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Abstract


The allowance for low-probability disasters, suggested by Rietz (1988), explains a lot of asset-pricing puzzles, including the high equity premium, low risk-free rate, volatility of stock returns, and low estimates of the intertemporal elasticity of substitution for consumption.  Another mystery that may be resolved is why expected real interest rates were low in the United States during major wars, such as World War II.  This resolution works even though price-earnings ratios tended to be low during the wars (so that earnings-price ratios were high).  The rare-disasters framework achieves these explanations while maintaining the tractable framework of a representative agent, time-additive and iso-elastic preferences, and complete markets.  The results hold with i.i.d. shocks to productivity growth in a Lucas-tree type economy and also when capital formation is considered.  Perhaps just as puzzling as the high equity premium is why Rietz’s insight has not been taken more seriously in macroeconomics and finance.

* I am grateful for comments from Alberto Alesina, Olivier Blanchard, John Campbell, Xavier Gabaix, Mike Golosov, Kai Guo, Fatih Guvenen, Narayana, Kocherlakota, David Laibson, Greg Mankiw, Raj Mehra, Casey Mulligan, Sergio Rebelo, Aleh Tsyvinski, Marty Weitzman, Ivan Werning, and participants of seminars at Harvard and MIT.

The Mehra-Prescott (1985) article on the equity risk-premium puzzle has received a great deal of attention, as evidenced by its 597 citations through 2004.  An article published three years later by Rietz (1988) purported to solve the puzzle by bringing in the potential for low-probability disasters.  I think that Rietz’s basic reasoning is correct, but the profession seems to think differently, as gauged by his much smaller number of citations (49) and the continued attempts to find more and more complicated ways to resolve the equity-premium puzzle.  

In this study, I extend Rietz’s analysis and argue that it provides a plausible resolution of the equity-premium and related puzzles.  Included in these other puzzles are the low risk-free rate, the volatility of stock returns, and low macro-econometric estimates of the intertemporal elasticity of substitution for consumption.  Another mystery that may be resolved is why expected real interest rates were low in the United States during major wars, such as World War II.  This resolution works even though price-earnings ratios tended to be low during the wars (so that earnings-price ratios were high).
I.  Representative-Agent Model of Asset Pricing


A.  Setup of the model

Following Mehra and Prescott (1985), I use a version of Lucas’s (1978) representative-agent, fruit-tree model of asset pricing with exogenous, stochastic production.  Output of fruit in each period is At.  In the initial version of the model, the number of trees is fixed, that is, there is neither investment nor depreciation.  Since the economy is closed and all output is consumed, consumption, Ct, equals At.  

One form of asset in period t is a claim on period t+1’s output, At+1.  (This asset is a claim on one dividend, not the tree itself.)  If the period t price of this risky asset in units of period t’s fruit is denoted by Pt1, the one-period gross return on the asset is


(1)
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 = At+1/Pt1.

I consider later claims in period t on output in periods t+2, t+3, and so on.  An equity share in the fruit-tree is a claim on all of these future outputs (dividends).  I assume for now that property rights are secure, so that an equity claim ensures ownership over next period’s fruit, At+1, with probability one.

There is also a risk-free asset, on which the gross return from period t to period t+1 is denoted 
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.  Risk-free returns set in period t for future periods are denoted 
[image: image3.wmf]f

t

R

2

, 
[image: image4.wmf]f

t

R

3

, and so on.  Since property rights are secure, the risk-free asset really is risk-free.

The representative consumer maximizes a time-additive utility function with iso-elastic utility:


(2)


Ut = Et
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where


(3)


u(C) = (C1-θ – 1)/(1 – θ).
In these expressions, ρ ≥ 0 is the rate of time preference and θ > 0 is the magnitude of the elasticity of marginal utility (and the coefficient of relative risk aversion).  The intertemporal elasticity of substitution for consumption is 1/θ.

The usual first-order optimization condition implies


(4)


u′(Ct) = e-ρ∙Et[u′(Ct+1)∙Rt1],
where Rt1 is the one-period gross return on any asset traded at date t.  Using Eq. (4), substituting C = A for periods t and t+1, and replacing Rt1 by the formula for 
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 in Eq. (1) gives


(5) 


(At)-θ = e-ρ∙(1/Pt1)∙Et[(At+1)1-θ].
Therefore, the price of the one-period risky asset is

(6)


Pt1 = e-ρ∙(At)θ∙ Et[(At+1)1-θ].

If we instead replace Rt1 by the risk-free return, 
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I assume that the log of output (productivity) evolves as a random walk with drift, 


(8)


log(At+1) = log(At) + γ + ut+1 + vt+1 + wt+1,
where γ ≥ 0.  The random term ut+1 is assumed to be i.i.d. normal with mean 0 and variance σ2.  This term will give results similar to those of Mehra and Prescott.  I assume that γ and σ are known.  Weitzman (2005) argues that learning about σ is important for asset pricing—this idea is not pursued here.  However, Weitzman’s learning model generates “fat tails” that have effects analogous to the low-probability disasters considered by Rietz (1988) and in my model.

The other random terms, vt+1 and wt+1, pick up low-probability disasters.  Two types of disasters are distinguished.  In the first, v-type, output contracts sharply but property rights are respected and the world goes on.  The Great Depression is a prototype v-event.  The second, w-type, can be thought of most graphically as the end of the world, possibly generated by all-out nuclear war or an asteroid collision.  Analogous events, likely to be more important empirically, are losses of property rights over asset claims, possibly generated by war or changes in political regimes.  In the representative-agent framework, generalized default associated with loss of property rights on all assets is equivalent in terms of asset pricing to the end of the world.


I assume that the probabilities of the two types of disasters are independent and also independent of ut+1.  The probability of a v-type disaster is the known amount p ≥ 0 per unit of time.  (The probability of more than one disaster in a period is assumed to be small enough to neglect.)  If a disaster occurs, the log of output contracts by the known amount b ≥ 0.  The idea is that the probability of disaster in a period is small but b is large.  The distribution of vt+1 is



probability  e-p:  
vt+1 = 0,




probability  1- e-p:       vt+1 = -b.


This specification creates negative skewness in the distribution of At+1, because disasters are not offset in a probabilistic sense by bonanzas.  However, the asset-pricing results are similar for a symmetric specification in which favorable events of size b also occur with probability p.  With diminishing marginal utility of consumption, bonanzas do not count nearly as much as disasters for the pricing of assets.


The probability of a w-type disaster—the end of the world—is the known constant q ≥ 0 per unit of time.  Hence, the world exists after one period with probability e-q and does not exist with probability 1 - e-q.  When viewed in terms of general loss of property rights, the probability q refers to 100% default.  However, the model turns out to be linear in the sense that a 1% chance of 100% default has the same effects on asset pricing as a 2% chance of 50% default.  (This linearity does not apply to p.)  

Some of the results depend on the assumption that the probability of default is independent of At, notably the occurrence of v-type disasters.  However, the key assumption about w-events is that they affect equally the returns on equity and the “risk-free” asset (which is no longer risk free).  Thus, unlike the probability p of v-type events, the probability q of w-type events turns out not to affect the equity premium.

B.  Economic disasters in the United States and other countries

This section examines the 20th century history of economic disasters to determine reasonable parameter values for disaster probabilities and sizes of contractions.  From the U.S. perspective, a consideration of economic disaster immediately brings to mind the Great Depression.  The Depression fits cleanly with v-type events in the sense that the economic decline was large and did not trigger default on assets such as government bills.
  However, from the standpoint of sizes of world economic disasters, war has been more important than purely economic contractions.  For the United States, at least since 1815 and aside from the Confederacy during the Civil War, wars did not involve massive destruction of domestic production capacity.  In fact, the main wars, especially World War II, were times of robust economic activity.  The history for many other OECD countries is very different, notably for World Wars I and II and their aftermaths.

Part A of Table 1 shows all episodes of 15% or greater decline in real per capita GDP
 in the 20th century for 20 advanced countries covered over a long period by Maddison (2003).
  This group comprises the major economies of Western Europe plus Australia, Japan, New Zealand, and the United States—all members of the OECD since the 1960s.  

In enumerating disaster events in Table 1, I consider not just one-year changes in real per capita GDP but rather declines that applied to consecutive years, such as 1939‑45 for some countries during World War II.  My reasoning is that the start of a major war, such as World War II for Western European countries in 1939, puts a country into a regime where, with much higher probability than usual, output falls sharply over the next several years.  The exact outcome depends on whether the country wins or loses, the extent of destruction of property and life, and so on.  These features and the length of the war are unknown at the outset.  

A reasonable way to model this kind of disaster is that, with probability p per unit of time, a country enters into a war that leads eventually to a contraction in the log of per capita GDP by an amount that corresponds in the model to the parameter b.  The length of time that it takes to resolve the uncertainty about the extent of contraction—for example, one year or five—is, I think, secondary.  Thus, to get an idea of plausible disaster sizes and probabilities—that is, to map the data to the model in a rough sense—I consider the cumulative decline in real per capita GDP during each war.  The associated disaster probability corresponds to the number of wars (say, per century) that featured these sharp cumulative contractions, rather than the fraction of years in which a country was involved in this kind of war.


I take a similar approach to purely economic depressions, such as the Great Depression.  These events often involve financial crises, which are similar in some respects to wars.  However, I think that an appropriate procedure is less clear in these cases than for wars.

Nine of the contractions shown in part A of Table 1 are associated with World War II, eight with World War I, eight with the Great Depression, and one or two with the Spanish Civil War.
  There are also four aftermaths of major wars—three following World War I and one after World War II.  However, these experiences involved demobilizations with substantial declines in government purchases, work effort, and capital utilization and—with the exception of Canada after World War I—did not feature substantial decreases in consumption.
  Therefore, except for Canada in 1917-21, these cases are not applicable to my analysis.  


Although 15% or greater declines in real per capita GDP are rare events, only 2 of the 20 OECD countries lack any such events in the 20th century, and these came close (see the notes to Table 1).  The striking observation from part A of Table 1 is the dramatic decreases in real per capita GDP during the major wars and the Great Depression.  The falls during World War II ranged between 45% and 64% for Italy, France, Japan, the Netherlands, Austria, Greece, and Germany.  Moreover, the deviations from trend real per capita GDP (which would have risen over the several years of war) were even greater.  In addition, the sharp expansions of government purchases during the wars suggest that consumption fell proportionately by even more than GDP (although investment likely declined sharply and net imports may have increased in some cases).

Part B of Table 1 shows declines of 15% or more in real per capita GDP for additional countries—eight in Latin America and seven in Asia—that have nearly continuous data from Maddison (2003) back at least before World War I.  These data show ten sharp economic contractions in the post-World War II period (eight in Latin America), eight during the Great Depression, eight in World War II (six in Asia), and five around World War I.
  Of the 15 countries considered, 3 lack 15% events (see the notes to the table).

Figure 1 summarizes the information from Table 1 in terms of the number of contractions of per capita GDP by at least 15% that occurred during the 20th century.
  The histogram shows numbers of events for contraction intervals ranging from 15-19% to 60-64%.  There are 58 events for the 35 countries over 100 years.  Thus, overall, the probability of entering into a 15% or greater event was 1.7% per year.  (Recall, however, that “events” applied to varying numbers of years.)  For events of 30% or more contraction, the number was 23, or 0.7% per year, whereas for 45% or more contraction, the number was 10, or 0.3% per year.

For subsequent purposes, the most important feature of rare disasters is the potential for really large contractions, such as 50% of per capita GDP.  Based loosely on the numbers in Figure 1, I use a benchmark specification for probability of v‑type disaster, p, of 1% per year corresponding to a drop in per capita GDP by 50% (which translates into a b parameter of 0.69).  The frequency of these large disasters in the figure is not this high, although adjustments for trend growth raise the magnitude of all the disasters.
  Moreover, the historical experience includes a range of sharp drops in per capita GDP, not just those that exceeded 50% in magnitude.

