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Abstract

In this paper I investigate whether firms’ physical investments react to the speculative over-pricing

of their securities. I introduce investment considerations in an infinite horizon continuous time model

with short sale constraints and heterogeneous beliefs along the lines of Scheinkman and Xiong (2003). I

obtain closed form solutions for all quantities involved. I show that market based q and investment are

increased, even though such investment is not warranted on the basis of long run value maximization.

Moreover, I show that investment amplifies the effects of speculation on prices through an increase in

the value of "growth" options. In the empirical section of the paper, I use a simple episode to test the

hypothesis that investment reacts to over-pricing. With publicly available data on short sales during

the 1920’s, I examine both the price reaction and the investment behavior of a number of companies

that were introduced into the "loan crowd" during the first half of 1926. In line with Jones and Lamont

(2002), I interpret this as evidence of overpricing due to speculation. I find that investment by these

companies follows both the increase and the decline in "q" before and after the introduction, suggesting

that companies in this sample reacted to security over-pricing.
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1 Introduction

Standard neoclassical theory predicts that investment is inherently tied with the stock market through

Tobin’s ”q”. The essence of ”q” theory is the following argument: if the repurchase cost of capital is less

than the net present value of additional profits it will bring at the margin, then the company should invest

and vice versa. The only thing preventing the ratio of the two values (known as q) from being always equal

to 1 is adjustment costs: it is expensive to install new capital and thus a deviation of q from 1 can exist,

but it should diminish over time. The link between investment and the stock market follows: the value of a

company is the net present value of its profits and thus1 whenever one sees the stock market rising, one should

simultaneously observe an increase in investment in order to bring the numerator and the denominator of

the ”q” ratio into line.

However, there is a concern with this line of reasoning. Namely, what happens if the stock market

valuation at times does not reflect the net present value of profits but also contains terms that are unrelated

to ”fundamentals”? Will ”q” theory continue to hold or will decision makers in companies be eclectic about

the components of stock market valuation to which they will pay attention ?

This is the main question I take up in this paper. I start with an explicit reason for why assets can deviate

from fundamentals. Then I introduce investment considerations and study investors’ holding horizons,

optimal investment, and the resulting equilibrium prices in a unified framework.

To be more specific, I use short sales constraints to derive positive deviations of prices from fundamentals.

It is intuitive that the presence of a short sale constraint can cause the price of an asset to deviate from

its fundamental value if market participants do not have homogenous beliefs. Agents who believe that the

current price is above the net present value of dividends would have to go short in order to take advantage

of what they perceive to be mispricing. However, they cannot do this because of the short sale constraint.

Accordingly, for pricing purposes, it is as if they do not exist, and the price will only reflect the views of the

most optimistic market participants.

This basic intuition was first expressed in a formal intertemporal model by Harrison and Kreps (1978).

A number of papers extended the intuition into various directions. A partial listing includes Allen, Morris,

and Postlewaite (1993), Detemple and Murthy (1997), Morris (1996) and most recently Scheinkman and

Xiong (2003) and Hong and Stein (2002). All of these papers study an exchange setting without a role for

investment.

The present paper extends this literature to allow for investment. In particular the model presented here

is based on Scheinkman and Xiong (2003) with the difference that I allow firms to adjust their capital stock

1Under Hayashi’s (1982) conditions
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by investing. Because the model is set up in continuous time I can derive closed form solutions for prices,

investment, trading strategies and investors’ horizons. First, I show that traditional ”q” theory remains valid

if investors have perfect access to financial markets, they are risk neutral and investment is determined in

the best interest of current shareholders.2 Whether the stock price is high because of fundamentals or resale

premia is irrelevant. A shareholder value maximizing company will use the stock market valuation as a guide

to how much investors can gain in the stock market by either holding the asset and reaping dividends or by

reselling it to more optimistic investors. Second, I show that investment significantly amplifies the effects of

speculation on the asset prices by affecting the value of growth options embedded in the company’s price.3

In the present framework, young dynamic companies with low adjustment costs and high disagreement

associated with their underlying productivity can end up with high levels of q (low levels of book to market)

and low expected returns. The closed form solution obtained for the price of the firm allows a quantification

of these effects and a comparison with actual data.

It is possible however, to imagine circumstances where investment would not react to market based q

and the above logic would fail. For instance, if a major shareholder owns a significant fraction of a firm and

values control she would be unlikely to react to resale premia because they are irrelevant for her. Similarly,

key investors might be afraid of selling their shares in large amounts because other investors might fear the

presence of asymmetric information. In other words, resale premia are only relevant for investors that have

short horizons and who can realize the full speculative gains associated with them. If they can’t access the

markets (or accessing the markets is costly) then the incentive to invest will be attenuated.4 I derive optimal

investment under this alternative and then discuss a set of observable implications.

Then I address the empirical question: which of the two theories is supported by the data? Answering

this question is difficult because one has to identify a shock to resale premia but not to fundamentals. Only

then can one study how investment reacts to the former type of shocks. Disentangling fundamental from

non-fundamental deviations is a difficult task. The usual approach in the literature has been to try to find

proxies for the two components. Such an approach is associated with the usual doubts on how successful

one is in creating these proxies. Moreover, certain proxies that are often used are not obviously related to

short selling costs and constraints alone, but capture asymmetric information or agency problems.

In this paper I take a direct approach: in the 1920’s an entire market, known as the "loan crowd", was

active for shorting stock. I use a dataset recently collected by Jones and Lamont (2002) based on daily

2Risk neutrality is not essential if one is willing to make a specific assumption about the valuation of income streams by

investors in incomplete markets. See the next section for details.
3Growth options are defined as the difference between the equilibrium price when investment is determined optimally and

the equilibrium price when investment is set to 0 throughout.
4Similar points were made in Blanchard, Rhee and Summers (1993), Stein (1996) and Morck, Shleifer and Vishny (1990).

All three papers emphasize the distinction between short and long horizons.
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coverage of this market by theWall Street Journal. The list of companies in this market expanded in several

waves. As Jones and Lamont (2002) argue, the introduction of a company into the "loan crowd" reflects

a belief by investors that this company is particularly overpriced. I provide some additional evidence to

that effect. The behavior of the stock price of the newly introduced companies indeed seems to confirm

such an explanation. Stock prices show a marked runup for several quarters before the introduction and

decrease dramatically thereafter. Not surprisingly, market-based q presents exactly the same behavior. To

complement the dataset of Jones and Lamont (2002) with balance sheet data, I hand-collected financial

data on a number of these companies from Moody’s manuals and studied the behavior of investment in the

years prior to their introduction and thereafter. I find that investment followed exactly the same behavior

as market based "q".

The paper is related to a number of strands in the literature. There is a small number of papers that

have addressed the same set of issues, mostly from an empirical angle. These include: Fischer and Merton

(1984), Morck, Shleifer, and Vishny (1990), Blanchard, Rhee, and Summers (1993), Stein (1996), Chirinko

and Schaller (1996) and more recently Polk and Sapienza (2002), Gilchrist, Himmelberg, and Huberman

(2002). A central theme of this literature is the importance of investor’s horizons. However, the models

developed in these papers do not explicitly characterize the optimal holding horizon (defined as the stopping

time at which an investor finds it optimal to resell). Moreover, these models do not allow one to derive

intertemporal implications for investment and stock prices jointly. For example this makes it difficult to

determine why and when certain Euler relations should hold or fail, and thus is important from an empirical

viewpoint.5 The present paper models everything explicitly in an infinite horizon continuous time setting

and thus one is able to model investor’s horizons endogenously and derive testable implications about the

relationship between investment and prices in an explicit way. The empirical approach to testing the theory

is also more direct. Instead of using proxies to account for mispricing, I use the firms that were perceived to

be as most overvalued at the time as evidenced by the fact that they were introduced into the loan crowd.6

The paper is also related to a literature in financial economics that uses insights from investment theory

5For instance Chirinko and Schaller (1996) derive a test for whether bubbles affect investment or not, by making the

interesting assumption that bubbles lead to predictable returns. From that assumption they derive the result that if investment

reacts to bubbles, certain Euler relations should fail to hold. However, not every source of predictability can be attributed to

bubbles and bubbles will not necessarily lead to predictability. In the explicit framework of this paper, one can determine both

the source of predictability and its implications for testing. This issue is explained in detail in the sections that follow.
6One direction that is not explored is the behaviour of investment, if decisionmakers are longtermist but the company is

financially constrained. It can be conjectured that in this case investment could potentially react to market based q even if

managers maximize long run performance. See e.g. Stein (1996), Baker, Stein, and Wurgler (2003). It is interesting to note

that in the present paper one does not need to assume anything apart from shareholder value maximization to arrive at the

result that investment reacts to market based q even in the absence of constraints. It is also conceivable that constraints could

further amplify the result. I discuss this point in further detail in the conclusion of the paper.
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to address issues such as the predictability of returns, the role of book to market ratios, etc. A partial listing

would include Cochrane (1991,1996), Naik (1994), Berk, Green, and Naik (1999), Lamont (2000). Berk,

Green, and Naik (1999) in particular show how a model with investment can account for some apparent

irregularities in asset pricing as e.g. the power of the Book to Market ratio to predict returns7 . In this

paper I obtain a closed form solution that decomposes the price into a component related to assets in

place and "growth options" or "rents to the adjustment technology". Moreover, I can derive the effects

of speculation on both components separately. I find that the "growth options" amplify significantly the

effects of speculation. Returns are predictable and predictability of returns becomes strongest when both

fundamentals and disagreement about fundamentals are high. This is in contrast to the pure exchange case

where predictability only depends on disagreement. It also makes it easier for quantities like B/M or E/P to

predict returns since the price of a company captures both fundamental and non-fundamental variations. In

a quantitative exercise I show that q can become large even for small degrees of irrationality. This has the

potential to explain quantitatively the very low book to market ratios that one observes during speculative

episodes. Moreover, the model has the potential to produce reasonable levels of predictability of returns

in quantitative terms as is shown by simulating an artificial CRSP dataset and re-running some Fama and

MacBeth regressions of simulated monthly returns on Book to Market.

An interesting application of this paper concerns the relationship between return predictability and invest-

ment: the reaction of investment to speculative components in prices could potentially help in distinguishing

rational and behavioral views of predictability. If investment only reacted to fundamental variations and

was powerful at predicting returns, then this would be evidence that the variation in expected returns is

due to variation in risk aversion and not to speculation motives and expectational errors. Lamont (2000)

indeed documents the ability of investment plans to explain aggregate returns. However, to make the link

between investment and variations in risk premia, one would need to establish that investment only reacts to

variations in fundamentals and not to potentially irrationally optimistic beliefs. The empirical evidence that

I provide in this paper, suggests that investment reacts to both fundamental and speculative terms. Thus,

investment does not seem to be able to provide a clear way to distinguish between rational and behavioral

theories.

The paper is also complementary to the strand in the macroeconomics literature that models bubbles

in the framework of overlapping generations models. Blanchard and Fischer (1989) present a textbook

treatment, whereas Caballero and Hammour (2002) and Jacques (2000) are some recent contributions to

this literature. This literature assumes short horizons, whereas in the present paper short horizons arise

endogenously. Moreover, uncertainty is key in the present paper, whereas uncertainty typically plays a

7This fact is documented in the cross section by Fama and French (1992,1995) and in the time series dimension by Kothari

and Shanken (1997) among others.
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secondary (if any) role in the papers above. However, the simpler setup of overlapping generations allows

one to address a richer set of issues (related e.g. to savings and fiscal policy) that would be hard in the

present setup. In a sense, the model developed here provides a foundation for models in this literature.

The outline of the paper is as follows: Section 2 presents a simple three-period example that allows an easy

presentation of most intuitions of the model. Section 3 presents the model in an infinite horizon continuous

time setting with a richer set of dynamics for the beliefs of the agents. In this section I also discuss the

properties of the model and its implications for testing. Section 4 presents the empirical evidence. Section

5 concludes. All proofs are given in the appendix.

2 A simple example

In this section I present a simple example that will help fix some ideas. I extend this example in the section

that follows to a continuous time setting. I assume that the world lasts for three periods. There are two

states of the world h and l and a single productive asset that pays out ftKt. ft is 0 in state l and 1 in state

h. Kt is the amount of capital available to the economy at time t. For simplicity I also assume that labor is

not required to produce output and that the economy is small, i.e. the interest rate is taken as given and

normalized to 0. To introduce heterogeneity of beliefs I assume that there are two types of agents, which I

label agents A and B. There is a continuum of both types having infinite total wealth and /or an infinite

ability to borrow.8

Figure 1 depicts the transition probabilities that agents in each group assign to the transition from one

state to the other. In particular, agents in group B perceive each state as equiprobable, while agents in

group A are originally optimistic (they assign probability 0.9 to the high state occurring). If the high state

occurs, then they continue to be optimistic about period 2, otherwise they become pessimistic (in the sense

that they assign probability 0.9 to the low state occurring again). The only crucial feature of this setup is

that agents do not agree on the transition probabilities. Agents cannot take short positions in the asset. I

assume that at time 0 the economy is in state h. The setup is common knowledge to the agents who agree

to disagree.

Suppose initially that there is no investment (i.e. I treat Kt = 1 as a constant). Moreover there is no

depreciation. Equilibrium prices and trading strategies are determined by backwards induction. The joint

assumptions of risk neutrality and infinite total wealth allow one to set the price equal to the reservation price

of the person who values the asset most. In particular at time 1 and state h the agents who value the asset the

most are agents in group A. The reservation price for agents in group A is given as PA
1h = 0.9x1+0.1x0 = 0.9.

8This assumption is made by both Harrison and Kreps (1978) and Scheinkman and Xiong (2003) and is useful in order to

drive values towards the reservation price.
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Figure 1: Transition probabilities as perceived by agents in groups A and B

The reservation price for agents in group B is given as PB
1h = 0.5x1 + 0.5x0 = 0.5. Even though agents in

group B would be happy to short the asset in this state, they can’t. Accordingly the price is given as

P1h = max
[
PA
1h, P

B
1h

]
= 0.9. Similarly in state (1, l) the price will be given as P1l = 0.5x1 + 0.5x0 = 0.5

since now agents of type A are less optimistic than agents in group B. At time 0 agents in group A value

the asset at PA
0 = 0.9x(1 + 0.9) + 0.1x(0 + 0.5) = 1.76. This is the relevant valuation for agents in group A

because at the node (1, l) they know that they will resell the asset to agents in group B. For group B the

reservation price is PB
0 = 0.5x1.9 + 0.5x0.5 = 1.2, so that the equilibrium price of the asset will be given

by P0 = max
[
PA
0 , PB

0

]
= 1.76. A convenient way of summarizing the above discussion is in terms of the

Harrison and Kreps (1978) formula:

Pt = max
o∈{A,B}

[P o
t ] = max

o∈{A,B}

[
sup
τ

Eo

(
τ∑

s=t+1

Ds + Pτ

)]
(1)

where Ds are the dividends paid at the state-time pair s and τ is an optimally chosen stopping time at

which an agent decides to sell the asset.

Another recursive relation that is true is9 :

Pt = max
o∈{A,B}

[Eo (Dt+1 + Pt+1)]

PT = 0

Interestingly, the price at node 0 is strictly higher than what either agent would be willing to pay if she

didn’t consider the possibility to resale the asset later on. In particular, if one prohibits agents from engaging

9See Harrison and Kreps (1978)
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in transactions at any point other than at time 0, the price P̃0 of the asset is given by:

P̃0 = max
o∈{A,B}

[
P̃ o
0

]
= max

o∈{A,B}

[
Eo

(
T∑

s=1

Ds

)]

The value has to be lower than the original price, since agents are deprived of the possibility to resell.

This possibility is embodied in the optimization over stopping times in formula (1). That is: P0 ≥ P̃0. The

difference in the two values is the option value ascribed to reselling the asset in the future. An additional

implication of this formula concerns predictability of asset returns. If I assume that one of the market

participants has the "right" beliefs then the prices are no longer martingales from her perspective. This

investor views the asset as having potentially negative expected (excess) returns in certain states of the world.

A further interesting interpretation of (1) is in terms of the investor’s holding horizon. The interaction of

heterogenous beliefs and short sales makes the optimal stopping time problem meaningful. In contrast, if

one assumed homogenous beliefs then all stopping times would yield the same payoff and accordingly One

could assume that the investor holds the asset until maturity.

Consider now the above example with investment. In particular, assume that there is a technology that

allows agents to reduce todays’ dividends by:

it + χ
i2t
2

in order to increase next period capital to

Kt+1 = Kt + it

I will assume that investment is determined in the best interest of investors who are endowed with the

stock at the beginning of the period10 . Once again I start backwards in order to determine equilibrium

outcomes. In state (1, h) it is clear that agents of type A will end up holding the stock no matter which

investment strategy is chosen and no matter which type of agent is endowed with the stock. This is so because

for any investment decision their reservation value will be higher than the reservation value of agents of type

B for the stock. Accordingly, the investment decision will be determined according to the beliefs of type A

agents independently of who is endowed with the company stock at the time-state pair (1, h). In mathematical

terms:

1 + χi∗1,h = EA (f2|st = 1, h) (2)

where f2 denotes the productivity in period 2. This first order condition is obvious if agents of type A

are endowed with the stock in the state-time pair (1, h). It is also true however, if the the company stock

10 In particular I assume (like Grossman and Hart (1979)) that investors arrive at the beginning of the period with a certain

endowment of the stock, they determine the investment policy, dividends are paid and then they trade their shares in a Walrasian

market.
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belongs to agents of type B. To see this, notice that agents of type B have to balance two effects in making

their investment decision. On the one hand they realize that by investing they reduce the dividends that

they can obtain. On the other hand they increase the resale value of the asset since agents of type A will

be willing to pay more for a company with a larger capital stock. Agents in group B understand that only

agents of group A will matter for pricing purposes in state (1, h). Thus they are led to understand that a

marginal investment of ∆it will change the price that they can gain for the asset by EA (f2|st = 1, h)∆it

while reducing the current dividends by (1 + χit)∆it. Balancing out these two effects leads to the same first

order condition as (2).

For the optimal investment rule derived from (2) one can determine time 1 dividends as:

D1 = f1K1 − i∗1 − χ
(i∗1)

2

2

and period 2 capital as:

K2 = K1 + i∗1

Working backwards by the same logic one can establish that independently of who controls the company

at time 0 the optimal investment strategy is to invest until:

1 + χi∗0 = EA (f1 + q1)

where q1 is given as EA (f2|st = 1, h) if the state h realizes and as EB (f2|st = 1, l) if the state l realizes.

