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Euler Equation Errors

Abstract
Among the most important pieces of empirical evidence against the standard representative-

agent, consumption-based asset pricing paradigm are the formidable unconditional Euler

equation errors the model produces for a broad stock market index return and short-term

interest rate. Unconditional Euler equation errors are also large for a broader cross-section

of returns. Here we ask whether calibrated leading asset pricing models� speci�cally de-

veloped to address empirical puzzles associated with the standard paradigm� explain these

empirical facts. We �nd that, in many cases, they do not. We present several results. First,

we show that if the true pricing kernel that sets the unconditional Euler equation errors to

zero is jointly lognormally distributed with aggregate consumption and returns, then val-

ues for the subjective discount factor and relative risk aversion can always be found for

which the standard model generates identical unconditional asset pricing implications for

two asset returns, a risky and risk-free asset. Second, we show, using simulated data from

several leading asset pricing frameworks, that many economic models share this property

even though in those models the pricing kernel, returns, and consumption are not jointly

lognormally distributed. Third, in contrast to the above results, we provide an example

of a limited participation/incomplete markets model that is broadly consistent with these

empirical facts.

JEL: G12, G10.



1 Introduction

Among the most important pieces of empirical evidence against the standard representative-

agent, consumption-based asset pricing paradigm are the formidable unconditional Euler

equation errors the model produces for a broad stock market index return and short-term in-

terest rate. Our de�nition of the standard model assumes that agents have unrestricted access

to �nancial markets, that assets can be priced using the Euler equations of a representative-

consumer maximizing the discounted value of power utility functions, and that the pricing

kernel M , or stochastic discount factor, is equal to the marginal rate of substitution in

consumption. This model takes the form

E [MtRt] = 1; Mt = � (Ct=Ct�1)
�
 ; (1)

where Rt denotes the gross return on any tradable asset, Ct is per capita aggregate consump-

tion, 
 is the coe¢ cient of relative risk-aversion and � is a subjective time-discount factor.

The average Euler equation errors are also large for a broader cross-section of returns that

includes size and book-market sorted portfolio returns.

We argue that these Euler equation errors constitute a puzzle for the standard consumption-

based asset pricing model that is at least as damning as other, more well known, conundrums

that have received far more attention, such as the equity premium puzzle, risk-free rate puz-

zle, and time-series predictability of excess stock market returns. We employ these empirical

facts to evaluate leading asset pricing models that have been speci�cally developed to ad-

dress puzzles generated by the standard paradigm (1). If leading asset pricing models are

true, then in these models using (1) to price assets should generate large unconditional asset

pricing errors, as in the data. The underlying assumption in each of these leading models

is that, by discarding the standard pricing kernel in favor of the true kernel implied by the

model, an econometrician would be better able to model asset pricing data.

In this paper we show that this is not always the case. Often, in leading asset pricing

models, a standard representative-agent �pricing kernel� based on (1) can be found that

has virtually identical unconditional pricing implications for speci�c asset returns, such as a

risky asset and risk-free asset, or for a larger cross-section of risky asset returns. Thus, an

econometrician who observed data generated from any number of these leading models would

fail to reject the standard consumption-based model in tests of its unconditional moment

restrictions, let alone replicate the sizable unconditional Euler equation errors found when

�tting historical data to (1).

The literature has already demonstrated that it is possible, in principle, to explain any

observed behavior of per capita aggregate consumption and asset returns, by appealing to in-

complete consumption insurance. Constantinides and Du¢ e (1996) prove a set of theoretical
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propositions showing that any observed joint process of aggregate consumption and returns

can be an equilibrium outcome if the second moments of the cross-sectional distribution of

consumption growth and asset returns covary in the right way. Krebs (2004) shows that

any observed joint process of aggregate consumption and asset returns can be rationalized

if all assetholders are subject to su¢ ciently extreme idiosyncratic events with very small

probability of occurrence. In this paper we move away from theoretical propositions and ask

whether particular calibrated economies of leading asset pricing models are quantitatively

capable of matching the large unconditional Euler equation errors generated by the standard

consumption-based model when �tted to data. This is important because it remains unclear

whether plausibly calibrated models built on primitives of tastes, technology, and underlying

shocks can in practice generate the joint behavior we observe in the data.

Our analysis uses simulated data from several leading economic models designed address

empirical failures of the standard model (1). These models include the representative-agent

external habit-persistence paradigms of (i) Campbell and Cochrane (1999) and (ii) Menzly,

Santos, and Veronesi (2004), (iii) the representative-agent long-run risks model based on

recursive preferences of Bansal and Yaron (2004), and (iv) the limited participation model

of Guvenen (2003). Each is an explicitly parameterized economic model calibrated to accord

with the data in plausible ways, and each has proven remarkably successful in explaining a

range of asset pricing phenomena. In addition to these models, we dig more deeply into the

aggregate Euler equation implications of simple asset pricing models with limited partici-

pation/incomplete markets, in which assetholder consumption is permitted to behave quite

di¤erently from per capita aggregate consumption.

Our focus on Euler equations is intentional, since they represent the set of theoretical

restrictions from which all asset pricing implications follow. Formal econometric tests of

conditional Euler equations using aggregate consumption data lead to rejections of the stan-

dard representative-agent, consumption-based asset pricing model, even when no bounds are

placed on the coe¢ cient of relative risk aversion or the rate of time preference (Hansen and

Singleton (1982); Ferson and Constantinides (1991); Hansen and Jagannathan (1991)). Sim-

ilarly, we show here that the quarterly pricing errors for the unconditional Euler equations

associated with an aggregate equity return and a short-term Treasury bill rate are large when

�tting aggregate data to (1), even when the coe¢ cient of relative risk aversion or the rate of

time preference are left unrestricted and chosen to minimize those errors. For larger cross-

sections of returns the results are similar. These empirical results place additional testable

restrictions on asset pricing models: not only must such models have zero pricing errors

when the pricing kernel is correctly speci�ed according to the model, they must also produce

large pricing errors when the pricing kernel is incorrectly speci�ed using power utility and

aggregate consumption, even when � and 
 are chosen to minimize those errors.
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Our main �ndings are as follows:

First, we show that if the true pricing kernel that sets Euler equation errors to zero is

jointly lognormally distributed with aggregate consumption and returns, then values for the

discount factor and relative risk aversion can be always be found for which the standard model

generates identical unconditional asset pricing implications for two asset returns, a risky and

risk-free asset. This property implies that such models will not be capable of explaining the

empirical facts discussed above, namely the large Euler equation errors found when asset

return data are �tted to (1). We illustrate these results in an incomplete markets/limited

participation setting.

Second, using simulated data from each of the leading asset pricing models mentioned

above, we show that many economic models share this property even though in these models

the pricing kernel, returns, and consumption are not jointly lognormally distributed. Some of

the models we study can explain why an econometrician obtains implausibly high estimates

of � and 
 when freely �tting aggregate data to (1). But, they cannot explain the large

unconditional Euler equation errors associated with such estimates. The asset pricing models

we consider counterfactually imply that values for the subjective discount factor and risk

aversion can be found for which (1) satis�es the unconditional Euler equation restrictions

just as well as the true pricing kernel.

Third, in contrast to the above results, we provide one example in an incomplete mar-

kets/limited participation setting of a model that can roughly replicate the empirical facts,

if the joint distribution of aggregate consumption, individual assetholder consumption, and

stock returns takes a particular form of deviations from normality. But we also �nd�

within this broad class of distributions we consider� that many non-normal distribution

speci�cations do not explain the sizeable Euler equation errors generated by the standard

consumption-based asset pricing model (1). Similar �ndings hold for the average Euler

equation errors over a larger cross-section of asset returns.

We emphasize that this paper is not a criticism of work that investigates the asset pricing

implications of models with preferences or market structures that di¤er from the standard

consumption-based model. Indeed, we view our paper as a compliment to the existing

literature because it provides a di¤erent perspective on whether such models are capable of

fully rationalizing the joint behavior of asset prices and aggregate quantities. We also add

to the literature by outlining the econometric consequences, for estimation and testing of

unconditional Euler equations, of �tting the standard pricing kernel (1) to data when the

true pricing kernel that generated the data is derived from some other model. Finally, we

stress that our results do not imply that no model can be made consistent with the testable

restrictions we focus on here� we present an incomplete markets example to the contrary.

Our point is that many models, including those at the forefront of asset pricing theory, do
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not satisfy these testable restrictions.

The rest of this paper is organized as follows. The next section lays out the empirical

Euler equation facts using post-war U.S. data on per capita aggregate consumption and

returns. Section 3 studies the implications of various economic theories for the same Euler

equation errors we measure in the data. We begin with a simple example in which the true

pricing kernel is jointly lognormally distributed with aggregate consumption growth and asset

returns. Next, we investigate the extent to which leading asset pricing models, calibrated

to accord with the U.S. data, are capable of explaining the empirical facts. Here we focus

both on the case of a single risky and a risk-free asset return and on models that exploit

a larger cross-section of risky returns. Our main �ndings are shown to be robust to time-

aggregation of aggregate consumption data, and to the introduction of limited participation

in the representative-agent models. Finally, we provide one example of a simple incomplete

markets/limited participation model that can roughly replicate the empirical Euler equation

errors from historical data. Section 4 concludes.

2 Euler Equation Errors: The Facts

In this section we document empirical facts of the standard consumption-based asset pricing

model that pertain to unconditional Euler equations using aggregate consumption.