The kinds of episodes shown in Table 1 are v-type events if we can maintain the assumption of non-default on the risk-free asset.  In fact, outright default does not typify the group of 20 advanced economies considered in part A of the table—which notably omits Czarist Russia and, from an earlier time, the American Confederacy.  For example, France did not default after World War II on debts incurred by the Third Republic or the Vichy government.  Similarly, Belgium and the Netherlands did not explicitly default after World War II on government bills and bonds but did have forced conversions into illiquid instruments.  The most common mechanism for partial default was depreciation of the real value of nominal debt through (unanticipated?) increases in price levels.  These inflations occurred during and shortly after some of the wars.
  To the extent that wartime tended to feature default on all forms of assets, we can treat wars as partly w‑type events.  The important assumption in the model is that, conditioned on crises, default is not more likely for the “risk-free” asset than for the risky one.

To get a sense of the validity of this assumption, Table 2 reports realized real rates of return on stocks and government bills during the economic downturns enumerated in Table 1.  Not many observations are available, partly because of the limited number of crises and partly because of missing financial data during the majority of these crises.

The Great Depression fits the model for the four countries from Table 1, part A with data on asset returns.  I consider returns up to the full year before the rebound in the economy:  Australia for 1929-30, France for 1929-31, Germany for 1929‑31, and the United States for 1929‑32.  The averages of the arithmetic annual real rates of return for the four countries were ‑18.0% for stocks and 8.0% for bills.  

Similar results apply to the post-World War II depressions shown in part B of Table 1 for countries with data on asset returns.  For Argentina in 1998-2001, the average real stock return was -3.6%, compared to 9.0% for bills.
  For Indonesia in 1997‑98, the respective returns were -44.5% and 9.6%.  For the Philippines in 1982-84, the numbers were ‑24.3% and -5.0%.  Given the scarcity of financial data during depressions, it seemed worthwhile to add the recent observation for Thailand (for which GDP data before 1950 are available only in scattered years).  The contraction of real per capita GDP in 1996-98 was 14%, just short of the criterion used in Table 1.  The average rates of return in 1996-97 were -48.9% for stocks and 6.0% for bills—similar to those for Indonesia in 1997-98.

For World War I, data on asset returns are available for only two of the countries with economic contractions in part A of Table 1.  For 1914-18, the average real rate of return on stocks in France was ‑5.7%, while that on bills was ‑9.3%.  For Germany, the values were -26.4% and ‑15.6%.
  Thus, stocks and bills both performed badly in these countries that suffered economically from World War I.  For bills, the reason was high inflation.  There is no clear pattern of relative performance—stocks did better in France and worse in Germany.


For World War II, data on asset returns are available for three countries with economic contractions:  France, Italy, and Japan.  The data are problematic for France, partly because the stock market was closed during parts of 1940 and 1941.  The Italian data for the early part of the war also seem unreliable.  I report information for 1943-45 in each case.  All real rates of return were sharply negative—for bills, the reason again was high inflation.  Stocks did worse than bills in France, better than bills in Italy, and about the same in Japan.


The overall conclusion is that government bills were clearly superior to stocks during purely economic crises, represented by the Great Depression and post-World War II depressions in Latin America and Asia.  However, bills did not perform obviously better than stocks during economic contractions related to major wars, notably World Wars I and II.


C.  Solution of the model

Given the probability distributions for ut+1, vt+1, and wt+1, Eqs. (6) and (7) determine the price of the risky asset, the expected risky return, and the risk-free return.  The results are as follows:
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The gross returns, 
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 in Eqs. (10) and (11), have been computed under the condition that the world has not ended (within sample!).  Thus, if q refers to default probability, rather than literal end of the world, the formulas are conditioned on default not having occurred within sample.  Under this condition, the “risk-free” asset actually is risk-free.  Expected returns for full samples, which include representative numbers of defaults, are the multiples e-q of the expressions in Eqs. (10) and (11).  (The rate 
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 is not risk-free in this context.)  Thus, these full expected returns end up independent of q.


If the arbitrary period length becomes small, so that p << 1, the expected rate of return on the risky asset can be calculated from Eq. (10) as

(12)
   log[Et(
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This expression applies to a sample that includes the representative number of v-type disasters (but not the end of the world).  For a sample conditioned on no v-type disasters, the expected risky rate of return approaches

  (13)
    log[Et(
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As the period length becomes small, the risk-free rate of return can be calculated from Eq. (11) as

(14)

log(
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The ρ + θγ part of the rates of return in Eqs. (12)-(14) corresponds to the usual formula for the steady-state real interest rate in the deterministic neoclassical growth model (σ = q = p = 0).  The equity premium—the spread between the risky and risk-free rates, log[Et(
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This formula applies to a sample that includes the representative number of v-type disasters.  Conditioned on no v-type disasters, the spread can be calculated from Eqs. (13) and (14) as


(16)
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Note that the yield spreads in Eqs. (15) and (16) are increasing in p and independent of q.  These effects will be explored later.

Because the shocks ut, vt, and wt are i.i.d., the results take the same form for all future periods.  The price of a risky asset that pays At+2 in period t+2 looks like Eq. (9), except that the expression in the first brackets is multiplied by 2 and the expression in the second brackets enters as a square.  The expected gross return per period between periods t and t+2, Et(
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), on this risky claim is again given by Eq. (10).  Similarly, for an asset that pays off risk-free in period t+2, the gross return per period between periods t and t+2 is given by Eq. (11).

If an equity share is defined to pay the full stream of “dividends,” At+1, At+2, …, the price of this asset equals the sum of the prices of the claims on each period’s output.  If we define

(17)
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which is the expression that appears in Eq. (9), the result for the share price is






Pt = At∙Φ/(1-Φ).

Therefore, the “price-earnings ratio,” Pt/At, is


(18)



Pt/At = Φ/(1-Φ).

As the period length becomes small, the P-E ratio approaches
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Pt/At  ≈ 
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We can also compute the expected growth rate of the economy.  Using Eq. (8), conditioning on wt+1 = 0 (no end of the world), and allowing the period length to become small, the expected growth rate approaches

(20)

log[(EtAt+1)/At] ≈ γ + (1/2)σ2 – p∙(1 – e-b).

Thus, this expected growth rate is decreasing in p.  This result applies if the sample includes the representative number of v-type disasters.  For a sample conditioned on no v-type disasters, the expected growth rate is


(21)

log[(EtAt+1)/At]
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which is independent of p.
II.  Replication of Mehra-Prescott


I show here that the results that ignore disasters, p = q = 0, accord with Mehra and  Prescott (1985).  The remaining parameters to specify are γ, σ, ρ, and θ.  The parameters γ and ρ have no effect on the yield spread, given in Eqs. (15) and (16).

The values of γ and σ determine the mean and standard deviation of the growth rate of output and consumption in no-disaster periods.  For annual U.S. data from 1890 to 2004,
 the growth rate of consumption per person has a mean of 0.020 and a standard deviation of 0.035.
  For real per capita GDP, the values are 0.021 and 0.045.  For a more recent period, the means are similar but the standard deviations are much smaller.  For example, from 1954 to 2004, the growth rate of per capita consumption has a mean of 0.024 and a standard deviation of 0.017, whereas the values for real per capita GDP are 0.021 and 0.022.  One possible problem (observed by Romer [1987, 1988]) is that the higher volatility in the period before World War I may reflect poorer data.


Table 3 shows statistics for the growth rate of real per capita GDP for the G7 countries for 1890-2004 and 1954-2004.  Standard deviations for the post-1954 period are similar to that for the United States, ranging between 0.02 and 0.03.  Values for the longer samples are much higher, reflecting the events shown in Table 1 and probably also the lower quality of the earlier data.  Mean growth rates of per capita GDP in the post-1954 period are 0.02‑0.03, except for Japan, which has 0.04.  For the period since 1890, the mean growth rates range from 0.015 for the United Kingdom to 0.027 for Japan.

Table 3 also shows the sample kurtosis for growth rates in each country and period.  For the 1954‑2004 samples, the numbers are close to three, the value for a normal density.  Standard tests, such as the Anderson-Darling test, accept the hypothesis of normality with p‑values above 0.05.  Hence, for these tranquil periods—in which crises of the sort shown in Table 1 did not occur—the growth-rate data seem reasonably described as normal.  The situation is very different for the 1890-2004 samples, where the sample kurtosis always exceeds five and reaches astronomical levels for Germany and Japan.
  These high values—indications of fat tails—reflect the kinds of disasters shown in Table 1, especially during World War II.  Standard tests, including Anderson-Darling, reject normality at low p-values.  That is, normality does not accord with samples such as 1890‑2004 that include occurrences of disasters.
  The reasoning in this paper is that the potential for these disasters also affects behavior in tranquil periods, such as 1954-2004, where disasters happened not to materialize.

Based on the information in Table 3 for the post-1954 periods, I calibrate the baseline specification with γ = 0.025 and σ = 0.02.  The spread between risky and risk-free yields does not depend on γ and is not very sensitive to σ in the plausible range (see Eqs. [15] and [16]).


For the rate of time preference, ρ, I use 0.02 in the baseline specification.  The spread between risky and risk-free yields does not depend on ρ (see Eqs. [15] and [16]).


The elasticity of marginal utility or coefficient of relative risk aversion, θ, matters more for the results.  From the perspective of risk aversion, the usual view in the finance literature is that θ should lie in a range of something like 2 to 4.  From the standpoint of intertemporal substitution of consumption, Barro and Sala-i-Martin (2004, Ch. 2) argue that a similar range for θ is needed to accord with country-level observations on levels and transitional behavior of saving rates.
  I use θ = 3 in the initial specification.


Table 4 has results for the baseline specification and some perturbations.  The risky rate of return comes from Eqs. (12) and (13) with p = q = 0.  The risk-free rate comes from Eq. (14) with p = q = 0.  The expected growth rate of consumption comes from Eq. (20) with p = 0.  The price-earnings ratio comes from Eq. (19) with p = q = 0.  The results involving leverage are discussed later.

The model has no problem in matching average real rates of return on stock markets for G7 countries.  Table 5 shows average real rates of return, based on arithmetic annual rates of return.  Part 1 has long samples back as far as 1880 for six countries (excluding Germany, which has missing data
), and part 2 is for the seven countries from 1954 to 2004.  For the long samples, the average real rate of return on stocks for the six countries is 0.074, whereas, from 1954 to 2004, the average for the seven countries is 0.087.  In comparison, the expected rate of return on the risky asset in the benchmark model (column 1 of Table 4) is 0.094.

The main difficulty—the central point of Mehra and Prescott—is that the risk-free rate of return in the model is far too high—0.093 in the baseline specification—so that the spread between the risky and risk-free rate is way too low, 0.001.  For the long samples in Table 5, the average real rate of return on government bills or analogous paper was 0.000.  From 1954 to 2004, the average was 0.017.  The average spread was 0.073 for the long samples and 0.070 for the post-1954 data.  Thus, empirically, the spread between the average real stock-market return and the risk-free (or, more accurately, less risky) real rate was around 0.07, compared to 0.001 in the model.  This spectacular failure has been often remarked on in the asset-pricing literature; for discussions, see Campbell (2000), Mehra and Prescott (2003), and Weitzman (2005).

The remainder of Table 4 shows that the problem with the high risk-free rate remains intact for reasonable variations in the underlying parameters.  The source of the problem is clear from Eq. (15).  When p = 0, the equity premium is






spread = θσ2.
For reasonable values of θ and σ, this spread is a small number.  For example, for the baseline setting of θ = 3 and σ = 0.02, the spread is 0.001.  To get a spread of 0.07 when θ = 3, σ would have to be 0.15, way above observed standard deviations for annual growth rates of real per capita GDP and consumption.  Alternatively, if σ = 0.02, θ would have to be 175 to get a spread of 0.07.  However, a large θ does not accord with observed levels of the risk-free rate.  If θσ2 = 0.07, to get a risk-free rate between 0 and 0.01 in Eq. (14), θ has to be close to 1.  Then, to get the right equity premium, σ has to be around 0.26, even further above observed values.
III.  Labor Income, Taxes, Leverage

Mehra and Prescott (1985) considered how their results change when equity shares represent a claim on only a part of real GDP.  Three ways to modify the model in this respect are to allow for labor income and taxes and to have a financial structure that includes fixed claims (bonds) as well as equities.  I extend the model to incorporate these features, but the bottom-line is that, at least within a representative-agent framework, these extensions do not seem to resolve the problems.

