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Abstract

This paper analyzes the general equilibrium impact of satisfying time-inconsistent
("hyperbolic-discounting") individuals’ demand for commitment devices. The first
finding is that the availability of such devices decreases welfare from the perspective
of initial tastes (which are the ones that commitment purportedly favors), even though
commitment is individually desirable, ceteris paribus. The second main result of this
paper is a characterization of equilibrium (prices and portfolio holdings) when some
assets are illiquid and individuals face two opposing concerns: changing preferences
and uncertainty about future tastes. I show how the interaction between these two
forces affect the prices of liquid and illiquid assets in an economy with a fixed supply
of those assets. If taste shocks are sufficiently important, equilibrium prices display
a liquidity premium and ex-ante identical agents hold the same portfolio. Illiquid
assets decrease welfare as they hinder the agents’ ability to accommodate the shocks.
Conversely, if time-inconsistency is sufficiently important relative to the taste shocks,
prices display an illiquidity premium. The equilibrium is asymmetric, with ex-ante
identical agents sorting themselves between fully committing to a future consumption
profile or not committing at all. Even though illiquid assets trade at a premium,
consumers are made worse off by their availability. I establish conditions under which
the equilibrium must take either of those two forms.
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1 Introduction

The present study proposes to analyze the equilibrium welfare properties of commitment
devices when individuals face changing preferences. Decision makers whose tastes change
over time will demand commitment devices restricting future choices. Making such devices
available will affect the economy’s fundamentals. However, the following question remains
unanswered: What are the resulting general equilibrium welfare effects?1

I address this issue by studying an economy in which commitment devices are available
to "hyperbolic-discounting" agents. In addition, I characterize equilibrium when some
assets are illiquid and individuals face two opposing concerns: changing preferences and
uncertainty about future tastes.

A hyperbolic discounting individual will implement an excessively impatient future
consumption profile. If part of her wealth were illiquid, future overconsumption would be
limited by the amount of liquid resources available. This implies that illiquid assets allow
pre-committing to higher future savings, avoiding the anticipated bias. Ceteris paribus,
time-inconsistent decision makers would benefit from the availability of these assets.

Observing agents’ expressed demand for commitment devices, a benevolent policy
maker might be tempted to satisfy it. A number of measures could achieve this goal. For
example, consider forbidding the collateralization of "family homestead". Many states
have family homestead exemptions of varying a reach, which protect family property
(including housing) against bankruptcy.2 Until 1998, it was illegal in Texas to use claimed
family homestead as collateral for home equity loans. This would prevent families from
borrowing against assets that are costly to sell down; such self-handicapping a measure
would have been rationalized by a desire for commitment. Introducing a restriction on
households’ access to mortgage credit like the mentioned one can make housing an illiquid
investment, and hence a commitment device. Other examples of available interventions
include instituting 401K or IRA accounts that penalize early consumption of designated
savings; Laibson (1996) discusses other revenue-neutral policy measures.3

What will be the welfare effect of such measures when general equilibrium feedback
is accounted for? Hyperbolic-discounting individuals will demand those commitment de-
vices, strongly suggesting a welfare-improving effect by supplying them. But will the equi-
librium analysis ratify the choice-theoretic intuition that they are helpful? In the model
analyzed in this paper, the answer is no: When commitment devices are available, indi-
viduals are worse off than if none exist. Agents cannot help making use of those devices,
which are always individually beneficial ceteris paribus, but this is welfare-deteriorating
in equilibrium.

1When preferences rationalizing choice change over time, the appropriate welfare measure is ambiguous
under some interpretations (see Gul and Pesendorfer, 2002). However, it is natural to focus on initial tastes,
given that these are the ones generating demand for commitment devices. In this paper, each and every
reference to welfare should be understood to refer to initial tastes.

2Property covered by homestead provisions cannot be seized by creditors in the event of bankruptcy.
While in most states there is limited or no protection to housing, Florida and Texas provide generous
coverage: Housing up to a specified size is fully protected, regardless of monetary value. Items generally
covered by the homestead exemptions, depending on the state, include clothing, books and burial plots.

3For a non-intra-personal interpretation, notice that parents make substantial wealth transfers to their
children in the form of education, a non-collateralizable, irreversible investment. Alternatively, they could
put the money in a bank account and let children make their own inter-temporal decision.
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I first address this issue by studying a general equilibrium asset pricing economy in
which claims on the aggregate deterministic endowment are sequentially traded. Of the
total claims on future goods, a fraction of them is exogenously specified to be liquid and
the rest illiquid. The former can be re-traded in intermediate periods, while the latter
cannot. Moreover, individuals cannot borrow against their illiquid asset holdings nor
short-sell the liquid ones.

In addition to the welfare impact of illiquid assets, the link between commitment and
risk is studied in this model. An idiosyncratic discount factor shock which affects both
initial and later preferences but whose value is realized only after tastes have changed
is introduced as well. Each agent’s shock realization is unobservable private information
and therefore uninsurable.

The timing unfolds as follows. First, agents make a portfolio decision to allocate their
wealth between liquid and illiquid assets with the objective of maximizing initial utility
and in anticipation of future behavior. After this, taste shocks are realized and trading
for current consumption and liquid claims on future goods takes place.

A decision maker investing in illiquid claims locks in a minimum future consumption
level which cannot be subsequently cut back. This is desirable due to the preference
change. But on the other hand, it hinders the individual’s ability to accommodate the
taste shock. The initial portfolio decision will weigh the gains from commitment against
the losses from foregoing flexibility.

A simple characterization is derived for the polar cases when either commitment or
flexibility is most valuable to the agent. These cases allow a full characterization of equilib-
rium prices and portfolio holdings and they are exhaustive when the taste shock follows
a power distribution. I also examine how the model is solved for arbitrary alternative
specifications.

If the time-inconsistency problem is relatively small, liquid assets trade at a premium
and ex-ante identical agents with same wealth and preferences acquire identical initial
portfolios. Later, people realizing impatient tastes sell liquid claims on future goods
to finance current consumption; this is limited by the non-selling constraint on illiquid
assets. Conversely, agents who realize patient tastes sell claims on current consumption in
exchange for claims on future goods. If some assets are illiquid, equilibrium welfare is lower
than if all claims are re-tradeable. Time-inconsistency is weak, and consumers behave like
neoclassical agents; illiquid assets are harmful in this environment since accommodating
the shock is always optimal.

When the time-inconsistency problem is most severe, illiquid assets trade at a premium
compared to liquid counterparts of identical payoff structure. Moreover, ex-ante identical
individuals implement asymmetric portfolio holdings. Some of them follow a "full flex-
ibility" strategy, holding only liquid claims. The remaining agents, meanwhile, pursue
a "full commitment" strategy in which future consumption is fully chosen in advance.
Full flexibility offers no protection against time-inconsistency but it allows the agent to
purchase relatively inexpensive liquid claims. This course of action implies a higher level
of lifetime consumption, which compensates foregoing valuable commitment. Individuals
pursuing the full commitment strategy, instead, overcome the time-inconsistency problem
but at the cost of consuming less on average.

Individuals’ strong demand for commitment is reflected in an equilibrium price pre-
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mium on illiquid assets. Such overprice be interpreted as evidence of the desirability of
providing illiquidity. Contrary to this intuition, I show that consumers’ welfare is maximal
when all assets are liquid. If illiquid assets are in positive supply, equilibrium utility is
strictly lower. A benevolent interventionist authority taking into account general equilib-
rium feedback effects would rather strive to provide for full re-trading of all assets.

Equilibrium features specialization, with some individuals fully pre-committing and
others acquiring no illiquid assets at all. The optimal commitment decision is an all-or-
nothing choice. Notice that future savings will only take place when the individual is
not constrained by the inherited stock of illiquid wealth. However, illiquid assets trade
at a premium. Paying this premium and not constraining future decisions would be a
waste of resources. Therefore, an optimal purchase of illiquid assets must imply no future
additional savings. Finally, some agents must be saving in the future, or the market for
liquid claims on future goods will be in excess supply. This explains why specialization
needs to take place in equilibrium. One interpretation would suggest that there is limited
availability of commitment resources (illiquid assets) and so not all agents can pre-commit
in equilibrium.

To highlight the driving factors behind the negative welfare result, I next analyze
a deterministic economy with production and where the use of commitment devices is
endogenous. In a production economy, providing commitment to a fraction of the popula-
tion will change the time profile of aggregate output, as pre-committed agents save more.
A central authority concerned with insufficient aggregate savings might thus consider
providing commitment possibilities to the population.

Given that trading illiquid assets induced a welfare loss, a natural question is whether
endogeneizing the availability of commitment devices could eliminate this inefficient trad-
ing. In the unique equilibrium, agents make use of the commitment technology. However,
utility is strictly lower when the technology is available than when it is not. Thus, the
negative welfare result from the availability of commitment is robust to the introduction
of aggregate production. More surprisingly, a welfare-decreasing use of the commitment
technology arises in equilibrium. When commitment devices exist, the economy is led to
an inefficient equilibrium in which they are used.

The equilibrium welfare result is again contrary to the choice-theoretic intuition. Pre-
committing to future plans is always desirable to an individual given the profile of inter-
temporal prices that she faces. However, introducing commitment devices into the econ-
omy modifies equilibrium prices and allocations in an adverse way, precisely because of
the role played by commitment. People who acquire illiquid assets overcome their time-
inconsistency and save more, driving interest rates down. Inter-temporal prices thus be-
come more favorable to overconsumption, which makes the non-committed plans worse.
More abstractly, when illiquid assets are available agents trade themselves to an inefficient
equilibrium allocation.

There is a clash between individuals’ desire for commitment and the aggregate effects
from facilitating it. Individuals value commitment, but would rather live in an economy
in which no commitment devices were available at all. When the market for commitment
opens, individuals cannot avoid engaging in welfare-decreasing trading.

The previous literature on this topic discusses positive and normative implications
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of time-varying tastes. This paper studies the unexplored welfare consequences of sat-
isfying individuals’ demand for commitment. A related reference on markets and effi-
ciency is Luttmer and Mariotti (2002) who extended the classical first welfare theorem
to economies with changing tastes, but without commitment devices. Imrohoroglu et al.
(2003) study the welfare properties of unfunded social security in a calibrated general
equilibrium model.4 In their paper, the use of the commitment technology (the social
security system) is not an individual choice governed by price incentives. Krusell et
al. (2000, 2002a) focus on welfare consequences of tax policy in a general equilibrium,
preference-changes model.

The treatment of illiquid assets in the present paper relates to Laibson (1997) and
Kocherlakota (2001). Building on intuition developed by Strotz in 1956, the former was
the first to model how such assets could fulfill a self-control role. He concluded that
restrictions on the re-trading of some assets could improve the welfare of the representative
agent. An important assumption behind this result is that liquid and illiquid assets of
identical payoff structures trade at the same price, and that there are no limitations to
the liquid/illiquid breakdown of the representative agent’s portfolio. I discuss why this
assumption is crucial in Section 3.

Kocherlakota (2001) focused on the positive properties of equilibrium when illiquid
assets are available, albeit in limited supply. He showed that in a deterministic setup,
illiquid assets will command an equilibrium price premium due to the valuable commit-
ment services they provide. Moreover, the economy does not admit a representative agent
construct, as ex-ante identical agents pursue asymmetric equilibrium strategies. My analy-
sis of illiquid assets, besides posing the welfare question (which was not addressed before),
adds idiosyncratic risk to this environment.

A trade-off between commitment and flexibility similar to the one analyzed in the
illiquid assets model, was studied before by Bénabou and Tirole (2002) and Amador et al.
(2004). The two papers concern individual decision-making but not general equilibrium.
The latter analyzes the general problem of optimal mechanism design to induce future
actions that are in line with initial preferences, given that more information is learned
over time but tastes change. On the contrary, in the former, as well as in this paper, the
structure of the commitment mechanism is a restriction from the environment and not an
optimal choice.

Bénabou and Tirole (building on intuition developed by Carrillo and Mariotti, 2000)
rationalize "self-confidence" as strategic information acquisition and retention to induce
oneself to undertake tasks with delayed reward. A person may choose not to learn the
random return from a given task, in order to avoid a situation in which undertaking the
task is optimal from the initial point of view but not carried out due to preference changes.
An interpretation of the choice not to learn before acting is that the person pre-commits to
undertaking the task without accommodating to the received information. The structure
of this commitment mechanism is analogous to illiquid assets analyzed in this paper.

More generally, the change-in-tastes framework motivating this research was prompted
by evidence from psychology documenting departures of human behavior from neoclassical
postulates (see Rabin, 1998, for a survey). Evidence initially came from experiments (see

4The welfare properties of a social security system were also studied by Feldstein (1985).
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for instance Thaler, 1981), and later from field data: standardized contracts (DellaVigna
and Malmendier 2003, 2004), job search (DellaVigna and Paserman, 2004), and surveys
(Ameriks et al., 2004, Thaler, 1981), among other places. Some studies have tried to eval-
uate the hyperbolic discounting model through partial-equilibrium calibration exercises
(Angeletos et al., 2001, Harris and Laibson, 2001b, and Laibson et al. 2003, 2004).

Macroeconomic evidence of time-inconsistent preferences is still lacking, to some ex-
tent owing to an identification hurdle. Barro (1999) noticed that the standard neoclassical
growth model and its hyperbolic variation are observationally equivalent; this was later
generalized by Luttmer and Mariotti (2003) to asset pricing in an economy with aggregate
uncertainty. Laibson and Yaariv (2004) showed that any observed sequence of equilib-
rium liquid asset prices and inter-temporal choices of individuals with "non-standard
preferences" can be rationalized by an appropriately chosen set of standard neoclassical
preferences. Kocherlakota (2001) suggested that this observational equivalence could be
broken by focusing on commitment assets.

The paper is structured as follows. Section 2 analyzes the illiquid assets model, Section
3 the endogenous commitment model with production and Section 4 concludes. All proofs
are in the Appendix.

2 Illiquid Assets

In this section, I study an economy in which individuals have time-inconsistent preferences
and illiquid assets are available to them. A three-period world is populated by a continuum
of agents indexed by i ∈ I ≡ [0, 1]. The aggregate endowment is deterministic and
individuals are identical in preferences and initial wealth. Consumption takes place in
periods 2 and 3, and in period 1 each agent makes an asset allocation decision. The
aggregate endowment of period-2 and period-3 goods are denoted c2 and c3, respectively.

Preferences change over time. I represent this by assuming that individuals are "hy-
perbolic discounting": The weight given to period-3 consumption utility is higher in period
1 than in period 2. In addition, a discount factor shock that affects both period-1 and
period-2 tastes is realized and learned in period 2.

Taking prices as given, agents act to maximize utility subject to the sequential budget
and liquidity constraints. Equilibrium requires that all agents follow optimal plans at all
times, and that all markets clear.

2.1 Markets and budgets

There are three productive assets in the economy. The first one pays off c2 > 0 units of
period-2 goods. The second one, αc3 units of period-3 goods, where c3 > 0 and α ∈ [0, 1].
And the third asset pays off (1− α) c3 units of period-3 goods.

Individuals are initially endowed with representative claims on these assets. To sim-
plify the exposition (so that all assets have unitary nominal return), let there be c2 claims
on the asset paying off in period 2, and a total of c3 claims on the two assets paying off in
period 3. The latter total, in turn, breaks down into αc3 and (1− α) c3 units, respectively,
of each of the two assets paying off in period 3. I will refer to claims on the asset paying
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off in period 2 as "short term assets". Claims on the two types of assets paying off in
period 3 are called "long term assets". Specifically, the first long term asset (whose net
supply is αc3) is called the "illiquid" long term asset, while the other one is the "liquid"
long term asset.

In period 1, the three assets are traded. In period 2, the short-term asset pays off and
matures. There is trading of period-2 consumption goods and liquid long term assets only.
Although they are still outstanding, illiquid long term assets are not traded in period 2.
In period 3, both long term assets pay off and mature. Each individual consumes her
received dividends.

The following notation and normalizations will be used throughout for prices and asset
holdings.

In period 1, the price of the short term asset is normalized to 1. The price of liquid
long term assets is denoted by q13, and that of illiquid long term assets, by p. A given
individual’s end-of-period-1 short term asset holdings are denoted by a12; liquid long term
asset holdings by a13, and illiquid assets by k. For variables referring to liquid assets, the
first entry in the sub-index is the period of reference, and the second one, the period of
maturity.

In period 2, the price of period-2 consumption goods is normalized to 1 and the price
of the liquid long term asset is denoted by q23. A given individual’s period-2 consumption
is denoted by c2, and her end-of-period-2 liquid long term asset position, a23. Illiquidity
of the other long term asset implies that the end-of-period-2 holding must be equal to k.

Each individual’s period-3 consumption is denoted by c3, and equals a23 + k.
All asset holdings are restricted to be non-negative: a12 ≥ 0, a13 ≥ 0, a23 ≥ 0, k ≥ 0.
The economy’s liquidity is parameterized by α, the fraction of period-3 goods that are

procured through illiquid assets. The non-negativity constraint k ≥ 0 plays the role of
ensuring that α is determined exogenously. Individuals cannot short-sell human capital or
a house. Allowing k to be negative would be equivalent to letting agents offer commitment
contracts to others for free. An alternative way of making α endogenous would be to allow
such contracting, but at a cost.

The other non-negativity assumptions are needed for illiquid assets to indeed imply
an illiquidity constraint. It is essential that the individuals face borrowing constraints in
period 2 (the restriction a23 ≥ 0 could be generalized to a23 ≥ −b, for b > 0). Otherwise,
individuals would be able to bring forward illiquid resources in period 2 and hence, the
investment in illiquid assets would not be irreversible.

