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Abstract

This paper develops theoretical foundations for an error analysis of approximate
equilibria in dynamic stochastic general equilibrium models with heterogeneous agents
and incomplete financial markets. While there are several algorithms which compute
prices and allocations for which agents’ first order conditions are approximately satisfied
(‘approximate equilibria’), there are few results on how to interpret the errors in these
candidate solutions and how to relate the computed allocations and prices to exact
equilibrium allocations and prices. We give a simple example which illustrates that
approximate equilibria might be very far from exact equilibria. We then interpret
approximate equilibria as equilibria for close-by economies, that is, for economies with
close-by individual endowments and preferences. We provide sufficient conditions which
ensure that approximate equilibria are close to exact equilibria of close-by economies.

We give a detailed discussion of the error analysis for two models which are commonly
used in applications, an OLG model with stochastic production and an asset pricing
model with infinitely lived agents. We illustrate the analysis with some numerical
examples. In these examples the derived bounds are at most one order of magnitude
larger than maximal errors in Euler equations.

∗An earlier version of this paper was circulated under the title ‘The accuracy of numerical solutions for

dynamic GEI models’. We thank seminar participants at various universities and conferences and espe-

cially Don Brown, John Geanakoplos, Peter Hammond, Martin Hellwig, Ken Judd, Mordecai Kurz, Alvaro

Sandroni, Manuel Santos and Tony Smith for helpful discussions and useful comments.
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1 Introduction

The computation of equilibria in dynamic stochastic general equilibrium models with het-

erogeneous agents has become increasingly important in finance, macroeconomics and public

finance. Many economic insights can be obtained by analyzing quantitative features of re-

alistically calibrated models (prominent examples in the literature include, among others,

Rios-Rull (1996), Heaton and Lucas (1996) or Krusell and Smith (1997)).

Unfortunately there are often no theoretical foundations for algorithms which claim to

compute competitive equilibria in models with incomplete markets or overlapping genera-

tions. In particular, since all computation suffers from truncation and rounding errors it

is obviously impossible to numerically verify (as some applied researchers claim) that the

optimality and market clearing conditions are satisfied and that a competitive equilibrium

is found. The fact that the equilibrium conditions are approximately satisfied generally

does not yield any implications on how well the computed solution approximates an exact

equilibrium. Computed allocations and prices could be arbitrarily far from competitive

equilibrium allocations and prices.

In this paper we develop an error analysis for the computation of competitive equilibria

in models with heterogeneous agents where equilibrium prices are infinite dimensional. We

define an ε-equilibrium as a collection of finite sets of choices and prices such that there exists

a process of prices and choices which takes values exclusively in these sets and for which

the relative errors in agents’ Euler equations and the errors in market clearing conditions

are below some small ε at all times.

Existing algorithms for the computation of equilibria in dynamic models can be in-

terpreted as computing ε-equilibria and the finiteness of ε-equilibria allows us to compu-

tationally verify if a given collection of endogenous variables (i.e. a candidate solution)

constitutes an ε-equilibrium. In order to give an economic interpretation of the concept

we follow Postlewaite and Schmeidler’s (1981) analysis for finite economies and interpret ε-

equilibria as approximating exact equilibria of a close-by economy.

In finite economies the problem of interpreting ε-equilibria is easiest illustrated in a

standard Arrow-Debreu exchange economy. Scarf (1967) proposes a method which ‘ap-

proximates’ equilibria for any given finite economy in the following sense: Given individ-

ual endowments ei for individuals i = 1, . . . , I and an aggregate excess demand function

ξ(p, (ei)), and given an ε > 0, the methods finds a p̄ such that ‖ξ(p̄, (ei))‖ < ε. As Richter

and Wong (1999) point out1 this fact does not imply that it is possible to find a p̃ such that

‖p̃− p∗‖ < ε for some exact equilibrium price vector p∗.
1They examine the problem of the computation of equilibria from the viewpoint of computable analysis

as developed by Turing (1936) and point out that while Scarf’s algorithm generates a sequence of values

converging to a competitive equilibrium knowing any finite initial sequence might shed no light at all on the

limit.

2



However, if individual endowments are interior and if the value of the excess demand

function at p̄, ‖ξ(p̄, (eh))‖, is small, then p̄ is an equilibrium price for a close-by economy.

Homogeneity of aggregate excess demand implies trivially that if p̄ · ξ(p̄, (eh)) = 0 then

‖(p̄, (eh))− (p∗, (ẽh))‖ < ε with ξ(p∗, (ẽh)) = 0. It is possible that p̄ is not a good approxi-

mation for the equilibrium price of the given economy. However researchers rarely know the

exact individual endowments of agents anyway, and if close-by specifications of exogenous

variables lead to vastly different equilibria it will be at least useful to know one possible

equilibrium for one realistic specification of endowments. As Postlewaite and Schmeidler

(1981) put it, “If we don’t know the characteristics, but rather, we must estimate them,

it is clearly too much to hope that the allocation would be Walrasian with respect to the

estimated characteristics even if it were Walrasian with respect to the true characteristics.”

This issue has been well understood for a long time from a viewpoint of computational

mathematics. In general, sources of errors in computations can be classified in three cate-

gories:

1. Errors due to the theory: The economic model contains many idealizations and sim-

plifications.

2. Errors due to the specification of exogenous variables: The economic model depends on

parameters which are themselves computed approximately, the results of experimental

measurements or the results of statistical procedures.

3. Truncation and rounding errors: each limiting process must be broken off at some

finite stage, computers usually use floating point arithmetic resulting in round-off

errors.

In contrast to standard error analysis, which aims to bound the distance of the approx-

imate solution to the exact solution, ‘backward error analysis’ exploits a trade-off between

2 and 3 and examines how much the given problem would have to be perturbed in order for

the calculated solution to be an exact solution of the perturbed problem (see e.g. Wilkinson

(1963) or Higham (1996)). While in the applied economic literature which uses computa-

tions there is a large debate about the trade-off between 1 and 3, there is surprisingly little

discussion about a possible trade-off between 2 and 3. This paper explores how this latter

trade-off can be used to interpret approximate solutions to dynamic general equilibrium

models via backward error analysis.

We examine two concrete applications where we take as given that standard algorithms

compute values for the endogenous variables for any possible sequence of exogenous shocks.

We describe a method to construct an ε-equilibrium from the computer output. Although

our definition of recursive equilibrium is discrete, it turns out to be very useful to use

continuous algorithms to compute the ε-equilibria in practice. In particular we examine
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algorithms which assume that approximate policy and pricing functions are smooth. We

show that in these applications our methods lead to reasonable and economically meaningful

error bounds.

For models with a single agent, Santos and his co-authors have developed such sufficient

conditions and give explicit error bounds both on policy functions and on allocations (Santos

and Vigo (1998), Santos (2000), and Santos and Peralta-Alva (2002)). While even in their

framework these conditions do not hold for all interesting specifications of the model, in

applications, the conditions can often be verified. Under these conditions, error bounds on

allocations can be derived from Euler equation residuals. However, most of these results do

not generalize to models with heterogeneous agents and incomplete markets. No sufficient

conditions are known which allow the derivation of error bounds on computed equilibrium

prices and allocations in the models considered in this paper.

Backward error analysis is a standard tool in numerical analysis that was developed in

the late 1950s and 1960s, see Wilkinson (1963). It is surprising that it has, to the best of

our knowledge, not been widely used in economics. (Judd’s textbook (1998), for example,

mentions backward error analysis and provides a citation from the numerical analysis liter-

ature but never applies the concept to an economic problem.) The only somewhat related

concept in economics is “backsolving” which was introduced by Sims (1989) for solving

nonlinear, stochastic systems. Ingram (1990) describes backsolving from an econometric

viewpoint. The endogenous variables in a stochastic dynamic optimization problem are

affected by random shocks. Instead of taking a distribution of shocks as given and then

solving for the distribution of the endogenous variables, backsolving begins by specifying a

convenient or intuitive distribution for some of the endogenous variables and then attempts

to find underlying distributions of random shocks and other variables that would yield the

assumed distributions of the endogenous variables. Note that this approach is different

from backward error analysis because it does not address the question how far away the

exogenous distribution is from some desired or estimated one. In backward error analysis

exogenous parameters are given, then an approximate solution is computed, and then the

necessary perturbations in exogenous parameters are determined. Clearly, we always would

like to have very small backward errors. In fact, the focus of our analysis of popular models

in Sections 5 and 6 of this paper is the calculation of backward errors. Due to the nature of

economic problems we cannot perform “pure” backward error analysis and only perturb ex-

ogenous parameters. Instead, we will compute bounds on perturbations of both exogenous

parameters and endogenous equilibrium values. Higham (1993) calls this “mixed” backward

error analysis.

The analysis in our paper is, from a theoretical perspective, perhaps closest to Mailath

et al.’s (2003) discussion of ε-equilibria in dynamic games. An important difference is that

they allow for perturbations in the instantaneous pay-off functions of the game. In our
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framework this can lead to preferences over payoff streams that are far away from the

original preferences. Therefore, we cannot consider these as admissible.

The paper is organized as follows. In Section 2 we illustrate the main intuition in

a simple two-period example. Section 3 outlines an abstract dynamic model and defines

what we mean by close-by economies. Section 4 develops the theoretical foundations of our

method. In Section 5 we apply this method to a model with overlapping generations and

production. In Section 6 we apply the methods to a version of Lucas’ (1978) asset pricing

model with heterogeneous agents.

2 The Main Intuition in a Two-period Economy

In this section we demonstrate the main themes of this paper in a simple two-period model.

We first show how competitive equilibria can be characterized by a system of equations

that relates endogenous variables in one period to endogenous variables of the next period.

These equations, which we will refer to as the equilibrium equations, enable us later in the

paper to describe infinite equilibria with finite sets. Secondly, we define an ε-equilibrium and

provide an example that shows that ε-equilibrium prices and allocations can be a terrible

approximation to exact equilibria. We show that in the example perturbations in individual

endowments can rationalize ε-equilibria as exact equilibria.

We consider a simple pure exchange economy with two agents, two time periods and no

uncertainty. There is a single commodity in each period, agents’ endowments are (ei
0, e

i
1)

for i = 1, 2. Agents can trade a bond which pays one unit in the second period, the price

of the bond is denoted by q. Agents’ bond holdings are θi, i = 1, 2. Agents preferences are

represented by time-separable utility

U i(x0, x1) = vi(x0) + ui(x1), i = 1, 2,

for increasing, differentiable and concave functions vi, ui : R+ → R. A competitive equilib-

rium is a collection of choices (ci, θi)i=1,2 and a bond price q such that both agents maximize

utility and markets clear, i.e. θ1 + θ2 = 0 and for both i = 1, 2,

(ci, θi) ∈ arg max
c∈R2

+,θ∈R
U i(c) s.t. c0 = ei

0 − qθ, c1 = ei
1 + θ.