A.  Labor income

Let real GDP be Yt.   I continue to assume that there is no investment or government consumption, so that the representative agent’s consumption is Ct = Yt, as before.
  To allow for labor income, suppose that output of fruit is given by the production function,


(22)



Yt = At∙F(K, Lt),

where At is determined as before, K is the fixed number of trees, and Lt is labor input.  Lt may have deterministic or stochastic variation over time.  Total output, Yt, is divided as income to tree owners (holders of equity) and income to labor:


(23)


Yt = capital income + labor income.

We can write


(24)


capital income = αtYt,

where αt is the share of capital income in total income.  If the economy is competitive but the production function is not Cobb Douglas, changes in Lt would affect αt.  However, if the probability distribution of future capital-income shares, αt+1, …, is independent of the distribution of future productivity shocks, At+1, …, the basic results from before go through.  For example, the formula for the price of a one-period equity claim, Pt1, is the right-hand side of Eq. (9) multiplied by Etαtt1.  The expected gross risky return, Et(
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, is again given by Eq. (11).  The results on risky rates of return would change materially only if the capital-income share, αt, co-varied substantially with the business cycle, that is, with At.  Similar results would apply if the model were extended to include other forms of capital that contribute to “output” but are not owned through corporate equity—for example, residential housing, consumer durables, privately held businesses, and so on.

B.  Taxes


Return to the initial setting without labor income but suppose that the government taxes fruit production at the rate τt ≥ 0 to collect real revenue in the amount


(25)



Tt = τtAt.

I assume that the government returns this revenue to households as lump-sum transfers (or as government consumption services that are viewed by households as equivalent to private consumer expenditure).  Therefore, Ct = At still applies.


The only difference in the model is that equity holders receive the after-tax part of fruit production, (1-τt)∙At, rather than At.  If τt+1 is distributed independently of At+1, the
basic results from before continue to apply.  For example, the formula for the price of a one-period equity claim, Pt1, is the right-hand side of Eq. (9) multiplied by (1-Etτtt1).  The expected gross risky return, Et(
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), is still given by Eq. (10)—this rate of return should be interpreted here in an after-tax sense.  The gross risk-free return, 
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, is again given by Eq. (11).  The results on risky rates of return would change materially only if the tax rate, τt, co-varied substantially with the business cycle, represented by At.


C.  Leverage and debt-equity ratios

Suppose that tree owners have a capital structure that involves partly equity and partly fixed claims—one-period, “risk-free” bonds.  I assume that owners issue or retire enough stock and debt at the start of period t so that the amount of fixed obligations, Bt+1, due in period t+1 is given by

(26)
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That is, the ratio of debt obligation to the expected fruit output in period t+1, 
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, is given by the leverage coefficient, λ ≥ 0.
  If period t+1’s output, At+1, falls short of the fixed obligation, Bt+1, the payout to bondholders would be limited to At+1.  However, the chance of this “bankruptcy” is significant only if the debt exceeds the fruit available in the event of a v‑type crisis.  (Bondholders also do not get paid if the world ends of if there is a general default.)  The condition that rules out a problem with v-type events is λ < e-b, which I assume holds.


Although leverage does not affect the overall market value of fruit claims (in accordance with Modigliani-Miller), the coefficient λ affects the market value and expected risky return on the equity part.  The following formulas can be derived as generalizations of Eqs. (9) and (10):

   (27)
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Using Eq. (28) and allowing the period length to become small, the formula for the expected risky rate of return is given as an extension of Eq. (12) by

    (29)
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Note on the right-hand side that e-b  > λ holds.  

The risk-free rate of return, log(
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), is still given by Eq. (14).  The market value of debt is Bt+1/
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.  If the length of the period becomes small, the debt-equity ratio, (Bt+1/
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(30)


debt-equity ratio ≈ λ/(1-λ).

Table 4 shows, consistent with Mehra and Prescott (1985), that usual leverage coefficients, λ, do not affect the general nature of the conclusions about the equity premium.  For example, a coefficient λ = 0.2 corresponds to a debt-equity ratio of 0.25 (column 1).  The expected risky rate of return, log[Et(
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)], rises negligibly, from 0.094 to 0.095.  A higher coefficient, λ = 0.4, corresponds to a debt-equity ratio of 0.67 and raises log[Et(
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)] only a little more, still 0.095.  According to the Federal Reserve’s Flow-of-Funds Accounts, recent debt-equity ratios for the U.S. non-financial corporate sector are around 0.5.  Therefore, for realistic values of λ, the basic conclusions do not change.
IV.  Allowing for a Chance of Disaster


Table 6 brings in the probability, p, of a v-type disaster, analogous to Rietz (1988).  I continue to assume that the probability of a w-type disaster, q, is zero.  (However, q enters the asset-pricing formulas additively with ρ, and Eqs. [15] and [16] show that the spread between the risky and risk-free rates does not depend on q.)  If the elasticity of marginal utility, θ, is well above one—for example, if θ ≈ 3—what matters most for the results is the probability of a major collapse.  That is, a 1% probability, p, of a 50% contraction in real per capita GDP is much more consequential than a 2% probability of a 25% event.  As noted before, based loosely on the tabulation of events in Table 1 and Figure 1, I assume that a 50% decline in per capita GDP is realistic, albeit rare.  I begin with a baseline specification of p = 0.01 per year for this event.

The specification for log(At) in Eq. (8) implies, since ut and vt are assumed to be independent, that the variance of the (geometric) growth rate, log(At+1/At), is given by


(31)


VAR[log(At+1/At)] ≈ σ2 + pe-2b.

If we continue to assume σ = 0.02 and use p = 0.01 and b = log(2), we get that the standard deviation of the growth rate is 0.054.  This value accords with the average of 0.061 for the standard deviation of the growth rates of real per capita GDP for the G7 countries from 1890 to 2004 (Table 3).  These long samples can be viewed as containing the representative number of v-type disasters.  In contrast, the tranquil period from 1954 to 2004, also shown in Table 3, has an average standard deviation for the growth rate of real per capita GDP in the G7 countries of only 0.023.  This value can be thought of as the standard deviation when the samples are conditioned on observing no disasters.  Hence, this standard deviation corresponds to σ, which is still set at 0.02.

The baseline specification in Table 6, column 1 shows that an allowance for a small probability of v-type disaster, p = 0.01, generates empirically reasonable spreads between the risky and risk-free rates.  One consequence of raising p from 0 to 0.01 is that the risk-free rate falls dramatically—from 0.093 to 0.023.  The inverse relation between p and log(
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Less intuitively, a rise in p also lowers the expected rate of return on the risky asset, log[Et(
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)], given in Eq. (12) for a sample that includes the representative number of v-type disasters.  If θ > 1, this change reflects partly an increase in the price-earnings ratio in Eq. (19)—that is, the P-E ratio of 25.5 in Table 6, column 1 exceeds the value 14.5 in Table 4, column 1.  Intuitively, a rise in p motivates a shift toward the risk-free asset and away from the risky one—this force would lower the equity price.  However, households are also motivated to hold more assets overall because of greater uncertainty about the future.  If θ > 1, this second force dominates, leading to a net increase in the equity price.  Even if θ < 1, the negative effect of p on log[Et(
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)] applies.  The reason is that a rise in p also lowers the expected growth rate of dividends, (EtAt+1)/At, and this force makes the overall effect negative as long as θ > 0.   In any event, the risk-free rate falls by more than the risky rate, so that the spread increases.  This property can be seen in Eq. (15).

With no leverage, the spread between the risky and risk-free rates in the baseline specification in Table 6, column 1 is 0.036.  With a leverage coefficient, λ, of 0.2, which corresponds to a debt-equity ratio of 0.25, the spread becomes 0.045.  These values are in the ballpark of the range of empirical observations on spreads shown in Table 5.


The results are sensitive to the value of the disaster probability, p.  In fact, since the term θσ2 is small, the spread is nearly proportional to p in Eq. (15).  (With the baseline parameters, the coefficient on p in this formula is 3.5.)  For example, if p = 0.015, the risk-free rate in Table 6, column 2 becomes negative, -0.012, and the no-leverage spread rises to 0.054.  In contrast, if p = 0.005 in column 3, the no-leverage spread is only 0.019.


The results depend a lot on how bad a disaster is, as gauged by the parameter b.  This sensitivity can be seen in the formula for the spread in Eq. (15).  For example, with p = 0.01, if a disaster reduces output to 40% of its starting value (perhaps the worst of World War II), the risk-free rate in column 4 becomes -0.053 and the spread 0.089.  In contrast, if a disaster means only a decline to 75% of the starting value (like the Great Depression in many countries), the risk-free rate in column 5 is 0.079 and the spread is only 0.005.


The results are also sensitive to the size of the elasticity of marginal utility, θ.  Again, the effects on the spread can be seen in Eq. (15).  If θ = 4, as in column 6 (when p = 0.01 and a disaster event is 50%), the risk-free rate is ‑0.033 and the spread is 0.077.  In contrast, if θ = 2, the risk-free rate in column 7 is 0.039 and the spread is only 0.016.  


Campbell (2000) and Weitzman (2005) observe that Rietz’s low-probability disasters create a “peso problem” when disasters are not observed within sample.  Indeed, data availability tends to select no-disaster samples, as observed by Jorion and Goetzmann (1999).  However, this consideration turns out not to be quantitatively so important in the model.  In the baseline specification in Table 6, column 1, the expected risky rate of 0.059 (calculated from Eq. [15]) can be compared with the rate of 0.064 that applies to a sample conditioned on no disasters (computed from Eq. [16]).  The spread from the risk-free rate is 0.036 in a full sample versus 0.041 in a selected no-disaster sample.  Similarly, the average growth rate of consumption in a no-disaster sample can be computed from Eq. (21) as 0.025.  This value is only moderately above that, 0.020, calculated from Eq. (20) for a full sample.  In other words, a low probability of a v-type disaster, p = 0.01, has a major effect on stock prices, risk-free rates, and the spread between risky and risk-free yields even though the disasters that occur have only moderate effects on long-run averages of consumption growth rates and rates of return on equity.
V.  Disaster Probability and the Risk-Free Rate

The results in Table 6 apply when p and q (and the other model parameters) are fixed permanently at designated values; for example, p = 0.01 and q = 0 in column 1.  However, the results also show the effects from permanent changes in any of the parameters, such as the disaster probabilities, p and q.  In this and the following sections, I use the model to assess the effects from changes in p and q.  However, in a full analysis, stochastic variations in p and q—possibly persisting movements around stationary means—would be part of the model.


A fall in p raises the risk-free rate of return, log(
[image: image50.wmf]f

t

R

1

), in Eq. (14).  The results in Table 6, columns 2 and 3, suggest a substantial impact:  the risk-free rate rises from ‑0.012 to 0.058 when p falls (permanently) from 0.015 to 0.005.  Mehra and Prescott (1988, p. 135) criticized the analogous prediction from Rietz’s (1988) analysis:

“Perhaps the implication of the Rietz theory that the real interest rate and the probability of the extreme event move inversely would be useful in rationalizing movements in the real interest rate during the last 100 years.  For example, the perceived probability of a recurrence of a depression was probably high just after World War II and then declined.  If real interest rates rose significantly as the war years receded, that would support the Rietz hypothesis.  But they did not. … Similarly, if the low-probability event precipitating the large decline in consumption were a nuclear war, the perceived probability of such an event surely has varied in the last 100 years.  It must have been low before 1945, the first and only year the atom bomb was used.  And it must have been higher before the Cuban Missile Crisis than after it.  If real interest rates moved as predicted, that would support Rietz’s disaster scenario.  But again, they did not.”