To some degree, a central authority can implement legislation fostering illiquidity.
Consider for instance forbidding the use of claimed "family homestead" as collateral for
mortgage loans (as was the case in Texas until 1998): Individuals face costs to sell down
houses and cannot borrow against them. The aggregate stock of such "family homestead"
illiquid assets is limited by the actual number of houses, and this is captured in this model
by the exogenously given α.

The market structure determines the sequential budget constraints that each agent
faces. Let w ≡ c2 + q13 (1− α) c3 + pαc3 denote the market value of the representative
stock of initial wealth. In period 1, the individual makes a portfolio decision subject to
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the following budget constraint:

a12 + q13a13 + pk ≤ w. (1)

Suppose that the period-1 portfolio choice is given by a triple (a12, a13, k). Then in
period-2, the individual makes a consumption and savings decision subject to the following
budget constraint:

c2 + q23a23 ≤ a12 + q23a13. (2)

Because a23 is restricted to be non-negative, period-2 consumption is capped by the
period-2 value of liquid assets. The individual is forbidden from borrowing against her
stock of illiquid assets and is forced to consume at least k units in period 3.

2.2 Preferences

Let δ ∈
£
δ, δ
¤
be a random variable with absolutely continuous distribution function F (δ).

Let (c2, c3) denote a profile of period-2 and period-3 consumption. Conditional on the
realization of δ, period-1 and period-2 preferences over (c2, c3) are given by

v1 (c2, c3; δ) = u (c2) + δu (c3) ,

v2 (c2, c3; δ) = u (c2) + βδu (c3) .

u (c) is a strictly increasing, strictly concave, everywhere twice differentiable function.
In period 1, β < 1 is anticipated, but δ is not known.5 The realization of each agent’s
idiosyncratic taste shock is unobservable, private information of the individual. This
precludes insurance, due to incentive compatibility constraints. No contract conditioning
on an individual’s shock realization can be enforced in this economy, and this is why
markets are incomplete.

Let c (δ) ≡ (c2 (δ) , c3 (δ)) be a measurable function of period-2 and period-3 consump-
tion amounts. Period 1 preferences over this stochastic consumption profile are given by
the expected utility formulation

U = E [v1 (c2 (δ) , c3 (δ) ; δ)] .

The period-1 portfolio decision is made under uncertainty about the person’s own
future preferences, but in anticipation of the preference change.

Because tastes change, the point of reference is important when discussing welfare. In
what follows, I will use the terms "period-1 optimal" and "period-2 optimal" to refer to
utility maximizing consumption profiles from the point of view of period-1 and period-2
preferences, respectively. When there is no ambiguity, I will use the term "optimal" as a
shortcut for "period-1 optimal".

2.3 Choice

People act sequentially to maximize utility subject to the budget constraints. Period-1 and
period-2 preferences over inter-temporal consumption profiles differ, and this is correctly

5Krusell et al. (2002b) study the opposite case in which agents experience an urge to over-save: β > 1.
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anticipated in period 1. For this reason, it is convenient to start with the period-2 decision
problem.

Period-2 choice is made under knowledge of δ. Suppose that the period-1 portfolio
choice is given by a triple (a12, a13, k). Then, the period-2 decision problem is

max
c2,a23

{u (c2) + βδu (c3)}
s.t. c2 + q23a23 ≤ a12 + q23a13

a23 ≥ 0, c3 = a23 + k

(3)

Let c2 (δ) , a23 (δ) denote the solutions to this problem. In period 2, the individual
chooses how to allocate available wealth into period-2 and period-3 consumption. Because
she cannot borrow against her stock of illiquid assets, she faces a potential liquidity
constraint that may hinder implementation of an optimal plan. This decision is made
with knowledge of δ, but with the additional discount factor β < 1.

In anticipation of the δ-contingent period-2 policy rule, the period 1 problem is

V = max
a12,a13,k

nR δ
δ (u (c2 (δ)) + δu (c3 (δ))) f (δ) dδ

o
s.t. a12 + q13a13 + pk ≤ w, a12 ≥ 0, a13 ≥ 0, k ≥ 0,

c3 (δ) = a23 (δ) + k,
∀δ : (c2 (δ) , a23 (δ)) solve (3).

(4)

The period-1 choice consists of allocating initial wealth into liquid and illiquid assets.
This is made under uncertainty over future preferences, and in anticipation that the
period-2 decision will be made under knowledge of δ but with the additional discounting
β < 1.

2.4 Equilibrium

Definition 1 A competitive equilibrium is a price vector (p, q12, q13, q23) together with
individual choices

¡
ai12, a

i
13, k

i, ai23
¡
δi
¢
, ci2
¡
δi
¢
, ci3
¡
δi
¢¢

i∈I such that:

1. For each i,
¡
ai12, a

i
13, k

i, ai23
¡
δi
¢
, ci2
¡
δi
¢
, ci3
¡
δi
¢¢
are measurable and solve the con-

sumer’s period-1 and period-2 utility maximization problems given prices.

2. Markets clear:Z
i∈I

ai12 di = c2,

Z
i∈I

ai13 di = (1− α) c3,

Z
i∈I

ki di = αc3,Z
i∈I

ci2
¡
δi
¢
di = c2,

Z
i∈I

ai23
¡
δi
¢
di = (1− α) c3,Z

i∈I
ci3
¡
δi
¢
di = c3.

It is useful to state, at this early stage, a result that is used to simplify the exposi-
tion below. The assumed asset structure allows two ways of carrying liquid wealth into
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period 2, either by purchasing short term assets, or by purchasing liquid long term as-
sets. In equilibrium, the two must imply the same cost per unit of period-2 liquid wealth.
Otherwise, either of the two assets will be in excess supply.6

Proposition 1 Equilibrium prices of liquid assets admit no dynamic arbitrage: q13 = q23.

For expositional purposes, let q ≡ q13 = q23 denote the price of liquid long term assets
for the rest of the paper.

2.5 Individual Optimization

The period-1 portfolio choice depends on expected period-2 behavior; therefore I begin
by studying the latter. The general solution of the period-1 problem is in the Appendix;
here I focus on the two polar cases in "C" and "F", in which commitment and flexibility,
respectively, are most valuable to the agent. Finally, I give conditions on F (δ) and β for
these two cases to hold.

2.5.1 The period-2 problem

Imagine that a given triple (a12, a13, k) was chosen in period 2. This portfolio choice
implies that the amount of liquid resources available in period 2 is w2 ≡ a12+qa13. Given
this, the solution to problem (3) is determined by the necessary and sufficient first order
condition

u0 (c2)

u0 (c3)
≥ βδ

q
, (5)

together with the period-2 budget restriction- and the no-borrowing constraint a23 ≥ 0.
Specifically, the Euler equation will hold with inequality only if a23 = 0.

The period-2 decision is liquidity-constrained if and only if the realized δ is smaller
than the threshold eδ defined by eδ ≡ qu0 (w2)

βu0 (k)
.

Lemma 1 Suppose that k > 0. For δ ≤ eδ, the implemented choice is c2 = w2, c3 = k;
while for δ > eδ, (5) holds with equality and the implemented consumption is c2 < w2, c3 >
k.

Consider an individual who enters period 2 with a positive stock of illiquid assets
k > 0. This stock caps period-2 consumption, as illiquid assets cannot be sold down to
finance consumption. So, suppose that the realized period-2 discount factor βδ is low,
and therefore that large period-2 consumption is desirable. The individual will want to
allocate as much wealth as possible into period-2 consumption. She will sell down all her
liquid long term assets, and will be willing but unable to sell down her illiquid long term
assets. She will find herself restricted by the constraint a23 ≥ 0.

6 I make the standard assumption that the realization of the individual random variables,
¡
δi
¢
i∈I , is

measurable, and that F (δ) is the realized measure of the set
©
i ∈ I : δi ≤ δ

ª
. This implies that all prices

are deterministic.
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Therefore, for low realizations of δ the individual behaves "hand-to-mouth" in period
2, allocating all inherited liquid resources into period-2 consumption.

Instead, if the realized βδ is high enough, the individual will actually want to consume
period-3 goods beyond her inherited stock of illiquid claims. In that case, she will find it
optimal to purchase liquid long term assets, and the liquidity constraint a23 ≥ 0 will not
bind.

2.5.2 The structure of period-1 strategies

To understand period-1 optimal choice, it is useful to divide the possible solutions to the
period-1 problem (4) into three classes.7

First, the consumer could find optimal not to carry any illiquid assets at all, and hence
not restrict period-2 choice. I call this the "full flexibility strategy". Second, the optimal
policy could be the other extreme: a "full commitment strategy", in which the period-2
choice is liquidity-constrained for any realization of δ. This is achieved with a sufficiently
illiquid portfolio and it implies a deterministic consumption profile, since the consumer
always behaves "hand-to-mouth" in period 2. Finally, the intermediate case is a "partial
commitment strategy", in which the period-2 choice is liquidity-constrained only for low
realizations of the discount factor.

For k > 0 given, Lemma 2 identifies a threshold δ∗ such that period-2 behavior is
hand-to-mouth for lower realized discount factors. Equivalently, to each value δ∗, there is
a unique illiquid assets choice k that yields δ∗ as threshold. The larger the threshold δ∗,
the larger the stock of illiquid assets necessary to achieve it.

This property can be used to think of the period-1 liquid/illiquid assets decision as
one of choosing a cutoff level δ∗: The implemented ratio of marginal utilities u0(c2)

u0(c3)
is βδ∗

q

for all realizations δ ≤ δ∗; and it equals βδ
q for realizations δ ≥ δ∗. In other words, when

δ ≤ δ∗, the consumer acts as if her discount factor were βδ∗.
So, consider an arbitrary cutoff δ∗. Conditional on δ ≤ δ∗, the expected period-

1 discount factor is E[δ| δ ≤ δ∗], but the consumer acts as if it were βδ∗. Suppose
that E [δ| δ ≤ δ∗] is smaller than βδ∗. Then choosing δ∗ induces too patient a period-2
behavior, from the period-1 perspective, even in spite of the dynamic inconsistency. At
such a δ∗, lack of flexibility is a stronger distortion to optimal choice than excessive future
impatience.

Conversely, when βδ∗ < E [δ| δ ≤ δ∗], choosing δ∗ as cutoff value will induce a more
impatient behavior than the conditionally expected period-1 optimal one. Conditional on
such a δ∗, excessive period-2 impatience is a stronger distortion to optimal choice than
lack of flexibility. Notice that ψ (δ∗) will be positive-valued whenever E [δ| δ ≤ δ∗] < βδ∗.

The period-1 portfolio decision will hinge on sign and monotonicity properties of the
following function:

ψ (δ∗) ≡ (E [δ| δ ≤ δ∗]− βδ∗)
F (δ∗)

δ∗
. (6)

7 In this three-period model, the structure of the commitment device is formally equivalent to a time-
to-sell condition on illiquid assets like the one in Laibson (1997). In that paper, a decision to sell down
illiquid assets at time t translates into resources available at t+1, and, as a consequence, does not appease
the period-t temptation to overconsume in period t.
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A sharp characterization of the optimal portfolio choice is possible under the following
two mutually exclusive assumptions on (6).

Assumption C. ψ (δ∗) is positive and strictly increasing in δ∗.

Assumption F. ψ (δ∗) is negative and strictly decreasing in δ∗.

"C" stands for commitment, and "F" for flexibility. When Assumption C holds, the
commitment concern will drive the period-1 decision. Instead, when Assumption F is
satisfied, the flexibility concern will. Under an important special case, these two as-
sumptions exhaust all possibilities. For exponential distributions (with the normalization
δ = 0), either C or F must hold: C if β is low, and F if it is high.

2.5.3 Assumption C

Assume that ψ (δ∗) is positive and monotonically increasing in δ∗. Under this assumption,
the optimal period-1 choice is either a full commitment or a full flexibility strategy. Under
this assumption, partial commitment is never optimal. The individual will choose to fully
commit unless illiquid assets are too expensive, in which case none will be acquired.

The optimal commitment decision is an all-or-nothing choice. If illiquid assets are less
expensive than liquid ones, then fully committing is optimal given that commitment is
more valuable than flexibility. Instead, when illiquid assets trade at a premium, paying
the premium and failing to constrain future choice implies a waste of resources. In either
case, an optimal purchase of illiquid assets must imply no future additional savings.

To characterize the optimal portfolio choice, let k∗ be the unique value satisfying

u0 (w − pk∗)

u0 (k∗)
=

E [δ]

p
. (7)

Define expected period-1 utility from the full commitment ("FC") and full flexibility
("FF") strategies, respectively, by:

VFC = u (w − pk∗) +E [δ]u (k∗) ,

VFF =

Z δ

δ
(u (c2 (δ)) + δu (c3 (δ))) f (δ) dδ,

where c2 (δ) , c3 (δ) solve (3) for k = 0.

For a fixed q, let ep be the (unique) price that makes VFC = VFF .

Proposition 2 Under Assumption C, for each q a unique threshold ep exists. When the
price p of illiquid assets verifies p ≤ ep, full commitment is optimal, while if p ≥ ep, full
flexibility is. ep is strictly larger than q, increasing in q and decreasing in β.

When Assumption C holds, the implemented ratio of marginal utilities is always too
low from the period-1 perspective; moreover, the gap increases in δ∗. The more liquidity-
constrained the individual is, the more such constraints are valued from the period-1
perspective. This implies that the period-1 problem must have a corner solution, either
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fully committing or not committing at all. Either full flexibility or full commitment (or
both) always strictly dominate partial commitment.

Full commitment is equivalent to a deterministic consumption profile. All period-3
consumption is procured through illiquid assets purchased in period 1, while all liquid
wealth goes into period-2 consumption. (7) is the necessary and sufficient first order
condition for the optimal deterministic consumption profile when the price of period-
3 consumption is p. That is, k∗ is the best affordable full commitment plan. Notice,
however, that a smaller illiquid assets stock could suffice to liquidity-constrain period-2
choice for all values of δ. Analogously, k > k∗ would also achieve full commitment, but
would be suboptimal.

Given q, a unique illiquid assets price ep exists such that the consumer is indifferent
between full commitment and full flexibility; otherwise the two strategies are strictly
ranked. The indifference price ep is always larger than q, since, under Assumption C, the
consumer values commitment more than flexibility.

2.5.4 Assumption F

Suppose that ψ (δ∗) is negative and monotonically decreasing in δ∗. A partial commitment
strategy will be optimal in this case when the relative price of illiquid assets falls in an
intermediate region. In order to characterize the optimal partial commitment choice, fix
δ and let k(δ) be the unique value satisfying

u0(w − pk(δ))

u0(k(δ))
=

βδ

q
.

Notice that k(δ) is strictly increasing in δ. Using this, define the value from choosing
cutoff eδ as

V (eδ) = ( u(w − pk(eδ)) +E[δ| δ ≤ eδ] u(k(eδ)) ) F (eδ)
+

Z δ

eδ (u (c2 (δ)) + δu (c3 (δ))) f (δ) dδ,

where c2 (δ) , c3 (δ) solve (3) for k = k(eδ), δ ≥ eδ.
The partial commitment value ("PC") is defined as

VPC = maxeδ∈[δ,δ]V (eδ). (8)

Let δ∗ denote the solution to problem VPC . Under Assumption F, this solution is
unique, and is identified by the first order conditions associated with program VPC . Fi-
nally, let ρ ≡ E [δ] /δβ; under Assumption F, this is strictly smaller than 1.

Proposition 3 Under Assumption F, the optimal illiquid assets choice, as a function of
the price ratio p/q, is

k = k∗ if p
q ≤ ρ

k = k (δ∗) if ρ < p
q < 1

k = 0 if 1 < p
q ,
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At p = q, the consumer is indifferent over all portfolios containing k ∈ [0, k (δ)].
For ρ < p/q < 1, the optimal k is decreasing in β.

Consider a given cutoff value δ∗ such that ψ (δ∗) < 0. As explained before, this
negative value holds if βδ∗ > E[δ| δ ≤ δ∗]. By construction, βδ∗ is the "implemented"
discount factor whenever the realization of δ is smaller than δ∗: In these states of the
world, the ratio qu0 (c2) /u0 (c3) equals βδ∗.

So ψ (δ∗) < 0 means that, conditional on δ ≤ δ∗, the implemented discount factor
is larger than the expected optimal one. The distortion stemming from being unable
to accommodate the taste shock is thereby stronger than the benefit from commitment.
Consequently, holding illiquid assets can only be optimal if they offer a capital gain.
When p > q, the consumer has no reason to hold them. But if p < q, loosing valuable
flexibility (in exchange for not-so-valuable self-control) is compensated by the capital gain
from buying assets at a discounted price. The optimal choice trades off these two effects.
If the price of illiquid assets is small enough, the consumer will choose a deterministic
consumption profile.

2.5.5 Sufficient conditions for C and F

The previous analysis has focused on assumptions on the function ψ (δ∗). In this section,
I give conditions on the distribution function F (δ) and the hyperbolic factor β for As-
sumptions C and F to hold. In order to do so, let ε (δ) ≡ d ln f (δ) /d ln δ denote the point
elasticity of the density function. What the assumptions do is link β to this elasticity.
Sufficient conditions for them to hold are given in the following proposition.

Proposition 4 Assumption C holds if β ≤ (1 + ε (δ)) / (2 + ε (δ)) and ε (δ) ≥ −1 are
true for all δ.