The standard consumption based model, as de�ned above, has the following character-

istics. There exists representative-consumer with constant relative risk aversion (CRRA)

preferences over consumption given by

U = E

( 1X
t=0

�t
C1�
t � 1
1� 


)
; 
 > 0; (2)

where Ct is per capita aggregate consumption, � is a subjective time-discount factor, and


 is the coe¢ cient of relative risk aversion. At each date, agents maximize (2) subject to

an accumulation equation for wealth that links assets today to returns today and savings

yesterday. Agents have unrestricted access to �nancial markets; they face no borrowing

or short-sales constraints. The asset pricing model comes from the �rst-order conditions

for optimal consumption choice, which place restrictions on the joint distribution of the

intertemporal marginal rate of substitution in consumption, given byMt+1 � � (Ct+1=Ct)
�
 ;

and asset returns. The �rst-order conditions imply that for any traded asset indexed by j,

with a gross return at time t+ 1 of Rjt+1; the following set of Euler equation holds:

Et
�
Mt+1R

j
t+1

�
= 1: (3)
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Here Et is the conditional expectation operator, conditional on time t information. The

marginal rate of substitution in consumption, Mt+1, is the stochastic discount factor, or

pricing kernel.

By the law of iterated expectations, equation (3) also implies the following set of uncon-

ditional Euler equations that must hold for any traded asset indexed by j :

E
�
Mt+1R

j
t+1

�
= 1; (4)

where E is the unconditional expectation operator.

We refer to the di¤erence between the left-hand-side of (4) and unity as the unconditional

Euler equation error, or alternatively the pricing error, associated with the jth asset return:

Pricing error of asset j = E
�
� (Ct=Ct�1)

�
 Rjt+1
�
� 1:

If the standard model is true then these errors should be zero for any traded asset, given

some values of the parameters � and 
.

We focus much of our attention on the unconditional Euler equation errors associated

with two asset returns: a broad stock market index return (measured as the the CRSP

value-weighted price index return and denoted Rst ) and short-term �riskless� interest rate

(measured as the three-month Treasury bill rate and denoted Rft ). We maintain this focus

for two reasons. First, the standard model�s inability to explain properties of just these

two returns has been central to the development of a consensus that the model is seriously

�awed. Second, all asset pricing models seek to match the empirical properties of these two

returns and most generate no implications for larger cross-sections of securities because the

cash �ow properties of these securities are not modeled. Nevertheless, we also consider the

Euler equation errors associated with a broader cross-section of returns, including portfolio

returns formed on the basis of size and book-market ratios. Notice that estimation of (4) for

the two-asset case collapses to an excercise in solving two nonlinear equations. In this case,

the vector of sample pricing errors contains no nondegenerate random variables and thus the

pricing errors are not a¤ected by sampling error.

There are several ways to present the pricing errors implied by the standard consumption-

based model for these two asset returns. One is to combine the separate Euler equations for

the stock market return and Treasury bill rate into a single Euler equation for the excess

return that is a function of only the risk aversion parameter 
. From (4) we have

E

"�
Ct+1
Ct

��
 �
Rst+1 �Rft+1

�#
= 0: (5)

The empirical pricing error for the excess return is given by an estimate of the left-hand-side

of (5). Figure 1 plots this error over a range of values of 
, where the error is computed as
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the sample mean of the expression in square brackets in (5). The estimation uses quarterly,

per capita data on nondurables and services expenditures measured in 1996 dollars as a

measure of consumption Ct, in addition to the return data mentioned above.1 Returns are

de�ated by the implicit price de�ator corresponding to the measure of consumption Ct. The

data span the period from the �rst quarter of 1951 to the fourth quarter of 2002. A detailed

description is provided in the Appendix.

Figure 1 shows that the pricing error (5) cannot be driven to zero, or indeed even to a

small number, for any value of 
. The lowest pricing error is almost 4% per annum, which

occurs at 
 = 117. This pricing error is almost half of the average annual CRSP stock return

and four times the average annual Treasury-bill rate. At other values of 
 this error rises

precipitously and reaches several times the average annual stock market return when 
 is

outside the ranges displayed in Figure 1. Thus, there is no value of 
 that sets the pricing

error (5) to zero.2

Another way to present the pricing errors implied by the standard model for the stock

market return and Treasury bill rate is to choose values for � and 
 that make the estimated

Euler equation errors for each asset return as close as possible to the theoretical Euler

equation errors of zero:

E

"
�

�
Ct+1
Ct

��

Rst+1

#
� 1 = 0

E

"
�

�
Ct+1
Ct

��

Rft+1

#
� 1 = 0:

This amounts to solving two (nonlinear) equations in two unknowns, � and 
. To do so, we

choose parameters for time preference � and risk aversion 
 to minimize a weighted sum of

squared pricing errors, an application of exactly identi�ed Generalized Method of Moments

(GMM, Hansen (1982)):

min
�;


gT (
; �) = !sE
�
� (Ct=Ct�1)

�
 Rst � 1
�2
+ !fE

h
� (Ct=Ct�1)

�
 Rft � 1
i2
;

for some weights !s and !f . Let �c and 
c denote the argmin gT (
; �), the values of � and


 that minimize the scalar gT (
; �).

Panel A of Table 1 shows that when the risk aversion and time preference parameters

are chosen to minimize an equally weighted sum of squared pricing errors (!s = !f = 1),

the pricing errors for the stock market return and the short-term Treasury bill rate are split

evenly, with each error close to 2.7% per annum for the stock market return and close to

1We exclude shoes and clothing expenditure from this series since they are partly durable.
2Note that (5) is a nonlinear function of 
: Thus, there is not necessarily a solution.
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-2.7% for the Treasury bill. As before, this magnitude is large: it is about one-third of the

average annual stock market return, and about three times as large as the average annual

Treasury bill return. The last column shows that the square root of the average squared

pricing error is 60% of the cross-sectional mean return for these two assets. Naturally, when

we place 100 times more weight on the Euler equation associated with the stock market return

in this minimization (!s = 100; !f = 1), the pricing error associated with the stock return

can be made close to zero, but then the error associated with the Treasury bill explodes to

-5.4% per annum. Conversely, when we place 100 times more weight on the Euler equation

associated with the Treasury bill rate (!s = 1; !f = 100), the pricing error associated with

the Treasury bill can be made close to zero, but the error associated with the stock return

rises to 5.4% per annum. Thus, there are no values of � and 
 that set the pricing errors to

zero. Regardless of the particular weighting scheme, �c and 
c (which are left unrestricted)

are close to 1.4 and 90, respectively.

Figure 2 displays the (negative of) the square root of the averaged squared pricing errors

over a range of values for � and 
. The �gure is presented this way for ease of readability.

The pricing errors are obviously smallest at the point estimates for � and 
, but the �gure

shows that they are large over a wide range of values for these parameters. Finally, Figure

3 shows the contour plots for the output displayed in Figure 2. The �gures show that there

is no combination of parameter values for � and 
 for which the pricing errors of both asset

returns can be set to zero, or even small in magnitude.

Why are the pricing errors for the stock return and Treasury-bill rate so large? Panel B

of Table 1 provides a partial answer: a large part (but not all) of the unconditional Euler

equation errors generated by this model are associated with recessions, periods in which

per capita aggregate consumption growth is steeply negative. If we remove the data points

associated with the smallest six observations on consumption growth, the equally weighted

pricing errors are 0.7% for the stock market return and -0.7% for the Treasury-bill rate,

a 74% reduction. Table 2 identi�es these six observations as they are located throughout

the sample. Each occur in the depths of recessions in the 1950s, 1970s, early 1960s, 1980s

and 1990s, as identi�ed by the National Bureau of Economic Research. In these periods,

aggregate per capita consumption growth is steeply negative but the aggregate stock return

and Treasury-bill rate is, more often than not, steeply positive. Since the product of the

marginal rate of substitution and the gross asset return must be unity on average, such

negative comovement (positive comovement between Mt and returns) contributes to large

pricing error. One can also reduce the (equally-weighted) pricing errors by using annual

returns and year-over-year consumption growth (fourth quarter over fourth quarter).3 This

3Jagannathan and Wang (2004) study the ability of the standard model to explain a large cross-section
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procedure averages out the worst quarters for consumption growth instead of removing them.

Either procedure eliminates much of the cyclical variation in consumption. To see this, note

that on a quarterly basis the largest declines in consumption are about six times as large at

an annual rate as those on a year-over-year basis.

Of course, these quarterly episodes are not outliers to be ignored, but signi�cant economic

events to be explained. Indeed, we argue that such Euler equation errors�driven by periods

of important economic change�are among the most damning pieces of evidence against the

standard model. An important question is why the standard model performs so poorly in

recessions relative to other times.

The pricing error of the Euler equation associated with the stock market return is always

positive implying a positive �alpha� in the expected return-beta representation. This says

that unconditional risk premia are too high to be explained by the stock market�s covariance

with the marginal rate of substitution of aggregate consumption, a familiar result from the

equity premium literature.4 The high alphas generated by the standard consumption-based

model constitute one of the most remarked-upon failures in the history of asset pricing

theory.