The point about the probability of depression makes sense, although I am skeptical that this probability varied over time in the way suggested by Mehra and Prescott.  The observations about the probability of nuclear war confuse, using my terminology, the v- and w-type disasters.  In Rietz’s and my analysis, the probability, p, of a v-type disaster refers to something like a decline in real per capita GDP and consumption by 50%.  The analysis is different for a w-type event—such as the end of the world—if that is what a nuclear conflagration entails.  Equations (12)-(14) show that an increase in q raises the expected rate of return on equity and the risk-free rate by the same amount and has no effect on the spreads.  (Recall that these rates of return are conditioned on the w-disaster not materializing during the sample.)

The intuition for why the effect from higher q differs from that from higher p involves incentives to hold risky versus risk-free assets and incentives to save.  If p increases, the expected marginal utility of future consumption rises because marginal utility is particularly high after a 50% disaster.  This change motivates people to hold more of the risk-free asset, partly because they want to shift from the risky to the risk-free asset and partly because they want to save more.  Thus, in equilibrium, the risk-free rate falls.  The risky rate also declines, but the spread between the risky and risk-free rate increases.

The end of the world is different because the marginal utility of consumption is not high in this state.  Moreover, the risky and risk-free assets are equally good in this situation—that is, both are useless.  For this reason, a rise in q does not motivate a shift from risky to risk-free assets.  Furthermore, the incentive to hold all assets—that is, to save—declines.
  As is clear from Eqs. (12)-(14), an increase in q has the same effect as a rise in the pure rate of time preference, ρ.  In equilibrium, the risky and risk‑free rates increase by equal amounts, and the spread does not change.  For the risk-free rate, the important conclusion is that a rise in q—perhaps identified with the probability of nuclear war—raises the rate.  As already mentioned, a probability of default on all assets—a general loss of individual property rights—can also be represented by a higher q.


Empirically, to assess the connection between disaster probability and the risk-free rate, we have to ascertain whether an event reflects more the potential v-type crisis (in which the risk-free asset does relatively well) or the w-type crisis (for which all assets are unattractive).  Changing probabilities of a depression would likely isolate the effect of changing p, but the analysis depends on identifying the variations in depression probability that occurred over time or across countries.  From a U.S. perspective, the onset of the Great Depression in the early 1930s likely raised p (for the future).  The recovery from 1934 to 1937 probably reduced p, but the recurrence of sharp economic contraction in 1937-38 likely increased p again.  Less clear is whether the end of World War II had an effect on future probability of depression.

Changing probabilities of nuclear war are unlikely to work—they would involve a mixture of v- and w-type effects, and the net impact on the risk-free rate is ambiguous.
  From the perspective of the events shown in Table 1, a natural variable to consider is changing probability of the types of wars seen in history—notably World Wars I and II, which were massive but not the end of the world (for most people).  My working assumption is that the occurrence of this type of major war raised the probabilities p and q, that is, increased the perceived likelihood of future disasters.  The q effect likely refers more to the prospect of general default than to the end of the world.  

An increase in p lowers the risk-free rate, whereas an increase in q raises the rate—see Eq. (14) and n. 29.  However, the effect from higher p is likely to dominate.  For the baseline parameters considered before (Table 6, column 1), the coefficient on p in the formula for log(
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) in Eq. (14) is seven, whereas that for q is one.  Therefore, the risk-free rate falls when disaster probabilities rise unless q increases by more than seven times as much as p.


Figure 2 shows an estimated time series since 1859 of the expected real interest rate on U.S. Treasury Bills or analogous short-term paper.
  The source of data on nominal returns is Global Financial Data, the same as in Table 5.  Before the introduction of T-Bills in 1922, the data refer to high-grade commercial paper.

To compute the expected real interest rate, I subtracted an estimate of the expected inflation rate for the CPI.  Since 1947, my measure of expected inflation is based on the Livingston Survey.  From 1859 to 1946, I measured the “expected inflation rate” as the fitted value from an auto-regression of annual CPI inflation on a single lag.
                                                                                                                                                             Additional lags lack explanatory power, although there may be a long-run tendency over this period for the price level to adjust toward a stationary target.


One striking observation from Figure 2 is that the expected real interest rate tended to be low during wars—especially the Civil War, World War I, and World War II.  The main exception is the Vietnam War.  Table 7 shows the nominal interest rate, expected inflation rate, and expected real interest rate during each war and the Great Depression.  The typical wartime pattern—applicable to the Civil War, World Wars I and II, and the first part of the Korean War—is that the nominal interest rate changed little, while actual and expected inflation rates increased.  Therefore, expected real interest rates declined, often becoming negative.  Moreover, the price controls imposed during World War II and the Korean War likely led to an understatement of inflation; therefore, the expected real interest rate probably declined even more than shown for these cases.

Figure 2 and Table 7 show that expected real interest rates fell in 2001-03 during the most recent war—a combination of the September 11th attacks and the conflicts in Afghanistan and Iraq.  For this period, we can also observe real yields on U.S. Treasury indexed bonds, first issued in 1997.  The 10‑year real rate fell from an average of 3.8% for 1/97-8/01 to 2.3% for 10/01-2/05.
  Similarly, the 5‑year real rate declined from an average of 3.2% for 12/00-8/01 to 1.7% for 10/01-2/05.  These real rate reductions on indexed bonds accord with those shown for the short-term “expected real rate” in Table 7.


The tendency for expected real interest rates to be low during U.S. wars has been a mystery, as described in Barro (1997, Ch. 12).
  Most macroeconomic models predict that a massive, temporary expansion of government purchases would raise expected real interest rates.  In previous work, I conjectured that military conscription and mandated production might explain part of the puzzle for some of the wars.  Mulligan (1997) attempted to explain the puzzle for World War II by invoking a large increase of labor supply due to patriotism.  A complementary idea is that patriotism and rationing motivated declines in consumption and increases in saving, perhaps concentrated on war bonds.  The patriotism explanation does have the virtue of explaining why the real interest rate would not be low in an unpopular war, such as Vietnam.  However, the low real interest rate in wartime seems to be too pervasive a phenomenon to be explained by these kinds of special factors.  The present model offers a more promising explanation:  expected real interest rates tend to fall in wartime because of increases in the perceived probability, p, of (future) v-type economic disasters. 

Table 7 also shows the behavior of the expected real interest rate in the United States during the Great Depression.  According to the theory, the expected real rate should have declined if the probability of v-type disaster, p, increased.  Matching this prediction to the data is difficult because of uncertainty about how to gauge expected inflation during a time of substantial deflation.

The nominal return on Treasury Bills fell from over 4% in 1929 to 2% in 1930, 1% in 1931, and less than 1% from 1932 on.  However, the inflation rate became substantially negative (-2% in 1930, -9% in 1931, -11% in 1932, ‑5% in 1933), and the constructed expected inflation rate also became negative:  -4% in 1931 and -6% in 1932 and 1933.  Therefore, the measured expected real interest rate was high during the worst of the depression, 1931-33.  However, this construction is likely to be erroneous because the persisting deflation in 1930-33 depended on a series of monetary/financial shocks, each of which was unpredictable from year to year.  Hence, rational agents likely did not anticipate much of the deflation in 1931-33, and expected real interest rates were probably much lower in those years than the values reported in the table.  From 1934 on, the inflation rate became positive.  The combination of positive expected inflation with nominal interest rates close to zero generated low expected real interest rates for 1934‑38.  This period includes the sharp recession—and possible fears of a return to depression—in 1937-38.
VI.  Disaster Probability and the Price-Earnings Ratio


Campbell and Shiller (2001, Figure 4) observe that price-earnings ratios fell in the United States during some wars, notably the early parts of World Wars I and II and the Korean War.  Figure 3 plots the P-E ratios (annual averages from Global Financial Data) from 1871 to 2004.  Some prominent features are as follows:

· The U.S. P-E ratio fell sharply from the start of World War I in Europe in 1914 until 1916, then recovered through 1919.

· The P-E ratio fell sharply from the lead-in to World War II in Europe in 1938 until 1941, then recovered through 1946.

· The P-E ratio was very low in the first year of the Korean War, 1950 (though slightly higher than that in 1949), then recovered to 1952-53, when the war concluded.

· The P-E ratio rose to a high level during the worst of the Great Depression, 1930‑34, fell during the recovery period of 1935-37, then rose again in 1938 during the 1937‑38 recession.


To see whether the model can account for these observations, recall first that, if θ > 1, as I assume, an increase in the probability, p, of a v-type disaster raises the price-earnings ratio (see Eq. [19]).  However, a rise in the probability, q, of a w-type disaster lowers the ratio.  For the baseline parameters used in Table 6, column 1, the effect of a change in p on the P-E ratio is about three times as large as the magnitude of the effect from a change in q.  In contrast, for the risk-free rate, the effect from a change in p was around seven times as large as that from a change in q.  Therefore, the ranges of possible outcomes are as shown in Table 8.

If Δq < 3Δp, the risk-free rate falls—consistent with the argument in the previous section—but the P-E ratio rises, inconsistent with the data in Figure 3 for the early parts of World Wars I and II and the Korean War.  If Δq > 7Δp, the P-E ratio falls—consistent with the data—but the risk-free rate rises, inconsistent with the wartime data in Figure 2.  However, there is an interval in the middle, 3Δp < Δq < 7Δp, that is consistent with both “facts”—low risk-free rate and low P-E ratio during some wars.  The reason this outcome is possible is that the rise in p has a major effect on the equity premium; consequently, the risk-free rate can move in one direction (downward), while the earnings-price ratio, a kind of rate of return,
 moves in the opposite direction (upward).


As an example, starting from the baseline specification in Table 6, column 1, suppose that a war raises p from 0.01 to 0.015 (as in column 2) and also raises q from 0 to 0.025.  (This rise in q is probably best interpreted as a heightened chance of default, rather than a larger probability of the end of the world.)  In this case, the risk-free rate falls from 0.023 to 0.013, the expected risky rate rises from 0.059 to 0.067, the equity premium increases from 0.036 to 0.054, and the P-E ratio falls from 25.5 to 20.3.  Thus, reasonable specifications of changes in the disaster probabilities, p and q, are consistent with the broad patterns for risk-free rates and P-E ratios in the early parts of World Wars I and II and the Korean War.

For the latter parts of these wars, the natural interpretation is that increasing allied military successes (involving partly the U.S. entrances into the world wars) lowered p and, perhaps especially, q.  These changes can explain the recoveries of the P-E ratios in the United States while the wars were still going on.


For the Great Depression, a reasonable view is that p increased but q did not change.  This configuration is consistent with rising U.S. P-E ratios during the worst of the Depression, 1930-33, falling P-E ratios (along with reductions in p) during the recovery, 1934-37, and an increase in the P-E ratio (along with an increased p) in the 1937-38 contraction.

Clearly, to have more discipline on these kinds of exercises, one would want time-series estimates of p and q.  Then these probabilities could be related in a systematic way to the behavior of expected real interest rates and P-E ratios.

VII.  Local versus Global Shocks


Equation (19) shows that an increase in the probability, p, of a v-type disaster raises the price-earnings ratio if θ > 1.  This relation applies when vt is a global shock, for example, a world war or a global depression.  It would also apply to a shock for a single country if the country were isolated from the rest of the world.  However, the results are different for a local disaster when the locality is integrated into world asset markets.  (Similarly, within a country, the probability of disaster for an individual company can be distinguished from an economy-wide shock.)

Suppose that, in addition to the world shock vt, an idiosyncratic disaster shock vti applies for each economy i.  With probability pi per unit of time, the log of output in country i declines, relative to the log of world output, by the amount bi.  Assume, further, that each economy is too small to have a significant effect on the consumption, Ct, of the world’s representative agent.  In this case, the expected risky rate of return on equity claims for trees in country i is still given by Eqs. (12) and (13).  That is, the individual country risk, represented by pi, would be diversified away.  Similarly, the (world) risk-free rate, still given by Eq. (14), does not depend on pi.