In order to represent equilibria for infinite horizon models we want to derive a system of

equations that links endogenous variables (i.e. choices and prices) today to endogenous

variables next period and which is necessary and sufficient for equilibrium. In this simple

example, we define the vector of relevant endogenous variables to consist of current con-

sumption, current portfolios and current prices, z = ((ci, θi)i=1,2, q). (Even though agents

do not trade the bond in the second period we include zero bond holdings and a zero price

for the bond in the state variable z1 for that period. This set-up has the advantage that the
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resulting equilibrium expressions look very similar to those in the infinite-horizon problems

that we examine in the main part of the paper.)

In this two-period example, we define a system of equations h(z0, κ, z1) such that

((c̄i, θ̄i)i=1,2, q̄) ∈ R2
+ × R × R2

+ × R × R+ is a competitive equilibrium if and only if there

exist κ = (κ1, κ2) ∈ R2
+ × R2

+ such that h(z̄0, κ, z̄1) = 0, with z̄0 = ((c̄i
0, θ̄

i)i=1,2, q̄) and

z̄1 = ((c̄i
1, 0)i=1,2, 0). The system is as follows:

h(z0, κ, z1) =





−qv′i(c
i
0) + u′i(c

i
1)− q0κ

i
0 + κi

1, i = 1, 2

ci
0 − (ei

0 − q0θ
i
0), i = 1, 2

ci
1 − (ei

1 + θi
0), i = 1, 2

κi
0c

i
0, i = 1, 2

κi
1c

i
1, i = 1, 2

θ1 + θ2

(In the analysis below we refer to h(·) as the equilibrium equations. In order to characterize

equilibria of infinite economies, we require that for all periods t, endogenous variables at t

and at t + 1 satisfy the agents’ first-order conditions and the market-clearing conditions,

which we in turn summarize in a system h.)

An exact equilibrium is characterized by h = 0, but computational methods can rarely

find exact solutions. All one can usually hope for is to find an ε-equilibrium, namely (z0, z1)

such that

min
κ∈R4

+

‖h(z0, κ, z1)‖ < ε.

Unfortunately, even in this very simple framework, one can construct economies where

ε-equilibria can be arbitrarily far from exact equilibria.

2.1 Approximate Equilibria can be far from Exact

Consider the following class of economies parameterized by δ > 0.

v1(x) = x, u1(x) = −1
x

, e1 = (2, δ),

v2(x) = −1
x

, u2(x) = x, e2 = (0, 2).

One can easily verify that a competitive equilibrium is given by

q =
1

(2 + δ)2
, θ1 = 2 = −θ2.

This equilibrium is unique for δ > 0.

In addition, for δ < 1√
4−ε

− 1
2 , the following values of the asset price and holdings yield

an ε-equilibrium,

q = 4, θ1 = −θ2 =
1
2
.
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All equations except for h1 = 0 for agent 1 hold with equality. The error in this equation is

below ε by construction.

This example shows that even for very small ε > 0 we can construct an economy and

an ε-equilibrium which is far from an exact equilibrium both in allocations and prices. Fur-

thermore it is worth noting that agents’ welfare levels differ significantly between the exact

equilibrium and the ε-equilibrium. For very small δ, utility levels in the exact equilibrium

are approximately (U1, U2) ≈ (1,−2) while in the ε-equilibrium they are approximately

(U1
ε , U2

ε ) ≈ (−2, 1). No matter how one looks at it, the ε-equilibrium is evidently a terri-

ble approximation for the exact equilibrium2. This observation motivates us to interpret

ε-equilibria as approximate equilibria for ‘close-by’ economies.

2.2 Perturbing Endowments Makes Approximate Equilibria Exact

In our example, we can easily explain the idea that an ε-equilibrium can be understood as

approximating an exact equilibrium of a ‘close-by’ economy. If δ = 0, we obtain an economy

with close-by endowments. For this economy q = 4 and θ1 = −θ2 = 1/2 constitutes an

exact equilibrium. We make this observation repeatedly in this paper and therefore describe

explicitly how to find the necessary perturbation in endowments: At the ε-equilibrium q = 4,

θ1 = −θ2 = 1/2 the only equilibrium equation that does not hold with equality is

h1 = −q +
1

(e1
1 + θ)2

= −4 +
1

(e1
1 + 1/2)2

.

If we replace the endowments e1
1 by ẽ1

1 = e1
1 +o for some small o we can evidently set h1 = 0

by using o = −δ. The equilibrium equations imply directly which perturbations must be

used. The ε-equilibrium is exact for the perturbed economy.

While this is the main idea underlying our error analysis in the infinite model, there is

one additional complication which arises when agents live for many periods: Errors may

propagate over time and no sensible bounds on perturbations in endowments can be derived

by perturbing endowments every period. In Section 4, we will discuss this problem and a

solution in great length. First we need to lay out the basic infinite horizon model.

3 A General Model

In this section we fix the main ideas in an abstract framework which encompasses both

economies with overlapping generations and economies with infinitely lived agents as well

as economies with and without production. In Sections 5 and 6 below we consider two

standard models and show how to apply the methods developed in this and the next section.
2For finite economies there do exist sufficient conditions which relate approximate equilibria to exact

equilibria (see for example Blum et al. (1998, chapter 8) and Anderson (1986)). However, these cannot be

generalized to the infinite horizon economies we consider in this paper.
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3.1 The Abstract Economy

Time and uncertainty are represented by a countably infinite tree Σ. Each node of the tree,

σ ∈ Σ, is a finite history of shocks σ = st = (s0, s1, . . . , st) for a given initial shock s0. The

process of shocks (st) is assumed to be a Markov chain with finite support S. If st′ is a

successor of st we write st′ Â st. The number of elements in S is S. Given an S×S transition

matrix Π, we define probabilities for each node by π(s0) = 1 and π(st) = Π(st|st−1)π(st−1)

for all t ≥ 1.

There are L commodities, l ∈ L, at each node. As it is commonly done in the dynamic

GEI literature (see for example Magill and Quinzii (1994)) we take the commodity space

to be

`∞(Σ,L) = {((x1(σ), . . . , xL(σ)) : sup
(σ,l)∈Σ×L

|xl(σ)| < ∞}.

There are countably many individuals i ∈ I and countably many firms k ∈ K. An individual

i ∈ I is characterized by his consumption set Xi, his individual endowments ei ∈ Xi ⊂ `∞,

his preferences P i ⊂ Xi × Xi (where P i = {(x, y) ∈ Xi × Xi : x ºi y}) and trading

constraints. To simplify notation, we assume that the consumption sets are identical across

agents and write X = Xi.

A firm k ∈ K is characterized by its production set Y k. An economy E is characterized

by a demographic structure, assets, technologies and preferences, endowments and trading

constraints. In the concrete models below we describe E explicitly.

The original economy is assumed to be Markovian. The number of agents active in

markets at a given node is finite and time-invariant but may depend on the underlying

shock, agents maximize time and state-separable utility, firms only make decisions on spot

markets and all individual endowments, payoffs of assets, production sets of firms and

spot utility functions of individuals are time-invariant functions of the shock, s, alone. In

particular we assume that individual endowments depend only on the shock and can be

written as ei(st) = ei(st). We define aggregate endowments e(s) =
∑

i∈I ei(s), for all

s ∈ S. Since there are finitely many shocks, this allows us to describe the economy by

finitely many spot utility functions, production sets, endowment vectors and asset payoffs.

3.2 Close-by Economies

As explained in the introduction we are interested in analyzing equilibria of economies E ′
which are close-by to an original Markovian economy E in the sense that all individuals’

endowments and preferences are close-by. In order to formalize this idea, we index economies

by preferences and endowments, i.e. we write E = (P I , eI), where P I denotes the profile

of preferences across agents and eI denotes the profile of individual endowments. We

also parameterize economies by node-dependent perturbations o(σ) ∈ O ⊂ RN and write

E((o(σ))σ∈Σ) for a given (possibly non-stationary) perturbed economy. In the original
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economy o(σ) = 0 for all σ ∈ Σ. The vector o(σ) may contain perturbations of endowments

or preferences or both.

We need to define a metric on economies, i.e. distances for preferences and for endow-

ments. Throughout the paper, for a vector x ∈ Rn, ‖x‖ denotes the sup-norm,

‖x‖ = max{|x1|, . . . , |xn|}.

For an element of the commodity space x ∈ `∞ we define

‖x‖ = sup
(σ,l)∈Σ×L

‖xl(σ)‖.

In many applications we are interested in examining close-by economies with identical

preferences. In these cases o(σ) are additive perturbations of endowments of individuals

which are active in markets at node σ. Individual endowments are then called ‘close-by’ if

the sup-norm of their difference is small.

While small differences in individual endowments are easy to interpret, differences in

preferences are much harder to quantify. However, in some cases (e.g. when endowments are

specified to lie on the boundary and we do not want to consider interior endowments) we

need to perturb preferences in order to provide an economically meaningful interpretation

for an approximate equilibrium.

Following Postlewaite and Schmeidler (1981) and Debreu (1969) we use the Hausdorff

distance to define closeness of two preferences P and P ′. However, in the models we

consider, aggregate endowments are always bounded. While it is conceivable that an agent

may contemplate consumption bundles that exceed aggregate endowments, it simplifies the

analysis considerably to call preferences close-by if they are close over fixed bounded sets.

For this purpose, we define

c̄ = max
s∈S

‖e(s)‖ and C̄ = {(x, y) ∈ X ×X : ‖(x, y)‖ ≤ c̄}.

The distance between two preferences is then

dH(P, P ′) = max

{
sup

(x,y)∈P∩C̄

(
inf

(x′,y′)∈P ′
‖(x, y)− (x′, y′)‖

)
, sup
(x′,y′)∈P ′∩C̄

(
inf

(x,y)∈P
‖(x, y),−(x′, y′)‖

)}
.

We define a distance between the economies,

d(E , E ′) = max
i∈I

(
max

{‖ei − ei′‖, dH(P i, P i′)
})

.