What about larger cross-sections of returns? Panel B of Table 1 reports the pricing

errors for a cross-section of eight asset returns. The asset returns include as before the

Treasury bill rate and CRSP stock market return, in addition to six value-weighted portfolio

returns of common stock sorted into two size (market equity) quantiles and three book

value-market value quantiles. These returns were taken from Professor Kenneth French�s

Dartmouth web page. The latter six portfolios are created from stocks traded on the NYSE,

AMEX, and NASDAQ, as detailed on Kenneth French�s web page. We use equity returns on

of asset returns using forth quarter over fourth quarter consumption growth and annual asset returns. They

�nd more support for the model when year-over-year growth rates are restricted to the fourth quarter.
4The expected return-beta representation is derived from the Euler equation

E [MtR
s
t ]� 1 = e;

where e denotes the pricing error associated with the Euler equation. This equation can be rearranged to

yield

E (Rst )� 1=E (Mt) =
�Cov (Mt; R

s
t )

Var (Mt)

Var (Mt)

E (Mt)
+

e

E (Mt)
;

where 1=E (Mt) is interpreted as the risk-free rate in models for which this rate is presumed constant.

Rewrite the above as

E (Rst )� 1=E (Mt) = ��+ �;

where the left-hand-side is the risk-premium on the stock return, � � �Cov(Mt;R
s
t )

Var(Mt)
is the �beta� for the

stochastic discount factor Mt, or quantity of risk, � � Var(Mt)
E(Mt)

is the price of risk associated with Mt, and

� � e
E(Mt)

, is the �alpha� associated with the market return, that is the part of the risk-premium that

cannot be explained by its beta risk.
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size and book-to-market sorted portfolios because Fama and French (1992) show that these

two characteristics provide a �simple and powerful characterization�of the cross-section of

average stock returns, and absorb the roles of leverage, earnings-to-price ratio and many

other factors governing cross-sectional variation in average stock returns. For this set of

asset returns parameters 
 and � are chosen to minimize the quadratic form gT (
; �) �
w0
T (
; �)WwT (
; �), where wT (
; �) is the (8� 1) vector of average pricing errors for each

asset (i.e., wjT (
; �) = 1
T

PT
t=1 �

�
Ct
Ct�1

��

Rjt � 1 for j = 1; :::; 8) andW is the 8�8 identity

matrix. We use the identity weighting matrix because we are interested in the average pricing

errors for these particular returns, which Fama and French show are based on economically

interesting characteristics and deliver a wide spread in cross-sectional average returns. Using

the optimal GMM weighting matrix (for example) would require us to minimize the pricing

errors for re-weighted portfolios of the original test assets.

Panel B shows that the square root of the average squared pricing error (RMSE) for the

eight asset returns is large: over three% on an annual basis, or over 35% of the cross-sectional

average mean return. Eliminating the lowest six consumption growth rate periods reduces

the average pricing errors, but they remain large, around 2% on an annual basis.

How much might sampling error alone contribute to the estimated Euler equation errors

for the stock return and Treasury bill rate? In principle, this question can be addressed in

exactly identi�ed systems by conducting a block bootstrap simulation of the raw data. This

approach is inappropriate for the application here, however, because such a procedure would

e¤ectively treat the low consumption growth periods in our sample as outliers, in the sense

that a nontrivial fraction of the simulated samples would exclude those observations. But as

we have argued above, these episodes of low or negative consumption growth� the hallmark

of recessions� are not outliers to be ignored, but signi�cant economic events to be explained.

A more appropriate approach to this question is to ask, given sampling error, how likely

is it that we would observe the pricing errors we observe under the null hypothesis that

the standard model is true and the Euler equations are exactly satis�ed in population?

Models that postulate joint lognormality for consumption and asset returns are null models

of this form, since in this case values for � and 
 always exist for which the population

Euler equations of any two asset returns are exactly satis�ed. Consequently, only sampling

error in the estimated Euler equations could cause non-zero pricing errors. It is therefore

natural to begin by assessing whether joint lognormality is a plausible description of our

consumption and return data, once we take into account sampling error. We do so by

performing formal statistical tests of lognormality in our data. Table 3 presents the results

of normality tests, based on estimates of both univariate and multivariate skewness and

kurtosis for log (Ct=Ct+1) � �ct; log (Rst) � rst, and log (Rft) � rft.
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There is strong evidence against normality from both univariate and multivariate tests.

We reject that skewness is zero at the one% or better level for �ct, and rst, for every pair

of the three variables �ct, rst, and rft; and for the triple (�ct; rst; rft) : Also at better than

the one% level, we may reject the null hypothesis that the kurtosis measures for any three

of �ct, rst, and rft are equal to those of a univariate normal distribution, and that the

kurtosis measure for any pair of these variable or for the triple (�ct; rst; rft) is equal to that

of a multivariate normal distribution. The same picture emerges from examining quantile-

quantile plots (QQ plots) for �ct, rst, and rft and for the three variables jointly, given

in Figure 4. This �gure plots the sample quantiles for the data against those that would

arise under the null of joint lognormality. Pointwise standard error bands are computed by

simulating from the appropriate distribution with length equal to the size of our data set.

The �gure shows that all three log variables have some quantiles that lie outside the standard

error bands for univariate normality. But the most dramatic departure from normality is

displayed in the multivariate QQ plot for the joint distribution of (�ct; rst; rft). In this case,

a vast range of quantiles lie far outside the standard error bands for joint normality.

We address the issue of sampling error in our application from another angle. Suppose

that the data were generated by the standard CRRA representative-agent model, with re-

turns and consumption jointly lognormally distributed. How likely is it that we would �nd

results like those reported in Table 1, in a sample of the size we have? Again, in this case

population Euler equation errors are identically zero, so only sampling error in the estimated

Euler equations can cause non-zero pricing errors. It is straightforward to address this ques-

tion in a simple model where � lnCt+1 � i:i:d:N(�; �2), and preferences are of the CRRA

form with (for example) � = 0:99 and 
 = 2. Since the log di¤erence in consumption is

i.i.d. and normally distributed, the return to a risky asset that pays consumption, Ct, as its

dividend is also normally distributed, as is risk-free rate, Rft � 1=Et [Mt+1] : The equilibrium

returns have an analytical solution in this case, and can be solved from the (exactly satis-

�ed) Euler equations. Using this model, we simulate 1000 arti�cial samples of consumption

data equal to the size our quarterly data set, with � and � set to match their respective

sample estimates. Using the analytical solutions for returns we use the simulated data for

consumption growth to obtain corresponding simulated data for returns. Finally, we use

these simulated data to solve for the values of � and 
 that minimize the empirical Euler

equation errors for the risky and risk-free asset return and store the absolute value of those

errors. The 95% centered con�dence for these errors, in percent annum, is found to be (9.5

10�11, 7.0 10�9) for the risky return and (1.3 10�10, 6.5 10�9) for the risk-free return. This

reinforces the conclusion from the normality tests above, namely that sampling error alone

is unlikely to account for the �ndings reported in Figures 1 and 2 and Table 1.
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3 Euler Equation Errors: The Theories

How capable are leading asset pricing theories of correctly modeling the asset pricing phe-

nomena described above? In this section, we address this question by considering a number

of distinct asset pricing models. First we show that any model whose pricing kernel is jointly

lognormally distributed with aggregate consumption and returns will fail to explain these

features of the data, since in this case values for � and 
 can always be found for which the

standard model has the same unconditional asset pricing implications as the the true kernel

for a risky and risk-free asset return. We illustrate this in a limited participation/incomplete

markets setting. Next we evaluate the Euler equation errors generated by leading asset pric-

ing models. As mentioned, these include the external habit-formation models of Campbell

and Cochrane (1999) and Menzly, Santos, and Veronesi (2004), the long-run risks model of

Bansal and Yaron (2004), and the limited participation model of Guvenen (2003). Finally,

we present a number of additional results for simple limited participation/incomplete mar-

kets models in which assetholder consumption, aggregate consumption and asset returns are

not jointly lognormally distributed.

3.1 Joint Lognormality: An Illustration using Limited Participa-

tion/Incomplete Markets Models

The common de�ning feature of limited participation and incomplete markets models is the

presumption that it is not aggregate per capita consumption that is required to explain asset

returns, but rather the consumption of some subset of the aggregate who are marginal asset

holders. With limited stock market participation, the set of Euler equations of stockholder

consumption imply that a representative stockholder�s marginal rate of substitution is a valid

stochastic discount factor and can be used to explain asset returns, but no Euler equations

utilizing per capita aggregate consumption can be used to explain asset returns. Similarly,

if incomplete consumption insurance means that heterogenous consumers cannot equalize

their marginal rate of substitution state-by-state, the set of Euler equations of household

consumption imply that any household�s marginal rate of substitution is a valid stochastic

discount factor and can be used to explain asset returns, but no Euler equations utilizing

per capita aggregate consumption can be used to explain asset returns. In other respects,

these models are identical to the standard one: preferences are of the same von Neumann-

Morgenstern form and assetholders face no frictions in accessing �nancial markets, as in (1).

Thus, an econometrician who unwittingly attempted to �t data to (1) would be erring merely

in using per capita aggregate consumption in the pricing kernel in place of stockholder or

11



individual assetholder consumption.5

To evaluate the unconditional pricing errors in models with limited stock market partic-

ipation or incomplete markets, we must take a stand on the joint distribution of aggregate

consumption, stockholder/individual consumption, and asset returns. As a benchmark case,

we assume these to be jointly lognormally distributed. Later we consider asset pricing mod-

els in which the joint distribution is permitted to deviate from lognormality. In order to

isolate the implications of these features for asset pricing, we keep these models standard in

other respects; for example agents have standard time-separable preferences and unrestricted

access to �nancial markets.

