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1. Introduction

In recent years there has been considerable progress in developing structural models of inflation that are

potentially useful for econometric modelling and policy evaluation. A common aspect of this approach

is to start with the individual firm’s price setting problem, obtain optimal decision rules, and then

aggregate up behavior. The net result is a simple relation for inflation that is much in the spirit of

a traditional a Phillips curve relation: inflation depends on some measure of real activity as well as

expectations of the future. In addition to its forward looking nature, this relationship also differs from

the traditional Phillips curve in that the coefficients are explicit functions of the primitives of the

model, including the degree of price rigidity. Overall, these new Phillips curves (often grouped under

the heading of the “New Keynesian”) are beginning to become standard features of many modern

empirical macroeconomic frameworks.

To date, these new Phillips curves reflect a pragmatic compromise between theoretical rigor and

the need for empirical tractability.1 While they evolve ultimately from optimization at the individual

firm, they are typically based on time-dependent pricing strategies in which the length of the period

over which prices are set is given exogenously. The alternative, of course, is state-dependent pricing,

where the firm is free to adjust whenever it would like, subject to a fixed cost of price adjustment. This

latter approach leads to “Ss” pricing policies which are, in general, difficult to aggregate up.2 For this

1Examples include Gali and Gerler (1999, 2001), Sbordone, (2001), and Eichenbaum and Fisher (2004).
2See Caplin and Spulber (1985), Caplin and Leahy (1991,1997), Caballero and Engel (1991) for early analyses of

dynamic Ss economies. Dotsey, King and Wolman (1999) place Ss policies within a standard dynamic stochastic general



reason, the time-dependent approach has proven to be the most popular, despite the unattractiveness

of arbitrarily fixing the degree of price rigidity.

Besides tractability considerations, however, there have been two additional justifications for the

time-dependent approach. First, Klenow and Kryvtsov (1999) have shown that, during the recent low

inflation period in the United States, the fraction of firms that adjust their prices in any given quarter

is reasonably stable, which is certainly consistent with time-dependent pricing. Second, in this spirit,

it is often conjectured that time dependent models are the natural reduced forms of a state dependent

framework, for economies with relatively stable inflation.

A interesting recent paper by Golosov and Lucas (GL) challenges this rationalization. As the

authors point out, even if the price adjustment rates are stable (due to moderate inflation variability),

there remains an important difference between state-dependence and time-dependence: under the

state-dependent pricing, the firms farthest away from their target price adjust, whereas under time-

dependence there is no relation between how far a firm is from its target price and whether or not

its target price is changing. The authors then go on to illustrate how the state-dependent approach

could lead to far greater price flexibility, and conversely weaker real effects of money, than a standard

time-dependent model calibrated to have a similar degree of price stickiness at the firm level. Overall,

the argument is reminiscent of the theoretical example in Caplin and Spulber, where state-dependence

can turn the non-neutrality of money result from time-dependence on its head.

Because of the overall complexity their framework, Golosov and Lucas restrict attention to numerical

simulation of a model that otherwise has very simple features. Among other things, they abstract from

almost all interactions among firms, including real rigidities that have proved to be important in the

standard approach for confronting the data. Since these interfirm interactions are the main source of

persistence in time-dependent models, these simplifications make it difficult to judge in general whether

state-dependence undoes the results of the conventional literature.

The purpose of our paper is to address this controversy by developing a simple Phillips curve re-

lation that has an Ss foundation. We differ from the existing Ss literature by making assumptions

that deliver simple analytical results comparable to the literature on time-dependent pricing rules. As

with the standard time-dependent literature and Dotsey, King and Wolman’s (DKW) state-dependent

framework we focus an local approximation around the steady state. We differ from DKW by intro-

ducing idiosyncratic shocks, as in GL, and by placing restrictions on the distribution of shocks that

permit an approximate analytical solution.3 Idiosyncratic shocks are essential for matching the mi-

croeconomic evidence of Klenow and Kryvtsov who show that the average size of price adjustment is

around 10% and the median time between price adjustments is less about five months at a time when

the average annual inflation rate in the United States is less than 3%. The end result is a Phillips curve

equilibrium model.
3We borrow our distributional assumption from Danziger (1999) who solves a carefully parameterized Ss economy in

closed form. We differ from Danziger in that we allow for a more flexible parameterization of the model and we linearize
about steady state.
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built up explicitly from state-dependent pricing at the micro level that is comparable in simplicity and

tractability to the standard New Keynesian Phillips curve that arises from the time-dependent pricing

Because we restrict attention to a local approximation around a zero inflation steady state (as in time

dependent literature), our analysis is limited to economies with low and stable inflation. We this cannot

use our Ss framework to analyze the effect of large regime changes (which, of course is also a limitation

of the time-dependent approach.) On the other hand, our framework does capture the “selection” effect

of state-dependent pricing: those farthest away from target tend to adjust more frequently, a feature

that need not arise in time-dependent pricing. We can thus use our model to assess quantitatively how

much extra price flexibility state-dependence adds relative to time dependence. Furthermore, because

our framework is tractable, we can allow for the same kinds of features that are thought key in the

standard time-dependent models, including in particular real rigidities.