Assumption F holds if δf (δ) = 0 and, for all δ, either β ≥ (1 + ε (δ)) / (2 + ε (δ)) or
ε (δ) ≤ −1. The boundary condition δf (δ) = 0 is necessary for F.

Consider a threshold level δ∗; the conditional expected value of the discount factor is
E[δ| δ ≤ δ∗]. If the point elasticity of the density function is high at δ∗, then the period-1
expected discount factor locally increases faster than βδ∗. The lower β, the lower the
density elasticity necessary to make this true.

Assumption F will hold if β is sufficiently high, or if the elasticity is everywhere low
enough. In addition, assumption F requires a boundary condition on the support of F (δ),
which ensures that ψ (δ∗) is non-increasing at δ.

Notice that whenever the elasticity is bounded above, there exists a eβ ∈ (0, 1) such
that β ≥ (1+ ε (δ))/(2+ ε (δ)) is satisfied for β ≥ eβ. Analogously, whenever the elasticity
is bounded below by −1, there will exist a level eβ ∈ (0, 1) such that C holds if β ≤ eβ.

The proposition is stated in terms of conditions on β given ε. Alternatively, given β,
C imposes a lower bound of (2β − 1)/(1 − β) on the elasticity ε (δ), while F imposes an
upper bound of (2β − 1)/(1− β), plus a boundary condition.

General distribution functions need not satisfy either C or F for all parameter values.
For instance, if δ ∈ [0, 1] has distribution F (δ) =

¡
eδ − 1

¢
/ (e− 1), then C is satisfied for

β ≤ 1/2, F for β ≥ 1− e−1, and none of the two hold for the intermediate values.

14



However, when the distribution function is a power function, and the lower bound δ
equals 0, then Assumptions C and F are exhaustive. There is a threshold eβ such that for
C is satisfied if β is below the threshold, and F is satisfied otherwise.

Proposition 5 Suppose δ = 0 and F (δ) = δx/δ
x
, for some x > 0. Then C is satisfied if

and only if β < eβ ≡ δ
x
x/ (1 + x) while F is satisfied if and only if β > eβ.

For example, suppose that δ is uniformly distributed on [0, 1]. Then, C holds for
β < 1/2 and F for β > 1/2.

At the boundary value eβ, ψ (δ∗) is everywhere equal to 0. The self-control and flexi-
bility forces exactly offset each other in this case.

Amador et al. (2004) show that when β is high enough relative to the elasticity of the
shock density function, the optimal commitment mechanism takes the form of a minimum
savings rule, such as the one implemented by illiquid assets. Bénabou and Tirole (2002)
show that when time-inconsistency is strong enough (β low) and an elasticity condition
on the shock distribution function is met, it is optimal in period 1 to prevent period-2
state-contingent action. In other words, commitment to a specified course of action is
preferred to acting on realized information. When β is high, instead (and a condition on
the elasticity is met), it is period-1 optimal to allow state-contingent period-2 action, in
spite of time-inconsistency.

2.6 Equilibrium

Given individual choice rules, the next step is to analyze the competitive equilibrium in
this economy. Because of time-inconsistency, and the presence of irreversible investment,
textbook arguments for existence of equilibrium cannot be directly applied. I show that
equilibrium always exists, nevertheless.

Proposition 6 A general equilibrium always exists in this economy.

A sharp characterization of equilibrium is feasible under assumptions C and F. Without
these, alternative assumptions must be imposed on ψ (δ∗) to be able to describe the
structure of equilibrium. When δ = 0 and the distribution F (δ) is a power function, cases
C and F are the only possible ones.

Assume that C holds. By Proposition 3, for every price pair (p, q), the individual
optimal period-1 choice is either a full commitment or a full flexibility strategy, and
possibly both. Full commitment involves an illiquid assets level k∗ > 0 and hand-to-
mouth period-2 behavior with probability 1. The latter consists of acquiring zero illiquid
assets.

Everyone following a full flexibility strategy is not an admissible equilibrium, since the
net supply of illiquid assets is strictly positive.

Suppose instead that all agents follow a full commitment strategy, so that everyone
behaves hand-to-mouth in period 2. This implies that no one will hold liquid long term
assets at the end of period 2. But the net supply of these assets is strictly positive, and
therefore this is not an admissible equilibrium configuration either.
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The only way markets could clear is if some individuals adopted full flexibility, and
others full commitment. Fully committed agents absorb the supply of illiquid long term
assets; fully flexible people the period-2 supply of liquid long term assets.

This is only possible if agents are indifferent between those two strategies, which will
happen if and only if p = ep. As shown above, this indifference price is always larger than
q.

Proposition 7 Under Assumption C, any equilibrium involves a fraction λ∗ ∈ (0, 1)
of the population pursuing a full commitment strategy, and the remaining 1 − λ∗ a full
flexibility one. Equilibrium prices verify p = ep > q: Illiquid assets command an equilibrium
price premium.

When C is satisfied, the distortion coming from dynamic inconsistency is always
stronger than the distortion from not accommodating the taste shock at low δ. This
is a "preference for commitment" economy and illiquid assets are desirable at the indi-
vidual level. The equilibrium is similar to the deterministic case studied by Kocherlakota
(2001), and displays specialization of savings strategies. At the end of period 2, a cross
section of the population will show that individuals either hold only illiquid assets, or only
liquid assets. Those holding illiquid assets will be liquidity-constrained.

If F holds, instead, the distortion coming from not accommodating the taste shock
at low δ is always stronger than any distortion from tastes change. Consumers’ behavior
is similar to that of neoclassical agents, and illiquid assets are not desirable. This is
compensated by illiquid assets trading at a discount, thanks to which carrying a positive
stock is optimal. The equilibrium is symmetric, with all agents acquiring the same amount
of liquid and illiquid assets in period 1. The economy is observationally equivalent to the
neoclassical case.

Proposition 8 Under Assumption F, p ≤ q in equilibrium.
If p < q, then all agents acquire identical portfolios (equal, therefore, to the represen-

tative one) in period 1. There exists a cutoff δ∗ such that agents are liquidity-constrained
in period 2 if and only if the realized δ is smaller than δ∗.

If p = q, then individual initial asset holdings are undetermined, but no agent is ever
liquidity-constrained in period 2.

An equilibrium with p = q can exist for α low enough; it is ruled out if δ = 0. Such
an equilibrium will occur whenever the amount of illiquid assets in the representative
portfolio is smaller than individual period-3 consumption, for any δ.

For clarity, consider the case δ = 0. When δ = 0, there is a positive probability
of δ being very low. And if the realized δ is very low, desired period-3 consumption is
close to 0. Therefore, a stock of illiquid assets will liquidity-constrain the period-2 choice
with positive probability, no matter how small the stock is. But such constraint is never
desirable under F. Therefore, the price of illiquid assets must have a discount, reflecting
the loss occurred when the realized δ is very low.

If δ is strictly positive and the representative portfolio has few illiquid assets, it is
possible that the latter never liquidity-constrains period-2 choice. Specifically, this will
happen if at δ = δ, desired period-3 consumption is larger than αc3 (the stock of illiquid
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assets in the representative portfolio). In such a case, liquid and illiquid long term assets
are indistinguishable, and hence have the same price.

2.7 Equilibrium Welfare

To a large extent, research on departures from neoclassical assumptions is motivated by
the welfare consequences of behavioral biases. Benevolent tampering with the market
structure could be desirable for a central authority concerned about individuals’ well-
being.

I focus on period-1 utility. This is consistent with the "temptation and self-control"
interpretation of modeled behavior: in period 2, individuals "agree" with period-1 prefer-
ences, but a craving to overconsume interferes with the implementation of optimal plans.

The "split-self" approach, instead, interprets behavior as a true change in tastes.
Agents at each point in time are treated as distinct persons, and the Pareto criterion
is given an intra-personal extension. A change is welfare-improving only if it makes all
individuals (weakly) better off from the perspective of all periods. Notice that both views
coincide on the undesirability of a period-1 utility loss.

Proposition 9 Assume that either C or F holds, and let u (c) = log c. Then for every
α, there is a unique equilibrium. Period-1 expected utility is maximized at α = 0, and is
strictly lower for all α ∈ (0, 1].

Any level of illiquidity is period-1 harmful in this economy. Even when the dynamic
inconsistency distortion is maximal, individuals are better off if no illiquid assets are
available at all. This aggregate results shows a sharp contrast with preferences at the
individual level. Individually, each person finds illiquid assets valuable in this economy,
and pays a premium for them.

Under Assumption C, illiquid assets trade at an equilibrium price premium, which
could suggest that a positive net supply of these assets is desirable. An outside observer
performing a thought experiment based on the observed choice behavior could be misled
to believe that it is optimal to forbid re-trading of some assets. An example is prohibiting
individuals to borrow against their 401K or IRA accounts, or allowing them to declare
that their houses are inalienable homestead which cannot be mortgaged (as in Texas prior
to 1998). A broader interpretation of this model is awareness. Drawing people’s attention
towards available commitment devices could be construed as an increase in α.

2.8 Discussion

The general solution to the period-1 portfolio problem is in the Appendix. I show that if
p > q, then a partial commitment strategy can only be optimal if it implies a cutoff δ∗

for which ψ (δ∗) is positive. Conversely, when p < q, ψ (δ∗) negative must be true at the
cutoff δ∗.

Suppose that at p > q, illiquid assets are purchased to implement a partial commitment
strategy. If the realized δ is high, the period-2 liquidity constraint will not bind. Acquiring
illiquid assets will have been wasteful ex-post as they were more expensive than liquid
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assets but did not serve a self-control purpose.8 Therefore, acquiring illiquid assets can
only be optimal if, for δ low, they generate an expected period-1 utility gain. Conditional
on δ ≤ δ∗, they will generate such a gain if the self-control that illiquid assets help achieve
is more valuable than the inability to accommodate the taste shock. And this, in turn, is
true if and only if ψ (δ∗) > 0.

When p < q, for δ high, illiquid asset yield a capital gain and hence a period-1 utility
increase. If, conditional on δ being low, a utility gain is also achieved because ψ (δ∗) > 0,
then the consumer will gain by increasing the stock of illiquid assets. So such a stock of
illiquid assets cannot be an optimal purchase. A partial commitment strategy can only
be optimal in this case if ψ (δ∗) < 0, and the capital gain when δ is high is offset by the
flexibility loss when δ is low.

If p > q but ψ (δ∗) is everywhere negative, full flexibility is the optimal strategy.
Conversely, if p < q and ψ (δ∗) is everywhere positive, full commitment is optimal. For
arbitrary ψ (δ∗) functions, more than one strategy could be optimal, including several
partial commitment plans involving different cutoff values for δ∗. Further characterizations
require more structure on ψ (δ∗), such as assuming that it is a strictly quasiconcave or
quasiconvex function.

An interpretation is that the illiquid assets problem consists of assigning the inter-
temporal wealth allocation decision, given the trade-off between uncertainty and self-
control. Full flexibility implies leaving the inter-temporal wealth allocation decision for
period 2, without impinging on it. Under full commitment, the inter-temporal decision
is wholly made in period 1 (thereby losing the ability to condition on δ) and no active
choice is left for period 2. Partial commitment, finally, is the intermediate case in which
the wealth allocation decision for low δ states is, in effect, made in period 1, whereas when
δ is high, the allocation is decided in period 2.

Alternatively, the period-2 problem can be thought of as involving non-convex ad-
justment costs. The consumer inherits a stock k > 0 of claims on period-3 consumption
goods, whose sell price is effectively 0; whereas the buy price for period-3 consumption
goods is q. This wedge between prices implies that the optimal policy rule as a function
of δ involves inaction if δ is low.

This suggests the generalization of this model to finite transaction costs, and sheds
light on the nature of illiquid assets as commitment devices. Suppose that, instead of
being a completely irreversible investment, these assets could be sold down at a fraction
γ < 1 of q. The period-2 problem would have non-convex adjustment costs (see Dixit
and Pindyck, 1994). Optimal period-2 behavior as a function of δ would involve a region
of inactivity [δL, δH ]. For δ < δL, the consumer would partially sell down the inherited
claims on period-3 goods at γq23; while for δ > δH she would acquire additional claims at
q. For δ ∈ [δL, δH ], the consumer would only be willing to sell at the buy price or buy at
the sell price; none possible. This is studied in companion work.

So think of a pre-specified future consumption profile. The commitment mechanism
underlying illiquid assets is a non-convex cost schedule for adjustments of that profile. In

8Due to the time-separable and strictly concave utility assumption, utility is strictly increasing in
period-2 wealth The reason is that both goods are normal under those assumptions. If u (·) has linear
portions, examples can be constructed for which it is optimal in period 1 to "burn money": reduce the
total amount of resources available in period 2.
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the limit, as the costs of bringing consumption forward becomes infinitely large (complete
irreversibility), they end up implementing a minimum savings rule.

3 Commitment and Welfare

The striking welfare result goes against the intuition that if individuals have a demand
for commitment, satisfying it should make them better off. The finding is not specific
to illiquid assets, but rather a result of the availability of commitment devices. In this
section, I introduce production and an abstract commitment technology which allows
individuals to implement period-1 optimal plans; the use of this technology is endogenously
determined. Individual preferences are as before, but δ = 1 with probability 1: This is a
deterministic preference-for-commitment economy. Consumption takes place in periods 2
and 3, and agents are more impatient in period 2 than in period 1.

The illiquid assets pricing model specified an exogenous aggregate endowment of goods.
A production economy is studied next, in which the time-profile of aggregate output is
fully endogenous (an endowment economy is obtained as a limit case). There is an initial
endowment of period-2 goods. These can be either consumed in period 2 or invested in
a technology transforming them into period-3 goods. In a production economy, provid-
ing commitment to a fraction of the population will change the time profile of aggregate
output, as committed agents save more. A central authority concerned with insufficient
aggregate savings due to changing tastes might consider providing commitment possibili-
ties to the population, in order to streamline the goods endowment time path.

Given that trading of illiquid assets induced an equilibrium welfare loss, a natural
question is whether endogeneizing the availability of commitment devices could eliminate
this inefficient trading. To address this issue, I introduce a commitment technology which
need not be used in equilibrium.

In the model’s unique equilibrium, agents make use of the commitment technology.
However, for a wide range of parameter values, utility is strictly lower when the technology
is available than when it is not. Thus, the negative welfare result from the availability
of commitment is robust to the introduction of aggregate production. More intriguingly,
a welfare-decreasing use of the commitment technology arises in equilibrium. Once com-
mitment devices exist, the economy is led to an equilibrium in which they are used, even
when this is welfare-decreasing.

There is a clash between individuals’ desire for commitment and the aggregate effects
from facilitating it. An individual’s choice to make use of a commitment technology is
a ceteris paribus decision. No matter what the inter-temporal prices are, she is always
willing to pay a premium to avoid time-inconsistency. In spite of the negative effects
from satisfying it, demand for commitment persists, and this is why it is misleading as
an indicator of equilibrium welfare. When a market for commitment is open, individuals
cannot avoid trading themselves to a welfare-dominated equilibrium.

3.1 The model

A unit-measure continuum of ex-ante identical agents lives for three periods. Consumption
takes place in periods 2 and 3, while period 1 is an ex-ante, "temptation-free" stage in
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which welfare evaluations of future consumption profiles are made. Each agent’s period-1
and period-2 preferences over a consumption pair (c2, c3) are, respectively, represented by

u1 (c2, c3) = log c2 + log c3,

u2 (c2, c3) = log c2 + β log c3,

where β < 1. An interpretation is that period-2 consumption is a tempting good.
Trading for period-2 and period-3 consumption goods takes place in period 2. Each

agent holds the representative wealth w, the price of period-2 goods is normalized to 1,
and the price of period-3 goods is denoted q.

A self-control technology allowing individuals to overcome their preference changes
exists. In period 1, each agent decides whether to use it or not; if she does, she incurs a
period-1 utility cost γ. Specifically, if an agent consumes (c2, c3) and uses the self-control
technology, her period-1 utility becomes

v1 (c2, c3) = u1 (c2, c3)− γ.

Let x be an indicator variable which takes on value 1 if and only if the individual uses
the self-control technology, 0 otherwise. Then each person’s period-1 decision problem is
the following:

V = max
x∈{0,1}

log c2 + log c3 − xγ

s.t. (c2, c3) argmax
c2,c3

{log c2 + (x+ (1− x)β) log c3}
c2 + qc3 ≤ w

(9)

If the person does not use the self-control technology (x = 0), she avoids the utility
cost. However, because of the preference change, the implemented consumption profile
must be u2 (c2, c3)-optimal. Instead, if the technology is used (x = 1), the implemented
consumption profile will maximize u1 (c2, c3). The interpretation is that the individual
anticipates yielding to the temptation to overconsume in period 2. By incurring the utility
cost γ, the person avoids this temptation.

Production
Each agent is initially endowed with one unit of period-2 goods, which can be consumed

or sold to firms. A unit measure of firms indexed by j ∈ J ≡ [0, 1] operates a production
technology transforming k units of period-2 goods into kθ units of period-3 goods, θ ∈
[0, 1]. Notice that when θ = 0, this is an endowment economy with a unitary endowment
of goods in each period.

The commitment technology
I assume that the commitment technology has decreasing returns to scale, so that

the cost to each individual is increasing in the measure of agents who make use of it.
Self-control devices are a scarce resource and individuals impose a crowding externality
on each other.

Let κ > 0 and λ ≡
R
i x

idi be the measure of individuals using the technology. Then
the utility cost to each one of the agents using the technology is γ = κλ. As more agents
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acquire the commitment services, the cost of providing them to each individual person
increases.