3.2.1 Admissible Perturbations of Preferences

We assume throughout the paper that preferences can be represented by a time-separable

expected utility function. We consider linear additive perturbations to Bernoulli utilities

(as is often done in general equilibrium analysis, see e.g. Mas-Colell (1985)). For simplicity
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the following discussion focuses on the case where agents are infinitely lived and their con-

sumption sets are infinite dimensional. The case of finitely lived agents follows immediately

from this case.

Given common beliefs and discount factors (we discuss possible perturbations in beliefs

and discounting below), Π and β, for an infinitely lived agent i there exists a Bernoulli

function ui : RL
+ × S → R such that with

U i(x) =
∞∑

t=0

βt
∑

st

π(st)ui(x(st), st),

we have

(x, y) ∈ P i if and only if U i(x) ≥ U i(y).

In the original unperturbed economy, Bernoulli utilities only depend on the current shock,

i.e. ui(x, st) = ui(x, st). We assume that each ui is continuously differentiable, strictly

increasing and concave for x ∈ R++. As a result there exists m̄ > 0 such that Dxl
ui(x, s) ≥ m̄

for all l ∈ L and all x ∈ RL
+ with ‖x‖ < 2c̄, and all s ∈ S.

Given ui(x, st) and a utility perturbation oi(st) ∈ RL, the perturbed Bernoulli utility is

ũi(x, st) = ui(x, st) + oi(st) · x

For the perturbed utility function to remain strictly increasing we need to restrict attention

to sufficiently small perturbations and thus require that ‖oi(st)‖ < m̄
2 for all st ∈ Σ. If P i

denotes the original preferences, we denote the implied perturbed preferences by P̃ i which

we represent by the utility function

Ũ i(x) =
∞∑

t=0

βt
∑

st

π(st)
(
ui(x(st), st) + oi(st) · x(st)

)
.

The following lemma giving bounds on dH(P i, P̃ i) is proven in the Appendix.

Lemma 1 Given perturbations (oi(σ))σ∈Σ, define ω̄i = supσ ‖oi(σ)‖. Then a bound on the

distance between original and perturbed preferences is as follows.

dH(P i, P̃ i) ≤ L c̄
ω̄i

m̄
.

It is clear that as ‖(oi(σ))σ∈Σ‖ → 0 we have that dH(P i, P̃ i) → 0. Moreover, the bound in

the lemma is invariant to affine transformations in ũi. Note, however, that the bound does

depend on the lower bound m̄ on marginal utilities. As a result, multiplying all endowments

by some factor does affect the bound on the preference distance. This comes as no surprise,

since a fixed perturbation oi(st) of marginal utility will be much more significant when the

original marginal utility was rather small. Also note that because of the relationship ω̄i < m̄
2

we have an upper bound dH(P i, P̃ i) ≤ L c̄ ω̄i

m̄ < Lc̄
2 . Clearly this bound is too crude; we

always want ω̄i to be orders of magnitude smaller than m̄.
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3.2.2 Possible Other Perturbations ?

While we can show that the considered linear perturbations in Bernoulli functions lead

to close-by preferences, it is obviously not true that given a preference, P , all close-by

preferences can be represented by utility functions with linear perturbations. It will become

clear in Section 6 below that in general most additional perturbations in preferences do

not facilitate the error analysis. However, it may appear tempting to perturb conditional

probabilities and node-dependent discount factors. It is therefore useful to point out that

such perturbations may lead to preferences which are very far away from the original ones.

Perturbations in resulting unconditional probabilities may get arbitrarily large for events

far along the event-tree and therefore marginal rates of substitution for the perturbed

preferences will be far from those of the original preferences. The preferences will be far in

the Hausdorff distance.

3.3 Equilibrium

A competitive equilibrium for the economy E(o(σ))σ∈Σ) is a process of endogenous vari-

ables (z(σ))σ∈Σ with z(σ) ∈ Z ⊂ RM , which solve agents’ optimization problems and

clear markets. We refer to the collection of the economy and the endogenous variables,

(E((o(σ))σ∈Σ), (z(σ))σ∈Σ), as an ‘economy in equilibrium’.

3.3.1 The Expectations Correspondence

For the computation of competitive equilibria it is important that equilibrium conditions can

be summarized in a set of inequalities which relate current period exogenous and endogenous

variables to endogenous and exogenous variables one period ahead. Duffie et al. (1994)

describe this relation via an expectations correspondence. We use their terminology but

slightly alter the concept for our specific purposes.

We restrict attention to economies where a time invariant expectations correspondence

can encompass all conditions for agents’ optimality and market clearing. A competitive

equilibrium can then be characterized by an expectations correspondence which maps en-

dogenous variables today to possible (i.e. consistent with individuals’ Euler equations and

market clearing) endogenous variables and perturbations of the fundamentals at the S pos-

sible shocks next period. That is, we want to be able to define a correspondence

H : S × Z ⇒
⊗

s∈S
(O ×Z),

where (z(σ))σ∈Σ is an equilibrium for E((o(σ))σ∈Σ) if for all st ∈ Σ,

(o(st1), z(st1), . . . , o(stS), z(stS)) ∈ H(st, z(st)).
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We assume furthermore that elements in the graph of the expectations correspondence can

be characterized as (part of) a solution to a system of equations, i.e. we assume that there

exists a set K ⊂ RK , and a function

h : S × Z ×K × (
⊗

s∈S
(O ×Z)) → IRL

such that (o1, z1, . . . , oS , zS) ∈ H(ŝ, ẑ) if and only if there exists κ ∈ K such that

h(ŝ, ẑ, κ, o1, z1, . . . , oS , zS) = 0.

In this formulation the variables κ ∈ K should be thought of representing slack variables in

inequalities or Kuhn-Tucker multipliers. In the applications below the functions h consist

of individuals’ intertemporal Euler equations, market clearing equations and first order

conditions for spot optimality. We refer to h as the equilibrium equations. In Section 2, we

described these equations for a simple two-period model.

4 Approximate Equilibria and Their Interpretation

As mentioned in the introduction, we want to give conditions which allow us to interpret

the results of algorithms used in practice. It is therefore useful to define a notion of ε-

equilibrium which is general enough that it exists in most interesting specifications of the

model and that is tractable in the sense that actual approximations in the literature can be

interpreted as such ε-equilibria (or at least that ε-equilibria can be constructed fairly easily

from the output of commonly used algorithms).

Definition 1 An ε-equilibrium is a finite set F = F1× . . .×FS , Fs ⊂ Z for all s = 1, . . . , S,

such that for all ŝ ∈ S and all ẑ ∈ Fŝ there exist (z1, . . . , zS) ∈ F such that

min
κ∈K

‖h(ŝ, ẑ, κ,0, z1, . . . ,0, zS)‖ < ε. (1)

In most interesting models one can show existence of ε-equilibria for all ε > 0 (the

existence of a competitive equilibrium is often a sufficient but not a necessary condition

for the existence of ε-equilibria). Obviously ε-equilibria are only computationally feasible if

they have some simple Markovian structure, i.e. if the sets Fs are ‘small’ relative to Z. In

the applications below this is the case.

We define an ε-equilibrium as a finite collection of points because we want to be able

to verify whether a candidate solution constitutes an ε-equilibrium, and with our definition

this verification involves checking only finitely many inequalities.
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4.1 Recursive Methods

The applied computational literature often refers to recursive equilibria. These equilibria

are characterized by policy functions which map the current ‘state’ of the economy into

choices and prices and by transition functions which map the state today into a probability

distribution over the next period’s state. While in dynamic GEI models, recursive equilibria

do not always exist and no non-trivial assumptions are known which guarantee the existence

of recursive equilibria (for counterexamples to existence see e.g. Hellwig (1982), Kubler and

Schmedders (2002) and Kubler and Polemarchakis (2003)) recursive methods are useful for

computational purposes. In most models, recursive ε-equilibria exist whenever ε-equilibria

exist and formulating these ε-equilibria recursively facilitates the notation and the error

analysis. In the following we always assume that a given ε-equilibrium also has a recursive

representation. We therefore now define a recursive ε-equilibrium formally.

The relevant endogenous state space Ψ ⊂ RD depends on the underlying model - it is

determined by the payoff-relevant pre-determined endogenous variables; that is, by variables

sufficient for the optimization of individuals at every date-event, given the prices. If Ψ is

the ‘endogenous state space’ there must exist sets Z∗1 , . . . ,Z∗S ⊂ RM−D such that for all

s ∈ S, Fs = Ψ×Z∗s . The value of the state variables (s0, ψ0) ∈ S ×Ψ in period 0 is called

‘initial condition’ and is part of the description of the economy. It will be often be useful

to make this explicit and to write Es0,ψ0 . A recursive ε-equilibrium is defined as follows.

Definition 2 Given an ε-equilibrium F and a state space Ψ, a recursive ε-equilibrium consists

of a policy function ρ : S ×Ψ → RM−D such that

Fs = graph(ρs) for all s ∈ S,

as well as transition functions τss′ : Ψ → Ψ, for all s, s′ ∈ S such that for all s̄ ∈ S and all

z̄ = (ψ̄, z̄∗) ∈ Fs̄,

(z1, . . . , zS) = ((τs̄1(ψ̄), ρ1(τs̄1(ψ̄))), . . . , (τs̄S(ψ̄), ρS(τs̄S(ψ̄))))

satisfies

min
κ∈K

‖h(s̄, z̄, κ,0, z1, . . . ,0, zS)‖ < ε.

This definition shows that recursive methods enable us to approximate an infinite di-

mensional equilibrium by a finite set. Given an initial value of the shock, s0 and initial

values for the endogenous state, ψ0, a recursive ε-equilibrium assigns a value of endogenous

variables to any node in the infinite event tree: For any node st, the value of the endogenous

state is given by ψ(st) = τst−1st(ψ(st−1)), the value of the other endogenous variables is

given by ρst(ψ(st)). We call the resulting stochastic process an ε-equilibrium process and

write (zε(σ))σ∈Σ.
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In most contexts it will be straightforward to derive the transition function from the

policy function. For example, in a finance economy, the beginning-of-period portfolio hold-

ings constitute the endogenous state. The policy function assigns new portfolio holdings

which then form the endogenous state next period.

4.2 Construction of ε-equilibria

This paper does not develop explicit algorithms to compute ε-equilibria. In fact, it is

usually not feasible to compute them directly since their discrete nature does not allow

directly for the application of standard methods in numerical analysis (which usually assume

smoothness). For the purpose of the present paper we assume that from some algorithm

the output z(st) for any finite sequence of shocks can be computed. We want to construct

a recursive ε-equilibrium from this output.