In section 2 we lay out the basic features of the model: a simple New Keynesian framework, but

with state-dependent as opposed to time-dependent pricing. Also, firms face idiosyncratic productivity

shocks which as in GL enables the model to confront the micro evidence on both the size and frequency

of price adjustment. We differ from GL by assuming that at any moment in time, there is a spatial

nature to the idiosyncractic shock; i.e., at any moment only a subset of the economy is hit by the

turbulence from idiosyncratic shocks. This assumption turns out to be key for the aggregate dynamics

of inflation, as we show. In section 3 we characterize the firm’s optimal pricing policy. We make

assumptions on the size of the adjustment costs that make it reasonable to consider a second-order

approximation of the firm’s objective function. We then turn to the key result of the paper: given

certain restrictions on the idiosyncratic shocks, a firm adjusting at time t can ignore the future states

of the world where an idiosyncratic shocks hit, up to a second order. Put differently, up to a second

order, the firms’s continuation value conditional on a idiosyncratic shock at t + 1 is independent of

its price at t. This result greatly simplifies firm’s decision problem. We proceed to derive the firm’s

optimal Ss policy, which includes the choice of the target and the Ss bands. We derive both the steady

state and a local approximation around the steady state.

In section 4 we characterize the complete model, focusing on a log-linear approximation of the

steady state. We first derive a Phillips curve relation that is very similar in form to the New Keynesian

Phillips curve. In section 6 we discuss some of the theoretical properties of our model. One important

difference between our model and the standard framework is that the key primitive parameter in the

equation is the Poisson arrival process for the idiosyncratic shock, as opposed to a measure of the

degree of price rigidity. The reason for this distinction is that in our state-dependent framework, the

frequency of price adjustment is endogenous and cannot be taken as a model primitive. Since not all

firms adjust in the wake of an idiosyncratic shock, the stochastic process for the idiosyncratic shock

cannot be taken as measure of the degree of price rigidity. Indeed, there is a limiting case of our model

in which the idiosyncratic shock hits in every period, where monetary policy is completely neutral

but the degree of micro price stickiness is consistent with the evidence. This limiting case provides a
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good illustration of the arguments in GL and Caplin and Spulber that state-dependence can deliver

radically different results from time-dependence. On the other hand, we also show that the framework

can deliver the kind of aggregative price level stickiness emphasized in the time-dependent literature

and remain consistent with the microeconomic evidence on price adjustment. In this case, as we discuss,

real rigidities play an important role. We illustrate all these arguments with some numerical exercises

in section 6. Concluding remarks are in section 7.

2. Model: Environment

The framework we develop is a variation of a conventional New Keynesian model. The basic features

include monopolistic competition, money and nominal price stickiness. For convenience, there are only

consumption goods: We abstract from capital and investment.

As we noted in the introduction, we replace the assumption of time-dependent pricing with a state-

dependent approach. As in Golosov and Lucas, we allow for idiosyncratic productivity shocks. This

feature permits the model to match the firm level evidence on price adjustment. In contrast to GL, we

allow for real rigidities which are critical to the aggregate inflation/output dynamics. In this section we

lay out the basic ingredients of model. There are three types of agents: households, final goods firms

and intermediates goods firms. We describe each in turn.

2.1. Households

Households consume, supply labor, hold money and hold bonds. The latter are zero in net supply. To

allow for real rigidities, we assume a segmented labor market. In particular, we assume a continuum of

“islands” of mass unity. On each island, there are a continuum of households of mass unity. Households

can only supply labor on the island that they live. On the other hand, there is perfect consumption

insurance across islands. In addition, any firm profits are redistributed lump sum to households.

Let Ct be consumption; Mt nominal money balances; Pt the nominal price index; Nz,t labor supply

on island z; Wz,t the nominal wage on island z; Γz,t lump sum transfers (including insurance, dividends

and net taxes); Bt one period nominal discount bonds; and Rn
t+1 the nominal interest rate from t to

t+ 1. Then the objective for a representative household on island z is given by:

maxEt

X
βi
½
log

·
Ct+i · (Mt+i

Pt+i
)ν
¸
− 1

1 + ϕ
N1+ϕ
z,t+i

¾
(2.1)

subject to budget constraint:

Ct =
Wz,t

Pt
Nz,t+i + Γz,t − Mt −Mt−1

Pt
− (1/R

n
t+1)Bt −Bt−1

Pt
(2.2)

We index labor supply and the nominal wage by z because the island z labor market is segmented.

Since there is perfect consumption insurance, there is no need to similarly index the other variables,
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except for lump sum transfers, which may be island-specific.

The first order necessary conditions for labor supply, consumption/saving, and money demand are

given by, respectively,

Wz,t

Pt
=

Nϕ
z,t+i

(1/Ct)
(2.3)

Et

½
β

Ct

Ct+1
Rn
t+1

Pt
Pt+1

¾
= 1 (2.4)

Mt

Pt
= νCt

Rn
t+1

Rn
t+1 − 1

(2.5)

2.2. Final goods firms

Production occurs in two stages. Monopolistically competitive intermediate firms employ labor to

produce input for final goods. There is a continuum of mass unity of these intermediate goods firms on

each island. Final goods firms package together all the differentiated intermediate inputs to produce

output. These firms are competitive and operate across all islands.

Let Yt be output of the representative final good firm; Y
j
z,t be input from intermediate goods

producer j and island z; and P j
z,t be the associated nominal price. The production function for final

goods is the following CES aggregate of intermediate goods:

Yt =

·Z 1

0

Z 1

0
(Y j

z,t)
ε−1
ε djdz

¸ ε
ε−1

(2.6)

where ε > 1 is the price elasticity of demand for each intermediate good:

From cost minimization, the demand for each intermediate good is given by

Y j
z,t =

Ã
P j
z,t

Pt

!−ε
Yt (2.7)

and the price index is the following CES aggregate of intermediate goods prices:

Pt =

·Z 1

0

Z 1

0
[P j

z,t]
1−εdjdz

¸ 1
1−ε

(2.8)

2.3. Intermediate goods firms

Each intermediate goods firm produces output that is the linear function of labor input:

Y j
z,t = Xj

z,t ·N j
z,t (2.9)
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Here Xj
z,t is an idiosyncratic productivity factor for producer j and island z.