Define

λ ≡ 1

κ
ln
(1 + β)2

4β
.

λ measures the efficiency of the commitment sector. When λ = 0, acquiring com-
mitment is infinitely costly — hence, not available. As λ increases, it becomes cheaper to
provide it to each person. When λ→∞, the commitment technology is free. An example
is a personal finance workshop aimed at training the agents to save more, where the larger
the crowd, the smaller the attention the speaker can pay to each attendee. For a broader
interpretation, imagine a consulting group offering contracts whereby individuals delegate
their inter-temporal wealth management for a fee.

Finally, all consumers and all firms are price-takers in this economy. The competitive
equilibrium requires that everyone pursues optimal plans given price incentives, and that
markets clear.

Definition 2 An equilibrium in this economy is a price q together with a set
¡
xi, ci2, c

i
3

¢
i∈I

of individual decisions and a set of firm input decisions (kj)j∈J such that

1. For each i,
¡
xi, ci2, c

i
3

¢
solves problem (9) given q.

2. For each firm j, kj is optimal given q.

3. Markets clear: Z
i
ci2di+

Z
j
kjdj = 1,

Z
i
ci3di =

Z
j
kθjdj.

3.2 Equilibrium welfare

The fraction of individuals using the commitment technology in equilibrium is endoge-
nous, and depends on the efficiency parameter λ. Agents will make use of the available
commitment devices even if doing so decreases everyone’s equilibrium welfare. Commit-
ment is individually valuable, ceteris paribus, but its availability is harmful unless it is
sufficiently inexpensive.

Proposition 10 There is a unique equilibrium in this economy, in which the fraction
of agents using the commitment technology is λ∗ = min

©
λ, 1

ª
. For θ < 1, equilibrium

welfare is strictly decreasing in λ for λ < 1, and strictly increasing for λ > 1. There exists
a threshold value λ > 1 such that when λ = λ, period-1 utility is the same as when λ = 0;
it is strictly lower for λ ∈ (0, λ), and strictly higher for λ > λ. The threshold λ is strictly
decreasing in θ; it takes value 1 when θ = 1, and converges to ∞ when θ → 0.

The assumption that the individual cost of using the commitment technology is in-
creasing in the measure of agents doing so delivers a unique equilibrium but is not essential
for the welfare result. Without this assumption, there would exist multiple welfare-ranked
equilibria, with utility-decreasing use of the commitment technology.
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Suppose that λ < 1. Then a fraction λ∗ = λ of the population will make use of the
technology and achieve self-control in equilibrium. Whenever the fraction λ of individuals
using the techonology equals λ, each agent is indifferent between x = 0 and x = 1.9 When
λ < λ, the individual utility cost is low, and therefore each agent strictly prefers to make
use of the self-control technology. When λ > λ, instead, the individual utility cost is too
large, and each agent strictly prefers to choose x = 0. Therefore, equilibrium requires
that λ∗ = λ.

When the commitment technology is available, individuals voluntarily use it, revealing
that it is valuable. Agents who use the commitment technology implement a period-1
optimal consumption profile. As the fraction of committed, high-saving agents grows, the
aggregate production profile gets closer to the period-1 optimal one. The revealed demand
for commitment and the improved aggregate output profile could suggest a positive welfare
role for the commitment devices. However, this is contradicted by the actual equilibrium
welfare computation: Any 0 < λ < 1 implies a welfare loss. Perversely, as the commitment
technology becomes more efficient and λ increases towards 1, the welfare loss to everyone
becomes larger.

When λ ≥ 1, the commitment technology is so inexpensive that all agents will make
use of it in equilibrium. When λ > 1, the measure of agents acquiring commitment does
not change (the whole population does), but each agent faces a smaller cost from using
the technology. Still, this does not guarantee a welfare-improving role for the device: For
1 ≤ λ < λ, equilibrium period-1 utility is strictly lower than if no commitment devices
were available. Only as λ surpasses λ does the commitment technology result in a welfare
increase.

The threshold λ depends on θ, the curvature of the production function. In the limit
case when θ = 0 (so that this is an endowment economy), the commitment technology
always generates a welfare loss, no matter how efficient it is. As the production function
becomes closer to linear, the threshold λ decreases towards 1. In the limit, as λ becomes
unboundedly large, committing is free, and individuals are better off in equilibrium (as
there is in fact no dynamic inconsistency at all). Cost-free commitment was a key assump-
tion in Laibson’s (1997) analysis, which concluded a positive welfare role for commitment
devices in a production economy.

An intuition for why commitment lowers welfare is the following. When a fraction of
the population acquires the ability to pre-commit to period-1 optimal plans, the aggregate
demand function of period-3 goods shifts up. This shift is absorbed partially by an output
change and partially by an increase in the relative price of period-3 goods. This price
effect favors consumption of tempting period-2 goods, which worsens the prospects for
consumers who do not make use of the technology. This group of individuals is thus
hurt by the change in market conditions. In turn, agents who acquire commitment enjoy
a better consumption profile, but this is offset by the cost of acquiring self-control. In
equilibrium, they are indifferent between committing or not, which means that on net
they are also made worse off by the availability of commitment devices.

9The fact that prices do not enter this indifference level is due to the logarithmic utility assumption.
With a more general specification (for instance, CRRA utility), the indifference value γ will depend on the
intertemporal price q. Multiple equilibria will be possible, with different levels of use of the commitment
technology. This is studied in companion work.
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The less curvature the production function has, the more the demand shift is absorbed
by changes in aggregate output rather than prices; hence, the smaller the welfare loss
for non-committed consumers. In the endowment economy case, all the demand change
impact goes into prices. However, only in the linear limit does the welfare loss disappear.

Alternatively, consider consumption profiles (c2, c3) and think of an agent as being
in either of two "states": committed or non-committed. Committed individuals compete
for period-1-optimal (c2, c3) pairs. Switching people from non-committed to committed
intensifies this competition. Only those who move from one state to the other experience
a utility gain, while everyone else is made worse off. But these gains are eliminated, in
equilibrium, by the cost of switching states.

Imagine the extreme situation in which a given individual is the only self-controlled
person in an economy where everyone else is time-inconsistent. This agent will face a
favorable price profile in which the future goods are cheap due to other people’s excessive
impatience.10 If more agents acquired self-control, this individual would face increased
competition for future goods and suffer a welfare decrease. However, even as aggregate
conditions deteriorated due to more self-controlled competitors entering the market, the
decision-maker would still value commitment and want to incur a cost to achieve it.

The anticipated preference change always makes individuals willing to bear a cost to
pre-commit, given prices. But the welfare effects from providing commitment depend on
how doing so affects equilibrium prices. This explains why self-control devices will be used
in equilibrium whenever they are available, even when they should not be.

Finally, a corollary from this analysis is that if free commitment devices are offered
to a fraction of the population, agents fortunate enough to benefit from the giveaway
will experience a welfare increase while the rest will be made strictly worse off. Only if
the production function is linear will the intervention not harm those agents who are not
reached by it.

4 Conclusions

This paper proposes studying the general equilibrium welfare implications from the avail-
ability of commitment devices, and characterizes equilibrium prices and portfolio holdings
when liquid and illiquid assets exist.

When tastes change over time, the link between behavior and welfare is severed as
action is rationalized by a set of preferences but evaluated with another. The obvious
choice-theoretic intuition is that this is true whenever the action timing differs from the
reference point. This research reveals that a version of this divergence can translate to the
link between choice and the preferences rationalizing it. The fact that individuals display
a demand for commitment devices does not imply a welfare-improving role for them. On
the contrary, a benevolent policy maker, even if tempted to do so, should refrain from
satisfying this demand.

10Thinking of this situation in terms of split selves, an interpretation of pre-committing is that the
person’s early self is active in trading. Instead, if an individual is not pre-committed, her future self is
the one arranging for inter-temporal trades. From trade theory, current selves benefit from trading with
other people’s future selves and vice-versa.
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A natural next step would be to extend the analysis to allow for agent heterogeneity.
In related work I show that if agents are homogeneous in β but possibly heterogeneous in
all other respect, an inefficiency from introducing commitment devices persists. Whether
such an interventionist policy leads to welfare worsening or improvement will depend on
parameter values. The assumption that might lead to a reversal of the welfare proposition
is heterogeneity in β, given that the equilibrium without commitment devices is not
efficient in that case. If agents differed in their degrees of time-inconsistency, trading
in commitment devices might achieve gains for all.

The analysis of illiquid assets when individuals face both changing preferences and
time-inconsistency sheds light on the relation between commitment and risk. The evalua-
tion of commitment devices hinges on the probability distribution of the states of nature
in which they impose binding constraints on their future actions. Building on this intu-
ition, an open research avenue is to study portfolio decisions when assets have different
dividend processes and varying liquidity.
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5 Appendix.

5.1 Proposition 1.

Proposition 1. Equilibrium prices admit no dynamic arbitrage: q13 = q23.
Proof. Suppose q13 > q23. For the assets market to clear in period 1, some agents

must carry a positive amount of re-tradeable long-term liquid assets into period 2. Let
wi
2 = ai12+ q23a

i
13 denote the period-2 value of the end-of-period-1 liquid portfolio carried

by any such agent. The period-1 cost of this portfolio is ωi2 ≡ ai12 + q13a
i
13, since the

period-1 price of short-term liquid assets is normalized to 1. Then acquiring ai12 = ωi2
costs the same, and yields wi0

2 = ωi2 resources in period-2 Since a
i
13 > 0, q13 > q23 implies

that ωi2 > wi
2.

To see that this increases period-1 welfare, suppose that this agent was liquidity-
constrained for δ ≤ δ∗ ∈

¡
δ, δ
¢
. It is clear that the new cutoff δ∗0 associated to wi0

2 = ωi2
will be smaller than δ∗. Therefore for δ ≤ δ∗0, the increase in ωi2 implies an increase in
period-2 consumption; while for δ ≥ δ∗0, the increase implies an increase in both period-2
and period-3 consumption (since both goods are normal from the period-2 perspective).
Therefore period-1 utility must increase by carrying wi0

2 = ωi2. Even though this need not
be the optimal re-assignment of period-1 resources, this guarantees that maximal period-1
utility will also increase by switching portfolios.

The implication is that when q13 > q23, every agent must hold ai13 = 0 in an optimal
plan, hence aggregate demand for the re-tradeable long-term asset is null and falls short
of the aggregate supply (1− α) c3 > 0.

For q13 < q23, repeat the same argument for agents who hold ai12 > 0. Any such
agent will carry an amount wi

2 = ai12 + qai13 of liquid wealth into period-2, for a cost of

ωi2 = ai12 + q13a
i
13. Acquiring ai13 =

ωi2
q13

then costs the same and yields wi0
2 =

q23
q13

ωi2 =
q23
q13

ai12 + q23a
i
13 > wi

2. As before, these additional period-2 resources, together with the
normal goods assumption implicit in strict concavity of u (c), imply that for each δ, either
c2 (δ), c3 (δ), or both, will increase, while none of the two will decrease. This implies
that period-1 utility will be higher with the alternative portfolio choice, even without
considering an optimal re-assignment of wealth. The conclusion is that at q13 > q23,
period-1 aggregate demand for short term assets will be null, thereby falling short of the
aggregate supply, equal to c2 > 0.

5.2 Solution to the consumer problem.

In this sub-section, I lay out the full solution to the individual portfolio decision prob-
lem. In doing so, I will establish Lemma 1, and Propositions 2, 3, 4 and 5. Other
characterization results which are not included in the main body of the paper are here for
completeness.

5.2.1 Lemma 1.

Lemma 1. Suppose that k > 0. For δ ≤ eδ, the implemented choice is c2 = w2, c3 = k;
while for δ > eδ, (5) holds with equality and the implemented consumption is c2 < w2, c3 >
k.
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Proof. The period-2 Lagrangian function is

L (c2, c3, λ, µ) = u (c2) + βδu (c3) + λ
¡
wi
2 + qki − c2 − qc3

¢
+ µ (c3 − k) .

The first-order and Kuhn-Tucker conditions for this problem are

u0 (c2)− λ = 0, βδu0 (c3)− λq23 + µ = 0,

µ ≥ 0, µ (c3 − k) .

Under the assumption that µ = 0, the optimal c3 purchase is strictly increasing in δ.
This monotonicity implies that for δ < eδ the unconstrained-optimal c3 purchase is smaller
than k. Since this is not feasible, the constrained-optimal period-2 choice is to behave
hand-to-mouth at any such δ, and

u0
¡
wi
2

¢
u0 (k)

>
βδ

q

will be true. When δ > eδ, instead, µ = 0 yields u0(c2)
u0(c3)

= βδ
q at the optimal choice.

Remark 1 Under strict concavity, period-2 and period-3 consumption goods are both nor-
mal goods from the period-2 perspective. Let ωi2 = wi

2 + qki denote the total amount of
resources available in period 2 (both liquid and illiquid). Then for all δ, an increase in
ωi2 results in an increase in c2 (δ), c3 (δ), or both, and a decrease in none. Since period-1
utility is strictly increasing in c2 (δ) and c3 (δ) for all δ, the conclusion is that an in-
crease in ωi2 always results in an increase in period-1 utility. Strict concavity ensures that
money-burning is never optimal.

5.2.2 Existence of solution to the period-1 problem.

Proposition 11 The correspondence of maximizers (w2, k) of problem (4) is non-empty,
compact-valued, and upper hemi-continuous.

Proof. Existence follows from the Maximum Theorem (see Stokey and Lucas, 1989).
Clearly the period-2 problem always has a solution; the Theorem implies that the policy
rules c2 (δ) and c3 (δ) are upper hemi-continuous in (w2, k, δ, q); strict concavity of u (·)
makes them single-valued (and hence continuous). As a composition of continuous func-
tions, so is u (c2 (δ))+δu (c3 (δ)) for each value of δ (see, for instance, Apostol, 1974, The-
orem 4.17). The objective function inherits continuity in (w2, k, q) from being a weighted
average of continuous functions (see, for instance, Apostol, 1974, Theorem 7.39). The
choice set is a budget set — a non-empty, compact-valued and continuous correspondence.
Therefore the conditions for the Theorem are satisfied and the proposition follows.

In a sequential model with more than 3 periods, existence of the solution will hinge
on choosing the right tie-breaking rule whenever more than 1 alternative are optimal in
a given period (see Gul and Pesendorfer 2004, Peleg and Yaari 1973). Existence will be
guaranteed, generically, by adopting a strategic approach to the problem (as in Phelps
and Pollack, 1968) and imposing curvature assumptions on the utility function (see Harris
and Laibson 2001a).
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5.2.3 Characterization of optimal choice.

It is convenient to change the notation to emphasize the dependence of some values on
prices and initial wealth. For a given wealth, liquid and illiquid assets prices (w, q, p), let

VFC (w; p) ≡ VFC , VFF (w; q) ≡ VFF ,

VPC (δ, q, p) ≡ V (δ) , VPC (q, p) ≡ VPC .

Also, let k (δ; q, p) denote the unique value of illiquid assets k which, given δ, sets

u0 (w − pk)

u0 (k)
=

βδ

q
.

And finally, let k∗ (p) denote the unique level that satisfies u0(w−pk)
u0(k) = E[δ]

p .
The solution procedure is the following. First I show that the consumer’s period-1

choice is solved by three possible illiquid asset strategies: k = 0, k = k∗ (p), or k =
k (δ; q, p) for δ ∈

£
δ, δ
¤
. These asset levels do not exhaust feasible alternatives, but the

optimal choice must belong to that set. Second, I derive conditions for k = k (δ; q, p) for
δ ∈

£
δ, δ
¤
being a candidate for an optimum.

A. Period-1 choice set.

The set of feasible illiquid assets in period 1 is the interval
h
0, wp

i
. If δ > 0, then

k (δ; p, q) > 0. Under the assumption that limc→0 u0 (c) =∞, k
¡
δ; p, q

¢
< w

p for any finite
q. Let k∗ (p) denote the solution to the first-best deterministic consumption problem
VFC (w; p) given price p.

Lemma 2 If ρ 6= 1, the period-1 optimal k ∈
©£
k (δ; p, q) , k

¡
δ; p, q

¢¤
∪ {0, k∗ (p)}

ª
.

Proof. Suppose k ∈ (0, k (δ; p, q)). Then the period-2 choice is never liquidity-
constrained. If p > q, more period-2 resources are achieved by setting k = 0, without
affecting the profile of liquidity constrains. By Remark 1, this implies that period-1 utility
increases. Therefore, k ∈ (0, k (δ; p, q)) is not optimal. If p < q, then more period-2 re-
sources are achieved by setting k = k (δ; p, q). Again, this yields an increase in available
period-2 resources while still never liquidity-constraining period-2 choice. This must result
in a period-1 utility increase, and optimality of k ∈ (0, k (δ; p, q)) is ruled out again.

k∗ (p) implements the first-best deterministic consumption profile. By construction,
k
¡
δ; p, q

¢
also implements a deterministic consumption profile, since, at this k level, the

period-2 choice is liquidity-constrained for every realized δ. However, by definition of
k∗ (p), whenever k

¡
δ; p, q

¢
6= k∗ (p), the period-1 value from implementing k = k

¡
δ; p, q

¢
must be strictly smaller than VFC (w; p). Therefore,

£
k (δ; p, q) , k

¡
δ; p, q

¢¤
may not exhaust

the set of candidates for an optimal period-1 choice.
Specifically, when k

¡
δ; p, q

¢
< k∗ (p), true if and only if ρ < ρ ≡ E[δ]

βδ
, the period-1

problem could be solved by k = k∗ (p). No k ∈
¡
k
¡
δ; p, q

¢
, k∗ (p)

¢
or k > k∗ (p) could ever

be optimal, since any such k would implement a deterministic consumption profile, but
with lower payoff than VFC (w; p).