It is interesting to note that one can express the stochastic process for investment in terms of the recursive

relations:

1 + χi∗0 = qt (3)

qt = max
j∈{A,B}

Ej [ft+1 + qt+1] (4)

qT = 0

The second of these equations is exactly the same equation that was obtained for the price in the context of

the simple exchange setting. The above discussion motivates the main concept of equilibrium that I will use

in this paper. Namely, I will assume that the company is maximizing investor welfare and accordingly I will

be searching for investment policies, selling/stopping times, and equilibrium pricing functions that satisfy

the relation:

Pt(Kt) =

(
max

o∈{A,B}

[
sup
is,τ

Eo

(
τ∑

s=t+1

Ds(is,Ks) + Pτ (Kτ )

)])

where it..T denotes the stochastic process of investment. Clearly, the analysis needs to be modified, if I

assume that agents cannot retrade. For instance suppose that markets will only be open at time 0 and never
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thereafter. Then (4) should be replaced by the conventional q relationship

qt = Ej [ft+1 + qt+1] (5)

qT = 0

where j denotes the agent who will bid more for the company at time 0 (in this example agent A). It

is evident by comparing (4) and (5) that investment will be necessarily higher in the presence of a resale

premium on assets. Also, by the same argument as in the exchange setting marginal "q" no longer satisfies the

usual martingale type relationship under the beliefs of any agent. This means that every agent understands

that in certain states of the world investment will be undertaken even though its expected (excess) return is

negative from her perspective.1112

3 A continuous time framework

The primary goal of this section is to derive testable implications of the hypothesis that investment is affected

by resale premia and quantify the effects discussed in the last section. Moreover this section focuses on the

effects of speculation on the value of a company’s growth options and demonstrates how they magnify the

effects of speculation on the stock price. I will expand the previous model to an infinite horizon continuous

time setup with quadratic adjustment costs independent of the capital stock. Continuous time introduces

some tractability into the problem. It allows one to determine closed form solutions for prices, investment

11One might wonder to what extent the conclusions of this section depend on risk neutrality. It can be shown that an

extension of the ideas in Grossman and Hart (1979) can be used to address the risk aversion case. In particular, assuming

"utility taking" behavior on the most optimistic agents allows one to generalize (4) to a setting with risk aversion by using the

marginal utilities of the most optimistic agents at each node of the information tree to construct a pricing kernel. Details on

this construction are available upon request.
12So far I assumed nothing about financing policies. This was done because the Modigliani Miller Theorem continues to

hold in this setup despite the short selling constraint. (If one allowed for debt financing then one would also need to assume

unlimited liability in light of the results in Hellwig (1981)). A proof of these claims can be given by arguments identical to

DeMarzo (1988) and is available upon request. The intuition for why the MM Theorem holds is straightforward. In this setup

the firm cannot do more by trading in its own stock (i.e. by issuing shares) than what the investor can do by selling her shares

in the market. This is true because the only direction in which the investor is constrained is the short side. Accordingly,

if financial policy could create value then it would have to be by promising to deliver a negative multiple of the company’s

dividends. This would effectively alleviate the investor’s short sale constraint. Of course there is no financial policy that can do

that, and accordingly financial policy cannot create value for the investor. This analysis also demonstrates one way to introduce

active financial policy in this framework. Suppose for instance that accessing the financial markets directly is costly for existing

investors due to e.g. asymmetric information or fears of nonlinear price impact. Then, an easy way for the investor to sell

stock and realize speculative gains is by having the firm issue stock and not participating. In reality there seems to be a strong

relationship between equity issuance and speculation as documented by Baker and Wurgler (2000), Baker Stein and Wurgler

(2003).
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and stopping policies. In particular, I will combine a framework proposed by Harrison and Kreps (1978) and

Scheinkman and Xiong (2003) to study speculative premia on assets with a standard investment framework

with quadratic adjustment costs along the lines of Abel (1983), Abel and Eberly (1994), (1998). I also discuss

how one can generalize the basic predictions to a setup with an arbitrary number of groups of agents and

arbitrary linear homogenous adjustment technologies.13

3.1 Setup

3.1.1 Company Profits and Investment

There is a single company and the goal will be to determine its value as part of the (partial) equilibrium

solution of the model. The company’s cumulative earnings process is given by:

dDt = Ktftdt+KtσDdZD
t (6)

In units of installed capital this expression becomes:

dDt

Kt

= ftdt+ σDdZD
t

The first component captures a stochastic trend growth rate whereas the second term captures noise in

the company earnings that prevents market participants from perfectly inferring the level of productivity

ft. Kt is the amount of physical capital installed in the company which ”scales” both the trend growth rate

and the ”noise” in the cumulative earnings process. σD is a constant controlling the ”noise”, while dZ
D
t is a

standard one dimensional Brownian Motion. The variable ft is not observable and evolves according to an

Ornstein Uhlenbeck process as:

dft = −λ(ft − f)dt+ σ

√
ft

f
dZ

f
t (7)

where λ > 0 is a mean reversion parameter, f > 0 is a long-run productivity rate, σf is the volatility

of the Ornstein Uhlenbeck process and dZ
f
t is a second Brownian motion that is independent of dZ

D
t . For

simplicity I will also assume that the company is fully financed by equity and there is a finite number of

shares of the company whose supply I normalize to 1. The company can invest in physical capital at the

rate it. The evolution of the capital stock is accordingly given by:

dKt = (−δKt + it) dt

Investment is subject to quadratic adjustment costs so that the cumulative company earnings net of

investment costs are given by:

dΠt = dDt −
(
pit +

χ

2
(i2t )

)
dt

13Unfortunately, in this case it appears very difficult to obtain closed form solutions for prices, investment etc.

11



where χ is a constant controlling the significance of adjustment costs and p is the cost of capital. It will

be useful to define p as a fraction (p̃) of f
r+δ so that p = p̃ f

r+δ . The assumption of adjustment costs that are

independent of Kt has the benefit of allowing reasonably tractable solutions, however it comes at the cost of

breaking down the equivalence between average and marginal ”q”. 14 In the appendix I show how one can

generalize (at least qualitatively) the results of this section to a setup with linear homogenous adjustment

cost technologies of the sort usually employed in the empirical literature.

3.1.2 Agents and Signals

There are two continuums of risk neutral agents that I will call type A and type B agents. Risk neutrality

is convenient both in terms of simplifying the calculations and abstracting from considerations related to

spanning etc. In addition to the earnings process (6) both agents observe two signals that I will denote signal

sA and signal sB. These signals evolve according to:

dsAt = ftdt+ σsφdZ
f
t + σs

√
1− φ2dZA

t

dsBt = ftdt+ σsdZ
B
t

where (dZA
t , dZB

t , dZ
f
t , dZ

D
t ) are standard mutually orthogonal Brownian motions.

Agents have heterogenous perceptions about the informativeness of the various signals. Agents in group

A have the correct beliefs, while agents in group B assume that the innovations to the sBt process are more

and the innovations to the sAt process less informative than they actually are. In particular they believe

that the signals evolve according to:

dsAt = ftdt+ σsdZ
A
t

dsBt = ftdt+ σsφdZ
f
t + σs

√
1− φ2dZB

t

This setup is meant to capture situations when there has been a regime shift in the economic environment

and agents disagree about the informativeness of certain signals because they cannot use past data in order

to measure the correlation between various signals with the underlying productivity process. For instance

one could interpret the above informational setup as a situation where new signals (e.g. the amount of web

site hits of a newly formed dot.com company) arise and analysts are unsure as to how important they are

for future profitability.

Finally, as in the previous section, I assume that there is a continuum of agents of each type and the

total wealth of each group is infinite.15

14 This assumption has been made by several authors in the literature. See e.g. Abel and Eberly (1994) and the references

therein (especially footnote 19)
15This assumption is made by both Harrison and Kreps (1978) and Scheinkman and Xiong (2003) and is used to drive prices

to the reservation value of each group.
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In the appendix I establish an approximate filter for this setup.16 In particular I show that the posterior

mean f̂At of agent A′s beliefs about f, evolves approximately according to:

df̂At = −λ
(
f̂At − f

)
dt+

√
f̂At

f
σfdB

A
t (8)

where dBA
t is an appropriate linear combination of the innovation processes

(
dsAt − f̂At dt

)
,
(
dsBt − f̂At dt

)
,

(
dDt

Kt
− f̂At dt

)
with the property that the volatility of dBA

t is 1.Similarly for agent B:

df̂Bt = −λ
(
f̂Bt − f

)
dt+

√
f̂Bt

f
σfdB

B
t (9)

where dBA
t is an appropriate linear combination of the innovation processes

(
dsAt − f̂Bt dt

)
,
(
dsBt − f̂Bt dt

)
,

(
dDt

Kt
− f̂Bt dt

)
with the property that the volatility of dBB

t is 1.
17

A quantity that will be central for what follows is the disagreement process. In the appendix I show that

agent A perceives that the process:

gAt = f̂Bt − f̂At

which captures her disagreement with agent B can be approximated by a simple OU process:

dgAt = −ρgAt dt+ σgdW
A
g

with < dBA
t , dWA

g >= 0. The situation for agent B is symmetric. She perceives that the process:

gBt = −gAt

evolves approximately as an OU process with increments orthogonal to dBB
t . Obviously, knowing f̂At , gAt

allows one to compute f̂Bt = f̂At + gAt . Thus, if one is only interested in posterior means, the pair (f̂At , gAt )

summarizes the entire belief structure. The appendix presents these approximations in detail and discusses

their accuracy. Conditional on these approximate dynamics for the belief processes the rest of the analysis

is exact. It is also important to note that one could have chosen any belief structure dynamics as long as it

implies disagreement between the agents in some states of the world. The present one was chosen only for

tractability reasons.

16 In contrast to Scheinkman and Xiong (2003) I assume a square root process for ft in (7) instead of a standard OU process

in order to guarantee positivity of ft. This allows one to put a lower bound on ft which is convenient for some of the proofs

in the appendix. The downside of this assumption is that filtering becomes much more involved and I have to settle for an

approximate filter, the properties of which seem to be very good.
17 Intuitively agent B will underweight signal A and overweight signal B and thus she will choose a different combination of

the innovation processes.
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3.2 Equilibrium Investment, Trading and Pricing

3.2.1 Homogenous Beliefs

I start with the simplest possible case18 where every agent is of type A and accordingly everyone agrees on

the interpretation of the signals. One could also think of the discussion in this section as the solution to the

investment problem of a long termist risk neutral decision maker who will never resell her shares. The goal

will be to maximize

Pt = max
is

EA

∫ ∞

t

e−r(s−t)dΠs (10)

which can be rewritten as19

Pt = max
is

EA

∫ ∞

t

e−r(s−t)
(
fsKs − pis −

χ

2
(i2s)

)
ds

One can further rewrite the above objective as20

Pt = max
is

EA

∫ ∞

t

e−r(s−t)
(
f̂As Ks − pis −

χ

2
(i2s)

)
ds

This is a problem of exactly the same form as the ones considered in Abel and Eberly (1994),(1997). The

solution to this problem (obtained in the appendix) is given by

Proposition 1 The solution to (10) is given as:

Pt

(
f̂At ,Kt

)
=

(
f

r + δ
+

f̂At − f

r + δ + λ

)
Kt +

(
C1

(
f̂At − f

)2
+C2

(
f̂At − f

)
+ C3

)
(11)

for appropriate constants C1, C2, C3 given in the appendix. Optimal investment is given by:

it =
1

χ
(PK − p) =

1

χ

(
f(1− p̃)

r + δ
+

f̂At − f

r + δ + λ

)
(12)

For 0 ≤ p̃ < p (where p is a constant given in the appendix) it can be shown that Pf > 0.

18These results in this section are fairly standard and the reader is refered for details to Abel and Eberly (1997).

19Throughout I will restrict attention to investment policies that satisfy the requirement:

E

[∫
∞

t

e−r(s−t)KsdZ
D
s

]
= 0

which amounts to a standard square integrability condition on the allowed capital stock processes. Indeed in the present

setup the capital stock turns out to be stationary and thus it is easy to verify this condition.
20This is true since the objective is linear in the state and quadratic only in the control it. For details on such problems see

Bertsekas (1995).

14



Exactly as in Abel and Eberly (1997), the equilibrium price is comprised of two components. The first

is marginal "q" times the capital stock and the other term captures the rents to the adjustment technology

or "growth options". The first term captures the expected net present value of profits that can be obtained

with the existing capital stock i.e

PK =
f

r + δ
+

f̂At − f

r + δ + λ
= E

(∫ ∞

t

e−(r+δ)(s−t)f̂As ds

)
(13)

The second term captures the "rents to the adjustment technology" or "growht options", i.e. the value of

being able to adjust the capital stock in the future:

(
C1

(
f̂At − f

)2
+C2

(
f̂At − f

)
+C3

)
=
1

2χ
E

(∫ ∞

t

e−r(s−t) (PK(s)− p)2 ds

)
(14)

The first term is clearly increasing in f̂At , while the second term is also increasing in f̂At . This means that

not only does a higher belief about current profitability increase the expected profits in the future, it also

increases the value of growth options. This is because it becomes more likely that large investments will need

to be undertaken in the future and thus the technology to adjust the capital stock becomes more valuable.

Small adjustment costs (i.e. low values of χ) will tend to increase the value of the adjustment technology.

This is intuitive: the less it costs to adjust the capital stock, the more a company is able to invest (disinvest)

and take advantage of temporary increases (decreases) in fundamentals
(
f̂At

)
.

3.2.2 Heterogenous beliefs: Optimal investment, trading, and equilibrium prices

This section discusses the recursion:

P = max
o∈{A,B}

(
sup
is,τ

Eo
t

[∫ t+τ

t

e−r(s−t)
(
dDs −

(
pis +

χ

2
i2s

)
ds
)
+ e−r(τ−t)Pt+τ

])
(15)

As is shown in the appendix the crucial difficulty in dealing with this recursion is that it leads to a multidi-

mensional optimal stopping problem. Fortunately, this problem can be solved explicitly. In the appendix I

show the following result:

Proposition 2 The solution to P
(
f̂At , gAt ,Kt

)
is given by21:

P
(
f̂At , gAt ,Kt

)
=

(
f

r + δ
+

f̂At − f

r + δ + λ
+ 1{gAt > 0}

gAt
r + δ + λ

+ βy1(−
∣∣gAt
∣∣)
)

Kt +

+C1

(
f̂At + 1{g

A
t > 0}gAt − f

)2
+
[
C2 + n(−

∣∣gAt
∣∣)
] (

f̂At + 1{g
A
t > 0}gAt − f

)

+d(−
∣∣gAt
∣∣) +C3

21Under some mild restrictions on the allowed parameters discussed in the appendix.
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for functions y1(g
A
t ), n(g

A
t ) and d(gAt ) and a constant β. The functions y1(g

A
t ), n(g

A
t ) and d(gAt ) are

integrals and linear combinations of appropriate confluent hypergeometric functions and are given in the ap-

pendix. The constants C1, C2, C3 are identical to the ones obtained in Proposition 1. The optimal investment

rule is given by:

it =
1

χ
(PK − p) =

1

χ

(
f(1− p̃)

r + δ
+

f̂At − f

r + δ + λ
+ 1{gAt > 0}

gAt
r + δ + λ

+ βy1(−
∣∣gAt
∣∣)
)

and the optimal stopping time for each investor o ∈ {A,B} is to resell the asset immediately once f̂ot < f̂ot ,

where o = A if o = B and vice versa.

I organize the discussion of the results in two subsections. I first discuss some properties of the derivative

of the equilibrium price w.r.t. Kt (commonly called "marginal q"), i.e:

PK =
f

r + δ
+

f̂At − f

r + δ + λ
+ 1{gAt > 0}

gAt
r + δ + λ

+ βy1(−
∣∣gAt
∣∣)

and then I discuss some properties of the rents to the adjustment technology, i.e.:

C1

(
f̂At + 1{g

A
t > 0}gAt − f

)2
+
[
C2 + n(−

∣∣gAt
∣∣)
] (

f̂At + 1{g
A
t > 0}gAt − f

)
+ d(−

∣∣gAt
∣∣) +C3 (16)

3.2.3 Some observations about marginal "q"

As might be expected from the introductory example discussed in Section 2 investment is unambiguously

higher in the presence of speculation. Comparing marginal q in the presence of speculation to the equivalent

expression in the presence of homogenous beliefs one observes an extra term, namely:

b(gAt ) = 1{g
A
t > 0}

gAt
r + δ + λ

+ βy1(−
∣∣gAt
∣∣) (17)

The term βy1(−
∣∣gAt
∣∣) is a positive term growing in expectation (instantaneously) at the rate of interest

plus the rate of depreciation.22 I.e. it is a pure speculative "bubble" that arises endogenously. In contrast

to "rational" bubbles that can grow indefinitely, this term is bounded. Moreover, one can determine its

magnitude explicitly and speculative bubbles of this sort can exist even in finite horizon settings.23

22Formally, for gA
t
< 0 and any T > t this term satisfies

y1

(
gAt

)
= E(e−(r+δ)(T∧τ−t)y1(g

A
T∧τ ))

where:

τ = inf{t : gAt ≥ 0}

and similarly for gBt .

23This term is practically identical to the one obtained in Scheinkman and Xiong (2003) with the sole exception that the

effective interest rate in the present setup is increased by the rate of depreciation. The reader is refered to that paper for a

detailed discussion on the differences between speculative and rational bubbles.
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Of course investment is inflated only if it is determined as part of shareholder value maximization. In this

case investors are short termist and invest in order to increase resale value. It is interesting to see what would

happen if investment only reacted to "long-run" fundamentals. Such a situation can arise if e.g. the company

is run by a set of managers / shareholders who do not have frictionless access to the markets for whatever

reason. For instance this group of managers / shareholders might be unwilling to sell its shares because it

values control, or because it perceives that its shares might have a large non-linear effect on the price of the

stock due to asymmetric information, or simply because there are vesting agreements that preclude sales

of stock or finally for reasons related to capital gains taxes. If these managers/shareholders are of type A,

then investment will continue to be given by (13). However, the stocks that are traded in the market will

still contain speculative components and thus the link between "marginal q" (PK) and investment will break

down. I use this observation to develop tests in section 3.2.5.