In analogy to the empirical investigation, consider the Euler equation errors for two

assets with a gross returns denoted Rst and R
f
t : The �rst is a risky asset, for example a stock

market return, and the second is a risk-free return. The next section will consider larger

cross-sections of returns.

Denote the marginal rate of substitution (MRS) of an individual asset-holder as

M i
t+1 � �

�
Cit+1
Cit

��

; (6)

where Cit is the consumption of assetholder i, � is the subjective time discount factor of

this assetholder, and 
 is the coe¢ cient of relative risk aversion. If agents have unrestricted

access to �nancial markets, then M i
t correctly prices the two asset returns R

s
t+1 and R

f
t+1,

implying that

Et
�
M i
t+1R

s
t+1

�
= Et

h
M i
t+1R

f
t+1

i
= 1: (7)

We focus on unconditional implications of these models,

E
�
M i
t+1R

s
t+1

�
= E

h
M i
t+1R

f
t+1

i
= 1:

We can interpret the MRS, M i
t+1; either as that of a representative stockholder in a

limited participation setting (Cit is then the consumption of a representative assetholder), or

as that of an individual assetholder in an incomplete markets setting (Cit is the consumption

of any marginal assetholder, e.g., Constantinides and Du¢ e (1996)).

Now denote the misspeci�ed �MRS� for some parameters �c and 
c, that would be

computed if an econometrician erroneously used per capita aggregate consumption, Ct in

place of Cit

M c
t � �c

�
Ct
Ct�1

��
c
: (8)

5Alternatively, one can interpret the example in this section as an illustration of the in�uence of mea-

surement error on empirically observed pricing errors. In this case, stockholder consumption corresponds

to correctly measured consumption for which the model holds exactly, and aggregate consumption is an

error-ridden empirical measure of true consumption.
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The pricing error associated with the true MRS,M i
t , is by construction zero, but the pricing

error associated with the erroneous MRS, M c
t , for return R

j; is given by (dropping the time

subscripts)

Pricing error � PE = E
�
M cRj

�
� 1:

Throughout this paper, when we refer to pricing errors, we mean the pricing error generated

for any asset by erroneously using the �pricing kernel,�M c in place of the true pricing kernel,

here M i, since only the former are potentially nonzero.

How large are the pricing errors associated with using M c in place of M i? To answer

this question, �rst note that, for any asset return indexed by j, this pricing error can be

rewritten in terms of log variables as

PEj = E
�
exp

�
mc + rj

	�
� 1;

which, given lognormality of Ct=Ct�1 and returns, equals

PEj = E
�
Rj
�
E [M c] exp

�
Cov

�
mc; rj

�	
� 1:

Use the fact that the pricing error is identically zero under M i to write

E
�
Rj
�
E
�
M i
�
exp

�
Cov

�
mi; rj

�	
= 1;

implying that

PEj =
E [M c]

E [M i]
exp

�
Cov

�
mc; rj

�
� Cov

�
mi; rj

�	
� 1 (9)

=
E [M c]

E [M i]
exp

�
�
cCov

�
�c; rj

�
+�
iCov

�
�ci; rj

�	
� 1: (10)

This condition must hold for each asset, so that if the pricing errors for the risk-free rate

and risky return associated with M c were to be zero, we must have

E [M c]

E [M i]
exp

�
�
cCov (�c; rs) +�
Cov

�
�ci; rs

�	
= 1 (11)

E [M c]

E [M i]
exp

�
�
cCov

�
�c; rf

�
+�
Cov

�
�ci; rf

�	
= 1: (12)

It is now straight forward to solve for values of 
c and �c that make equations (11) and (12)

hold and therefore insure that the pricing errors PEf = PEs = 0. The resulting solutions

are


c = 


�
�is � �if
�cs � �cf

�
; (13)
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where �is �Cov(�ci; rs) ; �cs �Cov(�c; rs) and �if and �cf are de�ned analogously for the
risk-free return. The value of �c which satis�es (11) and (12) can be found by plugging (13)

into either equation to �nd

�c = � exp

�

c�c �


2c�
2
c

2
� 
�i +


2�2i
2

+ 
c�cs � 
�is

�
(14)

= � exp

�

c�c �


2c�
2
c

2
� 
�i +


2�2i
2

+ 
c�cf � 
�if

�
;

where �c is the mean growth rate of aggregate consumption, and �i is the mean growth rate

of the consumption of asset-holder i.6

Ruling out the knife-edge case in which �cs = �cf , equations (13) and (14) show that

one can always �nd values of 
c and �c that make the aggregate consumption-pricing errors

associated with a broad stock return index and Treasury bill rate zero and indeed, these

are the values an econometrician would �nd if the data were generated in equilibrium by

(6) but one were to �t data to (8). This means that an erroneous pricing kernel based on

aggregate consumption can always be found that unconditionally prices these two assets just

as well as the true pricing kernel based on assetholder consumption. The estimates of 
c
and �c that result from �tting data to (8) will not correspond to any marginal individual�s

true risk-aversion or time discount factor. But a representative-agent pricing kernel based

on per capita aggregate consumption can nevertheless be found that has the same uncon-

ditional asset-pricing implications as the true pricing kernel based on individual assetholder

consumption.

At this point it should be clear that one would get identical results for any pricing kernel

M i
t that is jointly lognormally distributed with returns and aggregate consumption growth.

It is not necessary that the pricing kernel take the form given in (6). Referring to (9) it is

evident that the resulting solutions for �c and 
c would be a function of the means, variances

and covariances of �ct, rst , r
f
t and m

i
t, whatever form the latter may take. If the true pricing

6Notice that, in equilibrium, 
c and �c will take the same value regardless of the identity of the assetholder.

This follows because any two households must in equilibrium agree on asset prices, so that the Euler equation

holds for each individual household. Thus,


c = 
i

�
�is � �if
�cs � �cf

�
= 
k

�
�ks � �kf
�cs � �cf

�
for any two asset-holders i and k, as long as

E
�
M i
tR

s
t

�
= E

�
Mk
t R

s
t

�
and

E
h
M i
tR

f
t

i
= E

h
Mk
t R

f
t

i
:
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kernel that sets Euler equation errors to zero is jointly lognormally distributed with aggregate

consumption and returns, then values for the discount factor relative risk aversion can be

always be found such that the standard model generates identical unconditional asset pricing

implications for two asset returns, a risky and risk-free asset.

The solution for 
c given above can be expressed in a more intuitively appealing way.

Consider an orthogonal decomposition of aggregate consumption growth into a part that

is correlated with asset-holder consumption and a part, "it, orthogonal to asset-holder con-

sumption:

�ct = ��cit + "it; (15)

where � =
Cov(�ct;�cit)
Var(�cit)

� �ci�c
�i

: Here �ci denotes the correlation between �ct and �c
i
t. Using

this decomposition, (13) can be re-written as


c =



� +
�"is��"if
�is��if

; (16)

where �"is �Cov("it; Rst ) and �"if �Cov
�
"it; R

f
t

�
. Now consider assets that are uncorrelated

with "it, the component of aggregate consumption that is uncorrelated with stockholder

consumption. Many assets are likely to be included in this category, for example a broad

stock market index or short-term interest rates, as those returns are unlikely to vary in a way

that is orthogonal to assetholder consumption. Also included will be any risky asset that is

on the log mean-variance e¢ cient frontier.7 In this case we would have �"is = �"if = 0, and

therefore


c =



�
= 


�i
�ci�c

: (17)

Once we plug (17) into the formulas above for �c, we have solutions for �c and 
c for

which M c
t perfectly satis�es the unconditional asset pricing restrictions of a risk-free return,

and any log mean-variance e¢ cient return. The formula tells us that the value of 
c that

would be obtained from �tting data to the erroneous kernel (8) will be higher the higher

is assetholder risk aversion, the higher is assetholder consumption volatility relative to that

of aggregate consumption, and the lower is the correlation between aggregate consumption

growth and asset-holder consumption growth. Thus, limited participation and/or incomplete

consumption insurance can in principal account for implausibly high estimated values of 
c
and �c obtained when �tting data to (8), but to do so, assetholder consumption must be

7This follows because the log return on any risky asset indexed by s can always be decomposed into a

component that is correlated with the true log pricing kernel, mi, and a component that is orthogonal to mi,

call it �s. For any risky asset s, the covariance �"is will equal zero if and only if Cov
�
�s; "i

�
= 0. Naturally

the latter will hold if the variance of �j is zero, which in turn will occur if the correlation between m, and

rj is -1, that is Rst is on the log mean-variance e¢ cient frontier.
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more volatile than aggregate consumption and/or very weakly correlated correlated with

it. Notice, however, that even if assetholder consumption behaves very di¤erently from per

capita aggregate consumption, this is not enough to explain the large unconditional Euler

equation errors that arise from �tting data to (8). The only consequence of using aggregate

per capita consumption in this setting is a bias in the estimate parameters 
c and �c; there

is no consequence for the Euler equation errors, which remain zero.

3.2 Leading Asset Pricing Models

In this section we consider the Euler equation errors generated by speci�c models. Can the

large unconditional Euler equation errors generated by �tting data to (1) be explained by

leading asset pricing models? Does discarding the standard pricing kernel in favor of the true

kernel implied by these models allow an econometrician to better model asset pricing data?