The formula for the price-earnings ratio differs from Eq. (19) by the addition of a new term to the denominator, 
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.  Hence, an increase in pi lowers the P-E ratio for equity claims in country i.  That is, whereas a higher probability, p, of global disaster raises the P-E ratio (if θ > 1), a higher probability, pi, of local disaster lowers the ratio.  At least the last result holds if the locality is fully integrated into global asset markets.
VIII.  Volatility of Stock Returns


The variance of the growth rate of At is given in Eq. (31).  In the baseline model in Table 6, the price-earnings ratio is constant.  Therefore, the standard deviation of stock returns equals the standard deviation of the growth rate of At, which equals 0.054 for the baseline parameters in column 1.
  This value would apply to a sample that contains the representative number of disasters, such as the long samples displayed in Table 5, part 1.  However, the average standard deviation of stock returns over these periods was 0.23, way above the value predicted by the model.  Similarly, the tranquil periods since 1954 displayed in Table 5, part 2 should correspond to the model conditioned on the realization of no disasters.  In this case, the model standard deviation of stock returns is 0.02 (the value for σ in the baseline specification), whereas the average standard deviation was again 0.23.  These discrepancies correspond to the well-known excess-volatility puzzle for stock returns.


A natural way to resolve this puzzle is to allow for variation in underlying parameters of the model, notably the probabilities of disaster, p and q.  The results in Table 6 show that the price-earnings ratio is highly sensitive to changes in p.  In particular, variations of p between 0.005 and 0.015 (columns 3 and 2) shift the price-earnings ratio between 18.5 and 41.3.  A change in q amounts to a change in ρ.  Hence, the effect of a rise in q from 0 to 0.01 can be seen by comparing column 8 with column 1.  The price-earnings ratio falls from 25.5 to 20.3.  As already noted, the variations in p and q shown in Table 6 relate to once-and-for-all, permanent differences in probabilities of disaster.  However, an extension of the model to allow for stochastic, persisting variations in pt and qt could likely account for the observed volatility of stock returns.  A more serious challenge is whether these variations in disaster probabilities would also generate realistic variations in “risk-free” real interest rates.

Another way to look at the results is in terms of the Sharpe ratio for equity, discussed, for example, in Campbell (2000).  The Sharpe ratio is the risk premium on equity divided by the standard deviation of the excess return on equity.  In the data for the long samples shown in Table 5, the Sharpe ratio is around 0.3.  In the model, using the baseline parameters with no leverage (Table 6, column 1) and treating the risk-free rate as actually risk-free (so that q = 0), the ratio is 0.036/0.054 = 0.7.  Thus, the risk premium is “too high” relative to the volatility of returns.  My conjecture is that the introduction of variations in pt and qt would generate a closer match between observed and theoretical Sharpe ratios.  The idea is that the standard deviation of stock returns would increase without much effect on the risk premium.  However, variability in disaster probabilities might also affect the risk premium.  A key issue will be how the variations in probabilities co-vary with consumption; for example, do increases in pt tend to occur when the economy is doing badly or in a manner roughly orthogonal to current GDP and consumption?
IX.  Capital Formation


The model neglected investment, that is, changes in the quantity of capital in the form of trees.  To put it another way, growth and fluctuations resulted from variations in the productivity of capital, At, with the quantity of capital, K, assumed fixed.  To assess the implications of capital formation, it is convenient to consider the opposite setting, that is, a fixed productivity of capital, A, with the quantity of capital, Kt, allowed to vary.

The production function takes the “AK” form:


(32)



Yt = AKt,
where Yt is the output of fruit, Kt is the quantity of trees, and A > 0 is constant.
  Output can be consumed (as fruit) or invested (as seed).  The process of creating new trees through planting seeds is assumed, unrealistically, to be rapid enough so that, as in the conventional one-sector production framework, the fruit price of trees (capital) is pegged at a price normalized to one.  In other words, I ignore costs of adjustment for investment.  This setting corresponds to having “Tobin’s q” always equal to one—unlike in the previous model, where the market price of trees was variable.

Depreciation of trees occurs at the rate δt > 0.  This rate includes a normal depreciation rate, δ > 0, plus a stochastic term, vt, that reflects the types of disasters discussed before.  With probability p > 0 in each period, a disaster occurs that wipes out the fraction b (0 < b < 1) of the existing trees.  As before, the idea is that p is small but b is large.  We can also allow, as before, for an end-of-the-world probability of q per unit of time.

Since the price of trees is fixed at one, the one-period gross return on tree equity can be calculated immediately, conditional on no end of the world, as


(33)
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 = 1 + A – δ – vt+1.

Therefore, the assumed distribution for vt+1 implies that the expected gross return on equity is

(34)


Et(
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) = 1 + A – δ – pb.


The usual asset-pricing formulas still apply.  For equity—which has to be priced in equilibrium at one—the formula is


(35)

(Ct)-θ = e–q-ρ∙Et[(Ct+1)-θ ∙(1+A-δ-vt+1)],
where I used the expression for 
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 from Eq. (33).  For the risk-free return, the result is


(36)


(Ct)-θ = e–q-ρ∙
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where 
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 is the one-period gross risk-free return.


To determine the risk-free return from Eq. (36), we have to know how output, Yt, divides up each period between consumption, Ct, and gross investment, It.  In the present model, a change in the single state variable, Kt, will generate equi-proportional responses of the optimally chosen Ct and It.  That is, It will be a constant proportion, ν, of Kt.  Using this fact in the context of Eq. (35) allows for a determination of ν.  The result, as the length of the period becomes small, is

(37)

ν ≈ δ + (1/θ)∙[A - q – ρ – δ + p∙(1-b)1-θ - p].

Since 0 < b < 1, an increase in p raises ν—the saving rate—if θ > 1.  An increase in q lowers ν.

The result for ν allows for the determination of the risk-free return, 
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, from Eq. (36).  When the period length becomes small, the formula for the gross risk-free return is


(38)
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Therefore, the spread between the expected risky return, given in Eq. (34), and the risk-free return is


(39)


Et(
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 ≈ pb∙[(1-b)-θ – 1].


The conclusions from this formula are virtually the same as in the original model.  As before, the spread is independent of q and increasing in p.  Suppose, for example, that b = 0.5, so that a disaster destroys half the trees.  Suppose, further, that θ = 3.  In this case, the coefficients on p are -0.5 for the expected risky return in Eq. (34), ‑4 for the risk-free return in Eq. (38), and -3.5 for the equity premium in Eq. (39).  Thus, a disaster probability of p = 0.01 per year generates an equity premium of 3.5 percentage points, similar to the baseline results for the previous model in Table 6.

The model also determines the growth rate of the economy, that is, the growth rate of the number of trees, Kt+1/Kt – 1, which equals the growth rate of output, Yt+1/Yt ‑ 1.  When the period length is small, the growth rate, conditional on no end of the world, is


(40)

Kt+1/Kt – 1 ≈ ν – δ – vt+1




       ≈ (1/θ)∙[A - q – ρ – δ + p∙(1-b)1-θ - p] – vt+1.
Given the probability distribution of vt+1, the expected growth rate can be determined as

(41)
Et(Kt+1/Kt – 1) ≈ (1/θ)∙(A – q - ρ – δ) + 
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The expected growth rate (conditioned on no end of the world) is decreasing in q, because a higher q lowers the saving rate, ν.  The net effect of p on the expected growth rate is ambiguous—the positive effect of p on ν (if θ > 1) is offset by the direct negative impact of p on the expected growth rate.  For the baseline parameters, θ = 3 and b = 0.5, the net effect is positive. More generally, if θ = 3, the effect is positive if b > 0.23.  If b = 0.5, the effect is positive if θ > 2.
X.  Regression Estimates of θ (the coefficient of relative risk aversion)


Return now to the original setting, so that Table 6 describes the macroeconomic data generated by the model.  What would an econometrician estimate for θ—the elasticity of marginal utility and the coefficient of relative risk aversion—from these data with standard regression techniques?  As a background, the results on macroeconomic data in Hall (1988) suggest a tremendous range for estimates, 
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, as well as a tendency to find implausibly high values, that is, surprisingly low intertemporal elasticities of substitution in consumption.


As the model stands, with fixed parameters, the only variations in the data come from realizations of the productivity shock, At.  Since the shocks are i.i.d., a number of variables are constant—the risk-free rate, the expected risky rate, the price-earnings ratio, and the expected growth rate of consumption.  Thus, it is clear immediately that regressions involving the risk-free rate could not even be calculated from data generated by the model.


The realized growth rate of consumption is determined from


(42)



Ct+1/Ct = At+1/At.

The realized return on equity comes from the formula for the equity price, Pt, determined by Eq. (18).  This realized return is a combination of dividends and price appreciation:


(43)
realized gross return on stocks = (At+1 + Pt+1)/Pt = (1/Φ)∙(At+1/At),

where Φ is given in Eq. (17).  Thus, the realizations of consumption growth rates and returns on stock are perfectly correlated.


The usual regression (aimed at retrieving an estimate of 1/θ) relates the log of Ct+1/Ct, which equals the log of At+1/At computed from Eq. (8), to the log of the gross return in Eq. (43).  In the model, this regression has an intercept of –log(Φ) and a slope of one.  Thus, the slope reveals nothing about θ.  The intercept, which turns out to be
q + ρ + γ∙(θ-1) – (1/2)∙(θ-1)2σ2 +  log[1 – p + pe(θ-1)∙b],
also does not reveal much about θ.  If σ = p = q = 0, the intercept is ρ + γ∙(θ-1).


In order to identify θ, the model needs variation in the parameters that have, thus far, been treated as fixed.  Two possibilities that illustrate the general issues are variations in the productivity growth rate, γ, and the probability of v-type disaster, p.  As already noted, a richer analysis would include stochastic variation in these parameters as part of the model.
  The present model allows for a consideration of different data sets (e.g. countries or time periods), each of which is generated from a different (but then fixed) value of each parameter.  Then I can evaluate regression estimates that come from variations in means across the data sets.  The results of this exercise are in Table 9.


Consider first variations in γ.  An increase in γ raises the average growth rate of real GDP and consumption, along with the growth rate of At in Eq. (8).  The expected risky rate, given by Eq. (12), and the risk-free rate, from Eq. (14), each rise by θγ.  Therefore, a cross-sample regression of mean rates of return (either on risky or risk-free assets) on mean growth rates of consumption yields the coefficient θ.  In accordance with this result, the first line of Table 9 shows for all cases that the regression estimate of θ for the baseline specification in Table 6, column 1 is the true value, 3.0.  


In the present setting, the variations in γ pertain to differences in long-run growth rates of productivity and real GDP.  However, in an extended model, the variations in productivity growth rates might refer to predictable differences over the business cycle.  The differences in γ might also reflect systematic variations of growth rates that arise during the transition to the steady state in the standard neoclassical growth model, where the productivity of capital declines with capital accumulation.


Now consider variations in p.  As noted before (Table 6, columns 1 and 2), a higher p goes along with lower risk-free and expected risky rates.  However, conditional on no v-type disaster, a higher p has no effect on the expected growth rate of At in Eq. (21) and, therefore, no effect on the average growth rates of real GDP and consumption.  Thus, if one considers samples conditioned on no v-type disasters, regression estimates of θ would be ∞, as shown in columns 2 and 4 of Table 9.  Put alternatively, the estimate of the intertemporal elasticity of substitution, 1/θ, would be zero.