In addition, each producer faces a fixed cost of adjusting price, equal to bt(X
j
z,t)

ε−1. In particular,

bt =

(
b if P j

t 6= P j
t−1

0 otherwise
(2.10)

We scale the adjustment cost be the factor (Xj
z,t)

ε−1 to keep the firm’s decision problem homogenous

as it size varies.4

The process for the productivity shock is as follows: Islands are occasionally subject to turbulence

in the form of multiplicative i.i.d. productivity shocks. The arrival of the shock on island z at date t

(i.e., whether firms are subject to a draw from random productivity variable at t) is perfectly correlated

across all firms on the island. The realization of the draw, however, is uncorrelated across firms on the

island. Let ξjz,t, denote the shock to firm j on island z at date t,

Xj
z,t =

(
Xj
z,t−1e

ξjz,t if a productivity shock occurs

Xj
z,t−1 otherwise

(2.11)

We assume that the arrival of a shock on each island obeys a “truncated Poisson” process. Let

n be the number of periods since last shock on island z. For n < N, the productivity shock arrives with

probability 1− α. For n = N, arrival probability is equal unity. In this respect, the Poisson process is

truncated if a new shock has not materialized after N − 1 periods since the previous shock.
We assume that the random variable ξjz,t is distributed uniformly with density 1/φ, with

E{e(ε−1)ξ} = 1

As will become obvious, this normalization ensures that the expected multiplicative impact of the shock

on the firm’s discounted profits is unity. In addition we assume that the support of ξjz,t large enough

that there is some chance that a firm may either raise or lower its price in response to an idiosyncratic

shock.

As illustrated by Danziger (1999), the uniform distribution introduces considerable tractability to

the general Ss problem: The distribution of prices following an idiosyncratic shock has a simple form:

uniform within the adjustment triggers and a mass at the target. As we show, this feature makes

possible a reasonably simple approximation of the solution to the decision problem. It also simplifies

the steady state equilibrium, as well as the local approximation around the steady state.

4 If the economy were growing we would also have to normalize the cost of price adjustment by the real wage and
aggregate output.
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3. The Firm’s Optimal Pricing Decision

Given the fixed cost of price adjustment, the solution to the firm’s decision problem will involve an Ss-

style of price adjustment. Specifically, there will be a range of inaction, where the gain in discounted

earnings from adjusting is not sufficient to cover the fixed cost. The optimal policy will involve an

upper trigger, a lower trigger, and a target price. The firm adjusts when its price either reaches or

moves beyond either of the trigger prices.

In this section we first characterize the firms objective function. We then argue that based on a

plausible assumption about the size of adjustment costs, that it is reasonable to consider a second

order approximation of the objective function. Next, we show that our restriction on adjustment costs

in conjunction with the uniform distribution of the shock, leads to considerable simplification of the

objective, up to a second order. With this simplified objective, we characterize both the steady state

and a log-linear approximation of the decision rules about the steady state.

3.1. The Firm’s Objective

Period profits net of adjustment costs, Πjt+i, are given by

Πjz,t+i =

Ã
P j
z,t+i

Pt+i
− Wz,t+i

Pt+iXz,t+i

!
Yt+i − bt+i(X

j
z,t+i)

ε−1 (3.1)

where bt+i is defined by equation (2.10). Note that from cost minimization, the firm’s real marginal

cost is Wz,t+i/Xz,t+i.

It is convenient to define the “normalized” price, Qj
z,t, which is the price, P

j
z,t, normalized by

multiplicative impact of the idiosyncratic productivity shock on the firm’s marginal cost (1/Xj
z,t):

Qj
z,t =

P j
z,t

1/Xj
z,t

= P j
z,tX

j
z,t (3.2)

There are two advantages of working with the normalized price. First, assuming that the firm’s desired

markup is stationary, Qj
z,t is stationary. In contrast P

j
z,t is nonstationary since X

j
z,t is nonstationary.

Second, all firms that reset price in period t will wind up choosing the same normalized price, which

simplifies the aggregation. Since idiosyncratic productivity differs across firms, firms will not choose

the same absolute price.

Restating period profits in terms of the normalized price yields and making use the demand function

the firm faces (equation (2.7) ) yields

Πt+i = Xε−1
t+i Yt+i(Pt+i)

ε−1
·³

Qj
z,t+i

´−ε ³
Qj
z,t+i −Wz,t+i

´
− bt+i

¸
(3.3)
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with

Qj
z,t =

(
Qj
z,t−1e

ξjz,t if P j
z,t = P j

z,t−1 productivity shock
Q∗t if adjustment

At this point we drop the j, z subscripts. We define the firm’s value function as the maximized

stream of discounted net profits, as follows:

V (At,Xt,Qt−1eξt ,Wz,t) = maxEt

∞X
i=0

Xε−1
t+i β

i[At+iQ
−ε
t+i(Qt+i −Wt+i)− bt+i] (3.4)

with At = [Yt+i(Pt+i)
ε−1]/Ct+i.