Finally, let k
¡
δ; p, q

¢
> k∗ (p). Any k > k

¡
δ; p, q

¢
would implement a determinis-

tic consumption profile, but with excessive period-3 consumption, and therefore would be
dominated by k = k

¡
δ; p, q

¢
.
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Choosing k ∈ (0, k (δ; p, q)) would be like "burning money", which is never optimal
due to the strict concavity plus time separability assumptions.

In the borderline case ρ = 1, all asset levels k ∈ [0, k (δ; p, q)] are indistinguishable,
since they imply exactly the same implemented period-2 policy rules, and hence the same
period-1 value VFF (w; q). The period-1 problem, can be thought of as only including
k = 0 as an alternative, without loss of generality given the continuum of consumers.

Notice that if k∗ (p) ∈
¡
k (δ; p, q) , k

¡
δ; p, q

¢¢
, then k = k∗ (p) would not yield period-1

expected utility of VFC (w; p). The reason is that if k∗ (p) units of illiquid assets were
acquired in period 1, there would exist, by construction, a level bδ ∈ £δ, δ¤ such that the
period-2 choice is liquidity constrained only for δ < bδ. But then for δ > bδ, the period-2
optimal decision would involve consuming less than total liquid wealth in period 2, and
more than k∗ (p) in period 3. The implemented consumption profile would thus depend
on δ, and therefore would be stochastic. Hence the period-1 utility from k = k∗ (p) would
differ from VFC (w; p), which presupposes deterministic consumption.

B. Candidate solutions as a function of prices.

The next step is to link the set of solutions to prices. Let ρ ≡ E[δ]

δβ
.

Proposition 12 The set of candidates for solutions to the period-1 portfolio problem
depends on prices p and q as follows:

1. If ρ < 1, then any optimal k satisfies

k ∈ {k (δ∗) : δ∗ solves VPC} or k = k∗ if p
q < ρ

k ∈ {k (δ∗) : δ∗ solves VPC} if ρ ≤ p
q < 1

k = 0 or k ∈ {k (δ∗) : δ∗ solves VPC} if 1 < p
q

2. If ρ > 1, then any optimal k satisfies

k ∈ {k (δ∗) : δ∗ solves VPC} or k = k∗ if p
q < 1

k = 0, k ∈ {k (δ∗) : δ∗ solves VPC} or k = k∗ if 1 < p
q ≤ ρ

k = 0 or k ∈ {k (δ∗) : δ∗ solves VPC} if ρ < p
q

Proof. First notice that when p
q ≤ 1, the value VFF (w; q) from implementing k = 0

is not relevant for the description of the period-1 problem. The reason is that at this price
configuration, k = k (δ; p, q) yields either a strict increase in period-2 resources (if p < q)
or no change at all (ρ = 1), without affecting the profile of period-2 liquidity constraints.
Hence VFF (w; q) ≤ V i

PC (w; p, q).
If ρ < 1, there are three relevant cases.

1. When p
q < ρ, k∗ (p) > k

¡
δ; p, q

¢
; therefore implementing k = k∗ (p) attains period-1

value VFC (w; p), which may be higher or lower than V i
PC (w; p, q). On the other

hand, since p < q, k = 0 could never be an optimal choice: Implementing k =
k (δ; p, q) yields an increase in period-2 resources without altering the set of period-
2 liquidity constraints; and such an increase is period-1 valuable.
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2. If ρ ≤ p
q ≤ 1, V i

PC (w; p, q) must be the period-1 value function. First, because

k∗ (p) < k
¡
δ; p, q

¢
, implementing k = k∗ (p) will not attain VFC (w; p), and second,

because VFF (w; q) is not relevant when
p
q ≤ 1, as discussed above.

3. When p
q > 1 > ρ, VFC (w; p) is not relevant for the same reasons as (2). But

now implementing k = k (δ; p, q) yields strictly lower value than k = 0, because the
latter achieves a higher level of period-2 resources than the former, while both imply
the same profile of liquidity constraints. Therefore VFF (w; q) ≤ V i

PC (w; p, q) is no
longer guaranteed.

If ρ > 1, there are three relevant cases.

1. When p
q ≤ 1, k∗ (p) > k

¡
δ; p, q

¢
; hence VFC (w; p) is a candidate for period-1 utility,

achieved by k = k∗ (p); but VFF (w; q) is not relevant.

2. When 1 < p
q < ρ, the first inequality implies that VFF (w; q) ≤ V i

PC (w; p, q) need
not be true, and therefore VFF (w; q) is a candidate value function. The second
inequality implies that VFC (w; p) also is.

3. When p
q ≥ ρ > 1, k∗ (p) < k

¡
δ; p, q

¢
implies that VFC (w; p) is no longer relevant,

since it will not be the period-1 expected value from implementing k = k∗ (p). On
the other hand, p

q > 1 implies that VFF (w; q) is still a candidate value.

When p = q, the consumer is indifferent between any value k ∈ [0, k (δ)]. Any such
value leaves the period-2 choice unconstrained for any realization of δ, and has no effect
on the amount of resources passed on.

Notice that, by construction, program VPC only implies illiquid asset values on the
interval

£
k (δ) , k

¡
δ
¢¤
. These are the set of choices that will liquidity-constraint the period-

2 decision for δ ≤ eδ, given a target eδ ∈ £δ, δ¤. But this need not coincide with the set
of feasible choices. From the period-1 budget constraint, the feasible set of illiquid asset
purchases is [0, w/p].

C. Solution to the partial commitment problem.

To characterize the solution to VPC we compute the first order conditions associated
to that program.

Proposition 13 The first order condition of program VPC is satisfied at δ∗ ∈
£
δ, δ
¤
if

and only if

ψ (δ∗) + (1− ρ)

Ã
βF (δ∗) +

Z δ

δ∗
µ (β, δ; q)

u0 (c2 (δ))

u0 (c2 (δ
∗))

f (δ) dδ

!
= 0, (10)

where µ (β, δ; q) ≡ q2u00(c2(δ))+β2δu00(c3(δ))
βq2u00(c2(δ))+β2δu00(c3(δ))

> 1 and c2 (δ) solves problem (3).
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Proof. The objective function is:

V (δ∗; p, q) ≡ u (w − pk (δ∗; p, q)) · F (δ∗) +
Z δ∗

δ
δf (δ) dδ · u (k (δ∗; p, q))

+

Z δ

δ∗
(u (c2 (δ)) + δu (c3 (δ))) f (δ) dδ.

where, c2 (δ) and c3 (δ) solve problem (3) for each δ.
Notice that, by construction, k (δ∗; p, q) = c3 (δ

∗), and w − pk (δ∗; p, q) = c2 (δ
∗).

Therefore, the first term in the objective function can be re-written in terms of c2 (δ∗)
and c3 (δ

∗). Using this, the first order condition is the derivative with respect to δ∗ :

∂

∂δ∗
{u (c2 (δ∗))F (δ∗) +E [δ| δ ≤ δ∗]u (c3 (δ

∗))F (δ∗)}+

+
∂

∂δ∗

(Z δ

δ∗
(u (c2 (δ)) + δu (c3 (δ))) f (δ) dδ

)
= 0.

Let ω2 ≡ w+ (q − p) k (δ∗) denote the market value of period-2 resources, imputing a
price q to illiquid assets. When δ > δ∗, the consumer acts as if total available resources
were ω2, ignoring the fact that some of this is in the form of illiquid assets. Using
c3 (δ

∗) = k (δ∗), ω2 = w + (q − p) c3 (δ
∗).

∂ω2
∂δ∗

= (q − p)
∂c3 (δ

∗)

∂δ∗
.

The derivative of the integrand term is

∂ (u (c2 (δ)) + δu (c3 (δ)))

∂δ∗
= u0 (c2 (δ))

∂c2 (δ)

∂δ∗
+ δu0 (c3 (δ))

∂c3 (δ)

∂δ∗
. (11)

Because δ > δ∗, c2 (δ) and c3 (δ) only depend on δ∗ through its effect on total resources
ω2. In other words, conditional on δ > δ∗, acquiring illiquid assets only generates a capital
effect — a capital gain if q > p, and a loss otherwise. This fact implies that the chain rule
can be applied on derivative (11) :

∂ (u (c2 (δ)) + δu (c3 (δ)))

∂δ∗
=

µ
u0 (c2 (δ))

∂c2 (δ)

∂ω2
+ δu0 (c3 (δ))

∂c3 (δ)

∂ω2

¶
∂ω2
∂δ∗

=

µ
u0 (c2 (δ))

∂c2 (δ)

∂ω2
+ δu0 (c3 (δ))

∂c3 (δ)

∂ω2

¶
(q − p)

∂c3 (δ
∗)

∂δ∗
.

Since the Euler equation holds with equality at δ > δ∗, ∂c2(δ)∂ω and ∂c3(δ)
∂ω can be backed

up by the implicit function formula, to get

∂c2 (δ)

∂ω2
=

βδu00 (c3)

qu00 (c2) + βδu00 (c3)
,
∂c3 (δ)

∂ω2
=

qu00 (c2)

qu00 (c2) + βδu00 (c3)
.

Plugging into (11),

∂(u(c2(δ))+δu(c3(δ)))
∂δ∗ = βδ∗u00(c3(δ))u0(c2(δ))+δq23u00(c2(δ))u0(c3(δ))

qu00(c2(δ))+βδ∗u00(c3(δ))
(q − p) ∂c3(δ

∗)
∂δ∗ .
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Using the Euler equation to replace for u0(c2(δ))
u0(c3(δ))

, and simplifying terms, this becomes

∂(u(c2(δ))+δu(c3(δ)))
∂δ∗ = qu00(c2(δ))+β2δu00(c3(δ))

qu00(c2(δ))+βδu00(c3(δ))
1−ρ
β u0 (c2 (δ)) q

∂c3(δ
∗)

∂δ∗ .

This result, applied to the first order conditions, yields

u0 (c2 (δ
∗))F (δ∗)

∂c2 (δ
∗)

∂δ∗
+ u0 (c3 (δ

∗))E [δ| δ ≤ δ∗]F (δ∗)
∂c3 (δ

∗)

∂δ∗

+
1− ρ

β
q
∂c3 (δ

∗)

∂δ∗

Z δ

δ∗

qu00 (c2 (δ)) + β2δu00 (c3 (δ))

qu00 (c2 (δ)) + βδu00 (c3 (δ))
u0 (c2 (δ)) f (δ) dδ = 0.

Using the implicit function formula on the Euler equation, ∂c2(δ
∗)

∂δ∗ = ∂c2(δ
∗)

∂c3(δ
∗)

∂c3(δ
∗)

∂δ∗ .
Using this,

u0 (c2 (δ
∗))F (δ∗)

∂c2 (δ
∗)

∂c3 (δ
∗)

∂c3 (δ
∗)

∂δ∗
+ u0 (c3 (δ

∗))E [δ| δ ≤ δ∗]F (δ∗)
∂c3 (δ

∗)

∂δ∗

+
1− ρ

β
q
∂c3 (δ

∗)

∂δ∗

Z δ

δ∗

qu00 (c2 (δ)) + β2δu00 (c3 (δ))

qu00 (c2 (δ)) + βδu00 (c3 (δ))
u0 (c2 (δ)) f (δ) dδ = 0.

From the period-1 budget constraint, and by definition of c2 (δ∗) , c3 (δ∗),

c2 (δ
∗) + pc3 (δ

∗) = w ⇒ ∂c2 (δ
∗)

∂c3 (δ
∗)
= −p.

With this, and re-arranging,µ
E [δ| δ ≤ δ∗]− p

u0 (c2 (δ
∗))

u0 (c3 (δ
∗))

¶
u0 (c3 (δ

∗))F (δ∗)
∂c3 (δ

∗)

∂δ∗

+
1− ρ

β
q
∂c3 (δ

∗)

∂δ∗

Z 1

δ∗

qu00 (c2 (δ)) + β2δu00 (c3 (δ))

qu00 (c2 (δ)) + βδu00 (c3 (δ))
u0 (c2 (δ)) f (δ) dδ = 0.

Which becomes, with some algebra,µ
E [δ| δ ≤ δ∗]

δ∗
− ρβ

¶
u0 (c3 (δ

∗)) δ∗F (δ∗)
∂c3 (δ

∗)

∂δ∗

+
1− ρ

β
q
∂c3 (δ

∗)

∂δ∗

Z δ

δ∗

qu00 (c2 (δ)) + β2δu00 (c3 (δ))

qu00 (c2 (δ)) + βδu00 (c3 (δ))
u0 (c2 (δ)) f (δ) dδ = 0.

The positive common factor ∂c3(δ
∗)

∂δ∗ δ∗u0 (c3 (δ
∗)) can be taken out, so that the first

order conditions are

∂c3 (δ
∗)

∂δ∗
δ∗u0 (c3 (δ

∗))

µµ
E [δ| δ ≤ δ∗]

δ∗
− ρβ

¶
F (δ∗)

+ (1− ρ)
q

βδ∗

Z δ

δ∗

qu00 (c2 (δ)) + β2δu00 (c3 (δ))

qu00 (c2 (δ)) + βδu00 (c3 (δ))

u0 (c2 (δ))

u0 (c3 (δ
∗))

f (δ) dδ

!
= 0.
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Finally, since u0(c2(δ∗))
u0(c3(δ∗))

= βδ∗

q , we get

∂c3 (δ
∗)

∂δ∗
δ∗u0 (c3 (δ

∗)) (ψ (δ∗)

+ (1− ρ)

Ã
βF (δ∗) +

Z δ

δ∗

qu00 (c2 (δ)) + β2δu00 (c3 (δ))

qu00 (c2 (δ)) + βδu00 (c3 (δ))

u0 (c2 (δ))

u0 (c2 (δ
∗))

f (δ) dδ

!!
= 0.

Or, letting µ (β, δ; q) ≡ qu00(c2(δ))+β2δu00(c3(δ))
βq223u

00(c2(δ))+β2δu00(c3(δ))
> 1, define

ζ (δ∗) ≡ ∂c3 (δ
∗)

∂δ∗
δ∗u0 (c3 (δ

∗)) ,

P (δ∗) ≡
Z 1

δ∗
µ (β, δ; q)

u0 (c2 (δ))

u0 (c2 (δ
∗))

f (δ) dδ,

ξ (δ∗) ≡ ψ (δ∗) + (1− ρ) (βF (δ∗) + P (δ∗)) . (12)

And the first order conditions require that the product of ζ (δ∗) with ξ (δ∗) be null:

ζ (δ∗) · ξ (δ∗) = 0. (13)

But ζ (δ∗) > 0. Clearly, δ∗ and u0 (c3 (δ
∗)) are strictly positive. ∂c3(δ

∗)
∂δ∗ also is, since

c3 (δ
∗) = k (δ∗) is strictly increasing in δ∗. Therefore the first order conditions are satisfied

if and only if ξ (δ∗) = 0. This establishes the Proposition.

Corollary 1 An interior optimum of (8) must involve

E [δ| δ ≤ δ∗]− βδ∗ > 0⇔ p > q.

To see this, suppose p < q, then the second term in ξ (δ∗) is positive; hence ξ (δ∗) = 0
can only be satisfied if the first one is negative:

E [δ| δ ≤ δ∗]

δ∗
< β. (14)

Conversely, if p > q, then the second term will be negative; ξ (δ∗) = 0 requires the
first term to be positive, and the sign of (14) is reversed.

The next step is to characterize second order conditions. Program VPC need not be
a quasiconcave program, and first order conditions need not identify even local maxima.
The next Proposition shows that if at a critical point δ∗ associated to p > q, ψ (δ∗) is
increasing in δ∗, the first order conditions will identify a local minimum, rather than
maximum. To see why, notice that a sufficient condition for ψ (δ∗) to be increasing is that
E[ δ|δ≤δ∗]

δ∗ is; suppose this was true. If the threshold δ∗ was increased by a small ε > 0, the
wedge between period-1 desired and period-2 implemented marginal utility ratios would
become larger, hence the self-control concern, too. This implies that if illiquid assets
were desirable at δ∗, they would be even more so at δ∗ + ε. But then δ∗ could not be a
utility-maximizing cutoff value given price ρ; it must be a local minimizer.
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Lemma 3 When p < q, (1− ρ) (βF (δ∗) + P (δ∗)) is positive and strictly decreasing in
δ∗; while p > q implies that it is negative and strictly increasing.

Proof. This follows from the fact that βF (δ∗)+P (δ∗) is positive and strictly decreas-
ing in δ∗:

∂

∂δ∗
{βF (δ∗) + P (δ∗)} = −u

00 (c2 (δ
∗))

u0 (c2 (δ
∗))

∂c2 (δ
∗)

∂δ∗
P (δ∗)− (µ (β, δ∗; q)− β) f (δ∗) < 0.

Because ∂c2(δ
∗)

∂δ∗ < 0 and u00 (c2 (δ
∗)) < 0, while all other terms are positive, the first

term is negative. The second one also is, since f (δ∗) > 0 and µ (β, δ∗; q) > 1 > β. The
Lemma then follows from combining this with the sign of (1− ρ).