For this purpose, fix a small δ > 0. Starting from the root node s0 collect all pairs of

shocks and (output of) endogenous variables (st, z(st)) in a set Yt. Define the set of states

rounded to within δ by

Yδ
t = {(s, zδ) :

|zδ
m|
δ

∈ IN for m = 1, . . . , M and there exists (s, z) ∈ Yt with ‖z − zδ‖ < δ}.

In other words, we restrict the endogenous variables to lie on a grid with grid size δ. The

set Yδ
t contains all combinations of exogenous states s and endogenous variable values on

the grid that appear in the computed solution for time t. Next we collect all rounded states

which have occurred up to time t in Yδt, so we define Yδt = ∪t
t′=0Yδ

t′ . Obviously, for fixed

grid size δ > 0 the number of elements of Yδt is finite. If for some t∗, Yδ
t∗ ⊂ Yδ(t∗−1) then

the set Yδ(t∗−1) contains all states that will ever be visited in the constructed approximate

equilibrium! In other words, all states that may ever occur along the event tree have

been reached at least once. By construction the set Yδ(t∗−1) yields an ε-equilibrium for

some ε > 0. The actual ε can be computed by evaluating the error in the expectations

correspondence at all s , z ∈ Fs
3. It is evident that this procedure has two problems that

may potentially render it useless. First, the procedure may be hopelessly inefficient since for

sufficiently small δ the potential number of elements in F is huge. Secondly, the resulting

value for ε may not be as small as desired. Surprisingly, we found that in our economic

applications these problems are not severe. The output from our algorithm computing

smooth approximations for policy and transition functions is good enough in order to make

ε sufficiently small. Moreover, after a surprisingly small number of periods t∗ all states start
3In many applications researchers verify errors only along one randomly determined path. The implicit

assumption is that simulating the economy along one sample path suffices to verify the accuracy of compu-

tations. However, an example in Kubler and Schmedders (2003b) shows that this is often not sufficient. In

particular, for a given finite sample path, it is obviously impossible to infer the maximal error from the error

along the path.
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to be revisited, even when the dimension of the endogenous state space is fairly large. In

summary, the outlined procedure for computing an ε-equilibrium from smooth equilibrium

approximations appears to work well for interesting economic applications.

4.3 Error Analysis

In the context of recursive equilibria den Haan and Marcet (1994) and Judd (1998) suggest

to evaluate the quality of a candidate solution using Euler-equation residuals. In these

methods relative maximal errors in Euler equations of ε usually imply that the solution

describes an ε-equilibrium. Unfortunately ε-equilibria defined by condition (1) are very

difficult to interpret. What does an ε-equilibrium describe for, say ε = 0.001 ? Should this

be regarded as a good approximation or as a bad one? The example in Section 2 shows that

the computed ε-equilibrium may be far away from an exact equilibrium for the economy,

no matter how small ε.

Several authors (e.g. Judd (1998)) justify ε-equilibria (or maximal relative errors in

Euler equations) as a measure of quality of a solution via a bounded rationality argument.

They argue that economic agents have bounded computational capacity and can only find

approximately optimal choices. Any improvement over their choices results in an extra gain

of at most ε. However, in dynamic general equilibrium models with rational expectations

there is a tension between assuming that agents have rational expectations about future

prices and assuming that they make errors in choosing their consumptions given the correct

forecasts for prices. Furthermore, since markets clear exactly, future prices must already

reflect the agents’ optimization errors. We therefore want to move away from a bounded

rationality justification and interpret ε-equilibria as approximating exact equilibria of a

close-by economy.

Ideally a recursive ε-equilibrium would generate an ε-equilibrium process that is close-by

to a competitive equilibrium for a close-by economy at all date-events. If this were the case

one could find small perturbations of endowments and preferences of the original economy

such that the perturbed economy has a competitive equilibrium which is well approximated

by the ε-equilibrium process at each node of the event tree. This observation leads to the

following definition of approximate equilibrium.

Definition 3 An ε-equilibrium process (zε(σ))σ∈Σ for an economy Es0,ψ0 path-approximates

an economy in equilibrium with precision δ if there exists a close-by economy in equilibrium,

(E ′s0,ψ0
, (z̃(σ))σ∈Σ), E ′ = E((o(σ))σ∈Σ), with

d(E , E ′) < δ and sup
σ∈Σ

‖zε(σ)− z̃(σ)‖ < δ.

In models where agents are infinitely lived, it is not to be expected that a recursive

ε-equilibrium actually gives rise to a process that path-approximates a close-by economy in
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equilibrium. If agents make small errors in their choices each periods, these are likely to

propagate over time and after sufficiently many periods the ε-equilibrium allocation will be

far away from the exact equilibrium allocation. The following simple example illustrates

that it is easy to construct ε-equilibria which do not path-approximate an economy in

equilibrium for any reasonable precision δ, no matter how small ε.

Example 1 Consider an infinite horizon exchange economy with two infinitely lived agents, a

single commodity and no uncertainty. Suppose that agents have identical initial endowments

ei > 0 for all t and identical preferences with ui(ct) = log(ct) and with a common discount

factor β ∈ (0, 1). There is a consol in unit net supply which pays 1 unit of the consumption

good each period. The price of the consol is qt, portfolios are θi
t. Each agent i, i = 1, 2, faces

a short sale constraint θi
t ≥ 0 for all t.

Even though the example is simple, it is useful to explicitly spell out the equilibrium

equations. Let the endogenous variables be z = ((θi−, θi, ci,mi)i=1,2, q). Admissible pertur-

bations are o = (oi
P , oi

e)i=1,2 ∈ R4, i.e. we allow for perturbations in endowments as well as

in preferences. The expectations correspondence is characterized by h(z̄, κ, o, z) = 0 where

h = (h1, . . . , h6) with

h1 = −1 + β (1+q)mi

q̄m̄i + κi i = 1, 2

h2 = κiθ̄i i = 1, 2

h3 = ci − θi−(q + 1) + θiq − (ei + oi
e) i = 1, 2

h4 = θi− − θ̄i i = 1, 2

h5 = mi − (u′i(c
i) + oi

P ) i = 1, 2

h6 = θ1 + θ2 − 1

The natural endogenous state space for this economy consists of beginning-of-period consol

holdings. We build market clearing into the state space and only consider θ1−, θ2− with

θ1− + θ2− = 1. We write ψ = θ1− to represent a typical state of the economy, implicitly

assuming market clearing.

Obviously, for any initial condition ψ0 ∈ (0, 1), the unique exact equilibrium is no trade

in the consol with each agent consuming θi
0− + ei, θ1

0− = ψ0 = 1 − θ2
0−, each period and

in the absence of bubbles the price of the consol being qt = β
1−β for all t ≥ 0. However,

it is also an ε-equilibrium if each period agent 1 sells a small amount of the tree to agent

2. In this case, the consumption of agent 1 converges to e1 while the consumption of agent

2 converges to e2 + 1. Unfortunately, there is no economy with close-by endowments for

which this allocation is an approximate equilibrium allocation.

To analyze this case in more detail we construct a recursive ε-equilibrium as follows.

Define

τ(ψ) =

{
ψ − δ if ψ > δ

ψ otherwise.
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Define q = ρq(ψ) = β
1−β , θ1 = ρθ1(ψ) = τ(ψ) and c1(ψ) = ψ(q + 1) − θq, c2(θ) = 1 +

e1 + e2 − c1(θ). Given any initial condition ψ0 ∈ (0, 1), these functions describe a recursive

ε-equilibrium as long as 0 ≤ δ < ε(1−β)
βei . Except for the Euler equations h1 all equilibrium

equations hold with equality. For θ− = ψ > 2δ, the error in Euler equations for agent 1 is

given by

‖h1‖ = | − 1 +
e1 + (θ + δ)(q + 1)− θq

e1 + θ(q + 1)− θq + δq
| < δ(q + 1)

ei

For 2δ ≥ ψ > δ, we have

‖h1‖ = | − 1 +
e1 + (θ + δ)(q + 1)− θq

e1 + θ(q + 1)− θq
| ≤ δ(q + 1)

ei

and finally for ψ < δ we have h1 = 0. The argument for agent 2 is analogous.

For the initial condition ψ0 = 0.5, the constructed recursive equilibrium obviously im-

plies an ε-equilibrium process which, in the sup-norm, is far from any exact equilibrium

of a close-by economy. Note that this is a general problem that does not only occur in

economies with incomplete markets, the same phenomenon can even arise for an approxi-

mate solution to a single-agent decision problem. In the applied literature this problem is

commonly solved by ignoring it4: A computed solution is considered a good approximation

if the computed policy function is close-by the true policy function. Usually no reference

is made about how the stochastic process of choices arising from the approximate policy

function relates to the stochastic process of optimal choices. For some purposes this may be

good enough. At least for the first few periods, given any initial conditions, the constructed

recursive ε-equilibrium is a good approximation to the exact equilibrium if ε is sufficiently

small.

We generalize this idea and apply it to our general framework. Instead of requiring that

the exact equilibrium process is well approximated by the ε-equilibrium process we merely

require that for each node st ∈ Σ and value of the exact equilibrium z(st) there is some

z̃ ∈ Fst which is close to z(st). Of course this would be a vacuous condition if there are

many z̃ ∈ Fst which do not approximate any equilibrium values. These considerations lead

us to the following definition.

Definition 4 An ε-equilibrium F for the economy E weakly approximates an economy in

equilibrium with precision δ if there exists a close-by economy in equilibrium, (E ′, (z̃(σ))σ∈Σ),

E ′ = E((o(σ))σ∈Σ), with d(E , E ′) < δ, such that

min
z∈Fst

‖z − z̃(st)‖ < δ for all st

4A notable exception is Peralta-Alva and Santos (2002) who derive sufficient conditions for sample-path

stability in a representative agent model.
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and such that for all s, z ∈ Fs there exist initial conditions (s0, ψ0) and an equilibrium for the

economy E ′s0,ψ0
, (z(σ))σ∈Σ, such that

inf
σ∈Σ

‖z(σ)− zε‖ < δ.

Intuitively, the definition merely requires that for the recursive ε-equilibrium the policy

function is close to the policy function of an exact recursive equilibrium. In the models

we consider in this paper, existence of exact recursive equilibria cannot be established. We

therefore need to state the definition in terms of competitive equilibria.