5 Given that gross profits and adjustment costs are homogeneous in

Xε−1
t , it is convenient to define the normalized value function v(·):

V (At,Xt, Qt−1eξt ,Wt) = Xε−1
t · v(At, Qt−1eξt ,Wt) (3.5)

with

v(At, Qt−1eξt ,Wt) = maxEt

∞X
i=0

µ
Xt+i

Xt

¶(ε−1)
βi[At+iQ

−ε
t+i(Qt+i −Wt+i)− bt+i]

To express the normalized value function in a recursive form. Let vn(At, Qt−1eξt t,Wz,t) denote the

value before price adjustment decision with n ≤ N periods before next idiosyncratic shock hits with

certainty, and let vn(At, Qt,Wz,t) denote the value after price adjustment decision with n ≤ N periods

before next idiosyncratic shock hits with certainty. Then

vn(At,Qt−1eξt ,Wt) = max

½
vn(At, Qt−1eξt ,Wt),max

Qt

vn(At, Qt,Wt)− b

¾
(3.6)

and for n > 1

vn(At,Qt,Wt) = AtQ
−ε
t (Qt −Wt) (3.7)

+βEt

n
αvn−1(At+1, Qt,Wt+1) + (1− α)e(ε−1)ξt+1vN (At+1, Qte

ξt+1 ,Wt+1)
o

or for n = 1

vn(At, Qt,Wt) = AtQ
−ε
t (Qt −Wt) + βEt

n
e(ε−1)ξt+1vN(At+1, Qte

ξt+1 ,Wt+1)
o

(3.8)

Assuming (as we do later) that aggregate shocks are not large enough to trigger an adjustment

by themselves, then what complicates the firm’s problem, in general, is that it must take account

of the continuation value conditional on an idiosyncratic shock, Et

n
e(ε−1)ξt+1vN(·)

o
. Absent this

consideration, the choice of the target price at time t would involve just involve taking into account

5Here we have expressed the value function in units of utility rather than current consumption. This aids in writing
the problem recursively.
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discounted profits in states where the firm’s price remains fixed at period t target. In this respect,

the choice of the target is no more difficult than in the conventional time-dependent framework. The

choice of the triggers would also simplify.

We next proceed to show that under plausible assumptions, that Et

n
e(ε−1)ξt+1vN(·)

o
is independent

of the firm’s period t choice of the target, up to a second order approximation. The decision problem

will simplify, along the lines we have just suggested.

3.2. Approximate Value Function

It is convenient to define the target and trigger in logarithmic terms. Let q∗t denote the natural log of
the target (normalized) price and let qLt and qHt be the natural logs of the upper and lower triggers.

Under the Ss policy, the firm adjust to q∗t if ln(Qt) 6∈ [qLt , qHt ].
Our goal now is to derive an approximate value function that leads a tractable (approximate)

solution to the decision problem. To do so, we first assume that the (normalized) adjustment cost b

is second order. As is well known, doing so implies that the normalized value function vn(·) is always
within a second order of the frictionless optimum. This in turn implies that it is reasonable to restrict

attention to a second order approximation of the value function. Another standard implication is that

second order adjustment costs imply that the Ss bands are within a first order of the targets (e.g.

Mankiw (1985), Akerlof and Yellen (1985)). In addition, we make the assumption that the support of

the idiosyncratic productivity shock is first order.6

There is an important additional implication of our “small” b assumption: Second order b in

conjunction with the uniform distribution of the productivity shock implies that the continuation value

contingent on an idiosyncratic shock, is independent of Qt up to a second order. As a result, given

that we can restrict attention to a second approximation of the objective, a firm choosing price need

only take into account profits up to the next idiosyncratic shock. As we just discussed, this leads to a

considerable simplification of the decision problem.

We now turn to this proposition:

Proposition 3.1. Suppose (a) b is second order (implying qLt − q∗t , qHt − q∗t are first-order), and (b)
φ is first order and large enough that after a shock there is some chance that the firm will raise its

price and some chance that a firm will lower its price, then the expected value of an optimal policy

after an idiosyncratic shock in period t + 1, E{e(ε−1)ξt+1vn(At+1, Qte
ξt+1 ,Wz,t+1, )} is independent of

the current value of Qt to a second order. In particular, we can show that up to a second order, the

6There are several reasons for doing this. First, we will want to linearize the price index. If the productivity shock is
not first order, then this will be complicated by the fact that the distribuiton of prices will not be first order. Second, if
the productivity shock is not first order, the probability of non-adjustment will shrink to zero as b approaches zero, and
there will be no price inertia in the limit.
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firm can treat its objective as

vn(At, Qt,Wt) ≈ AtQ
−ε
t (Qt −Wt) + βEt {αvn−1(At+1, Qt,Wt+1)}

Proof: Suppose that the firm has a current level of Qt such that lnQt ∈ [qLt , qHt ]. We are interested
in the expected value of an optimal policy conditional on an idiosyncratic productivity shock in period

t+ 1. Also let Q∗t+1 denote the optimal choice of Qt+1 in the event of adjustment.

Consider E{e(ε−1)ξt+1vn(At+1, Qte
ξt+1 ,Wt+1, )} over the states of the world in which the idiosyn-

cratic shock hits. Given the Ss adjustment policy:

E{e(ε−1)ξt+1vn(At+1, Qte
ξt+1 ,Wt+1)} =

1

φ

Z ξH

qHt+1−lnQt

e(ε−1)ξt+1vn(At+1,Q
∗
t+1,Wt+1)dξt+1

+
1

φ

Z qHt+1−lnQt

qLt+1−lnQt

e(ε−1)ξt+1vn(At+1, Qte
ξt+1 ,Wt+1)dξt+1

+
1

φ

Z qLt+1−lnQt

ξL
e(ε−1)ξt+1vn(At+1, Q

∗
t+1,Wt+1)dξt+1

Given the assumption on φ, ξH > qHt+1 − lnQt and ξL < qLt+1 − lnQt. Rearranging yields

E{e(ε−1)ξt+1 vn(At+1, Qte
ξt+1 ,Wt+1)}

= vn(At+1, Q
∗
t+1,Wt+1)