A second observation is that marginal "q" (PK) is now more volatile than the expression obtained in the

case of homogenous beliefs. Applying Ito’s Lemma to (17) and evaluating this expression at the stationary

point (gt = 0) one finds an increase in the volatility of qt (compared to the homogenous beliefs case) of24 :

σg

2(r + δ + λ)

In other words the volatility in marginal "q" (PK) due to the presence of short sale constraints and

heterogenous beliefs is increasing in the volatility of the disagreement process and decreasing in the interest

rate (r), the rate of depreciation (δ) and the rate of convergence to long run fundamentals (λ).

A third observation concerns predictability. Marginal "q" no longer satisfies the relation:

qt = EA

[∫ ∞

t

e−(r+δ)(s−t)f̂As ds|Ft

]

and more importantly, it will no longer be the case that:

qt = EA

[∫ t+∆

t

e−(r+δ)(s−t)f̂As ds+ e−(r+δ)∆qt+∆|Ft

]

In the appendix I show that:

Proposition 3 qt satisfies the relationship:

qt = EA

[∫ t+∆

t

e−(r+δ)(s−t)f̂As ds+ e−(r+δ)∆qt+∆|Ft

]
+EA

[∫ t+∆

t

e−(r+δ)(s−t)
(r + δ + ρ)

r + δ + λ
gAs 1{g

A
s > 0}ds|Ft

]

(18)

24To derive this, apply Ito’s Lemma to the expression 1{gAt > 0}
gAt

r+δ+λ
+ βy1(−

∣∣gAt
∣∣) keeping terms that multiply the

martingale parts. In the appendix I show that β = 1
2(r+δ+λ)y′

1
(0)

and so b(gAt ) is differentiable everywhere, and accordingly

there are no terms involving the local time of the process at 0. This in turn is a consequence of smooth pasting.
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Defining:

Z(gAt ;σg) = EA

[∫ t+∆

t

e−(r+δ)(s−t)
(r + δ + ρ)

r + δ + λ
gAs 1{g

A
s > 0}ds|Ft

]

it can be shown that Zg > 0, Zσg > 0

These properties of qt deserve some comment. The first term in (18) is the usual expression one obtains

for marginal "q" in the traditional infinite horizon setting. It can easily be derived from formula (13).

The second term (Z) is capturing the fact that returns in a setup with heterogenous beliefs and short sale

constraints are predictable. The properties Zg > 0, Zσg > 0 suggest that this predictability will be strongest

when the disagreement process is temporarily high and / or when the volatility in the disagreement process

increases.

3.2.4 Some observations on growth options, stock prices and returns

The rents to the adjustment technology present a richer set of interactions between speculation, fundamentals

and investment. This is to be expected. The ability to adjust the capital stock becomes more valuable when

investment is increased due to speculation. This effect becomes magnified, when one takes into account that

the differences in beliefs about fundamentals also affect the value of the adjustment technology. As a result

investors speculate not only on the ability of the existing capital stock to generate profits in the future, but

also on the ability of the company to leverage its value in the future by further increasing its capital stock.

As is demonstrated in the quantitative exercises that follow, the effect of these "growth options" on prices

can be large.

Applying Ito’s Lemma to (16) one can establish the analogs of the results discussed for the case of

marginal "q", i.e. excess volatility and predictability. However, it is more interesting to analyze the stock

price directly. The following result is proved in the appendix:

Proposition 4 The equilibrium price satisfies:

Pt = EA

[∫ t+∆

t

e−r(s−t)
(
f̂As Ks − pis − χ

i2s
2

)
ds+ e−r∆Pt+∆|Ft

]
+ (19)

+EA

[∫ t+∆

t

e−r(s−t)
(r + δ + ρ)

r + δ + λ
gAs Ks1{g

A
s > 0}ds|Ft

]

+EA

[∫ t+∆

t

e−r(s−t)
(
ξ(gAs ) +CgAs

(
f̂As − f

))
1{gAs > 0}ds|Ft

]

for an appropriate function ξ(gAs ) and a constant C > 0. Denoting

Ξ = EA

[∫ t+∆

t

e−r(s−t)
(
ξ(gAs ) +CgAs

(
f̂As − f

))
1{gAs > 0}ds|Ft

]

one can show that Ξf ,Ξfg,Ξfσg > 0.
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The first term in (19) is the standard recursive relation that connects profits and the price next period

to the current price. The second term is the predictability due to marginal "q" that was analyzed in the

previous section. The final term is the predictability due to speculation on the value of growth options.

Both the second and third terms are positive. The last term is increasing in both gAt and f̂At and moreover

the cross partial derivative of the third term with respect to f̂At and gAt is positive. This demonstrates the

interaction between beliefs about "fundamentals" i.e.
(
f̂At

)
and the differences in beliefs

(
gAt
)
which arises

in the presence of investment. Predictability can be expected to be strongest in the present setup when both

fundamentals and the divergence in beliefs are large. By contrast in the absence of investment the extent of

predictability is independent of fundamentals. This makes it easier to link predictable variation in returns to

variables that react to both fundamentals and speculation like the B/M. These issues are analyzed further

in a quantification exercise that follows.

3.2.5 Testing if bubbles affect investment

In this section I will use the theory developed previously in order to derive the properties of some tests

concerning bubbles and investment. I will derive the implications of the theory for certain standard statistical

tests under alternative hypotheses.

The analysis will be focused mostly on marginal q and its relationship to investment. In the presence of

bubbles marginal q is given by:

PK = qt =

(
f

r + δ
+

f̂At − f

r + δ + λ
+ 1{gAt ≥ 0}g

A
t + βy1(−

∣∣gAt
∣∣)
)

Where the two theories differ is to what extent investment reacts to PK or not. According to H0, q

theory is valid even in the presence of speculative premia and accordingly:

it =
1

χ
(qt − p) =

1

χ
(PK − p) (20)

According to the alternative

it =
1

χ
(qFt − p) (21)

where qFt =
f

r+δ +
f̂At −f
r+δ+λ < qt captures a rational ”long run” valuation of marginal profits. One intuitive

and straightforward test of the two theories is the following. Suppose one starts with a firm where beliefs are

homogenous so that short sale constraints are initially irrelevant. Then, suppose that differences in beliefs

arise so that the short sale constraints lead to the creation of speculative premia on the asset. If the company

decides to conform with (20) the basic investment- PK relationship will continue to hold, whereas under (21)

investment should be overpredicted.

19



This idea is effectively behind Blanchard Rhee and Summers (1993). They examine whether an investment-

q relationship estimated over roughly 90 years tends to produce negative residuals around periods when the

stock market is most likely driven by a bubble. Moreover, they test if positive residuals are observed after

these bubbles crash.

This idea is simple and intuitive. The main identifying assumption behind it, is that the researcher is

able to identify periods of time or specific stocks where the prices are more likely to be driven by speculative

components and not fundamentals. I employ such an empirical strategy in the next section.

An alternative approach is to take advantage of the excess volatility in PK in the presence of speculation.

As demonstrated in section 3.2.3, PK is excessively volatile compared to long run fundamental marginal "q"

as perceived by agent A. Compared to qFt , PK is more volatile by:

σgβy
′
1(g

A
t )

which-evaluated at gAt = 0 gives:
σg

2(r + δ + λ)

This would introduce classical measurement error in a regression of investment on PK . Accordingly, for

companies whose stock contains speculative components, one should expect a biased downward estimate of

q compared to companies without speculation. Actually, one can compute the magnitude of this bias. If one

decomposes the variance of PK into a fundamental and a nonfundamental component then the attenuation

bias due to classical measurement error would be equal to:

σ2qf
(r+δ+λ)2

σ2qf
(r+δ+λ)2

+
(

σg
2(r+δ+λ)

)2 =
1

1 + 1
4

(
σg
σqf

)2

The attenuation bias increases with the ratio of the volatility in the disagreement process relative to the

variability in qFt . As one approaches homogenous beliefs this volatility goes to 0 and the attenuation bias

disappears.25

Another straightforward test of the theory is to create some measure of qFt and compare its performance in

a ”horse” race with PK . Such a method is devised in Abel and Blanchard (1986) and also used in Blanchard

Rhee and Summers (1993). I use such an approach in section 4.3.4 as one of the robustness checks that I

perform.

25This basic idea is behind a number of papers that blame the poor performance of q theory on excessively volatile stock

prices relative to some notion of long run fundamentals. For instance see Bond and Cummins (2001), or the survey of Chirinko

(1993). Of course, this attenuation bias is only present if companies react only to long run fundamentals.
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A final methodology is based on Euler equations.26 This approach takes advantage of the predictability

introduced into PK by the relation (18). This methodology is very appealing from a theoretical viewpoint

because it does not require a lot of assumptions apart from predictability in the variation of marginal "q"

which is true for the model discussed. In particular, following essentially the same ideas as in Chirinko

(1993) I show in the appendix that the following relationship holds if investment reacts to fundamentals only

(irrespective of whether there are nonfundamental components in the price):

E

[
It − e−(r+δ)It+1 −

1

χ̃
Πt +C|Ft−1

]
= 0 (22)

It denotes the change in the capital stock between t− 1 and t, Πt are the observed profits between t− 1

and t divided by the capital stock, and χ̃, C are constants determined in the appendix. If -by contrast-

investment reacts to speculation one can use the predictability of returns derived in the previous sections to

show that:

E

[
It − e−(r+δ)It+1 −

1

χ̃
Πt +C|Ft−1

]
≥ 0

I give an explicit derivation in the appendix. An interesting implication of the results in section 3.2.3

is that one can make additional statements about the strength of the predictability as a function of the

properties of the disagreement process. Moreover, one can pin down its sign. This gives additional predictions

that can be fruitfully used in the cross section.

The appendix to this section also shows how to generalize the findings to arbitrary linear homogenous

adjustment technologies and an arbitrary number of investor groups. The main advantage of doing so is

that a) marginal and average q become equal, allowing one to obtain a measure of marginal q (PK) through

average q and b) the investment to capital ratio (in contrast to absolute investment) becomes a function

of q. Moreover the observations about equation (22) continue to hold with It
Kt−1

replacing It. However, it

seems difficult to obtain closed form solutions for prices in this case.

3.2.6 A basic quantification exercise

In this section I examine the ability of the model to produce quantitatively plausible magnitudes for q and the

extent of predictability. The model has a number of parameters that can be classified in two categories: a)

parameters that are mainly related to the underlying productive and adjustment technologies, b) parameters

that are related to the beliefs of the rational agent and c) parameters that are related to the beliefs of the

26Similar ideas to the ones discussed here are proposed by Chirinko and Schaller (1996). However in this paper predictability

is assumed rather than derived from first principles. This makes it hard to say with confidence whether predictability is due

to rational variations in the discount factor. At a theoretical level, without an explanation for why bubbles exist it becomes

difficult to connect them to predictability as Chirinko and Schaller (1996) explain in Appendix A of their paper when they

study rational bubbles.
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irrational agent. The main parameter of interest is the degree of disagreement which is controlled by φ.

Accordingly, the results are reported as a function of φ. The rest of the parameters are used in order to

produce sensible first and second time series moments of returns, marginal q, average q, the investment to

capital ratio and the dividends to price ratio in the absence of speculation. I chose the values δ = 0.1,

r = 0.05, λ = 0.1, f = r + δ, σ = 0.25f, χ = 2, p = 0.6, σD = 0.5σ, σs = σ.27

Figure 2 depicts various quantities of interest. The top left panel allows one to "translate" levels of φ

in terms of the disagreement ratio between the rational and the irrational agent. The disagreement ratio is

constructed as the ratio of the standard deviation of the stationary distribution of gAt to the average standard

deviation of the posterior belief distribution of the rational agent. For instance a ratio of 1 means that the

standard deviation of the stationary distribution of the disagreement process is equal in magnitude with one

standard deviation of the posterior beliefs of the rational agent. 28 The top right panel reports results of the

following exercise: fixing the capital stock at its steady state value in the absence of disagreement, I compute

average q and marginal q for various level of φ. I also report average q in the absence of speculation (i.e. if

all agents are of type A) for comparison.29 All quantities are evaluated at g = 0, f = f, so that marginal q

is equal to 1. As can be observed, the presence of disagreement increases both marginal "q" and average q

or "Market to Book". The increase in marginal q is identical to the effect documented in Scheinkman and

Xiong (2003) with the sole exception that r is replaced by r+ δ. The second effect is the significant increase

27With these parameters I simulated the model to determine prices, investment and capital if all agents are rational and

φ = 0. I simulated 80 years of data dropping 10 years in order to enforce that initial values are drawn from the stationary

distribution. The results are given in the following table

B/M Marg. Q D/P Returns

Mean 0.599 0.995 0.038 0.054

Std. Dev. 0.148 0.264 0.021 0.181

To compare, the study of Kothari and Shanken (1997) reports an average for B/M of 0.69 with a standard deviation of 0.22

whereas the dividend yield is given as 0.036 with a standard deviation of 0.014. The average value of marginal q and the average

value of returns are predetermined by construction at 1 and 0.05 by the choices of r and f. The simulations unsurprisingly

produce values very close to these parameters. Kothari and Shanken (1997) report an equal weighted return of 15.3 and a value

weighted return of 9.4 % with standard deviations of 38.8 and 23.9 % respectively. However these returns are not real returns.

Adjusting for an average annual inflation of 3.27% from 1926 to 1990 and taking into account the volatility of inflation produces

real returns close to the ones reported in the simulation. Moreover the chosen values imply that regressions of the investment

to capital ratio on average q return a value of 0.078 which corresponds to the values that are obtained in the empirical section.
28 In practical terms this implies that the rational agent will not be able to tell with 95% confidence that the irrational agent

is wrong "most" of the time.
29One might be puzzled why average q increases with φ in the absence of speculation. This is because φ - besides controlling

disagreement- also tightens the confidence intervals of the rational agent. However, this effect is of second order. Moreover it

can be completely avoided if one were to also modify σs with φ in order to keep the variance of posterior beliefs of the rational

agent constant.
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Figure 2: Behaviour of various quantities in the model: The top left panel depicts the "disagreement" ratio

as a function of φ. The numerator of this ratio is the standard deviation of the stationary distribution of the

disagreement process gt. The denominator is the (average) standard deviation of the beliefs of the rational

agent. The top right panel depicts average and marginal q in the presence and absence of speculation. In all

cases the capital stock is fixed at its stationary value in the absence of speculation. The fundamentals (f)

and the disagreement process (g) are evaluated at the stationary values f = f, g = 0. The bottom left panel

repeats the same exercise as the top right panel with the sole exception that f is evaluated at one positive

standard deviation above its mean f. The bottom right figure simulates a sample of 2300 companies over

27 years to have a similar setup as Fama and French (1992). The crosses denote the 5 F-F portfolios with

the lowest B/M as reported in p.442 of their paper adjusted for an annual inflation rate of 7.2% between

1963 and 1990. The circles indicate simulated values. For 75% of the companies φ = 0 whereas for the rest

φ = 0.9. The rest of the parameters are: δ = 0.1, r = 0.05, λ = 0.1, f = r + δ, σ = 0.25f, χ = 2, p = 0.6,

σD = 0.5σ, σs = σ
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in average q or market to Book. In this example, if all agents share homogenous rational beliefs, marginal q

is 1 and average q is about 1.6. When heterogenous beliefs and speculation enter the picture marginal q is

increased mildly (not more than 50 percent) but the rents to the adjustment technology (or growth options)

are increased substantially. 30 31 . The bottom left panel repeats the above exercise when fundamentals are

at one positive standard deviation, i.e. f = f +σst where σst is the stationary standard deviation of f. This

picture demonstrates that effects are amplified when fundamentals are strong. In summary, growth options

form a non-negligible source of valuations in the presence of speculation. The values produced are in line

with the relatively large values of market to book found in the data during speculative episodes.

The bottom right panel reports results on the ability of the model to produce both reasonable book

to market ratios and predictability. I simulated paths of 2300 companies over 27 years assuming that all

companies are identical, except for φ32 .The returns of these companies and the Book to Market ratios were

simulated under the assumption that for 75% of the companies there is no disagreement (φ = 0) whereas

for 25% agents disagree with φ = 0.9. With these assumptions I calculated equal weighted returns for 10

portfolios formed on Book to market as described in Fama and French (1992). The bottom right panel

of figure 2 plots the resulting returns and compares them to the results reported in Fama and French

(1992)33 . I focused only on the portfolios with the 5 lowest B/M ratios since this paper is concerned with

overpricing. The results suggest that the present model can produce degrees of predictability very similar

to the ones observed in the data. Fama-MacBeth regressions produce coefficients of roughly 0.38 compared

to 0.5 reported in Fama and French (1992). Moreover, a number of alternative parameter values seem to

suggest that one needs to assume that only a small number of companies needs to be overpriced in order to

explain the data. However the disagreement in these companies needs to be relatively large.

4 Empirical Evidence

4.1 Overview

In this section of the paper I use the theoretical results obtained in order to test the most central predictions

of the model. The presence of a short sale constraint should increase valuations for the underlying assets,

while the behavior of investment will depend on the shareholders’ ability and willingness to sell their shares

and take advantage of the speculative components in asset prices. The H0 hypothesis in this section will be

30 It can be shown that this picture is independent of the level of χ, since I normalize by the steady state capital stock.
31Of course as time passes average q will fall because the capital stock will start to increase
32Once again a number of initial years (prior to the 37 that form the simulation study) was dropped to make sure that initial

capital stocks, fundamentals and disagreement are drown from the stationary distribution.
33To compare the results I subtracted a 7.2% annual (or 0.6% monthly) from the results in Fama anf French (1992) in order

to compute real returns
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that investment reacts to both "long run" fundamental components and short run speculative components.

The alternative (H1) is that it reacts only to the former.

What is difficult, in order to operationalize this notion is to disentangle shocks to fundamental marginal

”q” and shocks to the resale premium. If one can identify a negative shock to the resale premium (due for

instance to a relaxation of the short sale constraint) then under H0 the basic ”q”-type relation should be

able to accurately predict a drop in investment. Under (H1) there should be no drop in investment and the

”q” relationship would falsely predict one. Similarly, during the buildup of speculative components in prices

the basic ”q” type relationship should overstate the increase in investment under (H1).