This condition is much weaker than requiring that the ε-equilibrium process strongly

approximates an economy in equilibrium. This is to be expected since closeness in policy

functions generally do not imply anything about how close equilibrium allocations are, even

in models where recursive equilibria do exist. The definition only requires that there exists

some process with values in F which approximates the exact equilibrium but does not

explicitly state how to construct this process. However, given an ε-equilibrium that satisfies

the definition and given any T one can construct a process which is within δ of the exact

equilibrium process for up to T periods. This will be made explicit in Section 6 below.

It is easy to see that the ε-equilibrium in Example 1 approximates the exact equilibrium

very well, and that Definition 4 is satisfied. However, without knowing the exact equilibrium

it can be difficult to verify the definition from the ε-equilibrium alone. In order to derive

a sufficient condition which does not involve the (generally unknown) exact equilibrium we

need to use the ε-equilibrium F to construct a process which is an exact equilibrium for a

close-by economy. Given initial conditions in Example 1, suppose endogenous variables in

the first period are equal to z1. How can we find values for the next period which are close

to an element of F and for which the equilibrium equations hold exactly? One possible way

to proceed is to search over F for consumption values which make the error in h1 identical

across agents. Evidently this is obtained if next period’s individual consumption is set equal

to this period’s consumption. This will lead to an exact equilibrium in this simple example

if we perturb endowments.

In general, of course, verifying that an ε-equilibrium satisfies Definition 4 will not be

as straightforward as in this example. In particular, it will generally be impossible to find

elements of F which ensure that Euler equations hold with equality. We now describe how

to generalize the idea of the example to more interesting models.

4.4 A Sufficient Condition

In this section we describe a general method to construct an exact equilibrium process for

a close-by economy from a given ε-equilibrium. In Section 6 we apply this method to a

concrete example.
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We assume throughout that for all s̄ ∈ S, z̄ ∈ Fs̄ we can find values of endogenous

variables which are close-by to elements in F and small perturbations at all direct successor

nodes such that the equilibrium equations are satisfied exactly. The problem is that for

a given constructed equilibrium process, endogenous variables at some node st will not be

exactly equal to any element z ∈ Fst . Therefore we require that for all initial endogenous

variables in a small neighborhood (within some δ0 ≤ δ) of z̄ perturbations and values of

endogenous variables can be found for the direct successor nodes such that the endogenous

variables again lie in the same δ0 neighborhood of some value in F . If this is the case, we say

that the ε-equilibrium is balanced and there exists an infinite process which approximates

an economy in equilibrium.

More formally, in order to show that F weakly approximates an economy in equilibrium

with precision δ is suffices to show that there are non-negative numbers δ1, . . . , δM < δ

such that for all s̄, z̄ ∈ Fs̄ ⊂ RM , all z̃ with |z̃m − z̄m| ≤ δm for all m = 1, . . . , M , there

exist, for all s ∈ S, o(s) with ‖o(s)‖ < δ, as well as z(s) such that there is a z ∈ Fs with

|zm − zm(s)| < δm for all m = 1, . . . , M , which satisfy

min
κ∈K

‖h(s̄, z̃, κ, o(1), z(1), . . . , o(S), z(S))‖ = 0.

Evidently, in the simple example above, only marginal utilities need to be considered.

For all marginal utilities which lie in a δ neighborhood of marginal utilities in F we can find

next period marginal utilities in the same neighborhood. We discuss a more complicated

(and more interesting) example of balancedness in Section 6 where we consider the Lucas

model with heterogeneous agents.

5 A Model with Overlapping Generations and Production

As the first application of our methods, we consider a model of a production economy

with overlapping generations and several commodities. This is a generalization of models

frequently used in macroeconomics and public finance (see e.g. Rios-Rull (1996)) and of the

overlapping generations model analyzed in Duffie et al. (1994).

We show that in this model the ε-equilibrium process actually path approximates an

economy in equilibrium and we derive bounds on the distance between the close-by econ-

omy in equilibrium and the specified economy. These bounds are constructed from the

ε-equilibrium F using linear algebra. In Section 5.2 we present a detailed error analysis

which is at times very tedious because we consider a model with production where indi-

vidual endowments can lie on the boundary. Nevertheless, we present all necessary steps

to show how to implement our ideas in practice. A reader who is mainly interested in the

computational or in the conceptual aspects of this paper may want to skip this subsection.
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5.1 The economy

While the olg model is fairly standard, we describe it in some detail to fix notation. At

each date-event a single individual commences his economic life; he lives for N dates. An

individual is identified by the date event of his birth, (st). He consumes at the date-event

st, . . . , st+N−1; the age of an individual is a = 1, . . . , N.

There are L physical commodities, l ∈ L, and one representative firm at each date-

event, st. The firm produces in spot markets using a constant returns to scale technologies

which depends on the current shock alone. In order to simplify the error analysis we

assume that commodities 1, . . . ,K, K < L, are always used as inputs to spot production

and commodities K + 1, . . . , L are always outputs. We assume that the technology can be

described by a function f(., s) : RK
+ → RL−K

+ . A production plan y ∈ RL is feasible for the

firm at shock s if and only if (yK+1, . . . , yL)− f((−y1, . . . ,−yK), s) ≤ 0.

Households have access to a risky intertemporal technology which, for simplicity, is

assumed to be linear. For each shock s we define an L×L matrix, D(s), where the element

dl′l denotes how much of commodity l′ is produced from one unit of commodity l used

as input in the previous period. We denote by the vector φσ(st) ∈ RL
+ the bundle of

commodities invested by individual σ into the technology at date event st, the output at

st+1 is given by D(st+1)φσ(st) ∈ RL
+. In order to distinguish between spot production of

the firm and intertemporal household production, we refer to the latter as storage.

An agent born at date event st has individual endowments at nodes st, . . . , st+N−1

which are a function of the shock and his age alone, i.e. for all a = 1, . . . , N , est
(st+a−1) =

ea(st+a−1) for some function ea : S → RL
+. For an agent σ = sT we denote his consumption

choices over his lifetime by xσ = (xσ(st))t=T,...,T+N−1,stºσ, and his investment choices by

φσ = (φσ(st))t=T,...,T+N−1,stºσ. To simplify notation we define φst
(st−1) = 0 for all st. The

agent has an intertemporal, von Neumann-Morgenstern utility function

U st
(x) = Est

N∑

a=1

ua(x(st+a−1), st+a−1).

The Bernoulli utility u depends on the age and the current shock alone. At the root node,

s0, there are individuals of all ages s−1, . . . , s−N+1 with initial holdings φs−a
(s−1). These

determine the ‘initial condition’ of the economy.

A competitive equilibrium is a collection of prices, choices of individuals and choices of

the firm (p(σ), (φi(σ), xi(σ))i∈I(σ), y(σ))σ∈Σ such that markets clear and agents optimize,

i.e. for all nodes st ∈ Σ we have

• Market clearing:

N∑

a=1

(
xst−a+1

(st)− ea(st)−D(st)φst−a+1
(st−1) + φst−a+1

(st)
)

= y(st).
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• Individual’s maximize utility:

(xst
, φst

) ∈ arg max
(x,φ)≥0

U st
(x) s.t.

p(st+a)·
(
xst

(st+a)− ea+1(st+a) + φst
(st+a)−D(st+a)φst

(st+a−1)
)
≤ 0, a = 0, . . . , N−1

Optimality conditions for initially alive agents, s−1, . . . , s−N+1 are analogous.

• The firm maximizes profits,

(y1(st), . . . , yK(st)) ∈ arg max
(y1,...,yK)≤0

L∑

l=K+1

pl(st)f((−y1, . . . ,−yK), st)+
K∑

l=1

pl(st)yl(st)

(yK+1(st), . . . , yL(st)) = f((−y1(st), . . . ,−yK(st)), st)

The Expectations Correspondence

We want to characterize competitive equilibria by an expectations correspondence. We

define the endogenous variables at some node σ to consist of investments from the previ-

ous period, φ− = (φ1−, . . . , φN− ), new investments, φ = (φ1, . . . , φN ), consumptions, x =

(x1, . . . , xN ) as well as excess demands, ξ = (ξ1, . . . , ξN ) ∈ RNL, and Lagrange multipliers,

λ = (λ1, . . . , λN ) ∈ RN
+ , for all individuals alive; of the firm’s choice, y, and spot prices, p,

so

z = (φ−, φ, x, ξ, λ, y, p).

We build bounds and normalizations into the admissible endogenous variables, i.e. we only

consider z for which φ1− = 0, φN = 0, φ ≥ 0, φ− ≥ 0, c ≥ 0 and p1 = 1.

We consider perturbations in individual endowments and preferences, i.e. define o(σ) =

(oe(σ), oP (σ)) ∈ R2LN to be perturbations in endowments and preferences across all agents

alive at a current node σ. As explained in Section 3 preferences are perturbed by perturb-

ing Bernoulli utility functions node by node. We write for agent st’s perturbed Bernoulli

function at node st+a, ua(x, st, oP (st)) = ua(x, st) + oP (st) · x.

We characterize the expectations correspondence H via the equilibrium equations. So,

(oI1 , z1, . . . , o
I
S , zS) ∈ H(s̄, z̄) if and only if there exist κ ∈ R(N−1)L

+ such that

h(s̄, z̄, κ, oI1 , z1, . . . , o
I
S , zS) = 0.
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We define h = (h1, . . . , h9) with

h1 = φa−(s)− φ̄a−1 a = 2, . . . , N, s ∈ S
h2 = p(s) · ξa(s) a = 1, . . . , N, s ∈ S
h3 = xa(s)− (ea(s) + oa

e(s))− ξa(s) + φa(s)−D(s)φa−(s) a = 1, . . . , N, s ∈ S
h4 = −p̄λ̄a−1 + βEs|s̄p(s)D(s)λa(s) + κa a = 2, . . . , N

h5 = κa
l φ̄

a−1
l a = 2, . . . , N, l ∈ L

h6 = Dxua(xa(s), s) + oP (s)− λa(s)p(s) a = 1, . . . , N, s ∈ S
h7 =

∑L
l=K+1 pl(s)

∂fl((−y1(s),...,−yK(s)),s)
∂yl′

− pl′(s) s ∈ S, l′ = 1, . . . , K

h8 = (yK+1(s), . . . , yL(s))− f(−y1(s), . . . ,−yK(s), s) s ∈ S
h9 =

∑N
a=1 ξa(s)− y(s) s ∈ S

We assume throughout that in h6 derivatives are only taken with respect to commodities

which enter the utility function.

Under standard assumptions on preferences and the production function which guaran-

tee that first order conditions are necessary and sufficient, a competitive equilibrium can

be characterized by these equations. Kubler and Polemarchakis (2003) prove the existence

of ε-equilibria.

