


Are there permanent features of a startup, that have nothing to
do with their operation, that predict success of the firm?

@ Background & Data

Problem Data

Our group set out to create a prediction
tool for Venture Capitalists to assess

startups for potential financing. e Ny T

. . Pitchbook, thanks to WR&DS.
Instead of evaluating dynamic features,

such as revenue, customers, and
operations, we assessed static,
permanent pieces of information that
VCs may usually find irrelevant.

Pitchlbook provides data on startups
that are seaking financing.

We chose 107 different parameters by

. S which to assess the businesses.
They include, but are not limited to, the

number of syllables in the name of the
company, the company’s geographic
location, the sentiment scores of the
company description, etc.
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Select Initial Exploratory Data Visualizations
@ Initial inspection of the data provided insight into how we defined
startup success and the parameters we would use.

Distributions of Successful vs. Failed Startups by 'description_readability’
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Defining Startup Success Example Parameter
A success is a firm that IPOs or is For each firm,
acquired. 107 parameters were assessed.
A failure is a company that is dissolved. Plots demonstrating whether more startups
All growing companies were rejected for succeeded or failed and given parameter
this model. values demonstrates unexpected trends.
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Results
Our XG Booster Classifier, with hyperparameter tuning, performed
relatively well compared to the training data.

Model: XGBClassifier ====== ROC Curve & AUC (Train Data)
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Tree Branch Visualization
The model “thinks™ about the relationship between parameters by
weighing 382 “trees.” Here is a visualization:

yes, missing ceo_years_ldegree_to_founding<4.65151501

yes, missing

perc_keywords_in_description<0.763305306

is_sector_consumer_products_and_services_(b2c)<0.5

es, missing
>
Fa—— yes, missing
no

no

; N

Q’ for_bigt<0.5 yes. missing
B no =

@m, mba<0.5 yes. missing leaf=0.0717557296

no

num_keywords<6.5




Thank yc.)u!" G