Various studies have used proxies to disentangle fundamental from non-fundamental sources of valuation,

such as breadth of ownership, discretionary accruals, equity issuance, etc.34 A problem with this approach

is that most of these indications of mispricing could be explained in an alternative way that is not related

to the speculative component of prices. They provide indirect ways of controlling for mispricing.

In this paper I adopt a more direct approach to identifying shocks to the speculative component of stock

prices. In particular, I test ”q” theory on a set of companies for which data on the existence of a market

and the costs to market participants of short selling a company’s stock is publicly available.

The study focuses on the 1920’s, because short selling was done via a public market, and data on short

selling was available in the Wall Street Journal. This data set was collected by Jones and Lamont (2002). I

describe this data set in more detail in the next section. The interest will be focused on an episode during

the beginning of 1926 when 32 industrial companies were added to what was called ”the loan crowd”35 ,

i.e. a market for borrowing and lending stock. As is explained in Jones and Lamont (2002) the most likely

reason for the introduction into the loan crowd was that market participants considered these companies as

particularly overpriced compared to their fundamental value.

This introduction can be interpreted as a relaxation of the short sale constraint. Accordingly, in line

with the theory developed, one should expect to observe a drop in the stock price of the companies after

their introduction into the ”loan crowd”, independent of whether H0 or the alternative holds. Results of

this nature were established in Jones and Lamont (2002). I reconfirm their results for the subsample that I

consider and provide additional evidence concerning the "q" ratio of these companies.

Then I study investment. The drop in the price that is observed for most of the companies in the

subsample can be reasonably interpreted as the effect of a correction to ”overpricing”. I then proceed to

compare the behavior of investment for these companies. There are at least two easily testable implications.

34See e.g. Polk and Sapienza (2002), Gilchirst et. al. (2002)
35Even though there were additions later on to this list most of them came after the August of 1930, a period where the U.S.

enters the great depression.
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First, I run standard regressions of the form:

Ii,t

Ki,t−1
= αi + δt + βqi,t−1 + εi,t (23)

for "control" companies that have been in the loan crowd for some time and the cost of short selling

them is low36 . I compare the results of these regressions to the equivalent regressions for the companies of

the "treatment" group. What one should observe under H0 is that the coefficients of β are the same up to

sampling error. Otherwise, the coefficient β should be biased downward because of the measurement error

type problem analyzed in subsection 3.2.3.

Another simple observation is that under (H1) one should expect the residuals in regressions of the type

(23) to be negative on average immediately prior to inclusion and significantly positive thereafter. These

intuitive and simple implications of the theory are tested in detail in the sections that follow. Sections (4.3.4)

and (4.4) run the tests described in section 3.2.5 to check if the long-termist hypothesis H1 can be rejected.

4.2 Data

The data for the empirical study come from various sources. Data for the loan crowd market are from Jones

and Lamont (2002). 37 They collected data from end of the month Wall Street Journals (WSJ). The data

collected provide information on rebate rates from 1919-1933. The list of companies that were on the WSJ

list was very small in 1919 (less than 20 industrial companies) and expanded in 4 waves described in Jones

and Lamont (2002). The first wave occurred in 1926 when 32 industrial companies were added to the list

along with a number of railroad companies that I ignore in this study. The other waves came after August

1930, a period during which the U.S. economy was going into a deep recession.

The Wall Street Journal reports the names of the companies along with the so-called rebate rates. The

difference between a rebate rate and the prevailing interest rate is the cost of short selling. This is illustrated

by an example given in Jones and Lamont (2002): suppose A lends shares to B and B sells the stock short.

When the sale is made the proceeds go to A and not to B. A is effectively using collateral to borrow and

thus must pay interest to B. At the end of the loan A repays cash to B and B returns the shares to A. The

rate of interest received by B is called the rebate rate or ”loan” rate. Accordingly, stocks with 0 rebate rates

are the most expensive to short whereas stocks with positive and high rebate rates are relatively inexpensive

to short. In other words, the rebate rate is the price that brings the loan market back to equilibrium.

To form a control group for the study I selected only companies that were in the loan crowd before 1926

and were trading at rebate rates above 2% in February of 1926. This yielded 15 companies that form the

36Companies in the control group are comprised of all companies that were in the loan crowd at least 2 years before 1926

and their rebate rates were at least 2% in February 1926.
37For details of this data set the reader is refered to that paper.
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control group. For these companies I assume that short sales were possible and relatively inexpensive since

1919.

The ”treatment” group is comprised of companies that enter the loan crowd from January 1926 to June

1926 with the vast majority entering at the end of February. There are 32 industrial companies that meet

these criteria38 . Virtually all of these companies enter at a rebate rate of 0 which captures either very

high shorting demand or limited supply of short selling. Conceivably, it also captures conservatism with the

creation of a new market. In either case I adopt the interpretation given in Jones and Lamont (2002) namely,

that these are stocks that were considered as particularly overvalued and thus the demand for shorting the

stock exceeded the amount the normal broker could accommodate ”in house”39 .

To produce measurements of ”q” I could not rely on standard sources of data like COMPUSTAT, since

there is no widely available, electronic source of balance sheet data going back to 1918. Accordingly, data

was hand-collected from Moody’s Manuals of Investments for the years 1918-29.40 A particularly difficult

problem with balance sheet data from the 20’s is that companies did not have to comply with any particular

form of data reporting. Especially detailed profit and loss data are typically unavailable. An additional

problem is that most companies did not start reporting depreciation and accumulated depreciation reserves

until 1926. This introduces measurement error in the investment data which -fortunately- is the left hand

side variable. To create the time series for ”q” I used the same procedure as Nicholas (2003). This procedure

is basically the standard Lindenberg and Ross (1981) procedure adapted to the typical balance sheet data of

the 1920’s. q is computed as the product of common shares outstanding times the price of common shares

plus the market value of preferred stock41 plus the (book) value of debt. The replacement cost of capital is

38Some of the companies were dropped for one of the following reasons: a) Data could not be found for at least 3 years prior

to February 1926 b) the fiscal year ended more than 3 months before or after December 31. c) the company was a pure holding

company d) there was an important merger e) Most of the company’s balance sheet was undepreciated goodwill. With these

selection criteria I tried to address issues related to IPO’s, non-synchronous data, issues related to governance and measurement

error in q. In contrast to common practice I did not winsorize the data in any way, (i.e. by truncating q) because it is precisely

the large variations in q caused by speculation that form the object of this study. The final sample consisted of 25 companies.

For 3 of them I was able to construct q but could not find profit data for some of the years 1922-26. To safeguard that the

results do not capture IPO related issues, I ran all of the main regressions on the subset of companies that I had data reaching

back to at least 1918. The results were unaltered.
39 I.e. by using the accounts of one customer who is long the stock to lend it to another who wants to short sell.
40 I am indebted to Tom Nicholas for providing a data set that contained balance sheet data on some of the companies

investigated.
41 I follow Tom Nicholas (2003) here and determine the market value of preferred stock as if it were a perpetuity discounted with

Moody’s Average yield. This approach is dictated by data availability. To check if this introduces any significant measurement

error, I looked at the price of preferred stock for a few companies that I could find data on preferred stock and computed q

with actual prices for preferred stock. The estimate of q was practically unaffected.
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determined by the usual Lindenberg and Ross (1981) type recursion:

krci,t = krci,t−1

[
1 +

.
pt

(1 + ρ)(1 + δ)

]
+
(
NAV BV

i,t −NAV BV
i,t−1

)

where NAV BV
t is the net asset value of physical capital (Plant, Equipment, and Property).42 This was

the only variable related to physical capital consistently provided for all companies.
.
pt is the inflation rate

obtained from the Historical Statistics of the United States: 1790-1950. ρ and δ are the rate of technological

obsolescence and the depreciation rate respectively and were set to 0. This choice was dictated by the fact

that NAV BV
t already includes depreciation. The inventories were computed at book value whereas liquid

assets were computed as the difference of total assets and the sum of the book value of plant, equipment and

property and inventories.

Investment was hard to compute accurately for many of the firms under consideration. By a basic

accounting identity it is the case that:

Ii,t = Di,t +NAV BV
i,t −NAV BV

i,t−1

where Di,t is the accounting depreciation of the assets during year t and Ii,t is gross investment. The

above relationship can be rewritten as

Ii,t

NAV BV
i,t−1

=
Di,t

NAV BV
i,t−1

+
NAV BV

i,t −NAV BV
i,t−1

NAV BV
i,t−1

As long as
Di,t

NAV BV
t−1

is given as a company specific constant plus some error that is orthogonal to q, i.e.

Di,t

NAV BV
t−1

= c+ εi,t, E (εi,t|q1...T ) = 0

then this induces classical measurement error. However, investment is the left hand side variable so that

consistency of the estimated parameters is not affected, only their confidence intervals.43

For some regressions a variable that I label profits is also used. This variable refers to accounting profits

after interest and depreciation, Πi,t, that were reported consistently for most companies. Unfortunately,

cash flow variables could not be constructed because depreciation was not reported for most companies. The

variable that I call profit rate is defined as πi,t =
Πi,t

Ki,t−1
. 44

Stock price and capitalization data were obtained from CRSP for the months following December of 1925

whereas the Commercial and Financial Chronicle was used for stock price data prior to December 1925.

42The algorithm was initialized with krc1918 = NAV1918, or setting NAV equal to the first available observation year if data

could not be found for 1918.
43To check the influence of measurement error on the results, I ran the investment regressions on a subset of companies

where depreciation rates were available and so I could compute investment accurately. The results were practically identical,

suggesting that the measurement error is indeed classical, i.e. orthogonal to the regressors.
44Unfortunately, separate sales and cost data were not reported for most companies and as a result I cannot address effects

of imperfect competition in the usual way that this is done in the literature. Measurement error in the profit rate is partially

taken care of in the section on Euler equations by estimating everything with instruments and allowing for fixed effects.
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Control Group

Obs Mean S.D. 5% 10% 25% 50% 75% 90% 95%

investment 152 0.076 0.221 -0.077 -0.046 -0.007 0.024 0.078 0.213 0.434

q 167 1.075 1.197 0.377 0.436 0.567 0.683 0.914 2.212 3.875

profits 150 0.207 0.335 -0.030 0.020 0.045 0.092 0.197 0.599 0.858

Treatment Group

Obs Mean S.D. 5% 10% 25% 50% 75% 90% 95%

investment 228 0.080 0.213 -0.078 -0.053 -0.013 0.022 0.116 0.264 0.535

q 254 1.250 0.914 0.382 0.477 0.708 1.012 1.499 2.373 2.839

profits 219 0.392 0.585 -0.010 0.022 0.093 0.195 0.455 0.907 1.811

Table 1: Table of Summary Statistics sorted by treatment and control group. 5%, 25% etc. correspond to

the respective quantiles of the distribution.

4.3 Results

4.3.1 Summary Statistics

Table 1 gives some summary statistics of the data. The profit rates of the companies have different distri-

butional properties. Companies in the control group have relatively less dispersed profit rates with a lower

mean than the companies in the treatment group. The companies in the treatment group also have a higher

and more volatile q compared to the ones in the control group. Both of these observations conform well with

the setup of the theoretical model: one would expect a higher variability in the profit rate to leave room for

diverging opinions and accordingly cause average q to be more volatile. At first glance there are no obvious

differences in the distribution of the investment to capital ratio.

The companies under consideration are relatively large. Companies in the control group belong to the

two highest capitalization deciles of CRSP, whereas companies in the treatment group are slightly smaller

with the median company in the 7th CRSP capitalization decile.

4.3.2 The behavior of q and excess returns

A central prediction of the theory developed earlier is that the presence of short sale constraints will lead to

”overpricing” (irrespective of whether investment reacts to it or not).

Figure 3 gives a visual impression of such an effect. It depicts the average first difference in "q" year
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(1) (2) (3)

V-weight Eq-weight R−Rsize

NEWQ(1) -0.039 -0.023 -0.032

(0.014) (0.013) (0.012)

NEWQ(2) -0.023 -0.015 -0.014

(0.006) (0.007) (0.007)

Observations 1147 1147 1147

Table 2: Monthly abnormal returns for companies in the treatment group. NEWQ(1) and NEWQ(2) are

dummies that take the value 1 if the return is observed in the first quarter of introduction to the loan

crowd and 0 otherwise. NEWQ(2) is defined similarly for the second quarter. A separate beta type model

is estimated for each stock with 32 monthly returns. The first column contains results when the index is

taken to be the Value weighted CRSP index and the second column contains results for the Equal weighted

CRSP index. The third column matches stocks by CRSP capitalization decile and contains results from a

regression of this difference on a constant and the two dummies described above. The standard errors are

computed with a heteroskedasticity robust covariance matrix that allows for clustering by month.

by year for companies in the treatment and the control group. The average first difference in q is identical

for both types of companies until 1923. From that point on, companies in the treatment group start having

large positive first differences compared to companies in the control group. 1926 presents a structural break.

Companies in the treatment group have a large negative adjustment. To the contrary, companies in the

control group have a positive first difference in q in 1926. The difference between groups of the yearly

difference in q is -0.314 with a standard error of 0.138 for the year 1926. This drop is large both in economic

and statistical terms.

Excess returns can help in testing the overpricing hypothesis statistically. The usual case-study method-

ology of studying the excess returns of stocks around a particular ”event” presents one major difficulty. First

and most importantly, CRSP starts in January of 1926, so that one cannot run regressions to determine the

”betas” of the stocks on the market before their introduction and I am forced to estimate these ”betas” from

subsequent observations. Table 2 presents regression results for the model:

Rit − rt = ai + βi(RMt − rt) + γ1{NEQ1}+ δ1 {NEWQ2}+ εit

where (RMt − rt) is the (excess) return on a market wide index, Rit − rt is the excess return of security
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Figure 3: Plot of average first differences in "q" for companies in the treatment and the control group. The

solid line denotes companies in the treatment group and the dashed line denotes companies in the control

group. q is evaluated at the beginning of each period.
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i at time t and the dummy variable 1{NEQ1} is 1 if the observation belongs to the first quarter in which

the stock has been introduced into the market, and 1 {NEWQ2} if the observation belongs to the second

quarter. In other words these dummies are capturing the average abnormal return in the months following

the introduction of the stocks into the "loan crowd". Columns (1) and (2) show an economically very

significant drop in the holding period return in the 2 quarters following the introduction. In column (1)

I use the CRSP Value weighted index in order to control for market-wide effects whereas in column (2) I

use the equal weighted index. After a stock is introduced into the loan crowd an average —3.9% (monthly)

abnormal return can be expected in the first quarter and a -2.3% in the subsequent quarter. To make sure

that this is not just a size-related effect column (3) matches the returns of the companies in the sample with

the portfolio returns of the CRSP capitalization decile in which they belong. In other words, I construct

Rit − RCapit and regress this magnitude on a constant and the dummies described above. In all cases the

results are very similar varying only in the strength of the effect.

4.3.3 Investment and q

This section studies the relationship between investment and q. Figure 4 depicts the comovement between

average first differences in (beginning of period) q and investment for companies in both the treatment

and the control group. The only thing that can be said is that the link between investment and q is not

apparently different in any way between the two groups. Investment seems to follow both the upturns and

downturns of q for companies in the treatment group. Moreover q co-moves with investment even during

periods where one would suspect that the stock prices are driven primarily by non-fundamental forces.

Tables 3 and 4 present some formal econometric tests. Table 3 shows results of simple regressions of

investment on ”q” for various subgroups. Column (1) estimates a regression of investment on beginning of

period q allowing for an individual fixed effect and a time fixed effect. The first column runs this regression

on all the data in the sample whereas the second column restricts attention to companies in the control

group. The third and fourth columns run the same regressions on companies in the treatment group pre

and post 1926. The first two rows correspond to different methods of removing individual fixed effects. The

first row eliminates individual effects by estimating them out (fixed effects regression) while the second row

eliminates fixed effects by first differencing. The third row estimates a fixed effects median regression.

The fixed effects and first differences estimator produce similar results for all the subgroups suggesting

that measurement error in q45 (due to e.g. mismeasurement of the replacement cost of capital) is not very

45See e.g. the results in Grilliches and Hausman (1985) on measurement error in panel data.
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q is evaluated at the beginning of the period.
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important.46 47 The standard errors are wide since the amount of data is very limited. q is significant in

the first differences specification if one includes the entire set of companies and is also significant (for both

specifications) for the companies in the treatment group prior to 1926. The point estimates are somewhat

surprising. They are substantially larger than in the usual Compustat sample.48 One potential explanation

for this is that most companies are large, industrial stocks so that problems related to financial constraints,

intangibles etc. become less prevalent. The point estimates are very large for companies in the treatment

group prior to 1926. This suggests that companies do not distinguish between the sources of variation in q.

Else, the estimates on q in this regression should be downward biased.

Row (3) in Table 3 and Figure 5 demonstrate some distributional properties of the error term. Row

(3) estimates median regressions for subgroups. The estimates are roughly comparable for all subgroups,

suggesting that the large estimates of "q" in the fixed effects (or the first differences) specification for

companies in the treatment group are driven by a skewed error distribution. This is confirmed by a look

at Figure 5 which plots residuals of the fixed effects regression for the two subgroups. This picture reveals

two patterns. First the median residual is roughly the same for companies in the treatment and the control

group. Second, the distribution of the error term is shifted to the right for companies in the treatment group

for the years 1924 and 1925. This suggests that a number of companies adjusted to market based "q" and

possibly in a non-linear way, not captured completely by the simple linear q model.

Table 4 contains results on interactions of q with year and treatment effects. Under H0 one should expect

all columns to not be significantly different than 0. Under the alternative the first two columns should be

significantly negative. No matter how they are estimated, the interaction effects in the first two columns are

positive, suggesting that one cannot reject the base hypothesis that investment reacts to both fundamental

and nonfundamental sources of "q". If instead of interactions of q with treatment and year dummies one

uses simple interactions of year and treatment dummies the coefficients prior to 1926 remain positive and

become negative thereafter for companies in the treatment group, which again supports H0.