5.2 Error Analysis

Throughout this section we use the following well known fact from linear algebra. For

an under-determined system Ax = b with a matrix A that has linearly independent rows,

denote by A+ = A>(AA>)−1 the pseudo inverse of A (where A> denotes the transpose

of the matrix A). The unique solution of the system that minimizes the Euclidean norm

‖x‖2 is then given by xLS = A+b. We assume that A+b can be computed without error.

While this is obviously incorrect the error analysis for this problem is well understood and

explicit bounds on the errors are usually very small (see e.g. Higham (1996), Chapter 20).

We use the pseudo inverse below without explicitly assuming that AA> is invertible. If

AA> is singular in our analysis below, there is no bound on errors. While we are interested

in maximum errors, we use the Euclidean (or two-) norm here since it is well understood

how to compute A+b accurately. Evidently, for an x ∈ Rn, we have that

‖x‖ ≤ ‖x‖2

and so this approach will immediately yield an upper bound on the minimal sup-norm of a

solution x.

For the error analysis, we assume that Bernoulli utility is strictly increasing in all com-

modities which enter the utility function and that there exists at least on commodity l∗

such that agents’ choices always satisfy xl∗ > 0. We restrict the consumption set of each
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agent to be bounded above in each component by twice the maximal aggregate consumption

occurring in the ε-equilibrium

c̄ = 2 max
s∈S,z∈Fs

‖
N∑

a=1

ca‖

and define

m̄ = min
s∈S,a=1,...,N

(
min

x≥0,‖x‖≤c̄
‖Dxua(x, s)‖

)
,

where again we only take derivatives with respect to those commodities which enter the

utility function. It holds that m̄ > 0 since we assume that the utility function is strictly

increasing.

Let G1 ⊂ L consist of all those commodities which are inputs of intertemporal production

(storable commodities),

G1 = {l ∈ L : ∃l′ ∈ L, s ∈ S : dl′l(s) 6= 0},

and let G2 ⊂ L consist of all those commodities which are output of intertemporal produc-

tion (stored commodities),

G2 = {l ∈ L : ∃l′ ∈ L, s ∈ S : dll′(s) 6= 0}.

We want to distinguish between inputs and outputs of spot production which have previ-

ously been stored and inputs and outputs which can not be produced through the storage

technology. In order to do so with as little notation as possible, we assume5 that there are

integers j and m, 0 ≤ j ≤ K ≤ m ≤ L such that

G2 = {l ∈ L : l ≤ j or K + 1 ≤ l ≤ m}.

Given any s̄, z̄ ∈ Fs̄, let

(z(1), . . . , z(S)) = arg min
(z1,...,zS)∈F

(
min
κ∈K

‖h(s̄, z̄, κ,0, z1, . . . ,0, zS)‖
)

.

Without loss of generality we can restrict attention to ε-equilibria for which Equations h1,

h5, h8 and h9 hold with equality at (s̄, z̄, z(1), . . . , z(S)) since an error in these equations

can be easily put to zero by increasing the error in other equations. The other equations

will generally only hold with some error. In order to facilitate the error analysis, it is useful

to state explicitly the variables these functions depend on.

• h2 = (h2
a,s)a=1,...,N,s∈S , h2

a,s(p(s), ξa(s)) = ε2a,s ∈ R
5This assumption implicitly states that all commodities are either inputs or outputs. This simplifies the

notation but the analysis can also be conducted if some commodities are not part of production.
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• h3 = (h3
a,l,s)a=1,...,N,l∈L,s∈S , h3

a,s,l(x
a
l (s), ξ

a
l (s), φa

l (s), φ
a
l−(s)) = ε3a,s,l ∈ R

We assume w.l.o.g. that h3
a,s,l holds with equality whenever the individual a has no

endowments in commodity l and that commodity does not enter his utility function.

• h4 = (h4
a,l)a=2,...,N,l∈G1 , h4

a,l(p̄l, λ̄
a−1, (pn(s))s∈S

n∈G2 , (λa(s))s∈S , κ̂) = ε4a,l ∈ R where

κ̂ = arg min
κ≥0

∣∣∣h4
a,l(p̄l, λ̄

a−1, (pn(s))s∈S
n∈G2 , (λa(s))s∈S , κ)

∣∣∣ s.t. κφ̄a−1
l = 0

Note that for all commodities which cannot be stored, i.e. l /∈ G1, there is no equilib-

rium equation.

• h6 = (h6
a,s,l)a=1,...,N,l∈L,s∈S , h6

a,s,l(x
a(s), λa(s), pl(s)) = ε6a,s,l

• h7 = (h7
s)s∈S , h7

s(y(s), p(s)) = ε7s ∈ RK .

The general strategy to derive error bounds will be as follows. We identify a set of

commodities whose prices we can perturb at any node in order to ensure that h7(y(s), p̃) = 0

for the perturbed p̃. These prices do not appear in h4. We then give bounds on the errors

caused in h4 by perturbations in previous periods of λ̄ and p̄. The perturbations in λ and p

then determine the perturbations necessary in individual endowments to satisfy the budget

constraints and in Bernoulli utility functions to satisfy h6 = 0.

Errors in h7

For a given s = 1, . . . , S and z(s), let the (L − K) × K matrix J denote the Jacobian of

f(., s) with respect to all inputs at y(s). For our analysis it is helpful to divide J into 4

submatrices. Denoting the row index by l and the column index by l′ we write

J =
(

∂fl(−y1(s), . . . ,−yK(s), s)
∂yl′

)l=K+1,...,L

l′=1,...,K

=

(
J11 J12

J21 J22

)
with

J11 =
(

∂fl

∂yl′

)l=K+1,...,m

l′=1,...,j

, J12 =
(

∂fl

∂yl′

)l=K+1,...,m

l′=j+1,...,K

,

J21 =
(

∂fl

∂yl′

)l=m+1,...,L

l′=1,...,j

, J22 =
(

∂fl

∂yl′

)l=m+1,...,L

l′=j+1,...,K

.

Define a (K − j) + (L−m) vector

er1(s) =

(
0 J>21

−IK−j J>22

)+

ε7s.

Recall that s̄, z̄ denote the shock and the endogenous variables from the previous period

and let

∆1(s̄, z̄) = max
s∈S

max{ max
i=1,...,K−j

| er
1
i (s)

pj+i(s)
|, max

i=1,...,L−m
|er

1
K−j+i(s)
pm+i(s)

|}.
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The proof of Lemma 2 in the Appendix shows that this bound denotes the maximal relative

perturbation necessary in prices to obtain equality in Equation h7 for z. Finally let ∆1 =

maxs,z∈Fs ∆1(s, z) denote the upper bound on this perturbation across all points in the

ε-equilibrium. We can now ensure that there exist relative perturbations in the prices of

commodities l = j + 1, . . . ,K and l = m + 1, . . . , L (that is, for l ∈ L − G2) which are

uniformly bounded by ∆1 and which guarantee that for all s, z ∈ Fs, h7
s(z̃) = 0. The

following lemma states this formally (see the Appendix for the proof).

Lemma 2 For each s, z ∈ Fs, there exist p̃l, l ∈ L − G2, with ‖pl−p̃l
pl
‖ < ∆1 such that

h7
s(y, (p1, . . . , pj , p̃j+1, . . . , p̃K , pK+1, . . . , pm, p̃m+1, . . . , p̃L)) = 0.

Note that prices of commodities which are output of the intertemporal storage technol-

ogy, i.e. pl for l ∈ G2, are not perturbed. Therefore, the performed perturbations do not

affect the error in Equation h4. Below we need some notation for the perturbed vector of

all prices; we write p̃l(s) = pl(s) + vl(s) where vl(s) = er1(s) for l ∈ L − G2 and vl(s) = 0

for l ∈ G2. In vector notation, p̃(s) = p(s) + v(s).

Errors in h2

Given s̄, z̄, z(1), . . . , z(S) from above and given perturbed prices, p̃(s), to ensure that h7

holds with equality, we need to perturb ξa(s) for all a = 1, . . . , N to ensure that p̃(s)ξa(s) =

0. Since we assume constant returns to scale, p̃(s) · y(s) = 0 and since h9 = 0 we have that

p̃(s)
∑N

a=1 ξa(s) = 0. Since l∗ is a commodity that is desired by all agents, we have that

p̃l∗(s) > 0, therefore a sufficient perturbation would be

ξ̃a
l∗(s) = − 1

p̃l∗(s)

∑

l 6=l∗
ξa
l (s)p̃l(s).

Now note that p̃l(s)ξa
l (s) = (pl(s)+vl(s)) ξa

l (s) and thus p̃(s)ξa(s) =
∑

l(pl(s)+vl(s)) ξa
l (s) =

ε2a,s +
∑

l vl(s)ξa
l (s). Hence, an upper bound for |ξ̃a

l∗ − ξa
l∗ | is given by

∆2(s̄, z̄) = max
s∈S,a=1,...,N

1
pl∗(s)(1−∆1(s̄, z̄))

(
|ε2a,s|+

∑

l∈L
|vl(s)ξa

l (s)|
)

.

Define

∆2 = max
s,z∈Fs

∆2(s, z).

Errors in h3

Given s̄, z̄, z(1), . . . , z(S) and ∆2(s̄, z̄) from above, recall that h3 is assumed to hold with

equality for all commodities which do not enter the utility function and in which the agent

has zero endowments.
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For commodities which do not enter the utility function, but in which the agent has

positive endowments, adjust oa
e(s) to ensure equality. These adjustments all lie within ‖ε3‖

since by construction, the excess demands ξ in these commodities were not perturbed in the

previous step. As we mentioned above, we assume that endowments are sufficiently large

to ensure non-negativity of perturbed endowments.

For commodities which enter the utility function, adjust xa(s) to ensure equality. These

commodities include l∗ for which ξl∗ has been perturbed. Define

νa
s = max{∆2(s̄, z̄) + |ε3l∗ |,max

l 6=l∗
|ε3l |}.

An upper bound on the necessary perturbations in consumptions is therefore given by

∆3(s̄, z̄) = max
a=1,...,N,s∈S

νa
s .

Define ∆3 = maxs∈S,z∈Fs ∆3(s, z).

For commodities that do enter the utility function, this perturbation may increase the

error in h6. In order to capture this effect, define

∆6(s̄, z̄) = max
a=1,...,N,s∈S

(|ε6as|+ ‖Dxua(xa(s)− νs1, s)−Dxua(xa(s), s)‖) .