For samples that include representative numbers of v-type disasters, an increase in p reduces the expected growth rate of At in Eq. (20).  For example, an increase in p from 0.01 to 0.015 in going in Table 6 from column 1 to column 2 lowers the expected growth rate of consumption from 0.020 to 0.018.  Since a rise in p also reduces the expected risky and risk-free rates of return, usual regression estimates would get the right sign—positive—for θ.  However, the estimated coefficients bear little relation to θ.
  Table 9 shows that, if one uses the risk-free rate in the regression, the estimate is 
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 = 13.0 (column 1), whereas, with the expected risky rate, the estimate is 
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 = 6.8 (column 3).


Table 9 shows the regression estimates that correspond to cross-sample variations in the other parameters:  b, σ, θ, and ρ.  The results are ∞ for θ and ρ because these parameters do not affect the growth rate of At and, hence, the growth rate of consumption.  Variations in σ generate the wrong sign—negative—for 
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.  These results follow because higher σ raises the average growth rate of consumption but lowers the risky and risk-free rates.


Given the findings in Table 9, it is not surprising that empirical estimates of θ from macroeconomic data, exemplified by Hall (1988), have a broad range, tend to be very high (so that 1/θ is often indistinguishable from zero), and sometimes have a negative sign.  The empirical estimates often use instrumental variables, but the instruments are typically lagged values of variables such as rates of return, GDP growth rates, and consumption growth rates.  These instruments would not necessarily isolate the underlying variation—in the productivity growth rate, γ—that would reveal the true θ.  For example, the lagged variables could pick up persisting variations in p.  To be successful, the instrumental variables would have to select out exogenous variations in productivity growth (in a long-run sense or in the contexts of business fluctuations or transitional dynamics).

XI.  Concluding Observations


The allowance for low-probability disasters, suggested by Rietz (1988), explains a lot of puzzles related to asset returns and consumption.  Moreover, this approach achieves these explanations while maintaining the tractable framework of a representative agent, time-additive and iso-elastic preferences, complete markets, and i.i.d. shocks to productivity growth.  The framework can also be extended from Lucas’s fixed-number-of-trees model to a setting with capital formation.  Perhaps just as puzzling as the high equity premium is why Rietz’s insight has not been taken more seriously by researchers in macroeconomics and finance.

A natural next step is to extend the model to incorporate stochastic, persisting variations in the disaster probabilities, pt, and qt.  Then the empirical analysis could be extended to measure pt and qt more accurately and to relate these time-varying probabilities to asset returns and consumption.  Far out-of-the-money options prices might help in the measurement of disaster probabilities.
  Other possibilities include insurance premia and contract prices in betting markets.  

Other extensions include the following.  The asset menu could be expanded to include precious commodities, which are likely to be important as hedges against disasters.  The trees in the Lucas model can also be readily identified with real estate, so that housing prices could be related to disaster probabilities.  The model’s structure could be generalized to allow for variations in the growth-rate parameter, γ.  Some of this variation could involve business-cycle movements—then the model might have implications for cyclical variations in rates of return and the equity premium.  In an international context, the distinction between local and global disasters could be applied to events such as regional financial crises.  In this setting, the model might also have implications for failures of interest-rate parity conditions.
	Table 1  Declines of 15% or More in Real Per Capita GDP in the 20th Century

	Part A:  20 OECD Countries in Maddison (2003)

	
	
	
	

	Event
	Country
	Years
	% fall in real
per capita GDP

	World War I
	Austria
	1913-15
	23

	
	Belgium
	1916-18
	30

	
	Denmark
	1914-18
	16

	
	Finland
	1914-18
	32

	
	France
	1916-18
	31

	
	Germany
	1913-15
	21

	
	Netherlands
	1916-18
	15

	
	Sweden
	1914-18
	17

	
	
	
	

	Great Depression
	Australia
	1929-31
	17

	
	Austria
	1929-33
	23

	
	Canada
	1929-33
	33

	
	France
	1929-32
	16

	
	Germany
	1929-32
	17

	
	Netherlands
	1929-34
	16

	
	New Zealand
	1929-32
	18

	
	United States
	1929-33
	31

	
	
	
	

	Spanish Civil War
	Portugal?
	1934-36
	15

	
	Spain
	1935-38
	31

	
	
	
	

	World War II
	Austria
	1944-45
	58

	
	Belgium
	1939-43
	24

	
	Denmark
	1939-41
	24

	
	France
	1939-44
	49

	
	Germany
	1944-46
	64

	
	Greece
	1939-45
	64

	
	Italy
	1940-45
	45

	
	Japan
	1943-45
	52

	
	Netherlands
	1939-45
	52

	
	
	
	

	Aftermaths of wars
	Canada
	1917-21
	30

	
	Italy
	1918-21
	25

	
	United Kingdom
	1918-21
	19

	
	United States
	1944-47
	28


	Part B:  Eight Latin American & Seven Asian Countries in Maddison (2003)

	
	
	
	

	Event
	Country
	Years
	% fall in real

per capita GDP

	World War I
	Argentina
	1912-17
	29

	
	Chile
	1912-15
	16

	
	Chile
	1917-19
	23

	
	Uruguay
	1912-15
	30

	
	Venezuela
	1913-16
	17

	
	
	
	

	Great Depression
	Argentina
	1929-32
	19

	
	Chile
	1929-32
	33

	
	Mexico
	1926-32
	31

	
	Peru
	1929-32
	29

	
	Uruguay
	1930-33
	36

	
	Venezuela
	1929-32
	24

	
	Malaysia
	1929-32
	17

	
	Sri Lanka
	1929-32
	15

	
	
	
	

	World War II
	Peru
	1941-43
	18

	
	Venezuela
	1939-42
	22

	
	Indonesia*
	1941-49
	36

	
	Malaysia**
	1942-47
	36

	
	Philippines***
	1940-46
	59

	
	South Korea
	1938-45
	59

	
	Sri Lanka
	1943-46
	21

	
	Taiwan
	1942-45
	51

	
	
	
	

	Post-WWII Depressions
	Argentina
	1979-85
	17

	
	Argentina
	1998-02
	21

	
	Chile
	1971-75
	24

	
	Chile
	1981-83
	18

	
	Peru
	1981-83
	17

	
	Peru
	1987-92
	30

	
	Uruguay
	1998-02
	20

	
	Venezuela
	1977-85
	24

	
	Indonesia
	1997-99
	15

	
	Philippines
	1982-85
	18


Notes to Table 1

Part A covers 20 OECD countries:  Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, and United States.  Those with no 15% events are Norway (‑14% in 1916-18, -13% in 1941-44) and Switzerland (‑11% in 1915-18).  Satisfactory data for Ireland are unavailable until after World War II.  Data for Greece are missing around World War I, 1914‑20.

Part B covers eight Latin American and seven Asian countries that have nearly continuous data from Maddison (2003) at least from before World War I.  The sample is Argentina, Brazil, Chile, Colombia, Mexico, Peru, Uruguay, Venezuela, India, Indonesia, Malaysia, Philippines, South Korea, Sri Lanka, and Taiwan.  Data for Argentina and Uruguay after 2001 are from Economist Intelligence Unit, Country Data.  Countries with no 15% events are Brazil (-13% in 1928-31, ‑13% in 1980‑83), Colombia (‑9% in 1913‑15), and India (-11% in 1916-20, -12% in 1943-48).  Data for Peru appear to be unreliable before the mid 1920s.

Adjustments were made by Maddison to account for changes in country borders.


*No data available for 1942-48.


**No data available for 1941-45.


***No data available for 1943-46.

	Table 2  Stock and Bill Returns during Economic Crises

	
	
	

	Event
	average real rate of

return on stocks
(% per year)
	average real rate of

return on bills
(% per year)

	World War I
	
	

	France, 1914-18
	-5.7
	-9.3

	Germany, 1914-18
	-26.4
	-15.6

	
	
	

	Great Depression
	
	

	Australia, 1929-30
	-13.1
	9.7

	France, 1929-31
	-20.5
	1.4

	Germany, 1929-31
	-22.2
	11.2

	United States, 1929-32
	-16.3
	9.7

	
	
	

	World War II
	
	

	France, 1943-45
	-29.3
	-22.1

	Italy, 1943-45
	-33.9
	-52.6

	Japan, 1943-45
	-12.9
	-13.7

	
	
	

	Post-WWII Depressions
	
	

	Argentina, 1998-01
	-3.6
	9.0

	Indonesia, 1997-98
	-44.5
	9.6

	Philippines, 1982-84
	-24.3
	-5.0

	Thailand, 1996-97*
	-48.9
	6.0


Note:  The table shows real rates of return on stocks and government bills over periods with available financial data that correspond to the economic downturns shown in Table 1.  Rates of return are computed as averages of arithmetic annual real rates of return.  Data are from Global Financial Data, except for Indonesia, where the real rate of return on bills comes from data on money-market interest rates from EIU Country Data.  Stock-return data for France and Italy prior to 1943 during World War II appear to be problematic.  Therefore, I used the periods 1943-45 for these cases, although the economic downturns began earlier.
*Thailand’s contraction of real per capita GDP by 14% for 1996-98 falls just short of the 15% criterion used in Table 1.

	Table 3  Growth Rates of Real Per Capita GDP in G7 Countries

	
	
	
	
	
	
	
	

	
	Canada
	France
	Germany
	Italy
	Japan
	U.K.
	U.S.

	
	growth rate of real per capita GDP, 1890-2004

	mean
	0.021
	0.020
	0.019
	0.022
	0.027
	0.015
	0.021

	standard deviation
	0.051
	0.069
	0.090
	0.059
	0.082
	0.030
	0.045

	kurtosis
	5.4
	5.4
	40.6
	10.4
	49.0
	5.8
	5.8

	
	growth rate of real per capita GDP, 1954-2004

	mean
	0.022
	0.026
	0.027
	0.030
	0.043
	0.021
	0.021

	standard deviation
	0.023
	0.017
	0.024
	0.022
	0.034
	0.018
	0.022

	kurtosis
	3.4
	2.5
	3.9
	2.8
	2.4
	3.1
	2.6


Note:  Except for the U.S., data are from Maddison (2003), updated through 2004 using information from Economist Intelligence Unit, Country Data.  For the U.S., the sources are noted in the text.  The GDP series for Germany has a break in 1918; hence, the growth-rate observation for 1918‑19 is missing.
	Table 4  Replication of Mehra and Prescott

	(these results assume p = q = 0)

	
	(1)
	(2)
	(3)
	(4)
	(5)
	(6)

	parameter/variable
	baseline
	low θ
	high θ
	high σ
	high ρ
	high γ

	θ
	3
	2
	4
	3
	3
	3

	σ
	0.02
	0.02
	0.02
	0.03
	0.02
	0.02

	ρ
	0.02
	0.02
	0.02
	0.02
	0.03
	0.02

	γ
	0.025
	0.025
	0.025
	0.025
	0.025
	0.030

	expected risky rate
	0.094
	0.070
	0.118
	0.094
	0.104
	0.109

	risk-free rate
	0.093
	0.069
	0.117
	0.091
	0.103
	0.108

	spread
	0.001
	0.001
	0.002
	0.003
	0.001
	0.001

	expected ΔC/C
	0.025
	0.025
	0.025
	0.025
	0.025
	0.030

	price-earnings ratio
	14.5
	22.3
	10.7
	14.7
	12.6
	12.6

	leverage coefficient
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2

	debt-equity ratio
	0.25
	0.25
	0.25
	0.25
	0.25
	0.25

	r: levered equity
	0.095
	0.070
	0.119
	0.094
	0.105
	0.110

	leverage coefficient
	0.4
	0.4
	0.4
	0.4
	0.4
	0.4

	debt-equity ratio
	0.67
	0.67
	0.67
	0.67
	0.67
	0.67

	r: levered equity
	0.095
	0.071
	0.119
	0.095
	0.105
	0.110


Note:  These results use p = q = 0.  The expected risky rate is from Eq. (12).  The risk-free rate is from Eq. (14).  The spread is the difference between these two rates.  Expected ΔC/C is the expected growth rate of consumption, given by Eq (20).  The price-earnings ratio comes from Eq. (19).  The leverage coefficient, λ, takes on the values 0.2 or 0.4.  The expected rate of return on levered equity is from Eq. (29).  The debt-equity ratio is from Eq. (30).
Table 5
Stock and Bill Returns for G7 Countries
(averages of arithmetic annual returns, standard deviations in parentheses)