I also estimated the model on companies in the treatment group that could be characterized as represen-

46Moreover it suggests that the errors satisfy a strict exogeneity condition (E(εit|qi1...T ) = 0) not just a sequential exogeneity

assumption (E(εit|qi1...t−1) = 0). I tested for this directly by including one lead of q in the fixed effects specification. The

coefficient was both economically and statistically insignificant. This suggests an interpretation of the errors in the investment

regression as adjustment cost shocks. See e.g. Chirinko (1993) and Chirinko and Schaller (1996).
47One caveat is in order. If there is correlation in the measurement error then first differences and fixed effects could be

producing the same answer even though measurement error is present and as a result coefficients are downward biased. To

address this I also estimated the adjustment cost parameter using Euler relations in section 4.4 which produced similar results

to the ones reported here.
48Abel and Eberly (2003) give estimates of 0.03 and 0.02 for the fixed effects and the first difference regression. The highest

estimates for the linear model are produced by using analyst forecasts as instruments. The number they obtain for this

specification is 0.11 very close to the numbers reported here.
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(1) (2) (3) (4)

All Control Tr. -pre 26 Tr. - post 26

q-FE 0.084 0.073 0.335 0.094

(0.047) (0.084) (0.161) (0.109)

q-FD 0.112 0.1 0.322 0.077

(0.050) (0.133) (0.152) (0.064)

q-Med. 0.06 0.094 0.076 0.03

(0.015) (0.060) (0.122) (0.119)

Observations 359 142 132 60

Table 3: Results of regressions of investment on beginning of period q. Time and individual fixed effects

are included but not reported. The first line contains the results of the fixed effects regression, whereas the

second line eliminates fixed effects by first differencing. The last line is a median regression with fixed effects.

The colums correspond to the subgroups. The first group includes all companies, the second only companies

in the control group. The third and fourth columns report results for the treatment group pre 1926 and post

1926. Standard errors for the fixed effects and the first differences are computed with a robust covariance

matrix allowing for clustering by company. For the median regression standard errors, a bootstrap procedure

is used.

tative of the "high-tech" companies of the time49 (mostly automobile related companies). The motivation

behind this estimation is simple: there is increased uncertainty (and hence room for disagreement) about the

fundamentals of companies in emerging sectors making short selling constraints more relevant and overvalu-

ation more likely. In addition the automobile sector of the time was characterized as "speculative" by most

financial publications50 . Accordingly, under H1 this should be the sector in which one would expect to see a

heavily downward biased q. Running investment-q regressions in first differences in this subset confirms the

previous findings since the estimate on q remains at 0.19, well above the estimate for the control group.51

49 I chose American Brake Shoe and Foundry, Simmons Co., Nash Motor Cars, Hudson Motor Cars, Mack Trucks and American

Locomotive as a sample of companies that were active in the emerging industries of the time.
50 (such as the Standard Trade Statistics, a predecessor of S&P)
51Moreover, to safeguard that the results on companies in the treatment group do not capture phenomena related to IPO’s

I ran the regressions on the subset of companies in the treatment group for which I could find stock prices in the Commercial

and Financial Chronicle at least back to 1919. The coefficients on q were roughly equal to the ones reported for all companies

in the treatment group.

35



(1) (2) (3)

Pre-1926 24-25 27-28

FE 0.097 0.094 -0.018

(0.047) (0.051) (0.034)

FD 0.157 0.06 0.023

(0.070) (0.042) (0.045)

Med. 0.004 0 -0.016

(0.024) (0.020) (0.022)

Observations 359 359 359

Table 4: Results of regressions of investment on beginning of period q and various interaction terms. Time

and individual fixed effects are included but not reported. The first column reports results on an interaction

dummy that is equal to q if the company is in the treatment group and the year of observation is prior to

1926. The second and third colums are defined similarly. The first line reports results of the fixed effects

regression, whereas the second line eliminates fixed effects by first differencing. The last line is a median

regression with fixed effects. Standard errors for the fixed effects and the first differences are computed with

a robust covariance matrix allowing for clustering by company. For the median regression standard errors,

a bootstrap procedure is used.
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Figure 5: This picture presents the residuals of the (fixed effects) investment on beginning of period q

regressions for the years 24 and 25 (top panel) and 27 and 28 (bottom panel). The left figure on each panel

is the (kernel-smoothed) density of the residuals whereas the right figure is a histogram (10 bins) of the

residuals. The solid line in the left figures corresponds to the residuals for the treatment group whereas the

dashed line depicts residuals for the control group. Similarly a 0 in the right figures denotes residuals in the

control group and a 1 denotes residuals in the treatment group.
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4.3.4 Fundamental q, profits and investment

In this section and the next I run some robustness checks. In particular, I investigate whether the alter-

native hypothesis (H1) can be rejected, (namely that the results obtained are attributable to profits and

"fundamental" q). By constructing a measure for fundamental q one can also indirectly test the identifying

assumption of the previous section, namely that most of the variation in q for companies in the treatment

group comes from non-fundamental sources. Ideally, one would like to obtain some measure of fundamental q

from analysts’ forecasts on company profitability. Bond and Cummins (2001) propose such a method based

on I/B/E/S forecasts. Similar data are unfortunately not available for the 1920’s. Accordingly, I will use a

”brute” force approach to create fundamental q from reported profits.

In particular I use the methodology in Abel and Blanchard (1986) to determine fundamental q for each

company. I run a 2x2 first order VAR of company profits and q on lagged company profits and q for the entire

sample, assuming that the coefficients are the same for all the companies in the sample.52 I then use the

estimated coefficient matrix along with a linear approximation to the infinite horizon expression for marginal

q to construct a new measure of fundamental q53 . I used a separate discount factor for each company. To

determine the weighted cost of capital for each company (from the perspective of a long termist investor) I

used the CAPM in conjunction with the betas estimated in section 4.3.2 and then created a weighted cost

of capital by using an interest rate of 4% for the debt of the company an interest rate of 7% for prefered

stock and the remaining share of the capital structure I weighted at the cost of equity implied by the CAPM

assuming a market wide expected return for common stock of 10%. Depreciation was taken to be 9%.54

Roughly speaking this new measure of q is meant to operationalize the notion that fundamental q is the

expected sum of discounted marginal profits which are (roughly) equal to πs =
Πs
Ks
for linear homogenous

technologies. In order to create expectations for the future profit rates, one uses a predictive VAR approach.

Then the dynamics of the process are used to create ”long run” expectations.

An obvious concern with such a procedure is its accuracy. In particular one could be worried that the

estimate of fundamental q obtained in this way would be contaminated by severe measurement error which

might make it very difficult to test any hypothesis of interest. A check for this is provided by running a

52 Icapture the presence of individual heterogeneity by including a fixed effect in each regression of the VAR. This creates

a difficult estimation problem, known in the literature as the dynamic panel data problem. The problem arises because the

time series dimension is very short in order to invoke standard asymptotic theory. Thus the estimates of the intercepts will be

biased. I estimated the coefficients of the VAR with both standard fixed effects and the Arellano and Bond methodology. Even

though the coefficients produced by the VAR were somewhat different, in both cases they led to the same conclusions about

the role of fundamental "q". In this section I concentrate on the results for the fixed effects regression.
53For details of this procedure see Abel and Blanchard (1986)
54 I also used a flat discount factor of 0.84 for all companies and varied the required return on the market between 7 and 12%.

The results were almost identical to the ones reported here for variable discount factors suggesting that the results are not very

sensitive to the specific assumptions one makes about returns etc.
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simple regression of first differences in market based q on first differences of fundamental q for the different

subgroups of companies. At the very least, one would expect actual q and the constructed measure of

fundamental q to co-move closely for companies in the control group. Similarly one would expect the two

measures to show disparities for companies in the treatment group prior to 1926. The results of this regression

are given in columns (1)-(2) of table 5. Roughly half of the variation in q (R2 = 0.43) is captured by the

constructed measure of fundamental q for companies in the control group. The performance of this regression

for companies in the treatment group prior to 1926 is -as expected- worse (R2 = 0.08), suggesting that q is

driven mostly by non-fundamental sources.

The next 4 columns of table 5 present horse races between fundamental "q" and market based q. Column

(3) presents results for the treatment group prior to 1926. Time effects are included, but not reported.

Individual fixed effects are eliminated by estimating all equations in first differences. The estimate for

market based q is practically the same as that in Table 3, and the estimates on fundamental q are statistically

insignificant. Column (4) runs the same regression with lagged profit rates instead of the constructed measure

of fundamental q. The motivation for this regression is the following: if one assumes that profit rates follow

a first order AR(1), then fundamental q would be just a scalar multiple of the lagged profit rate. Under

H1 this should be the only significant variable. Once again column (4) shows that H0 cannot be rejected

for companies in the treatment group whereas H1 can. In fact, if one dropped time fixed effects (a Wald

test confirms that they are jointly insignificant), then the coefficient on market based q becomes highly

significant, whereas the coefficient on fundamental q and lagged profits remain insignificant. These results

are reported in columns (5) and (6). Column (7) runs a regression with fundamental q, individual fixed

effects and time effects for all observations and includes an interaction between a treatment dummy, the 1925

date effect, and market based q. Under H1 this coefficient should be insignificant. However, the coefficient

on the interaction is significant, suggesting that H1 can be rejected.

4.4 Euler Equations

I conclude with some Euler tests. This is an alternative robustness check, with the advantage of not requiring

an estimate of fundamental q. The test in this section can be motivated by the discussion in section 3.2.5. In

particular I will focus on testing the overidentifying restrictions embodied in the Euler relations discussed in

3.2.5. One disadvantage of this test is that its power is likely to be very small. The reason is intuitive. This

test can only detect violations of the overidentification restrictions if predictability is strong, adjustment costs

are small and the rest of the errors in the investment equation (sometimes called adjustment cost shocks)

are relatively unimportant. To increase the power of the test, I will accordingly focus only on investment
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(1) (2) (3) (4) (5) (6) (7)

Dq-Tr.-pre 26 Dq-Con. Inv-Tr.-pre 26 Inv-Tr.-pre 26 Inv.-All

Dqf 0.39 2.54 0.184 0.13 0.221

(0.24) (0.57) (0.185) (0.17) (0.14)

Dq 0.302 0.31 0.457 0.467

(0.171) (0.170) (0.172) (0.174)

Lag Dprofs 0.085 0.060

(0.089) (0.080)

Inter25*Treat -.167

(.128)

Inter25*Treat*Dq .247

(.117)

Observations 79 112 79 79 79 79 273

R-squared 0.08 0.43 0.29 0.29 0.25 0.25 0.15

Table 5: This table presents results on the relationship between "fundamental" q (qF ), market based q,

and investment. The first two colums present results of a regression of first differences in actual "q" on

first differences in fundamental "q". Column (1) presents these results for the treatment group prior to

1926 whereas column (2) presents these results for companies belonging to the control group. The next four

columns present regressions of investment on actual, fundamental q, and the (lagged) profit rate. Columns

(3)-(4) present these results for the treatment group prior to 1926 and columns (5)-(6) present the same

results if one drops the (jointly insignificant) time effects. Column (7) introduces interactions between the

1925 time effect and treatment (Inter25*Treat) and interactions between the Treatment, the 1925 dummy,

and beginning of period q (Inter25*Treat*Dq). The F-test that these variables are jointly 0 rejects at the

0.022 level. Robust standard errors are reported.
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behavior of treatment companies around 192655 .

Table 6 presents results on various Euler relationships. Columns (1) and (2) estimate simple Euler

relations of the form

qi,t = E
[
e−(r+δ) (πi,t + qi,t+1) |Ft

]
(24)

for companies in the treatment and the control group respectively. Instruments include (beginning of

period) and lagged q, along with lagged and twice lagged investment to capital ratio and profit rate.56 Even

though the point estimates are similar and economically plausible, the test of overidentifying restrictions

cannot reject for the case of control companies whereas it can reject for companies in the treatment group,

suggesting the presence of predictability for companies in the treatment group.57 Column (3) presents results

from estimating the adjustment cost parameter from the Euler equation

E

[
Ii,t

Ki,t−1
− e−(r+δ)

Ii,t+1

Ki,t

−

(
αi(1− e−(r+δ)) + ζt − e−(r+δ)ζt+1 +

1

χ
πi,t

)
|Ft−1

]
= 0 (25)

on companies in the control group in two steps. First I estimate e−(r+δ) from equation (24). Then I substitute

into (25) and take first differences to eliminate individual fixed effects. I use twice and three times lagged

q, investment/capital ratios and profit rates as instruments and adjust the standard errors for the first step

estimation error. This should be viewed as yet another robustness check of the results presented in section

4.3.3. The point estimate obtained is slightly larger than the ones obtained in table 3 and so are the standard

errors, reflecting the fact that instrumental variables are used instead of OLS to estimate this parameter.

More importantly, the overidentifying restrictions cannot be rejected. These results are to be expected. If

companies in the control group are not overpriced then the regressions in 4.3.3 and (25) present just two

alternative ways of estimating the adjustment cost parameters as shown in Chirinko (1993). Interestingly,

if mispricing exists, does not affect investment and the investment decision is made in a rational way, then

(25) should continue to hold. In the appendix I show how to construct a test based on this observation.

I construct a new variable y as a linear combination of differences in investment and differences in the profit

rate for companies in the treatment group as follows:

y
d
= ∆

(
Ii,1926

Ki,1925

)
− e(r+δ)∆

(
Ii,1925

Ki,1924

)
+
1

χ
e(r+δ)(∆πi,1925)

55The increase in the power of the test comes from the fact that investment by a long-termist manager should not have

reacted to the large fluctuations in the price during that period. However, if investment is short termist then one should be

able to reject H1 more easily precisely because of the large fluctuations in the price around this period.

56To account for risk premia, I also regressed
πi,t+qi,t+1

qi,t
on the a beta estimated separately for each company (on post 1926

CRSP data) and a constant in a Fama-Macbeth fashion. Then I included variables like q that were in the information set of

the agents at time t and checked if they are jointly signifant in the usual Fama and French (1992) fashion. Variables at time t

turned out to be significant for companies in the treatment group even after adjusting for a company specific beta.
57 It is unlikely that the rejection is driven by other sources of misspecification (e.g. non-linear homogenous technologies,

misspecification of πt etc) because in that case the test would rejct for both the control and the treatment group.
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(1) (2) (3) (4)

q+profits q+profits Euler Est. Euler-Test 1926

Lagged q 1.19 1.162

(0.065) (0.049)

Profits 0.192

(0.600)

q-Lag 2 -0.779

(0.299)

Observations 184 125 82 22

Overid P-val: 0.01 0.43 0.71

R-squared 0.27

Table 6: Euler Equation Tests and Tests of Overidentifying Restrictions. The first and second columns test

the overidentifying restrictions embodied in (24) for the treatment and the control group respectively. The

instruments are lagged and twice lagged q, profit rates and investment. The third column estimates the

adjustment cost parameter for companies in the control group using (25). An efficient GMM procedure is

used with a robust covariance matrix. The fourth column contains estimates for the parameter β in (89).

Standard errors for this regression are computed with a robust covariance matrix and are adjusted for first

step estimation error as described in the appendix.

This linear combination depends on parameters that can be consistently estimated from control group ob-

servations using (24) and from simple regressions of investment on q like the ones performed in section 4.3.3.

If (24) holds for companies in the treatment group, β should be 0 in the following regression of y on q1924

and a constant under H1 :

y
d
= ∆

(
Ii,1926

Ki,1925

)
− e(r+δ)

(
Ii,1925

Ki,1924

)
+
1

χ
e(r+δ)(∆πi,1925) = βqi,1924 + ζ + εi,1926 − εi,1925 (26)

Column (4) presents results on the parameter β in (26) estimated on companies in the treatment group.

Standard errors are adjusted for two step estimation. The test rejects H1 since β is significant.

In conclusion, no matter how one runs the test ofH0 vs. H1 there seems to be evidence that the companies

in the treatment group did react to market based q. This seems to be true despite the fact that a significant

fraction of the variation in market based q seems to have been driven by non-fundamental sources.
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5 Conclusion

This paper addressed the question of whether investment should be expected to react to "speculative"

components in stock prices. The answer obtained in the theoretical section of the paper is affirmative. In the

presence of short sales restrictions and heterogenous beliefs, investors can gain by either holding the asset

and reaping its dividends, or by reselling it. From an individual point of view, both are sources of value. If

one further assumes that the purpose of a company is to maximize shareholder value, then the conclusion

that investment will react to both fundamental and speculative sources of value follows. One can however

think of situations where this short-term reasoning is no longer optimal. Indeed, investors with holding

horizons that are sufficiently long might choose to disregard speculation altogether.

This raises the empirical question: Which theory is supported by the data? The theoretical framework

developed allowed a discussion of empirical tests in a unified framework. More importantly, it provided more

concrete predictions about sources of predictability, excess volatility, and their strength depending on the

dispersion of beliefs. These implications were tested in the framework of an episode in the 1920’s. At that

time, a number of companies were introduced into a market for lending stock (the so called "loan crowd").

The main finding of this paper is that the buildup of speculative components was followed by company

investment as well.

One could argue that the incident studied is isolated. However, in many respects one can find many

parallels between the ’90’s and the ’20’s. Large technological progress was followed by widely varying

views on the growth potential of various sectors. The information superhighway was to the ’90’s what the

automobile was to the ’20’s. The radio and the new advertising and distribution channels (shopping through

catalogues - the birth of large retail stores) were in many respect analogous to on-line shopping in the ’90’s.

These technological innovations in production and distribution fueled speculation in the stock market and

reduced the hurdle rates for investment in both historical periods.

One direction that was left unexplored in this paper concerns active financial policy. In the model of this

paper I did not introduce any frictions or financing constraints, that would lead to a role for active financial

policy. However, as discussed in Stein (1996) the presence of financing constraints can provide a further

argument why investment and q would be tightly linked even if decisionmakers are long-termist. It would

be interesting to study the behaviour of long-termist decisionmakers in this intertemporal model under the

assumption that they have to rely on equity to finance investment. It is likely that in such a setup one would

be able to derive additional relationships between equity issuance, investment and returns that would allow

one to disentangle whether investment reacts to q because of short termism or because of an active financing

channel. I pursue this line in current research.
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6 Appendix: Proofs

6.1 Proofs for section 3.1.2

The essential difficulty in solving the filtering problem in section 3.1.2 consists in dealing with the non-linearity

introduced by (7). If one were to replace (7) by:

dft = −λ(ft − f)dt+ σdZft

then one could replicate the arguments in Scheinkman and Xiong (2003) to show that the posterior mean process

is given by:

df̂
A
t = −λ

(
f̂
A
t − f

)
dt+

φσsσ + γ

σ2s

(
ds

A − f̂At dt
)

(27)

+
γ

σ2s

(
ds

B − f̂At dt
)
+

γ

σ2D

(
dD − f̂At dt

)

for agent A and similarly

df̂
B
t = −λ

(
f̂
B
t − f

)
dt+

φσsσ + γ

σ2s

(
ds

B − f̂Bt dt
)

(28)

+
γ

σ2s

(
ds
A − f̂Bt dt

)
+

γ

σ2D

(
dD − f̂Bt dt

)

for agent B where γ is given as:

γ =

√(
λ+ φ σ

σs

)2
+ (1− φ2)

(
2σ

2

σ2s
+ σ2

σ2
D

)
−
(
λ+ φ σ

σs

)

2
σ2s
+ 1

σ2
D

(29)

Then the arguments in Scheinkman and Xiong (2003) can be used to arrive at the dynamics of the disagreement

process gAt (respectively g
B
t ):

dg
A
t = −ρgAt dt+ σgdWA

g (30)

where ρ, σg are given by:

ρ =

√(
λ+ φ

σ

σs

)2
+ (1− φ2)σ2

(
2

σ2s
+

1

σ2D

)

σg =
√
2φσ
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Moreover it is easy to show that dWA
g is orthogonal to the innovations in df̂At and dWB

g is orthogonal to the

innovations in df̂Bt . The reader is referred to Scheinkman and Xiong (2003) for details.