+
1

φ

Z qHt+1−lnQt

qLt+1−lnQt

e(ε−1)ξt+1
h
vn(At+1, Qte

ξt+1 ,Wt+1)− vn(At+1,Q
∗
t+1,Wt+1)

i
dξt+1

A change of variable, Φt+1 = ξt+1 + lnQt, gives

E{e(ε−1)ξt+1 vn(At+1,Qte
ξt+1 ,Wt+1)}

= vn(At+1, Q
∗
t+1,Wt+1)

+
1

φ

Z qHt+1

qLt+1

e(ε−1)(Φt+1−lnQt)
£
vn(At+1, e

Φt+1 ,Wt+1)− vn(At+1, Q
∗
t+1,Wt+1)

¤
dΦt+1

Note that qHt+1 and q
L
t+1 are chosen optimally in period t+1. They depend on the period t+1 state

eΦt+1 and are independent of Qt. The only place that Qt enters is in the exponential term inside the

integral. Now, by the assumption on the bands, lnQt is equal to ln q∗t plus a first order term and, given
the limits of integration Φ is equal to ln q∗t+1 plus a first order term. The exponential term is therefore

equal to e(ε−1)(ln q
∗
t+1−ln q∗t ) plus a first order term. The term in square brackets inside the integral is
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bounded by b. By the assumption on b, this term is second order. Hence:

e(ε−1)(Φ−lnQt)
£
vN(At+1, e

Φt+1 ,Wt+1)− vN (At+1, Q
∗
t+1,Wt+1)

¤
= e(ε−1)(ln q

∗
t+1−ln q∗t ) £vN(At+1, e

Φt+1 ,Wt+1)− vN (At+1, Q
∗
t+1,Wt+1)

¤
+O3

Further, the assumption that φ is first order and that the range of integration is first order,

E{e(�−1)ξt+1vn(At+1, Qte
ξt+1 ,Wt+1)}

= vn(At+1, Q
∗
t+1,Wt+1)

+
1

φ

Z qHt+1

qLt+1

£
vn(At+1, e

Φt+1 ,Wz,t+1)− vn(At+1, Q
∗
t+1,Wt+1)

¤
dΦt+1 +O3

where the integral is second order. It follows that E{e(ε−1)ξt+1vn(At+1, Qte
ξt+1 ,Wt+1, )} is independent

of Qt to a second order. QED

The main insight of the proposition is that in future states where the idiosyncratic shock will hit,

history will be erased. The subsequent continuation value Et

n
e(ε−1)ξt+1vN (At+1,Qte

ξt+1 ,Wt+1)
o
is

irrelevant to current pricing decision to a second order. The intuition for this key result is as follows.

Suppose the firm is following an Ss strategy that in period t + 1 is characterized by the following

triplet : {q∗t+1, qHt+1, qLt+1} . Now suppose that the idiosyncratic shock hits in period t+ 1. Given that

the shock is log uniform, if the firm does not adjust, qt+1 will be uniformly distributed over (qHt+1, q
L
t+1).

If the firm does adjust, qt+1 = q∗t+1. Since the triplet {q∗t+1, qHt+1, qLt+1} is independent of qt (it depends
only on the state at t+ 1), it follows that vN (At+1,Qte

ξt+1 ,Wt+1) = vN(At+1, exp(qt − ξt+1),Wt+1) =

vN (At+1, exp(Φt+1),Wt+1) is independent of qt.

Accordingly the only way that Qt could possibly affect Et

n
e(ε−1)ξt+1vN (At+1, Qte

ξt+1 ,Wt+1)
o
, is by

affecting the correlation between e(ε−1)ξt+1 and vN(At+1, Qte
ξt+1 ,Wt+1). However, given our restrictions

on b and on the size of the idiosyncratic shock, this correlation is second order and its dependence on

dependence on Qt is third order, given that Qt+1 is within a first order of Q∗t+1.
The proposition rests on two critical assumptions. The first is that the idiosyncratic shock is

uniform and has a wide enough support that both price increases and price decreases are possible.

This assumption implies that the distribution of prices within the Ss bands is independent of Qt. The

second is that b is second order, this makes the correlation between the decision to change price and

Qt third order.

We now make use of Proposition 1 and the assumption that b second order to derive an explicit

second order approximate of the value function from which a tractable solution to the Ss decision

problem will follow. We begin by noting that in the environment we will consider, firms will only

adjust price in periods where an idiosyncratic shock hits. In the steady state (absent aggregate shocks),

the Ss bands are narrowest just after the idiosyncratic shock. As time passes without a new shock,
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the expected wait until the next shock steadily shrinks due to the truncated poisson process. As a

consequence, the bands systematically widen since the fixed adjustment cost must be spread over a

horizon that is steadily becoming shorter. Hence in steady state firms that do not adjust when the

idiosyncratic shock hits, will not adjust until the next idiosyncratic shock. First that do adjust reset

to the optimum and have even less incentive to adjust again. Outside the steady state, we assume that

the aggegate shocks small enough to not trigger additional adjustment.7

Given that adjustment occurs only in the wake of an idiosyncratic shock, we can restrict attention

to the value function, vN(·), where the aggregate shock hits with certainty the full N periods after the

current shock. In addition, as we noted earlier, given that b is second order it is reasonable to consider

second order approximations of vN (·).
Let Qo

t be the optimal normalized price in the frictionless optimum (i.e. the optimum with no

adjustment costs.) Then, given Proposition 1, we can restrict attention to the following second order

approximations of vN about the frictionless optimum that ignores the continuation values conditional

on idiosyncratic shocks:

vN (At, Qt,Wt) = χ1AtW
1−ε
t + χ2AtW

1−ε
t (lnQt − lnQo

t )
2 + βαEtvN−1(At+,Qt,Wt) (3.9)

where χ1 and χ2 are constants, with χ2 =
ε1−ε

(ε−1)−ε . Note that the first order term disappears since Qo
t

is the frictionless optimum.8 Given elasticity of demand, Qo
t is simply the following markup µ over

nominal wages, as follows:

Qo
t = µWt (3.10)

with µ = ε/(ε− 1).