	Country & time period
	real stock return
	real bill return
	spread

	1.  Long samples
	
	
	

	  Canada, 1934-2004
	0.074 (0.160)
	0.010 (0.036)
	0.063

	  France, 1896-2004
	0.070 (0.277)
	-0.018 (0.095)
	0.088

	  Italy, 1925-2004
	0.063 (0.296)
	-0.009 (0.128)
	0.072

	  Japan, 1923-2004
	0.092 (0.296)
	-0.012 (0.138)
	0.104

	  U.K., 1880-2004
	0.063 (0.183)
	0.016 (0.055)
	0.047

	  U.S., 1880-2004
	0.081 (0.189)
	0.015 (0.048)
	0.066

	  Means for 6 countries
	0.074 (0.234)
	0.000 (0.083)
	0.073

	
	
	
	

	2.  1954-2004
	
	
	

	  Canada
	0.074 (0.165)
	0.024 (0.024)
	0.050

	  France
	0.091 (0.254)
	0.019 (0.029)
	0.072

	  Germany
	0.098 (0.261)
	0.018 (0.015)
	0.080

	  Italy
	0.067 (0.283)
	0.016 (0.034)
	0.051

	  Japan
	0.095 (0.262)
	0.012 (0.037)
	0.083

	  U.K.
	0.097 (0.242)
	0.018 (0.033)
	0.079

	  U.S.
	0.089 (0.180)
	0.014 (0.021)
	0.076

	  Means for 7 countries
	0.087 (0.235)
	0.017 (0.028)
	0.070


Note:  Indexes of cumulated total nominal returns on stocks and government bills or analogous paper are from Global Financial Data.  See Taylor (2005) for a discussion.  The nominal values for December of each year are converted to real values by dividing by consumer price indexes.  Annual real returns are computed arithmetically based on December-to-December real values.  CPI data since 1970 are available online from Bureau of Labor Statistics and OECD.  Earlier data are from Bureau of Labor Statistics, U.S. Department of Commerce (1975), Mitchell (1980, 1982, 1983), and Mitchell and Deane (1962).  German data for a long sample were omitted because the German CPI has breaks corresponding to the hyperinflation in 1923-24 and the separation into East and West in 1945.  German data on dividend yields are also unavailable for 1942-52.  
	Table 6  Rates of Return when Disasters Are Possible (p > 0)

	
	(1)
	(2)
	(3)
	(4)
	(5)
	(6)
	(7)
	(8)

	parameter/variable
	baseline 

p = 0.01
	high p
	low p
	high b
	low b
	high θ
	low θ
	high ρ

	θ
	3
	3
	3
	3
	3
	4
	2
	3

	σ
	0.02
	0.02
	0.02
	0.02
	0.02
	0.02
	0.02
	0.02

	ρ
	0.02
	0.02
	0.02
	0.02
	0.02
	0.02
	0.02
	0.03

	γ
	0.025
	0.025
	0.025
	0.025
	0.025
	0.025
	0.025
	0.025

	p
	0.01
	0.015
	0.005
	0.01
	0.01
	0.01
	0.01
	0.01

	exp(-b)
	0.5
	0.5
	0.5
	0.4
	0.75
	0.5
	0.5
	0.5

	expected risky rate
	0.059
	0.042
	0.077
	0.036
	0.084
	0.043
	0.055
	0.069

	risk-free rate
	0.023
	‑0.012
	0.058
	‑0.053
	0.079
	‑0.033
	0.039
	0.033

	spread
	0.036
	0.054
	0.019
	0.089
	0.005
	0.077
	0.016
	0.036

	expected risky rate

(conditional)
	0.064
	0.049
	0.079
	0.042
	0.087
	0.048
	0.060
	0.074

	expected ΔC/C
	0.020
	0.018
	0.023
	0.019
	0.023
	0.020
	0.020
	0.020

	expected ΔC/C 
(conditional)
	0.025
	0.025
	0.025
	0.025
	0.025
	0.025
	0.025
	0.025

	price-earnings ratio
	25.5
	41.3
	18.5
	59.9
	16.3
	43.1
	28.7
	20.3

	leverage coefficient
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2


	debt-equity ratio
	0.25
	0.25
	0.25
	0.25
	0.25
	0.25
	0.25
	0.25

	r: levered equity
	0.068
	0.055
	0.082
	0.058
	0.085
	0.063
	0.059
	0.078

	leverage coefficient
	0.4
	0.4
	0.4
	0.4
	0.4
	0.4
	0.4
	0.4

	debt-equity ratio
	0.67
	0.67
	0.67
	0.67
	0.67
	0.67
	0.67
	0.67

	r: levered equity
	0.084
	0.078
	0.089
	0.095
	0.087
	0.094
	0.066
	0.094


Note:  These results assume p > 0 and q = 0.  The expected risky rate is from Eq. (12).  The risk-free rate is from Eq. (14).  The spread is the difference between these two rates.  The expected risky rate (conditional) is from Eq. (13).  Expected ΔC/C is the expected growth rate of consumption, given by Eq. (20).  Expected ΔC/C (conditional) is the expected growth rate of consumption conditioned on no disasters from Eq. (21).  The price-earnings ratio comes from Eq (19).  The leverage coefficient, λ, takes on the values 0.2 or 0.4.  The expected rate of return on levered equity is from Eq. (29).  The debt-equity ratio is from Eq. (30).
	Table 7  Interest and Inflation Rates during Wars
and the Great Depression in the U.S.

	
	
	
	

	Year
	nominal

return
	expected

inflation rate
	expected real

return

	Civil War
	
	
	

	1860
	0.070
	0.006
	0.063

	1861 (start of war)
	0.066
	0.026
	0.039

	1862
	0.058
	0.063
	-0.005

	1863
	0.051
	0.082
	-0.031

	1864
	0.062
	0.128
	-0.066

	1865
	0.079
	0.050
	0.029

	Spanish-American War
	
	
	

	1897
	0.018
	0.015
	0.004

	1898 (year of war)
	0.021
	0.006
	0.015

	World War I
	
	
	

	1914
	0.047
	0.021
	0.026

	1915
	0.033
	0.011
	0.022

	1916
	0.033
	0.026
	0.007

	1917 (U.S. entrance)
	0.048
	0.075
	-0.028

	1918
	0.059
	0.116
	-0.057

	Great Depression
	
	
	

	1929
	0.045
	0.000
	0.044

	1930 (start of depression)
	0.023
	0.006
	0.016

	1931
	0.012
	-0.038
	0.050

	1932
	0.009
	-0.059
	0.068

	1933 (worst of depression)
	0.005
	-0.057
	0.062

	1934
	0.003
	0.022
	-0.020

	1935
	0.002
	0.025
	-0.023

	1936
	0.002
	0.015
	-0.014

	1937 (onset of sharp recession)
	0.003
	0.018
	-0.016

	1938 
	0.001
	0.012
	-0.012

	World War II
	
	
	

	1939
	0.000
	-0.005
	0.006

	1940
	0.000
	0.005
	-0.005

	1941 (U.S. entrance)
	0.001
	0.014
	-0.012

	1942
	0.003
	0.072
	-0.068

	1943
	0.004
	0.053
	-0.049

	1944
	0.004
	0.024
	-0.021

	1945
	0.004
	0.021
	-0.017


	Table 7, continued

	
	
	
	

	Year
	nominal

return
	expected

inflation rate
	expected real

return

	Korean War
	
	
	

	1950
	0.012
	0.014
	-0.002

	1951
	0.016
	0.026
	-0.010

	1952
	0.017
	0.005
	0.012

	1953
	0.019
	-0.009
	0.028

	Vietnam War
	
	
	

	1964
	0.036
	0.011
	0.025

	1965
	0.041
	0.012
	0.029

	1966
	0.049
	0.018
	0.031

	1967
	0.044
	0.022
	0.022

	1968
	0.055
	0.029
	0.026

	1969
	0.069
	0.032
	0.037

	1970
	0.065
	0.036
	0.029

	1971
	0.044
	0.035
	0.008

	1972
	0.042
	0.033
	0.009

	Gulf War
	
	
	

	1990
	0.077
	0.039
	0.038

	1991 (year of war)
	0.054
	0.035
	0.020

	1992
	0.035
	0.034
	0.001

	Afghanistan-Iraq War
	
	
	

	2000
	0.058
	0.025
	0.033

	2001 (September 11)
	0.033
	0.025
	0.008

	2002 (start of Afghanistan war)
	0.016
	0.022
	-0.006

	2003 (start of Iraq war)
	0.010
	0.017
	-0.006

	2004
	0.014
	0.018
	-0.004


Note:  Nominal returns on U.S. Treasury Bills or commercial paper (before 1922) are calculated as in Table 5.  The expected inflation rate for the CPI is constructed as described in the notes to Figure 1.  The expected real return is the difference between the nominal return and the expected inflation rate.
	Table 8  Effects of Increases in Disaster Probabilities

on Risk-Free Rate and P-E Ratio

	
	
	

	range for increases in p and q
	effect on risk-free rate
	effect on P-E ratio

	
	
	

	Δq < 3Δp
	negative
	positive

	3Δp < Δq < 7Δp
	negative
	negative

	7Δp < Δq 
	positive
	negative


Note:  The table shows the effects on the risk-free rate and the P-E ratio from increases in the disaster probabilities, p and q.  The risk-free rate is given in Eq. (14).  The P-E ratio is determined from Eqs. (17) and (18).  The results assume the baseline parameter values given in Table 6, column 1.
	Table 9  Regression Estimates of θ

	Generated by Variations in Underlying Parameters

	
	
	
	
	

	
	(1)
	(2)
	(3)
	(4)

	variation in

parameter:
	expected

risky rate
	expected

risky rate

(conditional)
	risk-free

rate
	risk-free

rate

(conditional)

	
	
	
	
	

	γ
	3.0
	3.0
	3.0
	3.0

	p
	6.8
	∞
	13.0
	∞

	b
	16.2
	∞
	43.9
	∞

	σ
	-3.0
	-3.0
	-9.0
	-9.0

	θ
	∞
	∞
	∞
	∞

	ρ
	∞
	∞
	∞
	∞


Note:  The results correspond to the baseline specification in Table 6, column 1, where the true value of θ is 3.  Each cell shows the estimate of θ that would be found from a standard regression when the data are generated from small variations around the baseline value of the parameter shown in the first column.  In each case, the estimate of θ is the ratio of the change in an expected rate of return to the change in the expected growth rate of consumption.  Column 1 uses the expected risky rate.  Column 2 uses the expected risky rate conditioned on no disasters and also uses the growth rate of consumption conditioned on no disasters.  Column 3 uses the risk-free rate.  Column 4 uses the risk-free rate and the growth rate of consumption conditioned on no disasters.
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Figure 1

Note:  The histogram applies to the 35 countries covered over the 20th century in Table 1.  The horizontal axis has intervals for percentage declines in real per capita GDP.  The vertical axis shows the number of economic contractions in each interval.
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Figure 2

Expected Real Interest Rate on 

U.S. T-Bills/Commercial Paper, 1859-2004

Note:  Data on nominal returns on U.S. Treasury Bills (1922-2004) and Commercial Paper (1859‑1921) are from Global Financial Data.  See the notes to Table 4.  From 1947-2004, expected real returns are nominal returns less the Livingston expected inflation rate for the CPI (using six-month-ahead forecasts from June and December).  For 1859-1946, the expected real return is the nominal return less a constructed estimate of expected inflation derived from a first-order auto-regression of CPI inflation rates for 1859-1946.  The CPI data are from Bureau of Labor Statistics (January values since 1913, annual averages before 1913) and U.S. Department of Commerce (1975).  
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Figure 3

P-E Ratio for U.S. Stock Market, 1871-2004

Note:  Data on P-E ratios (annual averages) are from Global Financial Data.  The values correspond to the S& P 500 stock index and analogs computed by S&P and Cowles Commission prior to 1957.
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� The rise in the gold price and abrogation of gold clauses in bond contracts may be viewed as forms of partial default—see McCulloch (1980).