If one wants to account for the fact that the volatility in (7) is non-constant, an approximate way to proceed is

by means of the extended Kalman filter, which is proposed in Jazwinski (1970)58 . This filter can be constructed by

using a time varying γ (i.e. depending on the path of f̂ it ) instead of the constant γ in formula (29):

dγit
dt

= −2
(
λ+ φ

σ

σs

f̂ it

f

)
γ
i
t + (1− φ2)σ2

f̂ it

f
−
(
γ
i
t

)2( 2

σ2s
+

1

σ2D

)
, i ∈ {A,B} (31)

It is easy to verify that substituing f̂ it = f and requring
dγit
dt
= 0 one can recover equation (29). In principle one

could solve γit explicitly for a given path of f̂
i
t . Agent A

′s beliefs about the mean of f would then be characterized

(approximately) by the two-dimensional system (31), (27). For small λ, small σ and large σ
σs
, σ
σD
, γit will be given

approximately by:

γ
i
t =

√
f̂ it

f

√(
φ σ
σs

)2
+ (1− φ2)

(
2σ

2

σ2s
+ σ2

σ2
D

)
− φ σ

σs

2
σ2s
+ 1

σ2
D

(32)

To see why, rewrite equation (29) to get:

dγ
i
t =

(
−2
(
λ+ φ

σ

σs

f̂ it

f

)
γ
i
t + (1− φ2)σ2

f̂ it

f
−
(
2

σ2s
+

1

σ2D

)[
γ
i
t − γ + γ

]2
)
dt =

=

(
−2
(
λ+ φ

σ

σs

f̂ it

f

)
γ
i
t + (1− φ2)

(
σ2f

f

)
f̂t −

(
2

σ2s
+

1

σ2D

)((
γ
i
t − γ

)2
+ γ2 + 2γ

(
γ
i
t − γ

)))
dt =

=

(
−2
(
λ+ φ

σ

σs

f̂ it

f
+ γ

(
2

σ2s
+

1

σ2D

))
γ
i
t + (1− φ2)

(
σ2

f

)
f̂t −

(
2

σ2s
+

1

σ2D

)((
γ
i
t − γ

)2
− γ2

))
dt

If one approximates
f̂it
f
∼ 1 then the "solution" to this ODE is given by:

γt = γ0e
−2wt +

∫ t

0

e
2w(ξ−t)

[
(1− φ2)

(
σ2

f

)
f̂ξ −

(
2

σ2s
+

1

σ2D

)((
γξ − γ

)2 − γ2
)]
dξ (33)

where:

w = λ+ φ
σ

σs
+ γ

(
2

σ2s
+

1

σ2D

)

w is the factor by which past γt are weighted. For large t one can ignore the first term in (33). Moreover, if w is

large, then one can basically ignore the effect of past γ and approximate the above integral (as t→∞) by

γt =

((
σ2

f

)
(1− φ2)f̂t +

(
2
σ2s
+ 1

σ2
D

)
γ2
)
−
(

2
σ2s
+ 1

σ2
D

)
(γt − γ)2

2w

58Unfortuanately, this filter does not make a claim to approximate the optimal non-linear filter, even though in

applications it seems to have quite reasonable properties. Various sources discuss the properties and the efficiency of

this filter for "small" noise.
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Solving this quadratic equation and setting λ = 0 one gets (32). With this simplification the dimensionality of the

problem can be reduced since now γi depends only on f̂t. Replacing (32) into (27) in the place of γ leads to the

approximate belief processes:

df̂
A
t = −λ

(
f̂
A
t − f

)
dt+

√
f̂At

f

[
φσsσ + γ̃

σ2s

(
ds

A − f̂At dt
)
+
γ̃

σ2s

(
ds
B − f̂At dt

)
+
γ̃

σ2D

(
dD − f̂At dt

)]
(34)

df̂
B
t = −λ

(
f̂
B
t − f

)
dt+

√
f̂Bt

f

[
φσsσ + γ̃

σ2s

(
ds

A − f̂At dt
)
+
γ̃

σ2s

(
ds
B − f̂At dt

)
+
γ̃

σ2D

(
dD − f̂At dt

)]
(35)

where

γ̃ =

√(
φ σ
σs

)2
+ (1− φ2)

(
2σ

2

σ2s
+ σ2

σ2
D

)
− φ σ

σs

2
σ2s
+ 1

σ2
D

Since
dsA−f̂At dt

σs
,
dsB−f̂At dt

σs
,
dD−f̂At dt

σD
are (standard) Brownian motions in the mind of agents of type A,it will be

convenient to define the "total volatility" of f̂At (or f̂Bt ) by

σf =

√(
φσsσ + γ̃

σs

)2
+

(
γ̃

σs

)2
+

(
γ̃

σD

)2

which leads to formulas (9) and (8). Moreover, as long as

√
f̂At
f
,

√
f̂Bt
f
do not differ significantly from 1 (i.e. the

volatility in f̂At , f̂Bt is relatively small) then (30) will continue to be a reasonable approximation to the disagreement

process.59 Figure (6) demonstrates the performance of these approximations for the quantitative calibration in

section 3.2.6. The top left figure compares the solution to (31) (obtained by an Euler Scheme) to (32). There

are two observations about the figures. First the two volatilities comove quite closely and second the posterior

standard deviation (captured by γit) does not vary too much. These two observations help understand the next three

panels. The top right panel is depicting the exact solution to the extended Kalman filter obtained by solving the

two dimensional system (27) and (31) and the approximate filter obtained by using (34) instead. The two processes

basically cannot be disentangled from each other, since they practically coincide. The bottom left panel depicts the

performance of the extended Kalman Filter against the actual process ft. It is easy to see that the extended Kalman

Filter performs well in "recovering" the path of ft. Finally, the bottom left panel depicts the difference in beliefs

between agents A and B obtained from the approximate equation (30). Once again, the approximation is sufficiently

good that one cannot disentangle the two processes, since they are practically identical. From these simulations it

can be reasonably claimed that the approximation used is sufficiently accurate for all practical purposes.

59One could derive an alternative approximation to this disagreement process by subtracting dfAt from df
B
t and then

approximating all terms to the first order. Such an approximation would yield something close to the OU process

used here for reasonably small φ.For simplicity I chose the approximate OU process described in the beginning of

this section to be able to compare the results to Scheinkman and Xiong (2003).
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Figure 6: Simulation of a typical path of the model. The top left panel depicts the behaviour of the exact

(under the extended Kalman Filter) and the approximate volatility of the posterior beliefs. The top right

panel depicts the exact conditional mean process (under the extended Kalman Filter) and the approximation

to the exact solution. The bottom left picture depicts the true f and the posterior mean f̂ as obtained by the

extended Kalman Filter. Finally, the bottom right panel depicts the exact disagreement process (assuming

both agents use the extended Kalman Filter) and the approximation proposed. The parameters for this

example are the same as the ones used in Figure 2, namely: δ = 0.1, r = 0.05, λ = 0.1, f = r+ δ, σ = 0.25f,

σD = 0.5σ, σs = σ
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6.2 Proofs for section 3.2.1

Proof. Proposition (1) I use a standard verification argument to verify that (11) provides the solution to (10). One

can start by conjecturing a solution of the form:

P
(
f̂
A
t ,Kt

)
= qF

(
f̂
A
t

)
Kt + u

F
(
f̂
A
t

)
(36)

Substituting this conjecture into the Hamilton Jacobi Bellman equation:

max
it

[
1

2
σ
2
f

f̂At

f
Pff − λ(f̂At − f)Pf + PK (−δK + it)− rP + f̂At Kt − pit −

χ

2
(i2t )

]
= 0 (37)

one arrives at the conclusion that (36) satisfies (37) if and only if the functions qF
(
f̂At

)
and uF

(
f̂At

)
solve the

ordinary differential equations:

1

2
σ
2
f

f̂At

f
q
F
ff − λ(f̂At − f)qFf − (r + δ)qF + f̂At = 0 (38)

1

2
σ
2
f

f̂At

f
u
F
ff − λ(f̂At − f)uFf − ruF +

(
qF − p

)2

2χ
= 0 (39)

The solution to equation (38) can easily be determined as60 :

q
F
(
f̂
A
t

)
=

f

r + δ
+

f̂At − f
r + δ + λ

(40)

whereas the solution to u1
(
f̂At

)
is given as

z1(f̂
A
t ) = C1

(
f̂
A
t − f

)2
+ C2

(
f̂
A
t − f

)
+ C3

with:

C1 =
1

χ

1

r + 2λ

1

2

(
1

r + δ + λ

)2
(41)

C2 =
1

χ

1

(r + λ)

1

(r + δ + λ)

[(
f(1− p̃)
r + δ

)
+
σ2f

2

1

f

1

r + 2λ

1

r + δ + λ

]
(42)

C3 =
1

r

[
1

2χ

(
f(1− p̃)
r + δ

)2
+ σ2fC1

]
(43)

where p̃ = p f
r+δ .The derivative of Pt w.r.t f̂

A
t is given by:

1

r + δ + λ
Kt + 2C1

(
f̂
A
t − f

)
+ C2

As long as 2C1
(
f̂At − f

)
+ C2 > 0, Pf > 0. Since f̂

A
t will always be positive it remains to check that:

−2C1f +C2 > 0

or

p̃ < 1− r + δ

r + δ + λ

1

r + 2λ

(
r + λ− σ2f

2f
2

)
d
= p

As might be expected, for the special case where p̃ = 0 the above equation is always satisfied

60 In this paper only particular solutions of ODE’s will be considered. Economically this means that "rational

bubbles" will not be allowed, i.e. terms that grow unboundedly in expectation at the riskless rate. See Abel and

Eberly (1997) on this point. In contrast only "resale premia" will be analyzed, that are determined in the next

section.

53



6.3 Proofs for section 3.2.2

Two preliminary results will help in the construction of an explicit solution.

Lemma 1 Consider the linear second order ordinary differential equation (ODE):

σ2g

2
y
′′ − ρxy′ − (r + δ)y = 0 (44)

Then there are two linearly independent solutions to this ODE and are given by

y1(x) =

{
U
(
r+δ
2ρ ,

1
2 ,

ρ

σ2g
x2
)

if x ≤ 0
2π

Γ
(
1
2
+ r+δ

2ρ

)
Γ( 12 )

M
(
r+δ
2ρ
, 1
2
, ρ

σ2g
x2
)
− U

(
r+δ
2ρ
, 1
2
, ρ

σ2g
x2
)

if x > 0

y2(x) = y1(−x)

where U() and M() are Kummer’s M and U functions61 . y1(x) is positive, increasing and satisfies limx→−∞ y1(x) =

0, limx→+∞ y1(x) =∞. Accordingly, y2(x) is positive, decreasing and satisfies:limx→−∞ y1(x) =∞, limx→+∞ y1(x) =

0. Moreover any positive solution that satisfies equation (44) and limx→−∞ y(x) = 0 is given by: βy1(x) where β > 0

an arbitrary constant. Similarly any solution to (44) that is positive and satisfies: limx→∞ y(x) = 0 is given by βy2(x)

where β > 0 is an arbitrary constant.

Proof. Lemma (1) The proof is essentially the same as the proof of proposition 2 in Scheinkman and Xiong

(2003) and therefore large portions are omitted. If v(z) is a solution to:

zv
′′(z) +

(
1

2
− z
)
v
′(z)− r + δ

2ρ
v(z) = 0 (45)

then y(x) = v
(

ρ

σ2g
x2
)
satisfies (44). The general solution to equation (45) is given by62 :

v(z) = αM

(
r + δ

2ρ
,
1

2
, z

)
+ βU

(
r + δ

2ρ
,
1

2
, z

)

where the functions M() and U() are given in terms of their power series expansion in 13.1.2. and 13.1.3. of

Abramowitz and Stegun (1964). The properties y1 > 0, y1x > 0, limx→−∞ y1(x) = 0, limx→+∞ y1(x) = ∞ can

be established as in Scheinkman and Xiong (2003). It remains to show that the Wronskian of the two solutions

(y1y
′

2 − y′1y2) is different from 0 everywhere. This is immediate since y1(x), y2(x) > 0 and y
′

1(x) > 0, y
′

2(x) < 0.

61These functions are described in Abramowitz and Stegun (1965) p.504.
62See. Abramowitz and Stegun (1965) p. 504
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Lemma 2 Consider the linear (inhomogenous) second order ODE:

σ2g

2
y
′′ − ρxy′ − (r + δ)y = −f(x) (46)

Then the general solution to (46) is given as:

y(x) =

[∫ +∞

x

(
2
σ2
f(z)y2(z)

y′1(z)y2(z)− y1(z)y′2(z)

)
dz + C1

]
y1(x) +

[∫ x

−∞

(
2
σ2
f(z)y1(z)

y′1(z)y2(z)− y1(z)y′2(z)

)
dz + C2

]
y2(x)

provided that the above integrals exist. Moreover the derivative y′(x) is given as:

y
′(x) =

[∫ +∞

x

(
2
σ2
f(z)y2(z)

y′1(z)y2(z)− y1(z)y′2(z)

)
dz + C1

]
y
′

1(x) +

[∫ x

−∞

(
2
σ2
f(z)y1(z)

y′1(z)y2(z)− y1(z)y′2(z)

)
dz + C2

]
y
′

2(x)

Proof. Lemma (2)The proof is a basic variations of parameters argument and is omitted. For details see e.g.

Section 9.3. in Rainville, Bedient and Bedient (1997).

By setting C1 = C2 = 0 in the above Lemma one gets the so called particular solution, which will depend on

σ, ρ, r and the specific functional form of f(x). I will denote the solution y(x) to this equation as:

G(f(x);σg, ρ, r + δ)

and proceed in steps to provide a proof to proposition 2. The first step is to make a guess on the form of optimal

investment that is verified later. In particular suppose that the firm’s investment policy is given by:

Conjecture 5 The optimal investment policy in equilibrium is given as:

it =
1

χ

(
f(1− p̃)
r + δ

+
f̂At − f
r + δ + λ

+ 1{gAt > 0}
gAt

r + δ + λ
+ βy1(−

∣∣∣gAt
∣∣∣)
)

(47)

where β is a constant that can be determined as:

β =
1

2(r + δ + λ)y′1(0)
(48)

and y1 is the function described in the Lemma 1.

The next step will be to determine the equilibrium prices, stopping times for agents etc. conditional on the

investment policy described. To do this it is easiest to compute the "infinite" horizon value of the company to an

investor of type A conditional on the policy (47). One can focus without loss of generality on the determination of

the reservation price for agent A since the problem for agent B is symmetric. Formally, the goal will be to determine

the functional:

V (Kt, f̂
A
t , g

A
t ) = E

A
t

[∫
∞

t

e
−r(s−t)

(
f̂
A
s Ks − pis − χ

2
(i2s)
)
ds

]
(49)

55



This function captures the value of the asset to an "infinite" horizon investor of type A who takes the conjectured

investment policy (47) as given.

Proposition 6 The solution to (49) is given by:

V
(
Kt, f̂

A
t , g

A
t

)
=

[
f

r + δ
+

f̂At − f
r + δ + λ

]
Kt +

+

(
C1

(
f̂
A
t − f

)2
+ C2

(
f̂
A
t − f

)
+C3

)

+u(gAt )

where u(gAt ) < 0 and C1, C2, C3 are the same constants as in Proposition 1. Moreover ug < 0.