3.3. Approximate Optimal Pricing Policy

Iterating forward the second order approximation of vN(At,Qt,Wz,t) given by (3.9) yields

vN(At, Qt,Wt) = Et

N−1X
i=0

(αβ)i
h
χ1At+iW

1−ε
t+i + χ2At+iW

1−ε
t+i

¡
lnQt − lnQo

t+i

¢2i (3.11)

It is now straightforward to derive the optimality conditions for the target and the two triggers. The

first order necessary condition for the target is given by:

Et

N−1X
i=0

(αβ)i
£
AtW

1−ε
z,t (lnQ∗t − lnQo

t )
¤
= 0 (3.12)

7One can think of this as taking two limits. First, choose b small enough such that the firms’ obectives are approximately
quadratic. Second, choose an aggregate forcing process that is small enough that it does not trigger further adjustment.

8This means that we do not have to worry about any of the concerns regarding second order approximations such as
those raised in Woodford (2002).
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The triggers in turn are given by a value matching condition that equates the gain from not adjusting

to the gain from adjustment, net the adjustment cost: For J = H,L :

vN (At, Q
J
t ,Wt) = vN (At, Q

∗
t ,Wt)− b (3.13)

Given our quadratic approximation, the value matching condition can be restated as:

Et

N−1X
i=0

(αβ)i
h
χ2At+iW

1−ε
t+i

¡
lnQJ

t − lnQo
t

¢2i
= Et

N−1X
i=0

(αβ)i
h
χ2AtW

1−ε
t (lnQ∗t − lnQo

t )
2
i
− b (3.14)

Since we are interested in a local approximation about the steady state, we now analyze the non-

stochastic steady state as a necessary first step.

3.4. Non-stochastic Steady State

We first set the aggregate shocks at their respective means. The only disturbance in the steady state

is the idiosyncratic productivity shock, which washes out in the aggregate.

It is straightforward to derive the optimal steady state target and adjustment triggers. Given that

At and Wt are fixed, it follows from the first order conditions (3.10) and (3.12) that the steady state

target price, Q̄∗,is a constant equal to the steady state frictionless optimal price Q̄o, as follows:

Q̄∗ = Q̄o = µW̄ (3.15)

The steady state triggers are pinned down by the value matching condition with At andWt at their

respective steady state means:

vN(Ā, Q̄
J
n, W̄ ) = vN (Ā, Q̄

∗, W̄ )− b (3.16)

for J = H,L. Given the quadratic approximation of vN (·) and given ln Q̄∗ = ln Q̄o, we can write:

N−1X
i=0

(αβ)i
h
χ2ĀW̄

1−ε ¡ln Q̄J − ln Q̄o
¢2i

= b (3.17)

The solution to this quadratic equation yields two steady state triggers:

ln Q̄H = ln Q̄o +

s
1− (αβ)
1− (αβ)N

b

χ2ĀW̄
1−ε (3.18)

ln Q̄L = ln Q̄o −
s
1− (αβ)
1− (αβ)N

b

χ2ĀW̄
1−ε

13



Note that since b is second order, the steady state bands q̄H − q̄∗ and q̄∗ − q̄L are first order, as

we maintained earlier. In addition, as the period length N shrinks, the bands widen, also as we noted

earlier.

Finally, the steady state probability of price adjustment conditional on an idiosyncratic shock is

1− θ = 1− q̄H+q̄L

φ .9 The unconditional probability of price adjustment, then is simply the product of

the probability of an idiosyncratic shock times the probability of adjusting conditional on this shock:
1−a
1−aN · (1− θ). The average time a price is fixed, Θ, is simply the inverse of this probability:

Θ =
1− αN

(1− α) · (1− θ)
(3.19)

Note than, in general, the average time a price is fixed exceeds the average amount of time in between

idiosyncratic shocks, 1−α
N

1−α . This of course occurs because firms may always choose to keep their prices

fixed in the event of a shock. Again, however, those firms who to not adjust in this instance will have

their price within of first order of the target price.

3.5. Aggregate Shocks and Local Dynamics

We now consider shocks to At andWt that are sufficiently small so as to not trigger price adjustment in

periods without idiosyncratic shocks. Let q∗t = lnQ∗t−ln Q̄∗t and let wt = lnWz,t−ln W̄ . Log-linearizing

(3.12) about the steady state values of A,W,Q0 and Q∗ :

q∗t =
1− βα

1− (βα)N Et

N−1X
i=0

(βα)iqot+i +O2

=
1− βα

1− (βα)N Et

N−1X
i=0

(βα)iwz,t+i +O2 (3.20)

since qot = wz,t. As in the pure time dependent model, the target depends on a discounted stream of

future values of nominal marginal cost. In the time dependent framework, however, future marginal

cost in each period is weighted by the probability the price remains fixed. In our state-dependent

framework, the relevant weight is the probability αi that a new idiosyncratic shock has not arisen,

which in general is a number smaller than the probability the price has stayed fixed.

We next consider the local dynamics for the optimal triggers. Log-linearizing (3.14) about the

steady state values of A,W,Q0 and Q∗ and using the definition (3.20) yields

qHt = q∗t −
1− βα

1− (βα)N
q̄H − q̄o

2
Et

N−1X
i=0

(αβ)i [at+i + (1− ε)wt+i] (3.21)

9Since both q̄H + q̄L and φ are first order 1− θ need not approach zero or one as b approaches zero.
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qLt = q∗t +
1− βα

1− (βα)N
q̄o − q̄L

2
Et

N−1X
i=0

(αβ)i [at+i + (1− ε)wt+i] (3.22)

Note that the width of the bands qHt − qLt may fluctuate. However, they widen and contract sym-

metrically. Thus, given the uniform distribution, the average price within bands is simply the target:
1
2(q

H
t + qLt ) = q∗t . This result will prove useful when we next consider the local dynamics of the price

level.