� In the present model, which lacks investment, government purchases, and net exports, GDP and consumption coincide.  More generally, it would be preferable to measure consumption rather than GDP in order to relate the data to the model.  Unfortunately, for long-term analyses, data on GDP are much more plentiful than data on consumer expenditure.


� Kehoe and Prescott (2002) extend the concept of a great depression to cases where the growth rate of real per capita GDP falls well below the historical average for an extended period.  Thus, they classify as depressions the periods of slow economic growth in New Zealand and Switzerland from the 1970s to the 1990s.  Hayashi and Prescott (2002) take a similar approach to Japan in the 1990s.  These experiences can be brought into the present framework by allowing for a small probability of a substantial cutback in the productivity growth parameter, γ.  However, the potential for this kind of change turns out not to “work,” because—with the parameter θ in the reasonable range where θ > 1—a decline in γ (applying to the whole world) turns to raise the price-earnings ratio for stocks.


� I am unsure whether the sharp fall in output in Portugal in 1935-36 reflected spillovers from the Spanish Civil War.  Per capita GDP happened also to decline in Portugal in 1934-35 (by 6%).


� For the United States, data from Bureau of Economic Analysis show that real consumer expenditure did not decline from 1944 to 1947.  The same holds for real consumer expenditure from 1918 to 1921 in the United Kingdom (see Feinstein [1972]) and Italy (see Rossi, Sorgato, and Toniolo [1993]). Long-term national-accounts data for Canada from Urquhart (1993) do not break down GDP into expenditure components.  However, my estimate from Urquhart’s data is that real consumer expenditure per person fell by about 18% from 1917 to 1921, compared to the decline by 30% in real GDP per person in Table 1.


� Data are available for a few additional countries starting in the 1920s and for many countries after World War II.  In terms of 15% or greater events, this extension adds 6 cases associated with the Great Depression (Costa Rica, Cuba, El Salvador, Guatemala, Honduras, and Nicaragua), 4 during World War II (Costa Rica, Guatemala, Burma, and China), 1 aftermath of World War II (Paraguay), and 30 post-World War II depressions (about half war related) outside of sub-Saharan Africa.  Among all of these additional cases, the largest contractions were 75% for Iraq (1987-91), 46% for Burma (1938-50), 45% for Iran (1976-81), and 44% for West Bank/Gaza (1999�2003).  There were also 25 declines of 15% or more in real per capita GDP in the 1990s for transitions of former Communist countries.  Stock-return data seem to be unavailable during any of the events mentioned in this footnote.


� The four contractions associated with aftermaths of wars in Table 1A are omitted—see n. 5.


� For example, with a trend growth rate for per capita GDP of 2% per year, a 15% contraction in the level of per capita GDP over 5 years translates into a decrease relative to trend of 24%.  A 45% contraction translates into a decline relative to trend of 50%.


� Notable are the hyperinflations in the early 1920s in Germany and Austria, likely due to Reparations payments imposed after World War I, rather than the war directly.  High inflation also occurred during and after World War I in France and during or after World War II in Austria, Belgium, Finland, France, Greece, Italy, and Japan.  In West Germany, suppressed inflation associated with World War II was effectively ratified by a 10:1 currency conversion and the lifting of price controls in 1948.


� Partial default on Argentine government bonds occurred later.


� The impact of the German hyperinflation came later, 1920-23.  For 1920-22, the average annual real rate of return on stocks was -50.7%, while that on bills was -56.2%.  Thus, surprisingly, stocks did almost as badly in real terms as bills.  The data for 1923, the peak year of the hyperinflation, are unreliable, though stocks clearly did far better in real terms than in 1922.


� This conclusion is the same for periods that correspond more closely to the years of economic downturn shown in Table 1, part A.  For France from 1916 to 1918, the real rate of return on stocks was -0.3% while that on bills was -12.7%.  For Germany from 1913 to 1915, the corresponding numbers were -16.6% and �3.5%.  


� Better performing assets in these circumstances would be precious commodities, such as gold and diamonds and maybe Swiss bank accounts and human capital.


� This result applies because, by assumption, default does not tend to occur particularly when consumption is low.


� Since Φ>0, the formula in Eq. (18) is valid if Φ <1.  This condition guarantees that expected utility is finite, as in the model of Kocherlakota (1990).  When σ = q = p = 0, the inequality Φ <1 reduces to the usual transversality condition for the deterministic neoclassical growth model, which is ρ+θγ > γ—the real interest rate exceeds the growth rate.  The condition Φ <1 in the stochastic context is analogous.  It is equivalent to the condition that log[Et(� EMBED Equation.3  ���)] exceed log(EtAt+1/At).  From Eq. (19), the condition is q + ρ + (θ-1)γ - (1/2)(θ-1)2σ2 - p∙[e(θ-1)b-1] > 0.


� National-accounts data since 1929 are from Bureau of Economic Analysis.  Earlier data are from Kendrick (1961) and Romer (1987, 1988).


� Since it makes little quantitative difference, I calculate average growth rates of consumption and real GDP in the usual geometric-average manner, rather than as arithmetic averages.


� In the model, the kurtosis can be expressed as a function of p, b, and σ.  The kurtosis equals 3 when p=0 but is very sensitive to p.  For example, with b = log(2), the kurtosis peaks at 156 when p = 0.0016, then falls to 74 when p = 0.01 and 43 when p = 0.02.


� With respect to skewness, the data are consistent with the specification that emphasizes disasters over bonanzas.  Negative skewness applies to 6 of the 7 countries for the 1890-2004 samples.  The skewness is particularly large in magnitude for Germany and Japan (-5.2 and -5.6, respectively) and is positive only for France (0.5, because of a dramatic rise in per capita GDP in 1946).  In contrast, for the 1954-2004 samples, skewness is negative for four countries and positive for three countries.


� In the present specification, the coefficient of relative risk aversion, θ, equals the reciprocal of the intertemporal elasticity of substitution for consumption.  My view is that this restriction may, in fact, be satisfactory for investigating asset pricing and economic growth.  Kocherlakota (1990) explores an asset-pricing model in which the two forces can be distinguished.


� See the notes to Table 5 for a discussion of Germany.  Clearly, the data problems that result in the exclusion of German data for the long samples are not exogenous with respect to events such as the German hyperinflation and World War II.  This exclusion biases upward the average real rates of return on bills and stocks and biases downward the standard deviations of these returns.  For a general discussion of this kind of sample selection problem in the context of stock returns, see Jorion and Goetzmann (1999).


� The model, extended now to labor income, still has a representative agent.  The setting can incorporate idiosyncratic shocks to individual labor income if there are complete markets in labor-income insurance.  Constantinides and Duffie (1996) analyze a model with individual labor-income shocks and incomplete markets.


� Thus, the model again has a representative agent.  The model can incorporate idiosyncratic shocks to individual tax rates if there are complete markets in tax insurance.


� The results also change if taxes are used to finance government purchases that do not interact with private consumption in the utility function.  A possibility would be wartime expenditure.  In this case, high τt would be associated with low Ct for given At.


� I defined λ so that the debt is related to expected fruit output conditioned on no v- or w-type crises.


� The variance of At+1/At is given, as the period length becomes small, by σ2 + p∙(1 + e-2b – 2e-b).


� Mehra and Prescott (2003, p. 920) essentially repeat this criticism.


� This argument accords with Slemrod (1986) and Russett and Slemrod (1993).


� Since the model has a representative agent, the proceeds from default have to be remitted in some way—perhaps involving the government as intermediary—back to the agent.  In effect, there is a “tree reform” in which all asset claims are randomly redistributed.  Since Ct=At still applies, general default differs from the end of the world.  Nevertheless, the implications for asset pricing are the same.  Note, however, that expected rates of return are computed conditional on the w-event—in this case, default—not occurring within sample.  For a sample that includes the representative number of defaults, expected returns would be independent of q.


� I considered using the famous “doomsday clock,” discussed by Slemrod (1986), to assess empirically the changing probability of nuclear war.  The clock is available online from the Bulletin of the Atomic Scientists.  I decided not to use these “data” because the settings are heavily influenced by an ideology that always identifies toughness with higher probability of nuclear war and disarmament with lower probability.  For example, the clock was nearly at its worst point—three minutes to midnight—in 1984 shortly after President Reagan began his successful confrontation of the “evil empire” of the Soviet Union.


� It would be preferable to look at yields on indexed bonds, but these instruments exist in the United States only since 1997.


� The inflation rate is the January-to-January value from 1913 to 1946.  Before 1913, the CPI data are something like annual averages.  The estimated lag coefficient is 0.62 (s.e. = 0.09).  The R2 for this regression is 0.35.  In this context, I measured the inflation rate as the usual geometric value, log(Pt+1/Pt).


� The indexed bonds data show that risk-free real interest rates are not close to constant.  For 10-year U.S. indexed bonds, the mean for 1/97-2/05 was 3.1%, with a standard deviation of 0.8% and a range from 1.5% to 4.3%.  For the United Kingdom from 2/83-2/05, the mean real rate on ten-year indexed bonds was also 3.1%, with a standard deviation of 0.8% and a range from 1.7% to 3.7%.


� The real rate on 10-year indexed bonds peaked at 4.2% in May 2000 then fell to 3.3% in August 2001—perhaps because of the end of the Internet boom in the stock market but obviously not because of September 11 or the Afghanistan-Iraq wars.  However, the rate then fell to 3.0% in October 2001 and, subsequently, to 1.8% in February 2003.  The lowest level was 1.5% in March 2004.


� Barro (1987) finds that interest rates were high during U.K. wars from 1701 to 1918.  However, this evidence pertains to nominal, long-term yields on consols.  Short-term interest rates are unavailable for the United Kingdom over the long history.  Realized short-term real interest rates in the United Kingdom were very low during World Wars I and II.


� For the other G7 countries, the only other long-term series on P-E ratios from Global Financial Data is for the United Kingdom, back to 1927.  During World War II, the U.K. P-E ratio fell (using December values) from 10.0 in 1938 to 8.3 in 1941, then recovered to 12.8 in 1945.  This pattern is similar to that in the United States.


� An additional effect is that the expected risky return, Et(� EMBED Equation.3  ���) in Eq. (10), involves the expected future dividend, EtAt+1, as well as the stock price.  An increase in p lowers the expected growth rate of dividends.


� Equation (31) applies to the geometric growth rate, log(At+1/At).  More precisely, the variance of At+1/At is given as the period length becomes small by σ2 + p∙(1 + e-2b – 2e-b)—see n. 26.  However, the standard deviation implied by this formula at the baseline parameters is also 0.054.


� Since the model has a constant risk-free rate, it also fails to explain the variability in real bill returns shown in Table 5.  This discrepancy arises partly because the real bill returns are not risk-free in practice.  In particular, uncertainty about inflation is substantial around major wars.  The model captures some of this uncertainty through the default probability, represented by q.


� Temporary fluctuations in A can be added to the model without affecting the main results.  However, a positive trend in A tends now to generate rising growth rates of output and capital stock.


� One way to generate movements in expected productivity growth is to allow for serial correlation in the shocks ut.


� For the risk-free rate, the coefficient is approximately � EMBED Equation.3  ���.  For the risky rate, the coefficient is approximately equal to the same value multiplied by e-b, which is 0.5 in the baseline specification.


� Xavier Gabaix made this suggestion to me.  Santa-Clara and Yan (2005) use S&P options prices to gauge the probability of jumps, which relate to the rare events that I consider.  Raj Mehra pointed out to me that options prices should relate to the disaster probability p, not q, because the options contracts would not pay off in the event of the end of the world (or generalized loss of property rights).
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