Define ∆6 = maxs∈S,z∈Fs ∆6(s, z). We must take this error into account when we examine

Equation h6.

Errors in h4

Given s̄, z̄, z(1), . . . , z(S) from above define a payoff matrix A by

A =


π(s|s̄)

∑

l∈G2

dll′(s)pl(s)




l′s

, l′ ∈ G1, s ∈ S.

Define er2(a) = A+(ε4al)l∈G1 and let ∆4(s̄, z̄) = maxa=2,...,N maxs∈S |er2
s(a)/λa

s |. Define

∆4 =
(

(1 + max
s,z∈Fs

∆4(s, z))(1 + ∆1)
)N

.

It is straightforward to see that this imposes an upper bound on necessary relative pertur-

bations in λa which ensure that h4 holds with equality, given the perturbations in prices

for h7 and given the errors in h4.

Errors in h6: Necessary Perturbations in Bernoulli Utilities

Finally we need to perturb Bernoulli utilities in order to impose equality on the first order

conditions for individuals’ spot optimality. A bound on the necessary (linear) perturbations

is given by

∆P = ∆6 + ∆4 max
s,(φ−,φ,x,ξ,λ,y,p)∈Fs

(
max

a=1,...,N
plλ

a

)
.
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The following theorem summarizes the above discussion and uses Lemma 1 to give

bounds on the overall perturbations in endowments and preferences necessary.

Theorem 1 Given an ε equilibrium F for an economy E , with ∆j , j = 1, . . . , 4 and ∆P

as defined above, there exists an economy E ′ with d(E , E ′) < ∆P L c̄
m̄ and with a competitive

equilibrium (z(σ))σ∈Σ such that the ε equilibrium process zε = (φε−, φε, xε, ξε, λε, yε, pε) satisfies

for all σ ∈ Σ,

φε
−(σ)− φ−(σ) = 0

φε(σ)− φ(σ) = 0

yε(σ)− y(σ) = 0

‖xε(σ)− x(σ)‖ ≤ ∆3

‖λε(σ)− λ(σ)‖ ≤ ∆4‖λε(σ)‖
‖pε(σ)− p(σ)‖ ≤ ∆1‖pε(σ)‖
‖ξε(σ)− ξ(σ)‖ ≤ ∆2

Note that the portfolios (φε−, φε) and the firm’s output were not perturbed.

5.3 Parametric Examples

We illustrate by means of an example that the bounds in Theorem 1 are fairly tight and

that methods which lead to low maximal errors in Euler equations usually approximate

an economy in equilibrium very well in our model. Suppose that there are only three

commodities: Capital, k, labor, l, and a consumption good, c. The numéraire commodity is

taken to be capital, its price is always 1. Agents have access to a risk-less storing technology,

which transforms one unit of the consumption good at node st into 1 unit of capital at each

node st+1 Â st. The risky spot production function is Cobb-Douglas

f(k, l, s) = η(s)kαl1−α + (1− δ(s))kα

for shocks η, δ. Agents live for 9 periods and only derive utility from the consumption good.

An agent born at shock st has utility function

U st
= Est

N∑

a=1

βa−1u(c(st+a−1)).

We assume that there are 4 shocks which are iid with πs = 0.25 for s = 1, . . . , 4. Bernoulli

utilities are of the CRRA form

u(c) =
c1−γ

1− γ
(2)

with a coefficient of relative risk aversion γ = 3. Suppose that β = 0.8 and that individual

endowments are deterministic and given by

(e1, . . . , eN ) = (1, 1, 1, 1, 1, 1, 0.5, 0, 0).
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We consider 4 different specifications for the shocks to production.

Table 1: Specifications for Shocks

State 1 State 2 State 3 State 4

Case 1: η 0.95 1.05 0.95 1.05

Case 1: δ 0.7 0.7 0.7 0.7

Case 2: η 0.85 1.15 0.85 1.15

Case 2: δ 0.7 0.7 0.7 0.7

Case 3: η 0.95 1.05 0.95 1.05

Case 3: δ 0.5 0.5 0.9 0.9

Case 4: η 0.85 1.15 0.85 1.15

Case 4: δ 0.5 0.5 0.9 0.9

We do not impose that individual investment has to be non-negative. This is done to

simplify computations. It is easy to see that the above error analysis remains valid even

without the non-negativity restriction.

5.3.1 Computation

Due to the finite nature of recursive ε-equilibria it should be possible to derive a globally

convergent algorithm which computes an ε-equilibrium for any given ε > 0 and any given

specification of preferences and endowments. However, since agents live for 9 periods the

endogenous state space Θ is of dimension 7 and any discrete algorithm will be hopelessly

inefficient. Krueger and Kubler (2003) develop an algorithm to approximate equilibria

in OLG models where agents live for several periods using polynomial approximations.

The algorithm assumes that pricing and policy functions which describe a recursive ε-

equilibrium are defined over a compact set Θ and that these functions exhibit a high degree

of smoothness. They approximate them by polynomials, using Smolyak’s method to avoid

a curse of dimensionality. The unknown polynomial coefficients are solved for through a

time iteration algorithm.

Given the discussion above, using this algorithm to obtain recursive ε-equilibria might

seem odd: By definition recursive ε-equilibria are a finite collection of points and there is

no guarantee that the functions in the definition can be extended to smooth functions over

a compact set. However, in practice the algorithm has been proven to converge very well

and it is clear that it would be infeasible to compute a recursive ε-equilibrium directly for

a 7-dimensional state space. Our concept of recursive ε-equilibrium is not meant to impose

any restrictions on the actual computation of approximate equilibria. It merely provides a

method to assess the quality of a candidate solution.

We use the method described in Section 4.2 to construct a recursive ε-equilibrium from

the computed values of the algorithm. We set δ = 1/300000. This value results in a set F
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with around 2 million elements. All states are visited within the first 24 periods, i.e. the

algorithm terminates at Yδ
t for t = 24.

5.3.2 Error Analysis in Practice

In this example most of the steps in the proof of Theorem 1 reduce to a single calculation.

The error in Euler equations does propagate over time, but this is the only source of high

overall errors. Since neither labor nor capital enters individual’s utility functions, the errors

in h7 are around machine-precision (10−15 on the machine used for this computation). The

necessary perturbations in spot prices and consumptions are then smaller than 10−13. Only

errors in h4 are significantly higher, around 10−4, these then lead to the higher maximal

errors.

The following table reports the errors along one simulated path of length 100000, simerr,

the ε which resulted from taking δ = 1/300000 in the above discretization procedure as well

as the maximum perturbation necessary in individual Bernoulli utilities. Note that the

computational error along a simulated path is always considerably smaller than that of our

ε-equilibrium.

Table 2: Errors

Case 1 Case 2 Case 3 Case 4

simerr 8.3 (-5) 2.5 (-4) 8.2 (-4) 1.3 (-3)

ε 9.2 (-4) 4.2 (-4) 1.3 (-3) 2.5 (-3)

∆P 8.2 (-3) 8.3 (-3) 9.9 (-3) 1.3 (-2)

6 The Lucas Model with Several Agents

As a second application we consider the model of Duffie et al. (1994, Section 3). This

model is a version of the Lucas (1978) asset pricing model with finitely many heterogeneous

agents. There are I infinitely lived agents, i ∈ I, and a single commodity in a pure exchange

economy. Each agent i ∈ I has endowments ei(σ) > 0 at all nodes σ ∈ Σ which are time-

invariant functions of the shock alone, i.e. there exist functions ei : S → R+ such that

ei(st) = ei(st). Agent i has von Neumann-Morgenstern utility over infinite consumption

streams

U i(c) = E0

∞∑

t=0

βtui(ct)

for a differentiable, strictly increasing and concave Bernoulli function ui which satisfies an

Indada condition.

There are J infinitely lived assets in unit net supply. Each asset j pays shock dependent

dividends dj(s), we denote its price at node st by qj(st). Agents trade these assets but are

restricted to hold non-negative amounts of each asset. We denote portfolios by θi ≥ 0. At

29



the root node s0 agents hold initial shares θI(s−1) which are assumed to be identical across

agents and sum up to 1, so θi
j(s

−1) = 1/I for all i ∈ I, j = 1, . . . , J.

A competitive equilibrium is a collection ((ci(σ), θi(σ))i∈I , q(σ))σ∈Σ such that market

clear, ∑

i∈I
θi
j(σ) = 1 for all σ ∈ Σ, j ∈ J ,

and such that agents optimize

ci ∈ arg maxc≥0 U i(c) s.t. ∀st ∈ Σ

ci(st) = ei(st) + θi(st−1)(q(st) + d(st))− θi(st)q(st),

θi(st) ≥ 0.

6.1 The Expectations Correspondence

Following Kubler and Schmedders (2003a) it is useful to include as an endogenous variable

individual shares of total financial wealth

wi(st) =
θi(st−1) · (q(st) + d(st))∑J

j=1 qj(st) + dj(st)

Note that wI = (w1, . . . , wI) ∈ ∆I−1, the (I − 1)-dimensional simplex in RI . We de-

fine the current endogenous variables to consist of wealth shares, asset prices, individuals’

consumption and portfolios,

z = (wI , q, cI , θI).

As before, we built trivial normalizations into the state space, i.e. we assume that θi ≥ 0,

ci ≥ 0 for all i ∈ I and that wI ∈ ∆I−1.

Since, we want to perturb individual endowments only (perturbing preferences does not

simplify the analysis), we take perturbations to be I-vectors, oI = (o1, . . . , oI) ∈ RI . The

equilibrium equations are then h(s̄, z̄, κ, oI1 , z1, . . . , o
I
S , zS) = 0 with h = h1, . . . , h5 and

h1
i = −q̄u′i(c̄

i) + βEs̄

[
(q(s) + d(s))u′i(c

i(s))
]
+ κi

h2
is = wi(s)− θ̄i·(q(s)+d(s))∑J

j=1 qj(s)+dj(s)

h3
is = ci(s)− wi(s)

∑
j∈J (qj(s) + dj(s)) + θi(s) · q(s)− (ei(s) + oi(s))

h4
ij = κi

j θ̄
i
j

h5
js =

∑
i∈I θi

j(s)− 1

In order to obtain h1 = 0 we need to perturb marginal utility which we achieve by perturbing

consumptions. The residuals in h3 are then set to zero by perturbing endowments.