Proposition 14 Let δ∗ be a critical point of program VPC.
Suppose p < q. If ψ (δ∗) is decreasing in δ∗, δ∗ is a local maximum.
Suppose p > q. If ψ (δ∗) is increasing in δ∗, δ∗ is a local minimum.

Proof. The second derivative of the left-hand side of (13) with respect to δ∗ is

∂

∂δ∗
{ζ (δ∗) · ξ (δ∗)} = ξ (δ∗)

∂ζ (δ∗)

∂δ∗
+ ζ (δ∗)

∂ξ (δ∗)

∂δ∗
= ζ (δ∗)

∂ξ (δ∗)

∂δ∗
.

The last equality uses the fact that the first order condition is exactly ξ (δ∗) = 0. Since
ζ (δ∗) > 0, the sign of this derivative is determined by the sign of ∂ξ(δ∗)

∂δ∗ .
The Proposition then follows immediately from Lemma 3. ψ (δ∗) is the first term

in (12), while (1− ρ) (βF (δ∗) + P (δ∗)) is the second term. When p < q, the latter is
decreasing in δ∗. If, at a critical point δ∗, the former also is, then ξ (δ∗) will be locally
decreasing around that critical point, and hence this will identify a local maximum of the
objective function.

Conversely, when p > q the second term in (12) is strictly increasing, by the previous
lemma. So if the first one also is at the critical point δ∗, this will be a local minimum of
the objective function.

5.3 Proposition 2.

Proposition 2. Under Assumption C, for each q a unique threshold ep exists. When the
price p of illiquid assets verifies p ≤ ep, full commitment is optimal, while if p ≥ ep, full
flexibility is. ep is strictly larger than q, increasing in q and decreasing in β.

Proof. The proof of this proposition proceeds by iteratively eliminating candidate
solutions to the consumer’s period-1 problem.

Lemma 4 k ∈
¡
k (δ; p, q) , k

¡
δ; p, q

¢¢
cannot be a solution to the period-1 problem.

Proof. Suppose it was. This is equivalent to stating that program V i
PC (w; p, q) has

interior solution δ∗ ∈
¡
δ, δ
¢
; such an interior optimum must perforce be a critical point.

By Assumption C, ψ (δ∗) is positive. From Corollary 1, this implies that δ∗ can be a
critical point only if accompanied by p > q. By Assumption c, ψ (δ∗) is increasing. By
Proposition 15, the last two facts imply that δ∗ is a local minimum, and therefore not
optimal.
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This reduces the set of solution candidates to k ∈
©
0, k∗ (p) , k (δ; p, q) , k

¡
δ; p, q

¢ª
.

The next step is to rule out k
¡
δ; p, q

¢
; we can do so if and only if k∗ (p) > k

¡
δ; p, q

¢
.

To see this, suppose that the inequality was true. Then k∗ (p) would liquidity-constrain
the period-2 choice for all realizations of δ; thereby indeed implementing a deterministic
consumption profile. k

¡
δ; p, q

¢
also implements a deterministic consumption profile. Of

the two, k∗ (p) is optimal by definition.
Conversely, suppose that k∗ (p) < k

¡
δ; p, q

¢
. Then k∗ (p) would fail to implement a

deterministic consumption profile, and it would hence cease to be relevant for the solution
of the consumer’s problem.

For the proof it is convenient to define the price bp (q) such that VPC (δ; bp (q) , q) =
VPC

¡
δ; bp (q) , q¢. It is also useful to recall that ep (q) is the unique price that sets VFC (w; p) =

VFF (w; q), given q, and that ρ ≡ E[δ]

δβ
. Finally, Assumption C states that ψ (δ∗) is positive

and increasing, which yields E[δ]

δ
> β. Notice this implies ρ > 1.

Lemma 5 p < q ⇒ V i
PC (w; p, q) = VPC

¡
δ; p, q

¢
> VPC (δ; p, q) .

Proof. Under Assumption C, the derivative ξ (δ∗) is easily verified to be strictly
positive at all δ∗ when p < q. Therefore the optimal choice for program V i

PC (w; p, q) is
k
¡
δ; p, q

¢
.

Lemma 6 ρ > ρ⇒ V i
PC (w; p, q) = VPC

¡
δ; p, q

¢
> VPC

¡
δ; p, q

¢
.

Proof. Consider the objective function of program V i
PC (w; p, q) and evaluate its first

derivative at δ∗ = δ. The sign of this derivative is given by the sign of

ξ
¡
δ
¢
=

E [δ]

δ
− β + (1− ρ)β =

E [δ]

δ
− ρβ.

When ρ > ρ, this derivative is negative and δ = 1 can not be optimal; undercutting
to δ∗ = δ − ε improves period-1 expected utility. Since under F this program always has
a corner solution, we conclude that δ = 0 is optimal, and V i

PC (w; p, q) = VPC (δ; p, q) >
VPC

¡
δ; p, q

¢
.

Corollary. 1 < bp(q)
q < ρ.

Lemma 7 ep(q)
q ≤ ρ.

Proof. To obtain a contradiction, I show that ep(q)
q > ρ implies bp(q)

q > ρ. Since the
latter was already proven false, the contradiction follows.

So let ep(q)q > ρ and notice that ep(q)q > ρ means that at the price ratio p
q = ρ > 1,

VFC (w; qρ) > VFC (w; ep (q)) = VFF (w; q) > VPC (δ; qρ, q) . (15)

The first inequality follows from the fact that VFC (w; p) is decreasing in p, and the
assumption ep(q)

q > ρ. The last inequality follows from the fact that VFF (w; q) and
VPC (δ; qρ, q) both presuppose no commitment role for illiquid assets, since the period-
2 choice is never liquidity-constrained. At p > q, carrying k = k (δ; p, q) thus yields a
gratuitous decrease in period-2 available resources, and hence a period-1 welfare loss.
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Notice next that at price ρ = ρ, k∗ (p) = k
¡
δ; p, q

¢
; hence

VPC
¡
δ; qρ, q

¢
= VFC (w; qρ) .

Combining this with the string of inequalities (15), we conclude that at ρ = ρ,

VPC
¡
δ; qρ, q

¢
> VFF (w; q) > VPC (δ; qρ, q) .

Fix q. Decreasing p to any value p ∈ [q, qρ] would only increase VPC
¡
δ; p, q

¢
while

keeping VFF (w; q) unchanged; and while keeping the inequality VFF (w; q) ≥ VPC (δ; p, q)
still true. Hence bp (q) can not lie in the interval [q, qρ]. But bp (q) > q was shown above.
And yields the absurd conclusion that bp(q)q > ρ, as desired.

Lemma 8 1 ≤ ep(q)
q .

Proof. Suppose not. Then the following chain of inequalities is true:

VFC (w; ep (q)) = VFF (w; q) < VPC (δ; ep (q) , q) < VPC
¡
δ; ep (q) , q¢ . (16)

The first one follows from the contradictory assumption that ep(q)
q < 1. This implies

that carrying k = k (δ; p, q) yields a capital gain, compared to k = 0, without affecting
the profile of liquidity constraints — and this results in a period-1 utility gain. The second
inequality was shown to be true when proving that 1 ≤ bp(q)

q .

But (16) is absurd, since VFC (w; p) > VPC
¡
δ; p, q

¢
is always true when p

q ≤ ρ, andep(q)
q ≤ ρ has already been established.

Putting these results together:

ρ < 1 : VFC (w; p) > VPC
¡
δ; p, q

¢
> VPC (δ; p, q) > VFF (w; q) .

The first inequality follows from ρ < p < q < ρ; the following two, from p < q.

1 ≤ ρ < ep(q23)
q23

: VFC (w; p) > VFF (w; q) > VPC (δ; p, q) .

The first one follows from ρ < ep(q)
q , and the second one, from p > q.

In addition, VFC (w; p) > VPC
¡
δ; p, q

¢
follows too, from ρ < ep(q)

q ≤ ρ.

ep(q23)
q23

< ρ < ρ : VFF (w; q) > VFC (w; p) > VPC
¡
δ; p, q

¢
.

The first one follows from ρ > ep(q)
q , and the second one from ρ < ρ.

In addition, VFF (w; q) > VPC (δ; p, q) follows from p > q.

ρ < ρ : VFF (w; q) > VPC (δ; p, q) > VPC
¡
δ; p, q

¢
.

The first inequality follows from p > q; the second one from ρ > ρ.

In addition, VFF (w; q) > VFC (w; p) follows from ρ > ep(q)
q .
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This concludes that for p < ep (q), period-1 maximized utility is VFC (w; p); while for
p > ep (q), it is VFF (w; q), thereby establishing that either k = k∗ (p) or k = 0 can be
optimal.

Next, notice that neither β nor q enter VFC (w; p); while p does not enter VFF (w; q).
Because both period’s consumption goods are normal, VFC (w; p) is strictly decreasing in
p while VFF (w; q) is strictly decreasing in q. This implies that the indifference price ep
must exist and be unique; and that it is increasing in q.

To see that VFF (w; q) is strictly decreasing in β, notice from the Euler equation
that decreases in β are necessarily accompanied by period-2 tilting of the implemented
consumption profile (which cannot remain unchanged in β), for each δ. Diagrammatically,
this means that as β falls below 1, the implemented consumption profile moves along the
budget line towards the c2-axis. This necessarily decreases period-1 utility, conditional on
each value of δ; hence it also does in expected terms. This finalizes the proof of Proposition
2.

5.4 Proposition 3.

Proposition 3. Under Assumption F, the optimal illiquid assets choice as a function of
the price ratio p

q is

k = k∗ if p
q ≤ ρ

k = k (δ∗) if ρ < p
q < 1

k = 0 if 1 < p
q ,

At p = q, the consumer is indifferent over all portfolios containing k ∈ [0, k (δ)].
For ρ < p

q < 1, the optimal k is decreasing in β.

Proof. Notice that under Assumption F, ψ (δ∗) < 0 and decreasing implies that
E[δ]

δ
− β < 0; hence ρ < 1. From Corollary 1, program VPC will have critical points only

if p < q. Moreover, from Lemma 3 any critical point of VPC will be a maximum; hence,
there can be a unique critical point.

Let ρ ≤ ρ < 1 and notice that ξ
¡
δ
¢
= E[δ]

δ
− ρβ ≥ 0. Because ρ < 1, Lemma 18

implies that ξ (δ∗) is strictly decreasing in δ∗. So ξ
¡
δ
¢
≥ 0 means that ξ (δ∗) > 0 holds

for all δ∗ < δ. Therefore, the solution to problem VPC must involve choosing cutoff value
δ; so that VPC = V

¡
δ
¢
. In addition, when ρ < ρ, VFC (w; p) > V

¡
δ
¢
; they coincide at

ρ = ρ. And this concludes that when ρ < ρ,

VFC (w; p) > VPC = V
¡
δ
¢
> V (δ) .

Finally, since ρ ≤ ρ < 1 implies V (δ) > VFF (w; q), it follows that the maximal
period-1 utility value is VFC (w; p). The optimal choice is k = k∗ (p).

Next, suppose ρ < p < q. At any such price ratio, k∗ (p) < k
¡
δ
¢
; hence VFC (w; p) is no

longer relevant for the consumer’s problem. In addition, p < q implies V (δ) > VFF (w; q).
Therefore, the solution to problem VPC is also the overall solution to the period-1 problem.
The optimal δ∗ is wholly identified by the necessary and sufficient first order conditions
ξ (δ∗) = 0.
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Since ∂ξ(δ∗)
∂ρ = − (βF (δ∗) + P (δ∗)) < 0, as ρ increases towards 1, the optimal δ∗

decreases towards δ, reaching it exactly at ρ = 1. To see this, notice that when ρ = 1,
ξ (δ) = 0, while for p < q, ξ (δ) > 0.

At ρ = 1, the solution to VPC involves k = k (δ). Any illiquid assets level k ∈ [0, k (δ)]
implies the same amount of period-2 resources, and the same profile of period-2 liquidity
constraints. Therefore, any such value is a solution to the period-1 problem.

Finally, for p > q problem VPC has no interior solution, and therefore it must be solved
by δ∗ = δ (this last statement follows from the decreasing property ∂δ∗

∂ρ < 0). However, at
p > q, VFF (w; q) > V (δ). Hence the global solution to the consumer’s problem is k = 0.

To see that the optimal k is decreasing in β, fix a δ∗ for which the first order condition
(10) is satisfied, and take derivatives with respect to β :

∂ξ (δ∗)

∂β
= −ρF (δ∗) + (1− ρ)

Z δ

δ∗

∂µ (β, δ; q)

∂β

u0 (c2 (δ))

u0 (c2 (δ
∗))

f (δ) dδ

+(1− ρ)

Z δ

δ∗
µ (β, δ; q)

∂

∂β

½
u0 (c2 (δ))

u0 (c2 (δ
∗))

¾
f (δ) dδ.

The derivatives are:

∂µ (β, δ; q)

∂β
= −u00 (c2 (δ))

q2

β2
q2u00 (c2 (δ)) + (2− β)βδu00 (c3 (δ))

(q2u00 (c2 (δ)) + βδu00 (c3 (δ)))
2 ,

∂

∂β

½
u0 (c2 (δ))

u0 (c2 (δ
∗))

¾
=

u0 (c2 (δ))

βu0 (c2 (δ
∗))

µ
q2u00 (c2 (δ))

q2u00 (c2 (δ)) + βδu00 (c3 (δ))
− q2u00 (c2 (δ

∗))

q2u00 (c2 (δ
∗)) + βδ∗u00 (c3 (δ

∗))

¶
.

The second one uses the implicit function theorem on the Euler equation to solve for
∂c2(δ)
∂β .
Using these two expressions, and with some algebra,

∂ξ (δ∗)

∂β
= −ρF (δ∗)

− (1− ρ)

Z δ

δ∗
µ (β, δ; q)

u0 (c2 (δ))

βu0 (c2 (δ
∗))

q2u00 (c2 (δ
∗))

q2u00 (c2 (δ
∗)) + βδ∗u00 (c3 (δ

∗))
f (δ) dδ

− (1− ρ) 2q2δ

µ
1

β
− 1
¶Z δ

δ∗

u0 (c2 (δ))

u0 (c2 (δ
∗))

u00 (c2 (δ))u00 (c2 (δ))

(q2u00 (c2 (δ)) + βδu00 (c3 (δ)))
2f (δ) dδ.

This is negative. So if δ∗ is a critical point, an increase in β makes ξ (δ∗) negative.
Under Assumption F, ξ (δ∗) is decreasing in δ∗. Therefore equality can only be restored
if δ∗ decreases.

This shows that at an interior optimum of VPC , δ∗ is decreasing in β. Hence, so is
k (δ∗). And this establishes Proposition 3.

5.5 Proposition 4.

Proposition 4. Assumption C holds if, for all δ, β ≤ 1+ε(δ)
2+ε(δ) and ε (δ) ≥ −1.

Assumption F holds if δf (δ) = 0 and, for all δ, either β ≥ 1+ε(δ)
2+ε(δ) or ε (δ) ≤ −1. The

boundary condition δf (δ) = 0 is necessary for F.
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Proof. Let Φ (δ∗) ≡ (E [δ| δ ≤ δ∗]− δ∗β)F (δ∗), so that ψ (δ∗) = Φ(δ∗)
δ∗ . The deriva-

tive is dΦ(δ∗)
dδ∗ = φ (δ∗), and since Φ (δ) = 0, Φ(δ∗)

δ∗

¯̄̄
δ∗=δ

= 0 (when δ = 0, this is also true by

L’Hôpital’s rule). When φ (δ) is increasing, Φ (δ∗) will be positive, increasing in convex.
Convexity implies that

Φ (δ∗)

δ∗
≥ Φ (δ) + (δ

∗ − δ)φ (δ)

δ∗
=

δ∗ − δ

δ∗
φ (δ) ,

and since φ (δ) = (1− β) δf (δ) ≥ 0, it follows that Φ(δ∗)
δ∗ is positive. To see that Φ(δ∗)

δ∗

is increasing, compute the derivative d
dδ∗

n
Φ(δ∗)
δ∗

o
= δ∗φ(δ∗)−Φ(δ∗)

δ∗2
. The numerator is non-

negative at δ∗ = δ, and increasing in δ∗. To see this, suppose that φ (δ∗) is differentiable,
then the derivative of the numerator reduces to δ∗φ0 (δ∗), which is positive if φ (δ∗) is
increasing.

The proof of the statement about F is identical, only with the signs reversed and using
φ (δ) = 0, which is ensured by the boundary condition δf (δ) = 0.

In the case of twice-differentiability of F (δ), φ0 (δ) = (1− β) δf 0 (δ) − (2β − 1) f (δ).
This is positive if

δf 0 (δ)

f (δ)
>
2β − 1
1− β

, (17)

zero if the two terms are equal, and negative otherwise. The conditions in Proposition 4
follow from re-arranging (17).

5.6 Proposition 5.

Proposition 5. Suppose δ = 0 and F (δ) = δx

δ
x , for some x > 0. Then C is satisfied if

and only if β < eβ ≡ x
x+1δ

x
; while F is satisfied if and only if β > eβ.

Proof. With this functional form,

ψ (δ∗) =

µ
x

x+ 1
δ
x − β

¶
δ∗x

δ
x .

So ψ (δ∗) is positive and increasing if and only if x
x+1δ

x ≥ β, negative and decreasing
otherwise.

5.7 Proposition 6.

Proposition 6. A general equilibrium always exists in this economy.