Proof. Proposition (6) According to the Feynman Kac Theorem the solution V
(
Kt, f̂

A
t , g

A
t

)
to (49) must

satisfy the partial differential equation:

AV + f̂At Kt − it
(
p+

χ

2
it

)
= 0 (50)

where A is the infinitesimal operator given by:

AV = σ2f

2

f̂At

f
Vff +

σ2g

2
Vgg − λ(f̂At − f)Vf − ρgAt Vg + Vk (−δKt + it)− rV

Conjecturing a solution of the form:

V = h
(
f̂
A
t

)
Kt + z

(
f̂
A
t , g

A
t

)

and substituting this conjecture back into (50) one can determine conditions that h() and z() have to satisfy in order

to satisfy (50). h() has to satisfy:

σ2f

2

f̂At

f
hff +

σ2g

2
hgg − λ(f − f)hf − ρgAt hg − (r + δ)h+ f̂At = 0

A particular solution is given by63 :

h
(
f̂
A
t

)
=

f

r + δ
+

f̂At − f
r + δ + λ

while z
(
f̂At , g

A
t

)
solves the partial differential equation:

σ2f

2

f̂At

f
zff +

σ2g

2
zgg − λ(f − f)zf − ρgAt zg − rz + h(f, g)it − it

(
p+

χ

2
it

)
= 0 (51)

It is easy to show that:

h(f, g)it − it
(
p+

χ

2
it

)
=

1

2χ

(
f

r + δ
+

f̂At − f
r + δ + λ

− p
)2
− 1

2χ

(
b̃(gAt )

)2
(52)

63Obviously there are other solutions that ”explode” at the rate r but we will only be interested in bounded solutions

in this paper.
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and

b̃(gAt ) = βy1(−
∣∣∣gAt
∣∣∣) + 1{gAt > 0}

gAt
r + δ + λ

(52) allows one to derive an explicit solution for (51) by solving two ordinary differential equations z1(f̂
A
t ), u(g

A
t ) that

satisfy:

σ2f

2

f̂At

f
z1ff − λ(f̂At − f)z1f − rz1 +

1

2χ

(
f

r + δ
+

f̂At − f
r + δ + λ

− p
)2

= 0 (53)

σ2g

2
ugg − ρgug − ru−

1

2χ

(
b̃(gAt )

)2
= 0 (54)

z1(f̂
A
t ) solves the exact same ODE as u

F
(
f̂At

)
in Proposition (1) and thus it will be the case that:

z1(f̂
A
t ) = C1

(
f̂
A
t − f

)2
+ C2

(
f̂
A
t − f

)
+ C3

for the same constants as in Proposition (1) . Finally, one can use the results in Lemma 2 to construct the solution

to (54). It is given by:

u(g) = G

(
− 1

2χ

(
b̃(gAt )

)2
;σg, ρ, r

)
< 0

To show that ug < 0, observe that b̃(g
A) is a strictly increasing, positive and continuously differentiable function of

gAt , so that: [
− 1

2χ

(
b̃(gAt )

)2]′
= − 1

χ
b̃(gAt )̃bg < 0

Differentiating (54) w.r.t. gAt gives:

σ2g

2
uggg − ρgugg − (r + ρ)ug − 1

χ
b̃(gAt )̃bg = 0

Defining ug = z
d one can rewrite this equation as:

σ2g

2
z
d
gg − ρgzdg − (r + ρ)zd −

1

χ
b̃(gAt )̃bg = 0

which has the particular solution:

G

(
− 1
χ
b̃(gAt )̃bg; σg, ρ, r + ρ

)

which is unambiguously negative. This formal analysis can be made rigorous by invoking a set of results known

as Malliavin Calculus (see e.g. Fournie et. al. (1999)). 64

With an expression for the value of the asset to an agent who does not intend to resell it ever in the future, one

can proceed to guess an equilibrium pricing function and an optimal stopping policy. An informed "guess" is that

64Details are available upon request
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the optimal stopping policy is of a particularly simple form: Agent A should sell once f̂At < f̂
B
t and agent B should

sell once f̂Bt < f̂At . This is the case because there are no transactions costs in this model. Accordingly, each agent

sells the asset once she stops having the most optimistic beliefs in the market. In particular one can re-express the

reservation price for agent A as long as gAt < 0 (so that it is agent A who is the highest bidder) as

P (Kt, f̂
A
t , g

A
t ) = V

(
Kt, f̂

A
t , g

A
t

)
+ s(Kt, f̂

A
t , g

A
t ) (55)

Similarly, the reservation price for agent B (as long as gAt > 0 or equivalently g
B
t < 0) is given by symmetry as:

P (Kt, f̂
B
t , g

B
t ) = V

(
Kt, f̂

B
t , g

B
t

)
+ s(Kt, f̂

B
t , g

B
t ) (56)

A further conjecture that will be verified shortly is that for gAt < 0, s is given as:

s(K, f, g) = βy1(g)K + n(g)
(
f̂
A
t − f

)
+ v(g) (57)

for some functions n and v. In other words the reservation price for each agent is just the infinite horizon valuation

of the dividends plus a speculative component. Using (55) one can get the following result:

Lemma 3 If the reservation price function for agent B is given by (56) then the reservation price for agent A is

given by:

P (Kt, f̂
A
t , g

A
t ) = V

(
Kt, f̂

A
t , g

A
t

)
+ sup

τ

Ee
−rτ
[
V
(
Kτ , f̂

B
τ , g

B
τ

)
− V

(
Kτ , f̂

A
τ , g

A
τ

)
+ s(Kτ , f̂

B
τ , g

B
τ )
]

(58)

= V
(
Kt, f̂

A
t , g

A
t

)
+ sup

τ

Ee
−rτ

[(
gAτ

r + δ + λ
+ βy1(−gAτ )

)
Kτ + w(f̂

A
τ , g

A
τ )

]
(59)

for w(f̂Aτ , g
A
τ ) given by:

w(f̂Aτ , g
A
τ ) =

[
C2 + n(−gAτ )

]
g
A
τ + C1

(
g
A
τ

)2
+ u(−gAτ )− u(gAτ ) +

[
n(−gAτ ) + gAτ 2C1

] (
f̂
A
τ − f

)
+ v(−gAτ )

Proof. Lemma (3). The argument is essentially identical to the one given in Scheinkman and Xiong (2003). I

give it here for completeness. Using (55) one can get:

P (Kt, f̂
A
t , g

A
t ) =

58



= sup
τ

E

[∫ τ

0

e
−rt
(
f̂
A
t Kt − pit −

χ

2
i
2
t

)
dt+ e−rτP (Kτ , f̂

B
τ , g

B
τ )

]
=

= sup
τ

E

[∫ τ

0

e
−rt
(
f̂
A
t Kt − pit − χ

2
i
2
t

)
dt+ e−rτ

[
V
(
Kτ , f̂

B
τ , g

B
τ

)
+ βy1(g

B
τ )Kτ + n(g

B
τ )
(
f̂
B
τ − f

)
+ v(gBτ )

]]
=

= sup
τ

E




∫
∞

0
e−rt

(
fKt − pit − χ

2
i2t
)
dt+

e−rτ
[
V
(
Kτ , f̂

B
τ , g

B
τ

)
− V

(
Kτ , f̂

A
τ , g

A
τ

)
+ βy1(g

B
τ )Kτ + n(g

B
τ )
(
f̂Bτ − f

)
+ v(gBτ )

]

 =

= V
(
Kt, f̂

A
t , g

A
t

)
+ sup

τ

Ee
−rτ




(
gAτ

r+δ+λ + βy1(g
B
τ )
)
Kτ + C2g

A
τ + u(g

B
τ )− u(gAτ )+

C1

[(
f̂Bτ − f

)2
−
(
f̂Aτ − f

)2]
+ n(gBτ )

(
f̂Bτ − f

)
+ v(gBτ )


 =

= V
A + sup

τ

Ee
−rτ



(

gAτ
r+δ+λ + βy1(−g

A
τ )
)
Kτ +

[
C2 + n(−gAτ )

]
gAτ + C1

(
gAτ
)2
+

+u(−gAτ )− u(gAτ ) +
[
n(−gAτ ) + gAτ 2C1

] (
f̂Aτ − f

)
+ v(−gAτ )




where the last line follows from the identities:

f̂
B
τ = f̂

A
τ + g

A
τ

g
B
τ = −gAτ

Defining the function w(f̂Aτ , gτ ) as:

w(f̂Aτ , gτ ) =
[
C2 + n(−gAτ )

]
g
A
τ +C1

(
g
A
τ

)2
+ u(−gAτ )− u(gAτ ) +

+
[
n(−gAτ ) + gAτ 2C1

] (
f̂
A
τ − f

)
+ v(−gAτ )

concludes the proof.

In light of Lemma (3) it remains to establish that (57) is right, i.e. that there exist appropriate functions n(·),
v(·), and an appropriate constant β such that:

βy1(g
A
t )Kt + n(g

A
t )
(
f̂
A
t − f

)
+ v(gAt ) = sup

τ

Ee
−rτ

[(
gAτ

r + δ + λ
+ βy1(−gAτ )

)
Kτ + w(f̂

A
τ , g

A
τ )

]
(60)

In other words it remains to establish the existence of functions n(gAt ), v(g
A
t ) and a constant β so that the Value

function of the optimal stopping problem on the right hand side has the form on the left hand side inside the

continuation region, i.e. inside the region where agent A finds it optimal to hold the asset. The right hand side

problem is a three dimensional optimal stopping problem (in Kt, f̂
A
t , g

A
t ) and in general there is no method to solve

such problems analytically. This is in contrast to one dimensional optimal stopping problems where continuity along

with smooth pasting is enough to determine the stopping region and the associated value function in most cases.

Fortunately, the simple form of the conjectured continuation region allows one to solve this problem as is demonstrated

in the next proposition:
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Proposition 7 There exist functions n(gAt ), v(g
A
t ) and a constant β such that the function:

s(Kt, f̂
A
t , g

A
t ) =

{
βy1(g

A
t )Kt + n(g

A
t )
(
f̂At − f

)
+ v(gAt ) if g

A
t < 0

(
gAτ

r+δ+λ
+ βy1(−gAτ )

)
Kτ +w(f̂Aτ , gAτ ) if g

A
t ≥ 0

(61)

satisfies

AV = 0 if gAt < 0

is twice continuously differentiable in the region gAt > 0 and in the region gAt < 0 and once cont. differentiable

everywhere. The constant β is given by:

β =
1

2(r + δ + λ)

1

y′1(0)

and the functions n(·) and v(·) are given in the proof.

Proof. Proposition (7) The first step is to construct the Value function under the assumption that both the

conjecture for the optimal stopping region and the equilibrium investment strategy is correct. Since for gAt < 0 the

conjectured optimal strategy is to hold the asset, one can formulate a necessary condition for the value function s of

the optimal stopping problem on the right hand side of (60). Namely, it has to be the case that inside this region:

As = 0

or:

σ2f

2

f̂At

f
sff +

σ2g

2
sgg − λ(f̂At − f)sf − ρgAt sg + sK

[
−δK +

1

χ

(
f(1− p̃)
r + δ

+
f̂At − f
r + δ + λ

+ βy1(g
A
t )

)]
− rs = 0 (62)

An informed guess is that this PDE has a solution of the form:

βy1(g
A
t )Kt + ζ(f̂

A
t , g

A
t )

Plugging this into (62) one gets the set of equations:

σ2g

2
y1gg − ρgAt y1g − (r + δ)y1 = 0 (63)

σ2f

2

f̂A

f
ζff +

σ2g

2
ζgg − λ(f̂At − f)ζf − ρgAt ζg + βy1(gAt )

1

χ

(
f(1− p̃)
r + δ

+
f̂At − f
r + δ + λ

+ βy1(g
A
t )

)
− rζ = 0 (64)

It is immediate that the function y1(g
A
t ) constructed in Lemma 1 satisfies (63) by construction

65 . One can

determine a solution to equation (64) by postulating that the solution u is given by:

ζ(f̂At , g
A
t ) = v(g

A
t ) + n(g

A
t )
(
f̂
A
t − f

)

65Moreover it is the only solution that vanishes as gAt → −∞
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and upon substituting this conjecture into (64) it is easy to see that v(gAt ) and n(gAt ) have to satisfy the two

ordinary differential equations:

σ2g

2
vgg − ρgAt vg − rv +

1

χ

(
βy1(g

A
t )

(
f

r + δ
+ βy1(g

A
t )

))
= 0 (65)

σ2g

2
ngg − ρgAt ng − (r + λ)n(gAt ) +

1

χ

(
β

r + δ + λ

)
y1(g

A
t ) = 0 (66)

In the gAt < 0 region, the general solution to (65) and (66) is given by:

v(gAt ) = c1y
(r)
1 (gAt ) + c2y

(r)
2 (gAt ) + vP (g

A
t )

n(gAt ) = c̃1y
(r+λ)
1 (gAt ) + c̃2y

(r+λ)
2 (gAt ) + nP (g

A
t )

where vP (g
A
t ), nP (g

A
t ) are the particular solutions to the above equations obtained by Lemma 2:

vP (g
A
t ) = G

[
1

χ

(
βy1(−|gAt |)

(
f(1− p̃)
r + δ

+ βy1(−|gAt |)
))

;σg , ρ, r

]

nP (g
A
t ) = G

[
1

χ

(
β

r + δ + λ

)
y1(−|gAt |);σg, ρ, r + λ

]

and y
(x)
1 (gAt ), y

(x)
2 (gAt ) are defined in an identical way to y1(g

A
t ) and y2(g

A
t ) of Lemma 1 with the only exception

that r+ δ is replaced by x. It is also clear that since y1(−
∣∣gAt
∣∣) is a bounded function, the above integrals are finite.

Moreover, it is easy to check that the particular solutions to the above equations satisfy v′P (0) = 0 and n
′

P (0) = 0.
66

Finally, to keep only solutions that do not explode as gAt → −∞ one can set c2 = c̃2 = 0.

Observe that the conjectured Value function is of the form posited in the left hand side of equation (60). To

conclude with the construction of a candidate pricing function, it remains to determine the constants in such a way

that the resulting value function for the optimal stopping problem (60) is both continuous and cont. differentiable

everywhere. For gAt > 0 the conjecture is that agent A resells to agent B, so that the value function for this case is

given by the value of ”immediate exercise” i.e.

s(Kt, f̂
A
t , g

A
t ) =

(
gAt

r + δ + λ
+ βy1(−gAt )

)
Kt + w(f̂

A
t , g

A
t ) if g

A
t > 0

In each of the two regions (gAt < 0, gAt > 0) the function V is twice cont. differentiable, accordingly continuity

and differentiability only needs to be enforced at gAt = 0. The left limit of V at g
A
t = 0 is given by:

βy1(0)Kt + v(0) + n(0)
(
f̂
A
t − f

)

66Since they are symmetric around 0 and continuously differentiable.
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whereas the right limit is obtained by evaluating
(

gAt
r+δ+λ

+ βy1(−gAt )
)
Kt+w(f̂

A
t , g

A
t ) around g

A
t = 0. This yields

after obvious simplifications:

βy1(0)Kt + v(0) + n(0)
(
f̂
A
t − f

)

so that continuity is immediately satisfied. Differentiability requires that:

βy
′

1(0) =
1

r + δ + λ
− βy′1(0)

c̃1y
(r+λ)′

1 (0) = −c̃1y(r+λ)
′

1 (0) + 2C1

2c1y
(r)′
1 (0) = −2u′(0) + C2 + n(0)

which implies that:

β =
1

2(r + δ + λ)

1

y′1(0)

c̃1 =
C1

y
(r+λ)′
1 (0)

c1 =
−2u′(0) + C2 + n(0)

2y
(r)′
1 (0)

In order to be able to invoke a verification Theorem for optimal stopping one needs additionally the following two

results:

Proposition 8 The function s constructed in Proposition (7) satisfies:

s(f̂At , g
A
t ,K) =

(
gAt

r + δ + λ
Kt + 2C1g

A
t (f̂

A
t − f) + C1

(
g
A
t

)2
+ C2g

A
t + u(−gAt )− u(gAt )

)
+ s(f̂At + g

A
t ,−gAt ,Kt) =

= V
(
Kt, f̂

B
t , g

B
t

)
− V

(
Kt, f̂

A
t , g

A
t

)
+ s(Kt, f̂

B
t , g

B
t )

Proof. Proposition (8) The definition of s in Proposition (7) allows one to compute s(f̂At + g
A
t ,−gAt ,Kt) as:

s(f̂At + g
A
t ,−gAt ,Kt) =




βy1(−gAt )Kt + n(−gAt )

(
f̂At + g

A
t − f

)
+ v(−gAt ) if gAt > 0

(
−gAt
r+δ+λ + βy1(g

A
t )
)
Kt + w(f̂At + g

A
t ,−gAt ) if gAt ≤ 0

and since

w(f̂At + g
A
t ,−gAt ) = −

[
C2 + n(g

A
t )
]
g
A
t +C1

(
g
A
t

)2
+ u(gAt )− u(−gAt ) +

+
[
n(gAt )− gAt 2C1

] (
f̂
A
t + g

A
t − f

)
+ v(gAt )
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one gets after a number of simplifications irrespective of whether
(
gAt > 0

)
or
(
gAt ≤ 0

)

s(f̂At , g
A
t , Kt) =

(
gAt

r + δ + λ
Kt + 2C1g

A
t (f̂

A
t − f) +C1

(
g
A
t

)2
+C2g

A
t + u(−gAt )− u(gAt )

)
+ s(f̂At + g

A
t ,−gAt ,Kt)

The single most important step towards verifying the results is to verify that:

As ≤ 0

in the region (gt ≥ 0) . In particular, the following result is true:

Proposition 9 Suppose

(A) p̃ < λ
r+δ+λ

67

(B) ρ− 3λ− 2r > 0
Then

As ≤ 0

for gAt ≥ 0.