3.6. Price Index

We may express the price index in terms of normalized prices, as follows

Pt =

µZ
Pt(z)

1−εdz
¶ 1

1−ε
(3.23)

=

µZ
Qt(z)

1−εXt(z)
ε−1dz

¶ 1
1−ε

Log linearization yields

P̄ 1−ε + P̄ 1−ε
¡
lnPt − ln P̄

¢
=

Z Z h
P̄ 1−ε + P̄ 1−ε

³
lnQj

z,t − ln Q̄
´i

Xt(z)
ε−1djdz +O2 (3.24)

lnPt =

Z Z
lnQj

z,t

³
Xj
z,t

´ε−1
djdz +O2

lnPt =

Z Z
lnQj

z,tdjdz +O2

Note that in the local approximation, we can ignore any correlation between Qj
z,t and X

j
z,t because the

bands are first order as are the innovations in the latter.

Let pt = lnP − ln P̄ . Then
pt =

Z Z
qjz,tdjdz (3.25)

Now consider an island z, island received an idiosyncratic shock at date t−i where i ∈ {0, N−1},Those
who adjusted set their price equal to q∗t−iThose who did not adjust remained uniformly distributed on
(qLt−i, q

H
t−i). Given (3.21) and (3.22), the average price of the non-adjusters is also q

∗
t−i.Hence the average

price on island z is q∗t−i. Given: the proportion of islands receiving the shock at t is 1−α, the proportion
that received the shock at t-1 but not at t is a(1− a) and so on. It follows that

pt =
1− α

1− αN

N−1X
i=0

aiq∗t−i (3.26)

which may be expressed as
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pt = (1− α)[q∗t +
αN

1− αN
(q∗t − q∗t−N)] + αpt−1 (3.27)

4. The Complete Model

In this section we put together the complete model. We restrict attention to a log-linear approximation

about the steady state. We begin with the “state-dependent” Phillips curve and then turn our attention

to the rest of the model.

Manipulation of (3.20) yields the optimal reset price q∗t as the following discounted stream of future
nominal wages.

q∗t = (1− βα)Et

∞X
i=0

(βα)i[wz,t+i +
(βα)N

1− (βα)N (wz,t+i −Etwz,t+N+i)] (4.1)

Note that q∗t depends on the island-specific wage wz,t+i. As a step toward aggregation, we would like

to derive this relation in terms of the economy-wide average wage, wt+i.

Log-linearizing the household’s first order condition for labor supply yields:

wz,t+i − pt+i = ϕnz,t+i + ct+i (4.2)

Averaging over this condition yields wt− pt+i = ϕnz,t+i+ ct+i, implying the following relation between

the island z relative wage and the relative employment levels:

wz,t+i −wt+i = ϕ(nz,t+i − nt+i) (4.3)

Making use of the demand function and the production function leads to a relationship between the

relative wage and the relative price of firms who adjust at time t :

wz,t+i = wt+i − ϕ�(q∗t − pt+i) (4.4)

Notice that wz,t+i depends inversely on q∗t . Raising the price reduces output and labor demand.
Since the labor market is segmented it also reduces wages on the island, thus moderating the need

to raise price. As emphasized in Woodford (2003), this factor segmentation thus introduces a “real

rigidity” that gives adjusting firms a motive to keep their relative prices in line with the relative prices

of non-adjusting firms. This real rigidity, in turn, contributes to the overall stickiness in the movement

of prices. Let Ψt denote the equilibrium nominal wage for a firm adjusting its price, i.e., the equilibrium

value of wz,t (we drop the z subscript because in equilibrium Ψt depends only on aggregate factors).
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Then combining (4.4) with (4.1) yields

q∗t = (1− βα){Ψt +
(βα)N

1− (βα)N [Ψt −EtΨt+N ]}+ βαEtq
∗
t+1 (4.5)

with

Ψt − pt =
1

1 + ϕ�
(wt − pt) (4.6)

In equilibrium, the real wages of adjusting firms, Ψt − pt moves less than one for one with the

aggregate real wage, implying similarly sluggish movement in in the nominal wage Ψt. In this respect,

the real rigidity, measured inversely by the coefficient 1
1+ϕ� , dampens the adjustment of prices. In the

absence of real rigidities, 1
1+ϕ� equals unity, implying Ψt. simply is equal to wt.

We are now in a position to present the Phillips curve. Let πt = pt − pt−1, denote inflation. In
addition, then, combining the equation for the target price (4.5) with the price index (3.27) yields

πt = λ{(Ψt − pt) +
αN

1− αN
eΨt}+ βEtπt+1 (4.7)

with

eΨt ≡ 1

1− (βa)N [β
N(1− αN )(Ψt −EtΨt+N) + (Ψt −Ψt−N) + (βα)N (Et−NΨt −EtΨt+N )] (4.8)

and

λ =
(1− α)(1− βα)

α
(4.9)