All of the leading models we consider are consumption-based asset pricing models speci�cally

designed to resolve puzzles associated with the standard model. In addition, all of the leading

models develop endogenous predictions for a stock market return (sometimes modeled as the

return to an aggregate wealth portfolio) and a risk-free rate, and none imply that the pricing

kernel is unconditionally jointly lognormally distributed with aggregate consumption growth

and returns.8 We now turn our attention to investigating each model�s implications for the

unconditional pricing errors. We do so by �tting arti�cial data generated in equilibrium by

each model to (1).

3.2.1 Misspeci�ed Preferences

Suppose (1) is �tted to data generated by a representative agent model with preferences

that di¤er from power utility. Can leading asset pricing models with di¤erent preferences

explain the large empirical pricing errors found in Section 2? We consider three promi-

nent representative-agent models: the external habit-persistence models of Campbell and

Cochrane (1999) (CC) and Menzly, Santos, and Veronesi (2004) (MSV), and the long-run

risks model of Bansal and Yaron (2004).9 All three of these models display a striking ability

to match a range of asset pricing phenomena, including a high equity premium, low and

stable risk-free rate, long-horizon predictability of excess stock returns, and countercyclical

variation in the Sharpe ratio (where the Sharpe ratio is de�ned as the conditional mean

8Joint lognormality of consumption growth, the risky asset return and the risk-free return can be statis-

tically rejected in simulated data of all of the models discussed in this section.
9The habit models generate time-varying and thus state-dependent risk-aversion. Melino and Yang (2003)

and Gordon and ST-Amour (2004) consider more general models of state dependent preferences to study

asset pricing phenomenon.
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of the excess stock market return divided by its conditional standard deviation). In what

follows, we describe only the main features of each model, and refer the reader to the original

article for details. Except where noted, our simulations use the baseline parameter values of

each paper.

The utility function in the CC and MSV models take the form

U = E

( 1X
t=0

�t
(Ct �Xt)

1�
 � 1
1� 


)
; 
 > 0 (18)

where Ct is individual consumption and Xt is habit level which they assume to be a function

of aggregate consumption, and � is the subjective discount factor. In equilibrium, identical

agents choose the same level of consumption, so Ct is equal to aggregate consumption. The

key innovation in each of these models concerns the speci�cation of the habit process Xt,

which in both cases evolves according to distinct heteroskedastic processes. (The Appendix

provides a more detailed description of the models in this section.) The stochastic discount

factors in both models take the form

Mt+1 = �

�
Ct+1 �Xt+1

Ct �Xt

��

but di¤er in their speci�cation of Xt. We denote as MCC

t+1 the speci�cation of Mt+1 corre-

sponding to the Campbell-Cochrane model of Xt, and as MMSV
t+1 the speci�cation of Mt+1

corresponding to the MSV model of Xt.

CC and MSV assume that the log di¤erence in consumption, �ct � log (Ct=Ct�1), follows
an i.i.d. process:

�ct = �+ �vt;

where vt is a normally distributed i.i.d. shock. Both models derive equilibrium returns for

a risk-free asset and a risky equity claim that pays aggregate consumption as its dividend.

MSV also extend the Campbell and Cochrane model by considering the equilibrium pricing

of multiple risky securities, but for the moment we focus on the model�s implications for the

stock return, Rst+1, and risk-free rate, R
f
t+1.Campbell and Cochrane set 
 = 2 and � = 0:89

at an annual rate. Menzly, Santos and Veronesi choose 
 = 1 and � = 0:96: Notice that the

curvature parameter 
, is no longer equal to relative risk-aversion.

Bansal and Yaron (2004) consider a representative-agent who maximizes utility given

by recursive preferences of Epstein and Zin (1989, 1991) and Weil (1989). The stochastic

discount factor under Epstein-Zin-Weil utility used in BY takes the form

MBY
t+1 =

 
�

�
Ct+1
Ct

�� 1
 

!�
R��1w;t+1; (19)
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where Rw;t+1 is the simple gross return on the aggregate wealth portfolio, which pays a

dividend equal to aggregate consumption, Ct, � � (1� 
) = (1� 1= ) ;  is the intertemporal
elasticity of substitution in consumption (IES), 
 is the coe¢ cient of relative risk aversion,

and � is the subjective discount factor. Bansal and Yaron assume that both aggregate

consumption growth and aggregate dividend growth have a small predictable component

that is highly persistent. They also incorporate stochastic volatility into the exogenous

processes for consumption and dividends to capture evidence of time-varying risk-premia.

Taken together, the dynamics of consumption growth and stock market dividend growth,

�dt, take the form

�ct+1 = �+ xt + �t�t+1 (20)

�dt+1 = �d + �xt + �d�tut+1; (21)

xt+1 = �xt + �c�tet+1

�2t+1 = �2 + �1
�
�2t � �2

�
+ �wwt+1;

where �2t+1 represents the time-varying stochastic volatility, �
2 is its unconditional mean, and

�; �d, �, �d; �, �c, �1 and �w are parameters, calibrated as in BY. Here, the stock market

asset is the dividend claim, given by (21), rather than a claim to aggregate consumption,

given by (20). BY calibrate the model so that xt is very persistent, with a small unconditional

variance. Thus, xt captures long-run risks, since a small but persistent component in the

aggregate endowment can lead to large �uctuations in the present discounted value of future

dividends. Their favored speci�cation sets � = 0:998, 
 = 10 and  = 1:5.10

For each model above, a solution is obtained and a large time series of arti�cial data

(20,000 observations) are generated. We use these data to quantify the magnitude of uncon-

ditional pricing errors for the equilibrium risk-free rate and stock market return that would

arise if an econometrician �t M c
t � �c(Ct=Ct�1)

�
c to data generated by each of the models

described above. The parameters �c and 
c are chosen to minimize an equally-weighted sum

of squared pricing errors,

min
�c;
c

E
�
�c (Ct=Ct�1)

�
c Rst � 1
�2
+ E

h
�c (Ct=Ct�1)

�
c Rft � 1
i2
;

where the data on aggregate consumption, Ct, the stock return, Rst , and the risk-free rate,

Rft are model-generated simulated data of the equilibrium outcomes of each model. Table 4

reports the results.

In each case, we �nd the pricing errors that arise from erroneously using the standard

pricing kernel based on power utility are numerically zero, just as they are when the true

10The results below are based on the �rst-order approximate analytical solutions given in BY. The simu-

lation results are close to those based on the numerical solutions reported in Bansal and Yaron (2004).
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pricing kernel is used. Values of �c and 
c can in each case be found that allow the standard

consumption-based model to unconditionally price assets just as well as the true pricing

kernel. In the CC model, the values of �c and 
c that set these pricing errors to zero are

1.28 and 57.48 respectively. In the MSV model, the corresponding values are 1.71 and 30.64,

respectively. Thus, the habit models can explain what many would consider the implausible

estimates of time preference and risk aversion obtained when freely �tting aggregate data to

(1). Recall that the true preference parameters are 
 = 2 and � = 0:89 in CC and 
 = 1 and

� = 0:96 in MSV. But it is in those parameters that all of the distortion from erroneously

using M c
t arises. No distortion appears in the Euler equation errors themselves. In terms of

obtaining the correct unconditional asset pricing implications, these models do not appear to

be very important: an econometrician could model the asset pricing data just as e¤ectively

using a standard pricing kernel based on power preferences. It follows that the models cannot

explain the large unconditional Euler equation errors that arise when �tting historical data

to (1).

The �ndings are similar for the Bansal-Yaron long-run risks model. Here we follow BY

and simulate the model at monthly frequency, aggregating to annual frequency to report the

model�s asset pricing implications. Thus, the monthly consumption data are time-aggregated

to annual consumption, and monthly returns are compounded to annual returns.11 We �nd

that � is close to the true value, but 
 is estimated to be about �ve times as high as true

risk aversion. Thus, as for the habit models, this framework explains why an econometrician

obtains high estimates of risk aversion when �tting data to the standard consumption-based

model. But, also like the habit models, if an econometrician �t M c
t to data generated by

MBY
t , the resulting Euler equation errors would be e¤ectively zero, in contrast to what is

found using historical data.12

3.2.2 Misspeci�ed Consumption

Suppose (1) is �tted to data generated by a non-representative agent model in which asset

prices are determined not by per capita aggregate consumption but rather by the consump-

tion of stockholders. Can asset pricing models in which stockholder consumption belongs in

the pricing kernel explain the large empirical pricing errors computed from aggregate con-

11The resulting Euler equation errors are unchanged if they are computed for quarterly time-aggregate

consumption and quarterly returns rather than annual time-aggregated consumption and annual returns.
12For models based on recursive preferences, Kocherlakota (1990) shows that there is an observational

equivalence to the standard model with power utility preferences, if the aggregate endowment growth is i.i.d.

However, the endowment growth process in the BY model is not i.i.d., but instead serially correlated with

stochastic volatility. Moreover, the annual consumption data are time-aggregated, which further distorts the

time-series properties from those of the monthly endowment process.
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sumption data, as in Section 2? We consider the limited participation model of Guvenen

(2003) (GUV). Like the representative-agent models considered above, this Guvenen model

has demonstrated remarkable success in explaining many of the empirical puzzles associ-

ated the standard representative-agent consumption-based model. It can account for a high

equity premium and low and stable risk-free rate, predictable stock market returns, and

countercyclical Sharpe ratio.

