff = 0.47 So, 11/0.47 = roughly 23 months to generate enough demand

^{*} International Council on Clear Transportation, 2019

^{**} Tesla Q3 2020 Shareholder Letter