The Phillips curve has the form of the standard New Keynesian Phillips curve based on “Calvo”

time-dependent pricing (or more specifically a variation based on “truncated” Calvo pricing). A key

difference, however, is that the slope coefficient λ does not depend on a direct measure of the degree

of price rigidity, but rather on α, which is a measure of the infrequency of idiosyncratic shocks. As

we discussed in the previous section, the degree of price rigidity depends not only on the frequency

of idiosyncratic shocks, but also on the likelihood of adjustment conditional on aggregate shocks. It

is thus in principle possible to have a high degree of price flexibility, but also a high average length

of time over which prices are fixed. In particular, if α is small, implying that idiosyncratic shocks are

frequent, then λ will be large, implying that inflation will be very sensitive to movements in wages. At

the same time, however, adjustment costs and the variability of idiosyncratic shocks could be such that

adjustment conditional on a shock could be relatively infrequent, implying a high degree of stickiness

at the firm level. The intuition for this outcome follows directly from Golosov and Lucas, which in turn

comes from Caplin and Spulber. Frequent idiosyncratic shocks give firms the option of also adjusting

to aggregate shocks. Unlike the time dependent case, firms not adjusting are those that are already

close to the target. Thus in general, the state time dependent formulation will yield greater flexibility
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than does the time dependent. How much difference this makes, however, will depend upon the entire

structure of the model, including the overall parametrization as we make clear in the next section.

The rest of the model is standard. Given that there are only consumption goods and utility is

logarithmic, we can log-linearize the household’s intertemporal condition to obtain the following “IS”

curve:

yt = −(rnt −Etπt+1) +Etyt+1 (4.10)

Log-linearzing the first order condition for labor supply, averaging across households, and taking

into account that consumption equals output, yields a linear relation between the aggregate real wage

and output.

wt − pt = (σ + ϕ)yt (4.11)

Next, log-linearizing the first order condition for money demand and taking into account that con-

sumption equals output yields:

mt − pt = yt − ζrntt (4.12)

Equations (4.6), (4.7), (4.8), (4.10), (4.11) and (4.12) determine the equilibrium aggregate dynamics,

conditional on a monetary policy rule (and given the definition, pt = πt + pt−1). We consider two
different kinds of policy rules: An interest rate rule:

it = γπt + ρit−1 + εt (4.13)

and a money growth rule:

mt −mt−1 = ζ(mt−1 −mt−2) + ξt (4.14)

Finally, we note that conditional on the aggregate dynamics, we can determined the evolution of the

triggers for the Ss bands. This will yield adjustment probabilities conditional on idiosyncratic shocks

which, along the with frequency of idiosyncratic shocks , will help pin down the average time prices

are fixed. From knowledge of the size of the Ss bands and the distribution of idiosyncratic shocks, we

can also figure out the average size of price adjustments.

5. Properties of the Model

The properties of the model are most apparent under two special cases: N = 1 and N =∞.

When N = 1, the idiosyncratic productivity shock hits each island each period. All firms receive the

idiosyncratic shock. According to (3.20), q∗t = qot , and according to (3.26), the price index is equal to

qot as well. In this case, the economy is always at its frictionless optimum. Money is neutral. Neutrality

holds in spite of the fact that a fraction θ of firms do not adjust their prices in each period.10

10Note that Danziger does not find neutrality in his model even though he assumes that N = 1. The reason is that
he presents an exact analytic solution, whereas we log-linearize. The effects of money on output that Danziger finds are
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What is the source of this neutrality? It is instructive to analyze it both from the perspective of a

firm and from the economy as a whole. Consider first a firm that is contemplating price adjustment. It

faces an expected path for the nominal wage. In a time-dependent model, the firm would set its price

equal to a mark up over a weighted average of future wages where the weights represent the discounted

probability that the firm has not yet had an opportunity to alter its price. The weights would be of

the form (βθ)i . How can the state-dependent firm ignore the future path of wages and set its price as

a mark up only of the current wage? The answer is that the state-dependent firm can use its future

price adjustment decision to bring its costs in line with whatever price it sets today. Suppose that

the wage rises in the next period. A time-dependent firm would find that its price is too low. The

state-dependent firm shifts the set of productivities for which it maintains its price so that its average

mark up is unchanged. The resulting distribution of mark ups is unaffected by the increase in the

wage. It is important to note that this stark neutrality result depends crucially on the assumption

of a uniform distribution with wide support. This assumption allows the firm to alter its adjustment

triggers without altering the resulting distribution of the mark up.

From the perspective of the economy as a whole, this neutrality result is a two-sided version of the

neutrality result of Caplin and Spulber. Instead of a few firms raising their prices by discrete amounts

to compensate for an increase in the nominal wage, what changes is the mix of firms that raise and

lower their prices. When a shock causes the nominal wage to rise, the set of firms that maintain their

prices fixed changes. Some that had marginally low productivities decide to raise their prices and

some that have marginally high productivities decide not to lower theirs. The result is an unchanging

distribution of markups: uniform between two fixed triggers, and a fixed mass at the target.

When N > 1 and α > 0, firms do not always have the option of using their price adjustment policy

to compensate for movements in the nominal wage, and money is no longer neutral. When N = ∞,
the terms associated with the truncation of the idiosyncratic shock process disappear. The the Phillips

curve takes a familiar form:11

πt = λ{(Ψt − pt)}+ βEtπt+1

This is exactly the standard Calvo Phillips curve, with the exception that λ depends on the arrival

rate of the productivity shock α rather than the probability that prices remain unchanged, which is

α+ θ(1−α). Our Ss economy therefore looks like a time-dependent economy with a greater frequency

of price adjustment. This is similar to the finding of DKW and GL that an Ss economy exhibits less

inertia than a Calvo economy that is calibrated to have a similar probability of price adjustment. In

our model, this increased price flexibility arises because firms use their Ss policies to bring their costs

in line with their prices following an idiosyncratic shock.

second order in our framework.
11Although it makes the assumption that aggregate shocks do not prompt price adjustment a bit untenible, since the

Ss bands no longer widen appreciably between periods.
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6. Some Numerical Exercises

• Numerical Exercises (TO BE ADDED)
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