Proof. To deal with existence of equilibrium, it is convenient to drop the normaliza-
tion used before. It is also useful to study a slightly simpler market structure. Instead of
three periods, let this be a two-period economy, but, in order not to modify the notation
too much, I call the first period "period 2", and the second period "period 3". There are
three commodities: Period-2 and period-3 consumption goods, and a third kind of good,
called "illiquid assets". This commodity is only traded in an ex-ante phase in which no
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other good is traded. Stocks in this third good simply add to period-3 consumption. I
will prove existence for this economy, and then show that any competitive equilibrium of
this economy must be a competitive equilibrium of the original economy.

Let q2 and q3 denote the prices of period-2 and period-3 consumption goods, respec-
tively. Let π denote the price of illiquid assets. The aggregate endowment in this economy
is c2 unit of period-2 goods, (1− α) c3 units of period-3 goods, and αc3 units of the "illiq-
uid assets" commodity. Let w = απ+ q2+(1− α) q3 denote the aggregate value of wealth
in this economy. Let q ≡ (π, q2, q3) be in the three-dimensional simplex q ∈ ∆3+.

For generality, I will establish existence of equilibrium in this economy allowing for
agent heterogeneity. Let J be a finite positive integer, and

©
µj
ªN
j=1

a collection of positive

numbers such that
PJ

j=1 µj = 1.
I assume that there are J types of agents, indexed by 1 ≤ j ≤ J , and a measure µj

of type j. For each j, let δj ∈ [δj , δj ] be a random variable with absolutely continuous
distribution function Fj (δ). Let (k, c2, c3) denote a profile of "illiquid assets", period-2
and period-3 consumption goods. Conditional on the realization of δj , a type j agent’s
period-1 and period-2 preferences over such profiles are given respectively by

vj1 (k, c2, c3; δj) = uj (c2) + δju
j (k + c3) , (18)

vj2 (k, c2, c3; δj) = uj (c2) + βjδju
j (k + c3) . (19)

βj < 1 is the dynamic inconsistency factor, known and anticipated in period 1.
Let c (δ) ≡ (k, c2 (δ) , c3 (δ)) denote a non-negative vector of δ-contingent (and Borel-
measurable) consumption vectors (notice k is not contingent). Period 1 preferences over
such contingent consumption vectors are given by the expected utility formulation

V j = Ej [v
j
1

¡
k, c2 (δ) , c3 (δ) ; δ

j
¢
]. (20)

For every j, uj (c) is a strictly increasing, strictly concave, everywhere twice differen-
tiable function.

Finally, agents are also allowed to be heterogeneous in wealth; type j’s initial en-
dowment (k

j
, cj2, c

j
3) is assumed non-negative and non-zero; type j’s initial wealth market

value is denoted by wj .
The timing is the following: First individuals choose whether to purchase "illiquid

assets" goods at price π, with the objective of maximizing (20). If k illiquid assets are
purchased, remaining available resources equal wj−πki. After this, values for δ are learned
and individuals trade for period-2 and period-3 goods with the objective to maximize (19).
Any acquired stocks of "illiquid assets" goods cannot be sold down nor borrowed against.

Let ki denote the stock of illiquid assets purchased by individual i, and wi
2 ≡ wj−πki.

Define xi ≡
¡
wi
2, k

i
¢
and yi ≡

¡
xi, q2, q3

¢
. Let cj2

¡
yi; δ

¢
, cj3
¡
yi; δ

¢
denote the period-2

policy rules given yi and the realized δ. Notice that these are restricted to be non-negative.
Denote the net period-2 goods demand conditional on δ by

cj
¡
yi; δ

¢
≡
³
cj2
¡
yi; δ

¢
, cj3
¡
yi; δ

¢´
.

Notice that although the value of yi is a matter of individual choice, the demand func-
tion cj (·; δ) is common to all individuals of type j, since it depends on type-j parameters.
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At the "ex-ante" trading phase, each type-j individual i chooses illiquid asset purchases
to solve

Vj (q) = max
k

R δj
δj

¡
uj (c2 (δ)) + δju

j (c3 (δ))
¢
fj (δ) dδ

s.t. 0 ≤ πki ≤ wj ,

c2 (δ) = cj2
¡
yi; δ

¢
, c3 (δ) = cj3

¡
yi; δ

¢
+ k.

(21)

For each δ, cj
¡
yi; δ

¢
is single-valued, due to the strictly concave utility assumption.

Moreover, it is continuous in yi, from the Theorem of the Maximum.
Let kj (q) denote the correspondence of optimal k choices given price vector q. By

Proposition 12, this is non-empty, compact-valued and upper-hemicontinuous. The corre-
spondence of optimal c choices associated with prices q and optimal illiquid asset purchases
kj (q) is given by

ψj (q, δ) ≡
©
c ∈ R2+ : c = c

¡
w − πki, k, q2, q3; δ

¢
for some k ∈ kj (q)

ª
.

Let k
i
(q) ∈ kj (q) denote an element of kj (q), and let cj

³
w − πk

i
(q) , k

i
(q) , q2, q3; δ

´
be the associated element in ψj (q, δ), for each δ (notice that this is single-valued, from
the strict concavity assumption). Define

Cj
³
k
i
(q) , q

´
=

Z δj

δj

cj
³
w − πk

i
(q) , k

i
(q) , q2, q3; δ

´
fj (δ) dδ.

This is expected period-2 demand associated with k
i
(q). Whenever all type-j agents

implement choice k
i
(q), their period-2 demands will be, by assumption, exactly µj ·

Cj
³
k
i
(q) , q

´
. Let

zj (q) =
©
(k, c2, c3) ∈ R3+ : k ∈ kj (q) , (c2, c3) = µj · Cj (k, q)

ª
Lemma 9 zj (q) is non-empty, compact-valued and upper hemi-continuous.

Proof. First, the correspondence of maximizers kj (q) is non-empty, compact-valued
and upper hemi-continuous for each j, by Proposition 11. Second, because cj (w − pk, k, q2, q3; δ)
is continuous in k and (q2, q3), Cj

¡
k (q) , q

¢
is also a compact-valued, continuous function

(hence upper-hemicontinuous correspondence). zj (q) is the Cartesian product of two non-
empty, compact-valued and upper-hemicontinuous correspondences, and therefore also is
(see Stokey and Lucas, 1989).

Finally, type j agents’ demand correspondence is the convex hull of zj (q); and aggre-
gate demand is

Z (q) =
JX

j=1

co
£
zj (q)

¤
.

The infinite number of agents allows the "convexification" of aggregate demand Z (q).
By construction, if there are more than two elements in kj (q) then all type-j agents will
be indifferent (in period 1) between all the portfolio options in kj (q), which will all be
optimal. This indifference implies that they will be willing to randomize between those

40



portfolios, and this achieves convex-valuedness of the aggregate demand correspondence.
As a sum of non-empty, compact- and convex-valued, and upper hemi-continuous corre-
spondences, so is

The net aggregate demand correspondence is

ϑ (q) ≡ Z (q)− (αc3, c2, (1− α) c3) .

A general equilibrium in this economy is a price vector q∗ such that 0 ∈ ϑ (q∗). By
construction, Z (q) is always the set of points at which individuals maximize utility (in
both periods), given prices. And when 0 ∈ Z (q∗), the additional requirement of market
clearing is also satisfied by the appropriately chosen profile of individual demands in
zj (q∗).

ϑ (q) inherits non-emptyness, compact-valuedness and upper hemi-continuity from
Z (q).

Boundary properties of zj (q) are all that need to be checked, in order to apply a
standard existence of equilibrium theorem (notice that Walras’ law is satisfied since every
consumer always exhausts her wealth). I show next that at least some type j’s demand
for some good must explode if the price vector converges to the boundary of the price
simplex. Consequently, aggregate demand will explode as well.

Lemma 10 Let {qn}∞n=1 be a sequence in ∆3+ converging to a point q ∈ Bound [∆3+] in
the boundary of the price simplex. Then ∃j : limn→∞

©
max zj (qn)

ª
=∞.

Proof. There are four cases. Since the market value of aggregate wealth wn ≡ qn2 +
(1− α) qn3 +απn is bounded away from 0 for any qn ∈ ∆3+; there must exist a j such that
wn
j also is. The proof strategy consists of showing that whenever a price goes to 0, period-1
utility arbitrarily close to the relevant (as discussed below) upper bound of type j’s utility
can be attained. This, together with the fact that a solution to problem (21) always exists,
implies that the period-1 value is arbitrarily close to that upper bound. Consequently, the
agent must be implementing an unbounded consumption profile (remember that utility is
strictly increasing), as desired.

1) qn → (0, q2, q3); q2 may be 0. Let type j be such that wn
j → w > 0. Let uj ≡

lim
c→∞

uj (c).

Consider the sequence kn =
wnj√
πn
; kn →∞ and wn

j − πnkn =
¡
1−√πn

¢
wn
j converges

to w.
Suppose uj = ∞. Notice that either lim

c→0
u0j (c) = ∞ and hence the minimum over

δ of cn2 (δ) is bounded away from 0 in a period-2 optimal choice (since δ is finite), or
uj (0) > −∞. In either case, unbounded utility is achieved as n → ∞ by the proposed
plan.

If uj <∞, then u (c) strictly concave and increasing implies that lim
c→∞

u0j (c) = 0. For

each δj, period-2 choice is liquidity-constrained if and only if δj is not larger than the
number δj,n satisfying

uj0
³
(1−√πn)wnj

qn2

´
uj0
³

wnj√
πn

´ =
βjδj,n

qn3 /q
n
2

. (22)
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The left-hand side of (22) converges to ∞ as n→∞; the right-hand side is finite (and
converges to 0 if q2 = 0). Hence the consumer is, eventually, liquidity constrained for all
values of δ by the proposed plan, and behaves hand-to-mouth. That is, the implemented
consumption profile is eventually deterministic and converges to c2 = w and unbounded
period-3 consumption. This yields infinite period-1 expected utility.

2) qn → (π, 0, q3). Let type j be such that wn
j → w > 0. Let uj ≡ lim

c→∞
uj (c).

Consider the sequence kn =
wnj −
√
qn2

πn ; kn → w
π and wn

j − πnkn =
p
qn2 converges to

0; while
wnj −πnkn

qn2
= 1√

qn2
converges to ∞. Notice that utility arbitrarily close to uj +

βjδju
j (w) is feasible in any period-2 optimal plan, for any δj; hence period-2 utility must

converge to that number. But this implies that cn2 converges to ∞ for every δ. Therefore,
period-1 value converges to uj +Ej [δ]u

j
¡w
π

¢
.

3) qn → (π, q2, 0); π may be 0. Let type j be such that wn
j → w > 0. Let uj ≡

lim
c→∞

uj (c). Consider the sequence kn = 0. Period-2 utility arbitrarily close to uj
³
w
q2

´
+

βjδju
j is feasible for n large enough; hence it must be obtained in the limit; cn2 converges

to w
q2
for all δj, and cn3 explodes to infinity. This implies that limit period-1 expected utility

of uj
³
w
q2

´
+Ej [δ]u

j and therefore must be achieved.

4) qn → (π, 0, 0). Let type j be such that wn
j → w > 0. Let uj ≡ lim

c→∞
uj (c).

Suppose qn2
qn3
→ 0, and consider the sequence kn =

wnj −
√
qn2

πn ; kn → w
π and wn

j − πnkn =p
qn2 converges to 0; while

wnj −πnkn
qn2

= 1√
qn2
converges to ∞. The fact that qn2

qn3
→ 0

implies that cn2 must converge to infinity for every δj. Therefore, period-1 utility is at
least arbitrarily close to uj +Ej [δ]u

j
¡w
π

¢
— and may be higher.

Suppose qn2
qn3
→∞, and consider the sequence kn = 0. Period-2 utility arbitrarily close

to uj
³
w
q2

´
+ βjδju

j is feasible for n large enough; hence it must be obtained in the limit;

cn2 converges to
w
q2
for all δj, and cn3 explodes to infinity. This implies that limit period-1

expected utility of uj
³
w
q2

´
+Ej [δ]u

j and therefore must be achieved.

For all six possible boundaries, I have shown that an upper-bound period-1 expected
utility is feasible when qn converges to a boundary point in the price simplex. Specifically,
utility equal to allocating all wealth to the non-zero-priced good while enjoying unbounded
consumption of the zero-priced good can be achieved.

Therefore, no sequence of optimal plans associated to qn can involve utility converging
to a number below that bound. Notice, on the other hand, that for every qn the period-1
problem has a solution. The two facts together imply that solutions must always exist
with utility approaching the upper bound. Since this is only with exploding consumption
profiles, it follows that the maximum element in the demand correspondence must explode
as well. And this completes the proof.
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Finally, to back up equilibrium in the original economy, simply change the normaliza-
tion to q2 = 1, by letting q ≡ q3

q2
and p ≡ π

q2
. If (π∗, q∗2, q

∗
3) is a competitive equilibrium

price vector of the economy studied in this section, so is (p∗, 1, q) in the original economy;
with the same allocation of assets and goods.

5.8 Proposition 7.

Proposition 7. Under Assumption C, any equilibrium involves a fraction λ∗ ∈ (0, 1)
of the population pursuing a full commitment strategy, and the remaining 1 − λ∗ a full
flexibility one. Equilibrium prices verify p = ep > q.

Proof.

Lemma 11 In equilibrium, α ∈ (0, 1)⇒ p = ep (q) .
Proof. Consider p > ep (q). By Proposition 3, all agents implement k = 0. Aggregate

demand for illiquid assets is thus null, and falls short of aggregate supply of αc3 > 0.
Suppose instead that p < ep (q). Then all agents implement deterministic consumption
profiles. This implies that the period-2 choice is liquidity-constrained for all realizations
of δ, and therefore that period-2 behavior is always hand-to-mouth. Consequently, no-one
demands liquid long-term assets at the end of period 2; hence the market for this asset
remains in excess supply.

Corollary 2 For market clearing, a fraction λ∗ ∈ (0, 1) of agents must choose a deter-
ministic, full commitment plan, and the remaining 1− λ∗, a full flexibility strategy.

Corollary 3 In equilibrium, ρ∗ > 1.

The Corollary follows from the fact that ep (q) > q is true under C, as shown in the
proof of Proposition 2.

It is clear that when α = 1, there is a unique equilibrium in which every agent consumes
the representative endowment in each period.

5.9 Proposition 8.

Proposition 8. Under Assumption F, p ≤ q in equilibrium.
If p < q, then all agents acquire identical portfolios (equal, therefore, to the represen-

tative one) in period 1. There exists a cutoff δ∗ such that agents are liquidity-constrained
in period 2 if and only if the realized δ is smaller than δ∗.

If p = q, then individual initial asset holdings are undetermined, but no agent is ever
liquidity-constrained in period 2.

Proof.

Lemma 12 In equilibrium, α ∈ (0, 1)⇒ ρ < ρ ≤ 1.
Proof. Let p > q. By Proposition 3, every agent’s problem is solved by setting k = 0;

aggregate demand for illiquid assets is null and therefore falls short of aggregate supply.
Suppose, conversely, that ρ ≤ ρ. Then every agent’s optimal plan involves deterministic
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consumption, by Proposition 4. Therefore, every agent is liquidity-constrained in period 2
and behaves hand-to-mouth. This implies that aggregate period-2 demand for liquid long
term assets is null, thereby falling short of aggregate supply.

Corollary 4 If, in equilibrium, ρ < p < q, then all individuals carry identical end-of-
period-1 portfolios. There is a common cutoff value δ∗ ∈

¡
δ, δ
¢
such that all agents are

liquidity-constrained in period 2 if and only if δ ≤ δ∗.

The Corollary follows from the fact that at ρ < p < q, every individual’s period-1
problem has identical solution, and that the solution involves a strictly interior δ∗. Both
facts are established in the proof of Proposition 3.

5.10 Proposition 9.

Proposition 9. Assume that either C or F holds, and let u (c) = log c. Then for every
α, there is a unique equilibrium. Period-1 expected utility is maximized at α = 0, and is
strictly lower for all α ∈ (0, 1].

Proof. I divide the proof into the two cases, beginning with C.

5.10.1 Assumption C.

By Proposition 7, the equilibrium price of illiquid assets is ep, given the price q of liquid
assets. With logarithmic preferences, ep is a linear function of q. Specifically,

ep
q
= ρ∗ = E [δ] exp

⎛⎝−R δδ
³
(1 + δ) log 1+E[δ]1+βδ + δ log δβ

´
f (δ) dδ

E [δ]

⎞⎠ .

Lemma 13 An equilibrium λ∗ ∈ (0, 1) exists and is unique.
Proof. If a fraction λ∗ of agents carry illiquid assets, each one of those must acquire

k∗ = αc3
λ∗ for the illiquid assets market to clear. Moreover, the solution to the VFC problem

with logarithmic utility is

k∗ =
E [δ]

1 +E [δ]

w

ρ∗q
. (23)

The implemented period-3 consumption of people who acquire k = 0, conditional on
the realized discount factor, is c3 (δ) = w

1+βδ
βδ
q .

Let

Λ (λ∗) ≡ αc3 + (1− λ∗)

Z 1

0

w

1 + βδ

βδ

q
f (δ) dδ.

Then market clearing of the period-3 consumption goods market is equivalent to Λ (λ∗) =
c3. Let D ≡

R 1
0

βδ
1+βδ f (δ) dδ. Using (23) in combination with k∗ = αc3

λ∗ , we get that
w
q =

αc3ρ∗

λ∗
1+E[δ]
E[δ] :

Λ (λ∗) = αc3 +
1− λ∗

λ∗
1 +E [δ]

E [δ]
αc3ρ

∗D.
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The unique λ∗ ∈ (0, 1) setting Λ (λ∗) = c3 is solved for

λ∗ =
αρ∗ (1 +E [δ])D

(1− α)E [δ] + αρ∗ (1 +E [δ])D
. (24)

Notice that λ∗ is independent of the endowment process. The unique equilibrium value
of q can be solved for.