The Guvenen model has two types of consumers, stockholders and nonstockholders. The

latter are exogenously prevented from participating in the stock market. The discount factor

in this model is given by

MGUV
t+1 = �

�
Cit+1
Cit

��

;

where � is the subjective discount factor of the stockholder, 
 is the stockholder�s relative

risk aversion, and Cit is stockholder consumption, which by assumption cannot be the same

as aggregate per capita consumption. In other respects, the model is a standard one-sector

real business cycle model with adjustment costs in capital. Both stockholders and nonstock-

holders receive labor income with wages determined competitively by the marginal product

of labor, and �rms choose output by maximizing the present discounted value of expected

future pro�ts. Both agents have access to a riskless bond.

We follow the same procedure discussed above to quantify pricing errors in this model. We

simulate a large time series of arti�cial data (20,000 observations) for the equilibrium values

of the variables in this model, and use these data to quantify the magnitude of unconditional

pricing errors that an econometrician would �nd from �tting (1) to data generated byMGUV
t+1 .

In Guvenen�s baseline model, stockholders have risk aversion 
 = 2 and subjective dis-

count factor � = 0:99. Table 5, panel A shows that stockholder consumption growth is

about two and a quarter times as volatile as aggregate consumption growth in the baseline

model, and perfectly correlated with it. The model implies that stockholder consumption

is over four times as volatile as nonstockholder consumption growth, but the two are also

highly correlated, with correlation 0.99. This is not surprising since both types of consumers

participate in the same labor market and bond markets; the agents di¤er only in their ability

to hold equities, and in their risk-aversion (nonstockholders have higher risk-aversion). As a

consequence, stockholder�s MRS, MGUV
t , is highly correlated with the aggregate consump-

tion pricing kernelM c
t � �c(Ct=Ct�1)

�
c , for a variety of values of �c and 
c. Panel B of Table

5 shows this correlation for two such cases, �rst with �c = � = 0:99 and 
c = 
 = 2, and

second with �c and 
c set to the values that minimize the equally-weighted sum of squared

pricing errors for the stock return and riskless bond. These latter values are �c = 0:99 and


c = 4:49. In both cases, the correlation between M
GUV
t and M c

t is extremely high, 0.99.

Panel C of Table 5 shows the pricing errors in Guvenen�s model that would arise if
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aggregate consumption were erroneously used in the pricing kernel in place of stockholder

consumption. For comparison, the table also reports the pricing errors using the true kernel

MGUV
t based on stockholder consumption, which are quite small (0.02% on an annual basis)

but not exactly zero due to the rarely-binding borrowing constraints that apply to both

stockholders and nonstockholders. When �c = � = 0:99 and 
c = 
 = 2, the pricing errors

using aggregate consumption are larger than that using stockholder consumption, equal to

about 0.4% at an annual rate for the stock return and -0.34% for the risk-free rate. Although

the signs of the errors match those in the data, they are much smaller in magnitude. When �c
and 
c are chosen to minimize the sum of squared pricing errors for these two asset returns,

as in empirical practice, the pricing errors are, to numerical accuracy, zero for the stock

return and a mere 0.01% at an annual rate for the risk-free return. Thus, the model delivers

a pricing kernel using aggregate consumption that is virtually identical in its unconditional

pricing implications for these two moments to the the true pricing kernel using stockholder

consumption. While the model produces small pricing errors using the true pricing kernel

based on stockholder consumption, like the models above, it counterfactually produces small

pricing errors using the wrong pricing kernelM c
t based on per capita aggregate consumption.

We are led to the conclusion that Euler equation errors of the standard consumption-based

model cannot be attributable to merely using the wrong consumption measure. Moreover, in

this model, stockholder consumption is irrelevant for getting the average price of these assets

correct and does not explain the high estimated values of � and 
 obtained when �tting data

to the standard consumption-based model. Instead, with a modest adjustment to the risk-

aversion parameter, there is an observational equivalence between the standard consumption-

based pricing kernel and the true pricing kernel based on stockholder consumption. An

econometrician who �ts M c
t to data generated by M

GUV
t would fail to reject� either on

statistical or economic grounds� the standard consumption-based model.

3.2.3 Misspeci�ed Preferences and Misspeci�ed Consumption

One possible reaction to the results above, at least for the representative agent models, is that

we should take the representative-agent nature of the models less literally and assume that

they apply only to a representative stockholder, rather than to a representative household

of all consumers. Would the results for these models be better reconciled with the data

if we accounted for limited participation? Not necessarily. As an illustration, we consider

a simple limited-participation version of the MSV model and show that the results are

essentially unchanged from the representative-agent setup.

Since the MSV model is a representative-agent model, we modify it in order to study

the role of limited participation. Assume that asset prices are determined by the framework
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above, where a valid stochastic discount factor is a function of any stockholder�s consumption

Cit and stockholder�s habit X
i
t . The process for stockholder consumption is the same as in

MSV, described above, but now with i subscripts:

�cit = �i + �iv
i
t;

where vit is a normally distributed i.i.d. shock. Aggregate consumption is assumed to follow

a separate process given by

�ct = �c + �cv
c
t ;

with vct a normally distributed i.i.d. shock. We analyze the results over a range of cases for

the correlation between vit and v
c
t , and their relative volatilities �i=�c.

Asset prices are determined by the stochastic discount factor of assetholder de�ned

as MMSV i
t+1 = �

�
Cit+1�Xit+1
Cit�Xit

��

, where X i

t+1 is the habit modeled as in MSV. Next, we

compute two types of unconditional pricing errors. First, we compute the pricing errors

generated from erroneously using aggregate consumption in the pricing kernel in place of

assetholder consumption. That is, we compute the pricing errors that arise from using

M ch
t+1 � �c

�
Ct+1�Xt+1
Ct+1�Xt+1

��
c
in place of MMSV i

t+1 to price assets, where Xt is computed from

the MSV habit speci�cation using aggregate consumption, and where �c and 
c are cho-

sen to minimize the pricing errors. Second, we compute the unconditional pricing errors

from both erroneously using aggregate consumption in the pricing kernel, and from erro-

neously using power preferences. That is, we compute the pricing errors that arise from

using M c
t = �c (Ct=Ct�1)

�
c to price assets when the true model is MMSV i
t+1 . As above, the

parameters �c and 
c are chosen to minimize an equally-weighted sum of squared pricing

errors.

The results are presented in Table 6 for the exercise using M ch
t+1 and Table 7 for the

exercise using M c
t . We report the pricing errors associated with erroneously using M

ch
t+1 and

M c
t+1 in place of M

i
t+1, for a range of values for the relative volatility between asset-holder

and aggregate consumption growth and for their correlations. The standard deviation of

asset-holder consumption growth is allowed to range from one times to ten times as volatile

as that of aggregate consumption growth. The correlation is allowed to range from -1.0 to

1.0. The pricing errors are reported in the bottom panels for the return to the aggregate

wealth portfolio, denoted Rst+1 and for the risk-free rate, R
f
t . We also report the values of �c

and 
c that set these errors as close to zero as possible, for each case.

Table 6 shows that the pricing errors that arise from usingM ch
t+1 to price assets are always

zero. This shows that even if preferences are not of the standard iso-elastic form, using the

wrong consumption measure in the pricing kernel does not necessarily generate large pricing

errors, even if assetholder consumption is �ve times as volatile as aggregate consumption,
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or very weakly correlated with it. Instead, a stochastic discount factor using aggregate

consumption can be found that is virtually identical in its pricing implications to the true

pricing kernel in the same class of preferences. Notice that the parameters �c and 
c can

deviate substantially from the true values. This reinforces the �ndings from above, which

suggest that merely making assetholder consumption growth behave very di¤erently from

aggregate consumption growth is not enough to explain large pricing errors generated by the

standard consumption-based model. Table 6 shows that aggregate consumption growth can

be perfectly negatively correlated with assetholder consumption growth and �ve times as

volatile, yet the pricing errors that arise from using Ct in place of Cit are still zero. Instead,

all of the adjustment is loaded into the coe¢ cients, �c and 
c.

Table 7 shows that the same qualitative result holds if one uses M c
t+1 in place of the

true pricing kernel M i
t+1. Here we use both the wrong consumption measure and the wrong

preferences. There are a few cases for which the numerical procedure does not converge,

denoted �NA�in the table. Except for these cases, we can as before �nd values of �c and


c such that M c
t+1explains the Euler equations just as well as M

i
t+1. The values for �c

and 
c are more distorted from their true values than is the case in Table 6 where we have

merely substituted the wrong consumption measure into the class of habit preferences, but

the pricing errors of the standard consumption-based model are still zero.13 These �ndings

reinforce the conclusion that changing the pricing kernel does not necessarily change the

pricing implications.

3.2.4 Larger Cross-Sections of Returns

So far, we have only considered the pricing implications of two asset returns, a risk-free

rate and a risky asset return. Of the models above, three of them, namely the Campbell-

Cochrane, Bansal-Yaron, and Guvenen models, generate implications only for these two asset

returns,14 returns that are the focal point of those studies. By contrast, the model of Menzly,

Santos and Veronesi generates implications for many risky securities, each distinguished by

a distinct dividend process whose dynamics are characterized by �uctuations in the share

it represents in aggregate consumption. Of course, the model also generates implications

for the risk-free rate and aggregate wealth portfolio return, the implications of which were

analyzed above. We now exploit the structure of the MSV model to study its implications

13Notice that variation in �i=�c has little a¤ect on the estimated value of the risk-aversion parameter 
c.