Proof. Proposition (9) For gAt ≥ 0 the operator A is given for any function Ṽ as:

AṼ = σ2f

2

f̂At

f
Ṽff +

σ2g

2
Ṽgg−λ(f̂At −f)Ṽf −ρgAt Ṽg+ Ṽk

(
−δKt +

1

χ

(
f(1− p̃)
r + δ

+
f̂At + g

A
t − f

r + δ + λ
+ βy1(−gAt )

))
− rṼ

The conjectured s is given as:

s
(
Kt, f̂

A
t , g

A
t

)
=

(
gAt

r + δ + λ
+ βy1(−gAt )

)
Kt + w(f̂

A
t , g

A
t )

where (from Lemma 3) w(f̂At , g
A
t ) is given as:

w(f̂At , gt) =
[
C2 + n(−gAt )

]
g
A
t + C1

(
g
A
t

)2
+ u(−gAt )− u(gAt ) +

+
[
n(−gAt ) + gAt 2C1

] (
f̂
A
t − f

)
+ v(−gAt )

67 It is trivial to show that under this condition Kt ≥ 0 and moreover p̃ < p
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It will be easiest to apply the operator on each term separately:

A
[(

gAt
r + δ + λ

+ βy1(−gAt )
)
Kt

]
=

(
− (ρ+ r + δ)
r + δ + λ

g
A
t

)
Kt

+
1

χ

(
gAt

r + δ + λ
+ βy1(−gAt )

)(
f(1− p̃)
r + δ

+
f̂At + g

A
t − f

r + δ + λ
+ βy1(−gAt )

)

A
[[
C2 + n(−gAt )

]
g
A
t + C1

(
g
A
t

)2]
= −(ρ+ r)gAt C2 + C1σ2g − C1(2ρ+ r)

(
g
A
t

)2
+

+g

(
σ2g

2
ngg(−gAt )− ρ(−gAt )ng(−gAt )− rn(−gAt )

)
(67)

−ρgAt n(−gAt )− σ2gng(−gAt )

A
[[
n(−gAt ) + gAt 2C1

] (
f̂
A
t − f

)]
=

=

(
σ2g

2
ngg(−gAt )− ρgAt

(
−ng(−gAt ) + 2C1

)
− (r + λ)

[
n(−gAt ) + gAt 2C1

])
·

·
(
f̂
A
t − f

)

=

(
σ2g

2
ngg(−gAt )− ρ(−gAt )

(
ng(−gAt )

)
− (r + λ)n(−gAt )

)(
f̂
A
t − f

)
(68)

− (ρ+ r + λ) 2C1gAt
(
f̂
A
t − f

)

Using the definitions of u() and v() from Propositions 7 and 49 the above expressions become:

A
[
u(−gAt )− u(gAt )

]
=

(
σ2g

2
ugg(−gAt )− ρ(−gAt )ug(−gAt )− ru(−gAt )

)
−
(
σ2g

2
ugg − ρgAt ug − ru

)
=

= − 1

2χ

(
2βy1(−gAt )gAt
r + δ + λ

+

(
gAt
)2

(r + δ + λ)2

)

A
[
v(−gAt )

]
=

σ2g

2
vgg(−gAt )− ρ((−gAt )vg(−gAt ))− rv(−gAt )

= − 1
χ

(
βy1(−gAt )

(
f(1− p̃)
r + δ

+ βy1(−gAt )
))

Collecting terms and using from Proposition 7 the fact that:

σ2g

2
ngg − ρgAt ng − (r + λ)n(gAt ) = −

1

χ

(
β

r + δ + λ

)
y1(g

A
t )
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and substituting into (67) and (68) it follows that:

A
[[
C2 + n(−gAt )

]
g
A
t +C1

(
g
A
t

)2]
= −(ρ+ r)gAt C2 + C1σ2g − C1(2ρ+ r)

(
g
A
t

)2
+

+g

(
− 1
χ

(
β

r + δ + λ

)
y1(−gAt ) + λn(−gAt )

)

−ρgAt n(−gAt )− σ2gng(−gAt )

A
[[
n(−gAt ) + gAt 2C1

] (
f̂
A
t − f

)]
=

=

(
− 1
χ

(
β

r + δ + λ

)
y1(−gAt )

)(
f̂
A
t − f

)

− (ρ+ r + λ) 2C1gAt
(
f̂
A
t − f

)

Collecting terms, simplifying and using the definitions of C1, C2, C3 in Proposition 49 one can conclude that:

AV =

(
− (ρ+ r + δ)
r + δ + λ

g
A
t

)
Kt +

− 1
χ
(ρ− λ) gAt

(
2C1

(
f̂
A
t − f

)
+

[
C2 +

1

ρ− λ
1

χ

σ2f

2

1

f

1

r + 2λ

(
1

r + δ + λ

)2])

− 1

2χ
(ρ− λ) 1

r + 2λ

( (
gAt
)2

(r + δ + λ)2

)

−(ρ− λ)gAt n(−gAt ) + σ2g
[
C1 − ng(−gAt )

]
(69)

The first term is unambiguously negative if Kt > 0, the second term is negative since (ρ− λ) is positive68 and we
have assumed p < p̃ so that 2C1

(
f̂At − f

)
+C2> 0 . The third term will be negative since ρ− λ > 0. The terms in

the fourth line requires some further analysis. In particular, notice that

(
C1 − ng(−gAt )

)
σ
2
g =

= σ
2
g

(
C1 −

C1y
(r+λ)′
1 (−gAt )
y
(r+λ)′
1 (0)

− nPg(−gAt )
)
=

= σ
2
gC1

(
1− ỹ1

′(−gAt )
ỹ1
′(0)

)
− σ2gnPg(−gAt )

Thus one can rewrite (69) as:

−(ρ− λ)gAt n(−gAt ) + σ2gC1
(
1− ỹ1

′(−gAt )
ỹ1
′(0)

)
− σ2gnPg(−gAt ) (70)

68 by the definition of ρ in 3.1.2
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As expected, (70) at gAt = 0 is 0 by smooth pasting. Thus it is sufficient to show that (70) is declining for g
A
t > 0.

To do this, differentiate once w.r.t to gAt , to get:

−(ρ− λ)n(−gAt ) + (ρ− λ)gAt ng(−gAt ) + σ2gngg(−gAt ) (71)

Now one can use the definition of n(g) to get:

σ
2
gngg(−gAt ) = −

2

χ

(
β

r + δ + λ

)
y1(−gAt ) + 2ρ(−gAt )ng(−gAt ) + 2 (r + λ)n(−gAt )

and substitute into (71) to arrive at:

−(ρ+ λ)gAt ng(−gAt )

− 2
χ

(
β

r + δ + λ

)
y1(−gAt )

− [ρ− 3λ− 2r]n(−gAt )

which will be smaller than 0 under assumption (B), since both n(·) and ng(·) are greater than 0.

Combining the properties established above one arrives at the equilibrium pricing function of Proposition 2. By

Proposition 6 and the results in Proposition 9 it is straightforward to verify that P (f̂At , gAt ,Kt) satisfies the following

properties:

LP = 0 if gAt < 0

LP ≤ 0 if gAt ≥ 0

where:

LP =max
i

(
AP + fK − i

(
p+

χ

2
i
))
≤ 0

and

AP =
1

2

σ2f

f
f̂At Pff−λ(f̂At −f)P f+

1

2
σ2gPgg−ρgP g+PK(−δKt+it)− rP

Moreover P (f̂At , gAt ,Kt) is C
1 everywhere and C2 except at gAt = 0. Consider now any policy it and a stopping

time τ . Then Ito’s Lemma implies:

e−rτPτ= P 0+

∫ τ

0

e−rtAPdt+

∫ τ

0

dMt

where dMt is a (local) martingale. Since Pt ≥ 0, one can conclude that E
(∫ τ
0 dMt

)
≤ 0 and thus:

E
(
e−rτPτ

)
≤ P 0+E

[∫ τ

0

AP + f̂At Kt − it

(
p+

χ

2
it

)
dt

]
−E

[∫ τ

0

f̂At Kt − it

(
p+

χ

2
it

)
dt

]
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Then the following set of inequalities follows

P0 ≥ P0+E

[∫ τ

0

LPdt

]
≥ P 0+E

[∫ τ

0

AP + f̂At Kt − it

(
p+

χ

2
it

)
dt

]

≥ E
(
e−rτPτ

)
+E

[∫ τ

0

f̂At Kt − it

(
p+

χ

2
it

)
dt

]

Thus there is no set of investment policy / stopping policies that can yield more than P0. Moreover, the conjectured

investment and stopping policies turn the above inequalities into equalities. Thus, the conjectured equilibrium prices

and policies form an equilibrium.

6.4 Proofs for section 3.2.3

Proof. (Proposition 3) Ito’s Lemma for continuously differentiable functions implies that b(gAt ) satisfies:

e
−(r+δ)∆

bt+∆ = bt +

∫ t+∆

t

e
−(r+δ)(s−t) (Abs) ds+Mt+∆ (72)

where Mt+T is a martingale difference satisfying:

E [Mt+∆|Ft] = 0

and Abs is given as:
σ2g

2
bg − ρgbg − (r + δ)b

It is easy to show by using the definition of y1(·) that:

Abs = − (r + δ + ρ)
r + δ + λ

g
A
t 1{gAt > 0} < 0

Combining this with the fact that:

qt =
f

r + δ
+

f̂At − f
r + δ + λ

+ b
(
g
A
t

)

leads to the first assertion. The last assertions can be proved by using the results in Fournie et. al (1999). In

particular:
∂Z

∂g
= E

[∫ t+∆

t

e
−(r+δ+ρ)(s−t)1{gAs > 0}ds

]

which is clearly positive. A similar method can be used to show that ∂Z
∂σg

> 0.

6.5 Proofs for section 3.2.4

Proof. The proof is a straightforward application of Ito’s Lemma to

Pt = Vt + st
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taking into account equation (69). To establish the rest of the result one can focus only on:

Ξ̃ = CEA
[∫ t+∆

t

e
−r(s−t)

g
A
s

(
f̂
A
s − f

)
1{gAs > 0}ds|Ft

]

and pass the expectation inside the integral and use the independence of f̂As and gAs to get that:

Ξ̃ = C

[∫ t+∆

t

e
−r(s−t)

(
E
A
(
f̂
A
s − f

)
|Ft
)(
E
A
g
A
s 1{gAs > 0}|Ft

)
ds

]

and since

E
A
(
f̂
A
s − f |Ft

)
=
(
f̂
A
t − f

)
e
−λs

one gets:

Ξ̃ =
(
f̂
A
t − f

)
C

[∫ t+∆

t

e
−(r+λ)(s−t)

(
E
A
g
A
s 1{gAs > 0}|Ft

)
ds

]

so that:

Ξ̃
f̂At
= C

[∫ t+∆

t

e
−(r+λ)(s−t)

(
E
A
g
A
s 1{gAs > 0}|Ft

)
ds

]
> 0

This term is of the same form as the term obtained in Proposition 3 and the rest of the results can be proved in

an identical manner.

6.6 Proofs for section 3.2.5

In order to give a proof of (22) it is useful to start by modelling the evolution of the capital stock for discrete time

intervals:

KT = Kte
−δ(T−t) +

∫ T

t

e
−δ(T−s)

isds+ εit

where εit captures adjustment cost shocks
69 and satisfies a strict exogeneity condition:

E (εit|qt=0..T ) = 0
69 I haven’t modelled adjustment costs and time variation in capital prices explicitly. Such a modification is easy to

do. One just assumes that the adjustment cost technology is given by:

χ

2
(it + nt)

2

where nt is some stochastic process. Similarly one can introduce variability in prices by modifying the dividend

stream to:

dDs − χ
2
(it + nt)

2 − ptit
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so that:

E
(
KT −Kte

−δ(T−t)|Ft
)

= E

(∫ T

t

e
−δ(T−s)

isds|Ft
)
= (73)

=
1

χ
E

(∫ T

t

e
−δ(T−s)

qsds|Ft
)
+ C̃ (74)

where C̃ = −
p
∫
T
t
e−δ(T−s)ds

χ
.Now if qt =

f

r+δ +
f̂At −f

r+δ+λ (i.e. marginal q is equal to the long run fundamental

notion of q) it is easy to demonstrate that

E

(∫ T

0

e
−δ(T−s)

qsds|Ft
)
= B1 +B2qt (75)

where B2 →
∫ T
t
e−δ(T−s)ds as λ→ 0 and B2 → 0 as λ→∞. This is in essence the Barnett and Sakellaris (1999)

critique. Normalizing T − t = 1 , it will be the case that B2 < 1 and thus the estimate that will be obtained in a

regression of it on beginning of period marginal "q" will produce a downwards biased estimate of 1
χ
in the sense that

OLS will consistently estimate B2
1
χ
. If depreciation (δ) is small and fundamentals persist for a while, (i.e λ is small)

then B2 will be not much different than 1.
70

Under the assumption that investment only reacts to long run fundamental q one can rewrite (74) as:

E (It|Ft−1) = 1

χ
Q
F
t−1 + C̃ (76)

where -in order to simplify notation- I have defined:

It = Kt −Kt−1e
−δ

If adjustment costs are independent of the capital stock all of these modifications affect the rents to the adjustment

technology only.
70 In the presence of predictability this issue becomes even more involved because equation (18) has to be augmented

by terms involving gAt which is correlated with beginning of period qt. One can base a test on this fact by testing the

orthogonality between beginning of period qt and the error in the regression of investment on beginning of period

qt as proposed by Chirinko and Schaller (1996) equation (15). However, this is a test of whether bubbles exist, not

whether they influence investment. It also appears to be less powerful than a test based on equation (18). The reason

is that predictability in the Chirinko and Schaller (1996) test is multiplied by 1
χ
and the error term consists of the

(possibly biased expectations error) and the adjustment cost shock. These two facts might make it difficult to observe

predictability even if it exists. A practical way to obtain consistent estimates of χ is to approximate
∫ T
t
e−δ(T−s)qsds

by a weighted average of beginning and end of period qt , project this quantity on beginning of period quantities and

then use the predicted values in the regression. In other words to estimate two stage least squares. I used such an

approach too in the empirical section of the paper and the results were unaltered.
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and

Q
F
t−1 = E

(∫ t

t−1

e
−δ(t−s)

q
F
s ds|Ft−1

)

As demonstrated before, QFt−1 can be expressed as B1 +B2qt−1 under the assumptions of the model. Therefore

one can rewrite (76) as

E (It|Ft−1) =
1

χ
B1q

F
t−1 + C̃ (77)

Leading this once, one gets:

E (It+1|Ft) =
1

χ
B1q

F
t + C̃ (78)

However notice that qFt and q
F
t−1 are related by:

q
F
t−1 = E

[∫ t

t−1

e
−(r+δ)(s−(t−1))

f̂sds+ e
−(r+δ)

q
F
t |Ft

]
(79)

so that (77),(78), and (79) are related by:

E

[
It − e−(r+δ)It+1 − 1

χ
B1

∫ t

t−1

e
−(r+δ)(s−(t−1))

f̂sds+ C̃(1− e−(r+δ))|Ft−1
]
= 0

For small r, δ this Euler Equation can be well approximated in terms of the observed profit rate:

E

[
It − e−(r+δ)It+1 −

1

χ
B1πt + C̃(1− e−(r+δ))|Ft−1

]
= 0 (80)

where the profit rate is given as:

πt =

∫ t

t−1

dDs

Ks

=

∫ t

t−1

fsds+ σD

∫ t

t−1

dZ
D
s

The results in the text follow once one defines : C = C̃(1− e−(r+δ)) and 1
χ
B1 =

1
χ̃

Generalizing to arbitrary linear homogenous adjustment cost technologies

To generalize the results to arbitrary linear homogenous adjustment cost technologies and an arbitrary number

of investor groups it will be most useful for expositional reasons to consider a discrete time setup and focus on a

quadratic adjustment cost function for simplicity. Moreover I will assume 0 depreciation and a price of investment of

1. Once again the equilibrium price, investment and selling times will have to satisfy:

Vt
d
= Dt + Pt = max

j∈J
sup
τ,is

E
j

(
τ∑

s=0

d
s
Ds + d

τ
Vτ

)
(81)
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where j ∈ J is indexing the various groups of investors who have heterogenous beliefs, d = 1
1+r

, Dt is defined as

Dt =

[
ft − it+1

Kt

− χ
2

(
it+1

Kt

)2]
Kt

and:

Kt+1 = Kt + it+1

I will also assume that investment is determined at the beginning of the period. The basic idea is to show the

following:

Lemma 4 A set of prices, investment policies and stopping policies satisfies (81) if and only if it satisfies:

Vt = Dt + Pt = max
j
sup
it+1

E
j

([
ft −

it+1

Kt

− χ
2

(
it+1

Kt

)2]
Kt + dVt+1

)
(82)

Proof. Lemma (4). The proof is a generalization of the result shown in Harrison and Kreps (1978) and is

available upon request.

With Lemma (4) the rest of the steps follow essentially standard arguments. One can show that marginal q is

equal to average q, where q is now given by the recursion:

qt = E
j∗t d

(
ft+1 +

χ

2

(
it+2

Kt+1

)2
+ qt+1

)

, j∗t is given as

j
∗

t = argmax
j
sup
it

E
j

([
ft −

it+1

Kt

− χ
2

(
it+1

Kt

)2]
Kt + dVt+1

)

and optimal investment is:
it+1

Kt

=
qt − 1
χ

From here it is not difficult to derive that marginal and average q are equal by standard arguments (see e.g

Chirinko (1993)). Suppose that now one were to define:

Πt = ft +
χ

2

(
it+1

Kt

)2
=
∂Dt

∂Kt

If one assumes the presence of a rational agent A in the model it is immediate that under her beliefs it will no

longer be the case that:

E
A [qt − d [Πt+1 + qt+1] |Ft] = 0 (83)
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nor that:

E
A

[
it+1

Kt

− d
(
it+2

Kt+1
+
1

χ
Πt

)
+ C|Ft

]
= 0 (84)

However, if investment is determined by a long termist rational investor (84) will hold even if (83) fails for the

reasons explained in the text.

6.7 Proofs for section 4.4

For this section I use the standard assumption in the literature that adjustment costs are linear homogenous in

capital, time is discrete and the adjustment cost technology contains both time and individual fixed effects. Then by

steps similar to 3.2.5 one can derive that:

E

[
Ii,t

Ki,t−1
− e−(r+δ) Ii,t+1

Ki,t

−
(
αi(1− e−(r+δ)) + ζt − e−(r+δ)

ζt+1 +
1

χ
πi,t

)
|Ft−1

]
= 0 (85)

which can be rewritten as:

Ii,t+1

Ki,t

= e(r+δ) Ii,t

Ki,t−1
− α̃i(e

(r+δ) − 1)− ζte(r+δ) + ζt+1 −
1

χ
e
(r+δ)

πi,t + εit

where

E [εit|Ft−1] = 0 (86)

In particular:

E [εit|q1..t−1] = 0

I am going to formulate the test in first differences in order to eliminate fixed effects, so that:

∆

(
Ii,t+1

Ki,t

)
= e(r+δ)∆

(
Ii,t

Ki,t−1

)
− ζ − e(r+δ)

κ(∆πi,t) + εit+1 − εit (87)

where I have defined for convenience:

κ =
1

χ

ζ = ∆ζt+1 −∆ζte(r+δ)
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The unknown parameters are e(r+δ), ζ and κ. If one knew these parameters then one could determine εit+1 − εit.
To utilize the entire sample I estimate both κ and e−(r+δ) from the system of Euler relations:

qi,t = e
−(r+δ)

E [πi,t + qi,t+1|Ft] (88)

Ii,t

Ki,t−1
= αi + ζt + κqi,t−1 + εit

estimated on all data in the control group.71 Then one can substitute the estimated parameters into (87) to get:

∆

(
Ii,1926

Ki,1925

)
= ̂e(r+δ)∆

(
Ii,1925

Ki,1924

)
− ζ − κ̂ ̂e(r+δ)(∆πi,1925) + εi1926 − εi1925

To test the hypothesis of interest one can modify this equation to:

y
d
= ∆

(
Ii,1926

Ki,1925

)
− ̂e(r+δ)∆

(
Ii,1925

Ki,1924

)
+ κ̂e(r+δ)(∆πi,1925) = βqi,1924 + ζ + εi1926 − εi1925 (89)

According to H1, β should be 0. Moreover, q1924 should be orthogonal to the errors, so that an OLS regression of

y on qi,1924 will produce a consistent estimate of β. Of course standard errors need to be adjusted for the first step

error. I undertake this adjustment by using the results in Newey and McFadden (2000) section 6.

71 I use only the control group to simplify the computation of standard errors for the two step estimator of β.
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