Kubler and Schmedders (2003a) show that under standard assumptions on preferences

and endowments competitive equilibria can be characterized by the expectations corre-

spondence and that recursive ε-equilibria always exist. Let ρ = (ρq, (ρci , ρθi)i∈I) denote the

policy function associated with a recursive ε-equilibrium.
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6.2 Error Analysis

The main problem in the error analysis is that, because agents are infinitely lived, the neces-

sary perturbations to correct for errors in h1 may propagate without bounds. For example,

a small reduction in consumption in a given period may result in a bigger reduction in the

subsequent period which in turn results in a further reduction in the third period and so on.

As a consequence the perturbed values may move far away from the ε-equilibrium. There-

fore, as we explained in Section 4, we are no longer able to show that the ε-equilibrium path

approximates an economy in equilibrium. Instead we need to show that the ε-equilibrium

is balanced and weakly approximates an economy in equilibrium. For this, we need to per-

turb the distribution of wealth wI . As we move from period to period we must allow for

small perturbations in the state of the economy in order to maintain closeness between all

perturbed and ε-equilibrium values.

Given a (recursive) ε-equilibrium F and given any s̄, z̄ ∈ Fs̄, let

(z̃(1), . . . , z̃(S)) = arg min
(z1,...,zS)∈F

(
min
κ∈K

‖h(s̄, z̄, κ,0, z1, . . . ,0, zS)‖
)

As in Section 5, we can assume w.l.o.g. that Equations h4 and h5 hold with equality given

z̃1, . . . , z̃S .

In order for h1 to hold with equality, we need to perturb marginal utilities through

perturbations of c1, . . . , cS . Define the S × J payoff matrix A by

A(s̄, z̄)js = (βπ(s|s̄)(q̃j(s) + dj(s)))js .

Given an agent i, define εi by

εi = min
κ≥0

‖A+(−q̄u′i(c̄
i) + βEs̄

[
(q̃(s) + d(s))u′i(c̃

i(s))
]
+ κ)‖ s.t. κ · θ̄i = 0

Let er1(s̄, z̄) = maxi∈I εi and δ = maxs,z∈Fs er1(s, z). This last bound denotes the maxi-

mum necessary perturbation of marginal utilities over the entire set F to obtain equality

in h1 given that marginal utilities last period were not perturbed. However, this only con-

stitutes a lower bound on total necessary perturbations because errors will propagate over

time. We use the concept of balancedness as defined in Section 4 to derive an upper bound.

Given that this period’s marginal utilities have been perturbed, we want to derive perturba-

tions in next period’s wealth distribution which ensure that perturbations in next period’s

marginal utilities do not propagate.

Using the fact that we consider a recursive ε-equilibrium, we can write current endoge-

nous variables as functions of wI alone and define

M(wI(1), · · · , wI(S)) =
(
βπ(s|s̄)(ρqj (w

I(s), s) + dj(s))
)
js

.

Note that at w̃, M(w̃) = A(s̄, z̄).
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We now determine perturbations in next period’s wealth distribution which guarantee

that necessary perturbations in marginal utilities next period are within 2δ, given that

perturbations of marginal utilities this period are within 2δ. For any µ̄ ∈ RI with |µ̄i −
u′i(c̄i)| < 2δ, ∀i, we want to find wI1 , . . . , wIS such that there exist µ̃1, . . . , µ̃S ∈ RI with

|µ̃i
s − u′i(ρci(wIs , s))| < 2δ and with

−q̄µ̄i + β
∑

s∈S
π(s|s̄)[ρq(wIs , s) + ds]µ̃i

s = 0 for all i ∈ I.

Since the true wealth distribution is determined through θ̄ which cannot be perturbed

in order to achieve equality in h2, w̃I as it appears in h3 is fixed. However, the wealth

distribution which supports the new consumptions and prices generally differ from w̃I . We

then need to perturb endowments in h3 in order to be able to support ρq(w) and ρc(w)

at the predetermined wealth distribution w̃. We want to find wI1 , . . . , wIS which minimize

these perturbations in the endowments, i.e. which minimizes

|wi
s

∑

j∈J
(ρqj (w

I
s , s) + dj(s))− θ̄i · (ρq(wIs , s) + d(s))|

at all s ∈ S. In order to ensure that this is possible for all µ̄ which are within 2δ from u′i(c̄
i)

it suffices to check that at the 3I distinct points, (u′i(c̄
i)(1+2δni))i∈I for all n ∈ {−1, 0, 1}I ,

this can be achieved with the perturbations next period lying within one times δ, i.e. with

|µ̃i
s − u′i(ρci(wIs , s))| < δ.

Since F is finite a simple grid search6 allows us to determine the following number. Given

n ∈ {−1, 0, 1}I define

err2(n) = min
w=(wI1 ,...,wIS)


 max

i∈I,s∈S
|wi

s

∑

j∈J
(ρqj (w

I
s , s) + dj(s))− θ̄i · (ρq(wIs , s) + d(s))|




subject to for all i ∈ I,

min
κ≥0,κθ̄i=0

∥∥∥∥∥∥∥∥
(M(w))+


q̄u′i(c̄

i)(1 + 2niδ)−M(w)




u′i(ρci(w(1), 1))
...

u′i(ρci(w(S), S))


− κ




∥∥∥∥∥∥∥∥
< δ.

Define

∆1(s̄, z̄) = max
n∈{−1,0,1}I

err2(n) and ∆1 = max
s,z∈Fs

∆1(s, z).

The discussion above shows that this is an upper bound on perturbations in individual

endowments necessary to offset the perturbations in the wealth distribution. In addition we
6In the example below this issue is dealt with more sophisticatedly.
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need to perturb individual endowments in order to obtain the ‘correct’ marginal utilities.

For this purpose, we define

∆2(s̄, z̄) = max
i∈I,s∈S

max{u′−1
i

(
u′i(c̃

i(s))(1 + 2δ)
)− c̃i(s), |u′−1

i

(
u′i(c̃

i(s))(1− 2δ)
)− c̃i(s)|}

and ∆2 = maxs,z∈Fs ∆s(s, z).

The following theorem now summarizes our discussion.

Theorem 2 The ε-equilibrium F weakly approximates an economy in equilibrium with precision

∆1 + ∆2.

Note that in order to achieve balancedness, it is crucial that there are sufficiently many

states compared to the number of assets. In particular, with this construction will generally

not be possible when markets are complete. We now turn to two examples which illustrate

that when markets are incomplete, this construction often results in reasonable error bounds.

6.3 Parametric Example

We consider two examples to illustrate the analysis above. In both examples there are two

agents with identical CRRA utility and a coefficient of risk aversion of 2. There are 4 shocks

which are i.i.d. and equi-probable. Dividends and endowments in two cases are as follows:

1. There is a single tree. Dividends are d(s) = 1 for all s = 1, . . . , 4. Individual endow-

ments are e1 = (2, 5, 2, 5), e2 = (5, 2, 5, 2).

2. There are two trees. Dividends are d1(1) = d1(2) = 1, d1(3) = d1(4) = 2 and d2(1) =

d2(3) = 1, d2(2) = d2(4) = 2. Individual endowments are e1 = (1, 2, 1, 2), e2 =

(2, 1, 2, 1).

Since there are only two agents, the endogenous state space for the recursive ε-equilibrium

simply consists of the interval [0, 1]. We use the algorithm described in Kubler and Schmed-

ders (2003a) and discretize the state space into 108 possible wealth levels to obtain an ε-

equilibrium. The resulting maximal error lies around 10−3 in both examples. The necessary

(relative) perturbations in individual endowments lie around 4.3 × 10−3 in the first spec-

ification and around 1.2 × 10−2 for the second specification. The maximal error in Euler

equations along one simulated path for 20000 simulated periods lies around 10−5. This is

a large discrepancy, but it is mainly caused by the fact that along a simulated path many

areas of the state space are not visited and so many errors are simply missed. On the other

hand, a maximal perturbation of 1.2 percent might still be viewed as acceptable if one is

only interested in moments of asset prices.
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Appendix: Proofs of Lemmas

Proof of Lemma 1. We want to find a bound on the distance between original and

perturbed preferences. For this task we take as given a point (y, x) ∈ C̄ on the boundary

of P , (y, x) ∈ ∂P ∩ C̄, and construct a z such that (z, x) ∈ P̃ is close to (y, x).

For any x ∈ Xi, define oi · x =
∑

st∈Σ βtπ(st)oi(st)x(st). Since (y, x) ∈ ∂P and (z, x) ∈
∂P̃ it holds by definition

U i(z) + oi · z ≥ U i(x) + oi · x, U(x) = U(y)

and so,

U i(z)− U i(y) ≥ oi · (x− z).

(Note that we can freely rearrange terms in all series since all of them are absolutely

convergent.) A sufficient condition for z to satisfy this last equation is that each element

z(st) satisfies

u(z(st))− u(y(st)) ≥ oi(st)(x(st)− z(st))

for all st ∈ Σ. If oi(st)(x(st) − y(st)) ≤ 0, the condition is trivially satisfied for z = y.

Otherwise, we can find a z such that the u(z(st))−u(y(st)) = oi(st)(x(st)− z(st)). (This is

true since for z(st) ≡ 2c̄ and y(st) ≡ c̄ it holds that u(z(st))−u(y(st)) > m̄c̄ > oi(st)(x(st)−
z(st)).) Note that the appropriate z may not be an element of C̄ as we discussed above.

It now follows from the mean value theorem that

ui(z(st))− ui(y(st)) = Dxui(ξ(st)) (z(st)− y(st))

for some ξ(st) ∈ RL, ‖ξ(st)‖ ≤ 2c̄ for all st ∈ Σ. (Note that ξ(st) = αz(st) + (1 − α)y(st)

for some α ∈ [0, 1].) Therefore

Dxui(ξ(st)) (z(st)− y(st)) = oi(st)(x(st)− z(st)).

Since for all st, |oi(st)(z(st) − x(st))| ≤ Lω̄ic̄, and with the bound on marginal utility, m̄,

we obtain

‖z − y‖ ≤ L
ω̄i

m̄
c̄,

which proves the lemma. ¤

Proof of Lemma 2. For each s, zs, the system of Equations h7 in linear in prices. We

write it as follows

− (p1 · · · pj · · · pK) + (pm+1 · · · pL)
(

J21 J22

)
= ε− (pK+1 · · · pm)

(
J11 J12

)

Equivalently

(pj+1 · · · pK , pm+1 · · · pL)

(
0 −IK−j

J21 J22

)
= ε− (p1 · · · pj , pK+1 · · · pm)

(
−Ij 0

J11 J12

)

Using the definition of the pseudo inverse implies the lemma. ¤
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