This happens because we adjust � at the same time as we adjust �i=�c so that the mean excess return

remains roughly what it is in MSV. Since the volatility of aggregate consumption is kept the same and � is

adjusted to keep the returns of the same magnitude, 
c doesn�t change much.
14In principal, one could study the implications of these models for scaled returns, which are the raw

returns multiplied by some known conditioning variable given in equilibrium by the model.
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for a larger cross-section of equilibrium returns, analogous to the empirical exercise in Panel

B of Table 1 using historical data on 8 asset returns.

MSV model the share of aggregate consumption that each asset produces,

sjt =
Dj
t

Ct
for j = 1; :::; n;

where n represents the total number of risky �nancial assets paying a dividend D. The

Appendix gives a more detailed description of the stochastic process MSV assume for the

shares and our calibration of the model. Cross-sectional variation in unconditional mean

returns across risky securities in this model is governed by cross-sectional variation in the

covariance between shares and aggregate consumption growth. In analogy to the empirical

exercise (Panel B of Table 1), we create six arti�cial risky securities plus the aggregate wealth

portfolio return and the risk-free for a total of 8 asset returns. The parameters of the share

processes are chosen to generate a spread in expected returns across assets.

We simulate 20,000 periods and compute the pricing errors that would arise in equilib-

rium if M c
t+1 = �c

�
Ct+1
Ct

��
c
were used to price assets in place of the true kernel MMSV

t :

Since we now have a total of 8 asset returns, we choose the parameters 
c and �c to min-

imize the quadratic form gT (
; �) � w0
T (
; �)WwT (
; �), where wT (
; �) is the (8� 1)

vector of sample average pricing errors using the model-simulated data (i.e., wjT (
; �) =
1
T

PT
t=1 �

�
Ct
Ct�1

��

Rjt � 1 for j = 1; :::; 8) andW is the 8�8 identity matrix. We maintain

the same limited participation set-up described above for the two-asset results reported in

Tables 5 and 6 and report the pricing errors associated with erroneously usingM c
t+1 in place

of the true kernelMMSV i
t+1 for a range of values for the relative volatility between asset-holder

and aggregate consumption growth and for their correlations. The results are reported in

Table 8.

The root-mean-squared pricing error, as a percentage of the cross-sectional mean return,

is reported in the bottom panel. We also report the values of �c and 
c that minimize the

quadratic criterion function, for each case. The results here are qualitatively the same as

those in Table 7 for two-asset returns: the estimation produces wildly inaccurate values for �

and 
, but the standard model pricing kernelM c
t+1 can explain returns virtually as well as the

true pricing kernel MMSV i
t+1 . The root-mean-squared-error that arises from erroneously using

M c
t+1 to price assets is tiny as a fraction of the cross-sectional mean return, the highest being

about 4%. These numbers should be contrasted with the 35% �gure obtained for a cross-

section of 8 asset returns in U.S. data (Table 1, Panel B). Moreover, the numbers in Table 8

actually overstate the true pricing errors. This is because there are two sources of error that

result in nonzero pricing errors even using the true pricing kernel MMSV i
t+1 . The �rst is the

discrete-time approximation to the continuous-time model of MSV. We eliminate much, but
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not all, of this error by shrinking the time-interval over which we simulate the model and

reporting annualized values in the table. The second source of error is the approximation in

(25). Taken together, these errors mean that the true kernel generates pricing errors that are

often of the same order of magnitude as those reported in Table 8. These results reinforce

the conclusions from the two-asset case and demonstrate that the unconditional pricing

implications of the standard consumption-based model can easily be virtually identical to

those using the true pricing kernel, even when the number of assets exceeds the number of

free parameters and when both the wrong preferences and the wrong consumption measure

are employed to price assets.

3.2.5 Time Aggregated Consumption

With the exception of the Bansal-Yaron model, the results presented above use arti�cial

data generated from the original models in which the decision interval of agents is equal

to the data sampling interval. One possible concern about the results so far is that the

decision interval of households may be shorter than the data sampling interval, leading to

time-aggregated consumption observations. Since time-aggregation is likely to a¤ect the

correlation between returns and consumption growth, it is important to assess its in�uence

on pricing errors. We have repeated the same excercise for all the models above using

time-aggregated consumption data, assuming that agents�decision intervals are shorter than

the data sampling interval. For example, we assume that agents make decisions quarterly

but that the data sampling interval is annual. In this case, the annual observation on

consumption is the time-aggregated value of consumption over the four quarters in a year,

where the annual return is the compounded equilibrium quarterly return. For all models

the essential results for the Euler equation errors remain unchanged: values of �c and 
c
can always be found such that the unconditional pricing errors associated with using M c

t to

price assets are numerically zero, even when using time-averaged data. We demonstrate this

in Table 9, for the MSV model with limited participation. (To conserve space, we report

only the results for this model, since the conclusion is unchanged for the other models.)

Since time-averaging changes both the serial dependence of the consumption data and its

unconditional correlation with returns, this suggests that the exact time-series properties of

consumption growth is often not crucial for explaining the empirical facts presented here.

To summarize, if any of the leading models we consider above were true, we would not

observe the pricing errors we observe when �tting data to the standard consumption-based

asset pricing model. Instead, Euler equation errors would be zero and the entire consequence

of using the wrong pricing kernel would be incorrect estimates of � and 
. If data were

generated from any of the modelsMCC
t ,MMSV

t ,MBY
t , andMGUV

t , an econometrician would
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�nd that they have no more explanatory power than the standard representative-agent,

consumption-based asset pricing model in tests of unconditional asset pricing restrictions; put

another way, an econometrician would never statistically reject the standard consumption-

based model. To think about one way such large unconditional pricing errors might be

explained in frictionless models, we now dig a bit deeper into the potential roles of limited

participation/incomplete markets. As stated, the common de�ning feature of both types of

models is the presumption that it is not aggregate per capita consumption that is required

to explain asset returns, but rather the consumption of some subset of the aggregate who

are assetholders. We saw above that when all variables are jointly lognormally distributed,

there is no scope for expanding the unconditional asset pricing implications of the standard

model with limited participation or incomplete markets. The next section considers what

happens when these variables are allowed to depart from lognormality.

3.3 Perturbations fromNormality: Limited Participation/Incomplete

Markets

How do the unconditional pricing implications of models with limited participation/incomplete

markets change when variables are not jointly lognormal? We approach this question by

considering distributions that are perturbed from the normal thereby allowing departures

from normality. In particular, we restrict our investigation to �rst-order Hermite expan-

sions around the normal. We do so for three reasons. First, as we explain below, such a

restriction makes the analysis tractable given the number of unknown parameters that must

be calibrated. Second, the �rst-order expansion can accomodate signi�cant departures from

normality, if not arbitrary departures. Third, we argue that at least a large number of com-

monly parameterized economic models built from the primitives of tastes, technology and

fundamental shocks are likely to generate endogenous variables that fall within this class of

distributions. One caveat is that the distributions we consider cannot accomodate condi-

tional heteroskedasticity or other forms of conditional temporal dependence. Allowing for

such dependence would require the calibration of an infeasible number of Hermite parameters

about which we have no information. Still, we will show that it is not necessary to entertain

such generalizations in order to �nd examples of models capable of matching the empirical

regularities we focus on here. We begin this section by considering the Euler equation errors

associated with a stock market return and a risk-free rate and later move on to consider a

larger cross-section of asset returns.

Let yt = (�ct;�c
i
t;�dt)

0 � (y1;t; y2;t; y3;t)
0, a vector containing aggregate consumption

growth, �ct, individual asset-holder consumption growth, �cit, and dividend growth on the

aggregate stock market return, �dt. We will consider simple asset pricing models in which
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these variables are i.i.d., but not necessarily jointly lognormally distributed.

Let the joint density of yt be denoted h (y). How can h (y) be chosen without imposing

potentially wildly erroneous shape? We use a Hermite polynomial expansion around the

normal, which is a polynomial in y times the standard Gaussian density. The primary

advantage of the Hermite expansion is that the leading term is Gaussian, and higher-order

terms accomodate deviations from normality. Gallant and Tauchen (1989) show that such

an expansion can be put in tractable form by specifying the density as

h (y) =
a (y)2 f (y)R R R

a (u)2 f (u) du1du2du3
:

Here, f (y) is the multivariate Gaussian density with variance-covariance matrix 
 and mean

� = (�1; �2; �3)
0, and a (y) is the sum of polynomial basis functions of the variables in y; it

is squared to insure positivity of the density and divided by the integral over R3 to insure
the density integrates to unity.

In our calibrated examples, we set a (y)2 = (a0 + a1y1;t + a2y2;t + a3y3;t)
2, a low-order

expansion but one that can nonetheless accomodate quite signi�cant departures from nor-

mality. We can investigate results for a large number of possible joint distributions by simply

varying the parameters a0,...,a3: When a0 = 1 and a1 = a2 = a3 = 0, h (y) collapses to the

Gaussian joint distribution, f (y). It is important to keep the degree of the Hermite expan-

sion manageable since, lacking a su¢ ciently long times series on asset-holder consumption,

we cannot feasibly estimate the parameters of f (y) and a (y).15 Hence we also restrict the

variables to be i.i.d., since accounting for variation in conditional distributions would increase

the required number of hermite parameters by a factor of ten. As it is, the current set-up

already leaves a number of parameters to be calibrated, including those in 
, �, and a (y).