Using k∗ = αc3
λ∗ , (24), and the period-1 budget constraint, the (deterministic) con-

sumption profile implemented by agents who acquire illiquid assets is, as a function of
α :

c∗2 (α) =
(1− α)E [δ] + αρ∗D (1 +E [δ])

(1 +E [δ]) ((1− α) (1−D)E [δ] + αρ∗D)
c2, (25)

c∗3 (α) =

µ
α+

(1− α)E [δ]

ρ∗ (1 +E [δ])D

¶
c3.

When α = 1, these reduce to c∗2 (α) = c2 and c∗3 (α) = c3, as expected. Because
in equilibrium agents are indifferent between the consumption profile (25) and the full
flexibility strategy, equilibrium utility can be derived by evaluating this profile.

When α = 1, equilibrium expected utility is V ∗ (1) = log c2 + E [δ] log c3. For α < 1,
it is

V ∗ (α) = V ∗ (1) + log
(1− α)E [δ] + αρ∗D (1 +E [δ])

(1 +E [δ]) ((1− α) (1−D)E [δ] + αρ∗D)
(26)

+E [δ] log

µ
α+

(1− α)E [δ]

ρ∗ (1 +E [δ])D

¶
.

Lemma 14 V ∗ (0)− V ∗ (1) > 0.
Proof. From (26),

V ∗ (0) = V ∗ (1) + log
1

(1 +E [δ]) (1−D)
+E [δ] log

E [δ]

ρ∗ (1 +E [δ])D
.

Therefore, V ∗ (0)− V ∗ (1) is strictly decreasing in ρ∗, and equals 0 if and only if

ρ∗ = bρ ≡ E [δ]

(1 +E [δ])1+1/E[δ] (1−D)1/E[δ]D
.

So V ∗ (0) > V ∗ (1) will be established if ρ∗ < bρ is proven. Using the expression
displayed above,

ρ∗ = (1 +E [δ])
− 1+E[δ]

E[δ] E [δ] exp

⎛⎝−R δδ
³
(1 + δ) log 1

1+βδ + δ log δβ
´
f (δ) dδ

E [δ]

⎞⎠ .

Therefore, V ∗ (0)− V ∗ (1) will be strictly positive if

exp

⎛⎝−R δδ
³
(1 + δ) log 1

1+βδ + δ log δβ
´
f (δ) dδ

E [δ]

⎞⎠ <
1

(1−D)1/E[δ]D
.
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This inequality is equivalent to

E [δ] log (1−D)1/E[δ]D −
Z δ

δ

µ
(1 + δ) log

1

1 + βδ
+ δ log δβ

¶
f (δ) dδ < 0. (27)

Notice that the integrand expression is strictly convex:

∂2

∂δ2

½
(1 + δ) log

1

1 + βδ
+ δ log δβ

¾
=

β2δ + 1

(1 + βδ)2 δ
> 0.

By Jensen’s inequality, this implies

−
Z δ

δ

µ
(1 + δ) log

1

1 + βδ
+ δ log δβ

¶
f (δ) dδ < − (1 +E [δ]) log

1

1 + βE [δ]
−E [δ] logE [δ]β.

So a sufficient condition for (27) to hold is that

log (1−D) +E [δ] logD − (1 +E [δ]) log
1

1 + βE [δ]
−E [δ] logE [δ]β < 0. (28)

The left-hand side of (28) is strictly concave in D, evaluates to −∞ as D converges to
both 0 and 1, and reaches its maximum value at D= E[δ]

1+E[δ] .

On the other hand, remember that D≡
R δ
δ

βδ
1+βδ f (δ) dδ. Since the integrand is a

concave function, by Jensen’s inequality we have D < D ≡ βE[δ]
1+βE[δ] . Notice that D <

E[δ]
1+E[δ] ; this implies that for the range of possible values of D, the left-hand side of (28)
will be a strictly increasing function.

Finally, when evaluated at D=D, the left-hand side of (28) equals exactly 0. This
shows that ρ∗ < bρ, and therefore that V ∗ (0) > V ∗ (1).

Notice that the proof does not use properties of F (δ); therefore this result is valid
for any distribution function. The underlying procedure of the proof has been to find
the deterministic consumption profile which yields the same utility as the equilibrium
allocation when α = 0, and show that this deterministic profile delivers higher utility
than the one consumed when α = 1. This utility comparison is valid regardless of the
distribution.

Proposition 15 V ∗ (α) is a strictly convex function, which attains its maximum at α =
0, and its minimum at an interior value α ∈ (0, 1).

Proof. I show that V ∗ (α), which is a continuously differentiable function on α ∈
(0, 1), has a unique point of null derivative, and has positive slope at α = 1. So V ∗ (0) >
V ∗ (1) necessarily implies that V ∗ (α) is convex and that the critical point, which is a
global minimum, lies on the unit interval.

First, checking that V ∗ (α) has a unique critical point in α is simply a matter of
algebra. It can be verified that

∂V ∗ (α)

∂α
= 0

⇔ α =
(D − (1−D)E [δ]) ρ∗D

((1− ρ∗D)E [δ]− ρ∗D) ((1−D)E [δ]− ρ∗D)
+

(1−D)E [δ]

(1−D)E [δ]− ρ∗D
.
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Second, the derivative at α = 1 is

∂V ∗ (α)

∂α

¯̄̄̄
α=1

=
ρ∗ − 1
ρ∗

E [δ] > 0.

Corollary 5 V ∗ (α) < V ∗ (0) for all 0 < α ≤ 1. There exists a threshold α ∈ (0, 1)
such that V ∗ (α) is strictly decreasing in α for α < α and strictly increasing for α > α.
Moreover, V ∗ (α) < 0.

This establishes that when C holds and utility is logarithmic, for each α there is a
unique competitive equilibrium. Equilibrium period-1 expected utility is maximized at
α = 0, and is strictly smaller for any α > 0.

5.10.2 Assumption F.

Equilibrium under this assumption takes the following form. Agents do not trade in period
1, keeping the originally received liquid/illiquid wealth split. This implies a cutoff value
δ∗ such that agents who realize a discount factor δ ≤ δ∗ behave hand-to-mouth in period
2, consuming all liquid wealth in that period. Instead, agents realizing δ ≥ δ∗ are not
liquidity-constrained.

In period 3, therefore, a fraction F (δ∗) of the population consumes αc3 units. These
individuals would like to have consumed less in period 3, but this would have required
selling down their stock of illiquid assets, which is not feasible. The remaining agents
implement their period-2 optimal consumption plan, which involves an amount c3 (δ) =
w+(q−p)αc3

1+βδ
βδ
q . To understand this, notice that these individuals behave like standard

neoclassical consumers with logarithmic utility and discount factor βδ. They assign a
fraction 1

1+βδ of wealth to period-2 consumption, and implement a consumption growth

rate equal to βδ
q . Finally, available wealth for these individuals is the market value of

inherited liquid wealth (w − pαc3) plus their illiquid assets stock, valued at the imputed
price q.

Using the fact that at δ = δ∗, the period-2 Euler equation holds with equality when
behaving hand-to-mouth, αc3

w−pαc3 =
βδ∗

q , we can re-write

c3 (δ) =
(1 + βδ∗) δ

(1 + βδ) δ∗
αc3.

For x ∈
£
δ, δ
¤
, let

Λ (x) ≡ αF (x) +

Z δ

x

(1 + βx) δ

(1 + βδ)x
αf (δ) dδ,

and the period-3 market clearing condition is equivalent to Λ (δ∗) = 1. It can be verified
that Λ (x) is a strictly decreasing, continuous function. This implies that the equilibrium
δ∗ is unique.
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Once δ∗ is obtained, the supporting prices can be backed out. In particular,

q∗ =
βδ∗

α− (1− α)βδ∗
c2
c3
,

p∗

q∗
=

1 + E [δ]− F (δ∗) + 1
βδ∗

R δ∗
δ δf (δ) dδ

1 + E [δ] + βδ∗F (δ∗)−
R δ∗
δ δf (δ) dδ

.

The liquid assets price q∗ (which can be verified to be positive by using Λ (x)) comes
from αc3

w−pαc3 =
βδ∗

q and the period-1 budget constraint. The equilibrium price ratio ρ∗

is the value that supports δ∗ as the individuals’ optimal choice, by satisfying their first
order conditions.

Using the implicit function formula and the chain rule where applicable, the following
comparative statics can be derived

∂δ∗

∂α
=

δ∗ (1 + βδ∗)

α

1

1− αF (δ∗)
,

∂q∗

∂α
=

q∗

α− (1− α)βδ∗
(1 + βδ∗)αF (δ∗)

1− αF (δ∗)
.

In addition, from the market clearing conditions it follows that if α = 0, q∗ < c2
c3
βE [δ];

while for α→ 1, q∗ converges to q = c2
c3
βδ.

The equilibrium period-1 expected utility is

V ∗ (α) =

Z δ

δ
(log c2 (δ) + δ log c3 (δ)) f (δ) dδ.

It is useful to notice that, by construction, when δ ≤ δ∗ consumption is

(c2 (δ) , c3 (δ)) =

µ
w + (q∗ − p∗)αc3

1 + βδ∗
,
w + (q∗ − p∗)αc3

1 + βδ∗
βδ∗

q∗

¶
.

Finally, use w + (q∗ − p∗)αc3 = c2 + q∗c3 and compute expected utility:

V ∗ (α) =

Z δ∗

δ

µ
log

c2 + q∗c3
1 + βδ∗

+ δ log
c2 + q∗c3
1 + βδ∗

βδ∗

q∗

¶
f (δ) dδ

+

Z δ

δ∗

µ
log

c2 + q∗c3
1 + βδ

+ δ log
c2 + q∗c3
1 + βδ

βδ

q∗

¶
f (δ) dδ.

α affects expected utility through the equilibrium price q∗ and cutoff discount factor
δ∗:

∂V ∗ (α)

∂α
= −βδ

∗ −E [δ| δ ≤ δ∗]

(1 + βδ∗) δ∗
F (δ∗)

∂δ∗

∂α
+

c3
c2 + q∗c3

µ
1− E [δ] c2

q∗c3

¶
∂q∗

∂α
.

48



The first term is

−βδ
∗ −E [δ| δ ≤ δ∗]

(1 + βδ∗) δ∗
F (δ∗)

∂δ∗

∂α
= −βδ

∗ −E [δ| δ ≤ δ∗]

(1 + βδ∗) δ∗
F (δ∗)

δ∗ (1 + βδ∗)

α

1

1− αF (δ∗)

= −βδ
∗ −E [δ| δ ≤ δ∗]

δ∗
F (δ∗)

δ∗

α

1

1− αF (δ∗)

= ψ (δ∗)
δ∗

α

1

1− αF (δ∗)
.

The second one is

c3
c2 + q∗c3

µ
1− E [δ] c2

q∗c3

¶
∂q∗

∂α
=

c3
c2 + q∗c3

µ
1− E [δ] c2

q∗c3

¶
q∗

α− (1− α)βδ∗
(1 + βδ∗)αF (δ∗)

1− αF (δ∗)
.

Using the expression for q∗ found above,

q∗c3
c2 + q∗c3

=
βδ∗

α (1 + βδ∗)
,

so

c3
c2 + q∗c3

µ
1− E [δ] c2

q∗c3

¶
∂q∗

∂α
=

µ
1− E [δ] c2

q∗c3

¶
βδ∗

α− (1− α)βδ∗
F (δ∗)

1− αF (δ∗)

=

µ
q∗
c3
c2
−E [δ]

¶
F (δ∗)

1− αF (δ∗)
.

Putting these results together, the derivative is

∂V ∗ (α)

∂α
= ψ (δ∗)

δ∗

α

1

1− αF (δ∗)
+

µ
q∗
c3
c2
−E [δ]

¶
F (δ∗)

1− αF (δ∗)
.

The sign is given by the sign of

ψ (δ∗) δ∗ +

µ
q∗
c3
c2
−E [δ]

¶
αF (δ∗) ≡ A (α) +B (α) .

A (α) and B (α) are functions of α since δ∗ is an increasing function of α.
By the chain rule, A (α) is the negative, decreasing function ψ (δ∗) multiplied by the

positive, increasing function δ∗ — therefore, it is a negative, decreasing function.
B (α) is negative for α low and positive for α high, as q∗c3/c2 increases from being

strictly smaller than βE [δ] to βδ (and the latter is larger than E [δ] from assumption
F). The term between parenthesis is therefore first negative and then positive, always
increasing. It is multiplied by αF (δ∗) which is positive and increasing. Therefore, a α∗

exists such that B (α) is negative for α < α∗, and it is positive and increasing for α > α∗.
The two facts together imply that A (α)+B (α) is negative for α < α∗, and for α > α∗

it is the sum of a negative, decreasing function and a positive, increasing one. These can
have at most one crossing. In other words, either A (α) + B (α) is negative everywhere,
or exactly one level α∗∗ > α∗ exists such that A (α) + B (α) is negative for α < α∗∗ and
positive for α > α∗∗.
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This proves that ∂V ∗ (α) /δα is either always negative, or a unique level α∗∗ exists
such that ∂V ∗ (α) /δα is negative for α < α∗∗ and positive for α > α∗∗. In turn, this
means that V ∗ (α) is either always decreasing (and therefore maximized at α = 0), or
decreasing for α < α∗∗ and increasing for α > α∗∗. Finally, the fact that V ∗ (0) > V ∗ (1),
found above to hold for any β and distribution F (δ) implies that conclude that in the
latter case, V ∗ (α) < V ∗ (0) is true for all α.

5.11 Proposition 10.

Proposition 10. There is a unique equilibrium in this economy, in which the fraction
of agents using the commitment technology is λ∗ = min

©
λ, 1

ª
. For θ < 1, equilibrium

welfare is strictly decreasing in λ for λ < 1, and strictly increasing for λ > 1. There
exists a threshold value λ > 1 such that when λ = λ, period-1 utility is the same as when
λ = 0; it is strictly lower for λ ∈ (0, λ), and strictly higher for λ > λ. The threshold λ is
strictly decreasing in θ; it takes value 1 when θ = 1, and converges to ∞ when θ→ 0.

Proof. Let w denote the mark value of the representative wealth stock. This is
composed by the initial endowment of 1 unit, plus firms’ net output. Let i denote aggregate
investment; let q denote the price of period-3 goods. Then w = 1− i+ qiα.

When λ individuals act on period-1 preferences and the rest on period-2, aggregate
investment is

i = 1−
µ
λ

2
+
1− λ

1 + β

¶
w ≡ 1− γw.

On the other hand, the firms’ optimal demand of capital k satisfies αqkθ = k. Equi-
librium in the goods markets requires that i satisfies this last equality. This solves for

i = θ
1− γ

θ + (1− θ) γ
.

Notice that i is strictly increasing in λ. The values of prices and wealth are:

q =

µ
1− γ

θ + (1− θ) γ

¶1−θ
θ−θ, w =

1

θ + (1− θ) γ
.

Both q and w are strictly increasing in λ. Equilibrium utility for non-committed agents
is

VNC = log
w

1 + β
+ log

w

q

β

1 + β
.

Replacing for the equilibrium quantities found above,

∂VNC

∂λ
= − (1− θ) (1− λ) (1− β)2

2 (1− γ) (θ + (1− θ) γ) (1 + β)2
< 0.

When θ = 1, the derivative is null.
Equilibrium utility for committed agents is

VC = 2 log
w

2
+ log

1

q
− γ.
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Replacing for equilibrium quantities, the difference between VC and VNC only depends
on λ through γ :

VC − VNC = ln
(1 + β)2

4β
− γ.

λ∗ = λ is the unique value that makes this difference 0, and therefore agents indifferent
between committing or not. If λ∗ was smaller than λ ≤ 1, then every agent would strictly
prefer to commit, so λ∗ < λ could not be an equilibrium value. Analogously, λ∗ > λ could
not be an equilibrium value since every agent would strictly prefer not to commit. This is
why the equilibrium fraction of the population acquiring commitment must equal λ if this
number is not larger than 1. If λ > 1, then in equilibrium all agents use the commitment
technology and strictly prefer to do so.

Finally, let

κ (θ) =

µ
2 log

w

2
+ log

1

q

¯̄̄̄
λ=1

¶
−
µ
log

w

1 + β
+ log

w

q

β

1 + β

¯̄̄̄
λ=0

¶
. (29)

The first term is the utility value from the period-1 optimal consumption plan under
the assumption that all individuals pursue this plan. The second term is the period-1
utility value from the period-2 optimal plan, under the assumption that all individuals
pursue this plan. Thus, (29) is the utility difference achieved by making all individuals
follow a pre-committed plan.

If and only if the commitment technology’s cost is lower than κ (θ) will individuals gain
from switching from a no-commitment economy to one in which everyone pre-commits.
Evaluating the equilibrium prices and wealth, this is

κ (θ) = (1 + θ) ln
1 + θβ

β + θβ
+ lnβ.

Equivalently, this solves for

λ (θ) ≡ 1

(1 + θ) ln 1+θββ+θβ + lnβ
ln
(1 + β)2

4β

Notice that λ (θ) is strictly decreasing in θ; it equals 1 for θ = 1 and converges to ∞
as θ approaches 0.

This establishes Proposition 10.
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