Given that we have little direct information about many of these parameters, we will look

at a range, leaving a large number of parameter combinations to be calibrated. We discuss

this calibration below.

As before, we denote the risky return with an s superscript and the risk-free rate with

an f superscript. In equilibrium we must have

Et
�
M i
t+1R

j
t+1

�
= 1; j = s; f;

where M i
t+1 � �

�
Cit+1=C

i
t

��

is the true pricing kernel based on individual assetholder con-

sumption. For the stock return, Rst+1, this expression may be written as

Et

�
M i
t+1

�
Pt+1
Dt+1

+ 1

�
Dt+1

Dt

�
=
Pt
Dt

; (22)

15Gallant and Tauchen (1989) estimate a number of Hermite polynomial densities for aggregate consump-

tion growth, stock returns and a Treasury-bill rate, for which a long time-series of data are available.
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where Pt is the end-of-period stock price at time t and we have used the de�nition of gross

returns, Rst+1 � (Pt+1 +Dt+1) =Pt: For the risk-free rate, an analogous equation holds using

the de�nition Rft+1 �
�
Et
�
M i
t+1

���1
, but notice that since all variables are i.i.d., conditional

expectations are just the same as unconditional expectations. Thus, we can use the uncondi-

tional joint distribution h (y) to compute the expectation in (22) and the equilibrium risk-free

rate. Because all variables are i.i.d., the equilibrium price-dividend ratio is a constant, P=D,

implying that the stock return�s distribution is known and is the same as the distribution of

dividend growth. We solve for the price-dividend ratio P=D that satis�es (22), from which

one can compute the equilibrium stock return. The solution for the price-dividend ratio

satis�es the equation

P=D

P=D + 1
=

Z Z
�i exp

�
�
iy2

�
exp (y3)h (y2; y3) dy2dy3;

where y2 and y3 correspond to asset-holder consumption growth and aggregate dividend

growth. Given a distribution h (y) and the equilibrium value for P=D, it is straightforward

to compute the pricing errors for the risky asset return and risk-free return associated with

erroneously using M c
t � �c (Ct=Ct�1)

�
c to price assets:

PEk = E
�
M c
t+1R

k
t+1

�
� 1 k = s; f: (23)

We solve numerically for the values of �c and 
c that minimize the pricing errors (23) asso-

ciated with the stock return Rst and risk-free rate R
f
t .

For our numerical computations, where possible, the parameters of the leading normal

density f (y) are calibrated to match data on aggregate consumption growth and dividend

growth for the CRSP value-weighted stock market index, on an annual basis. We take the

the mean of �c to be 2% annually and the mean of �d to be 4% annually from annual post-

war data used in Lettau and Ludvigson (2004). From the same annual data, the standard

deviation of aggregate consumption growth is �c = 1:14% and the standard deviation of div-

idend growth is �d = 12:2%. The covariance between �c and �d, denoted �cd, is notoriously

hard to measure accurately. It is estimated to be small and negative, equal to -0.000177 in

the annual data used by Lettau and Ludvigson (2004), but others have estimated a week

positive correlation (e.g., Campbell (2003)). We therefore consider both small negative val-

ues for this covariance (equal to the point estimate from Lettau and Ludvigson (2004)), and

small positive values of the same order of magnitude, e.g., 0.000177. Finally, the parameters

for asset-holder consumption and asset holder preferences must be calibrated since we lack

a su¢ ciently long time series on individual consumption to measure these parameters with

any reasonable degree of accuracy. We therefore consider a range for 
; �, �i=�c, �i=�c; �ci;

and �id, where �id is the correlation between asset-holder consumption growth and dividend
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growth. Because our calibration corresponds to an annual frequency, the Euler equation

errors are comparable to the annualized errors from U.S. data reported in Table 1.

We begin with an example of a joint distribution that can roughly replicate the large Euler

equation errors that arise from �tting the data to (1). We stress that this is only one example,

but within the class of distributions we investigate here, it seems to be representative of what

is required. Clearly distributions outside this class could provide other examples of models

capable of explaining the unconditional Euler equation facts documented in Section 2. At

the same time, while this example is meant to be illustrative, we stress that it does not

necessarily constitute a plausible resolution to empirical regularities presented in Section 2.

Such a resolution would require much more evidence on the joint distribution of aggregate

consumption, assetholder consumption, and asset returns than what is currently available.

The marginal distributions for �c, �ci, and �d for this example are presented in Figure

5. The parameters in the leading normal are set as follows: �i=�c = 4, �i=�c = 1:5, �ci = 0:1,

and �id = 0:9. Assetholder risk aversion is set to a moderate value of 
 = 5 and the time

discount factor is set to � = 0:99. The other parameters were calibrated as described above,

to match aggregate data on consumption and dividends. The Hermite parameters ao; :::; a3,

are set to obtain the density shapes displayed in Figure 5.

For this particular joint distribution model, the pricing error that arises from erroneously

using M c
t � �c (Ct=Ct�1)

�
c to price assets is 2.81% for the stock return, and -2.99% for

the risk-free rate. Notice that these values are close to those in the historical data for the

CRSP stock return and 3-month Treasury bill rate (Table 1). The average stock return in

this example is about 11%, and the average risk-free rate 4% annually. These are both a bit

higher than in the historical data, but the pricing errors as a fraction of the average returns

are reasonably close to the data. The resulting standard deviation of �d is a bit higher

and its mean a bit lower than the corresponding �gures for the CRSP-VW return, but the

example is nonetheless instructive.

What features distinguish this example? First, notice from Figure 5 that assetholder

consumption growth and the risky return are highly correlated with one another, but nei-

ther is highly correlated with aggregate consumption growth. Second, both assetholder

consumption growth and dividend growth are much more volatile than aggregate consump-

tion growth, with the former six times as volatile as that of aggregate consumption growth.

Third, the density of aggregate consumption is almost identical to the leading normal with

its mean and variance calibrated from the data. By contrast, stockholder consumption and

dividend growth have distributions that di¤er signi�cantly from normality, with both dis-

playing bimodal densities. Assetholder consumption and dividend growth have about equal

mass points at steeply negative and positive growth rates not present in the density of ag-

gregate consumption. With probability 0.25, assetholder consumption can decline by 5%,
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while such a steep decline receives no weight in the aggregate consumption density. Similarly,

with about 0.2 probability, assetholder consumption can grow as fast as 10% while dividend

growth on the risky asset can grow about 25%, again zero-probability events for aggregate

consumption growth. Simulations from such a distribution would deliver periods in which

the joint behavior of M c
t and returns would be quite di¤erent from the joint behavior of M i

t

and returns. This model produces observations that explain the large pricing errors that

arise when �tting aggregate data to (1).

Within the class of models we consider, how common is this example? To address this

question, we evaluated pricing errors obtained from over 20,000 parameter combinations on

a wide grid for the hermite parameters a0 through a3. Since it is infeasible to report the

output from tens of thousands of distributional assumptions, we report a limited number of

parameter combinations in Table 10 that illustrate a range of di¤erent shapes of densities,

skewness, and kurtosis statistics. Two restrictions place signi�cant limitations on the number

of valid parameter combinations that can be considered. First, the parameters �ci and �id
cannot be given arbitrary values or 
 will not be positive semi-de�nite. In particular, if

the correlation between dividend growth and assetholder consumption growth is high while

the correlation between aggregate consumption growth and dividends is low, the correlation

between aggregate consumption growth and assetholder consumption growth cannot be too

high. Since the data suggest a weak correlation between aggregate consumption growth

and dividend growth, we keep �ci relatively small (equal to 0:1) to insure positive semi-

de�niteness of 
. Second, many parameter combinations are ruled out by the requirement

that the price-dividend ratio be �nite. Thus, risk-aversion cannot be too low if we are to

consider cases in which dividend growth grows more quickly than certain threshold amounts.

We only consider parameter combinations that deliver both a positive semi-de�nite variance-

covariance matrix and a �nite price-dividend ratio. The table reports results for which 
 is

set to 5, � is set to 0.99, �i=�c = 1, 2, 4, �i=�c = 0:85, 1:5, �ci = 0:1, �id = 0:9.

Table 10 shows a range of cases in which the joint distribution deviates considerably from

normality and yet the pricing errors associated with erroneously using M c
t to price assets

in place of M i
t are, to numerical accuracy, zero. In one case, the marginal distribution for

dividend growth is close to normal, but those for stockholder and aggregate consumption

growth deviate considerably from normality. For example, the kurtosis for �ct is often

greater than 11, and the skewness greater than 4. For such cases, the values of 
c and �c
that drive the pricing errors to zero range but are typically not close to the true preference

parameters for asset-holder i. The parameter 
c is much larger than the true 
 when asset-

holder consumption growth is much more volatile than aggregate consumption growth or

when it is not highly correlated with it, as suggested by (17). Also, when Cov(�c;�d) = �cd

is parameterize to be negative, 
c takes on negative values. This is similar to the normal case
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(13), where the expression in (13) collapses to 
c = 
�id=�cd, so that 
c is negative when

�cd is negative. Again, however, in every case reported in Table 4, and regardless of the

values taken by 
c and �c, the pricing errors for the stock return and risk-free rate are always

numerically zero. This was also true of several thousand other parameter combinations.

Figure 6 provides a graphical description of two of the perturbed densities, plotted along

with the leading normal, that created the output in Table 10. Notice that the shapes can

di¤er considerably from Gaussian and yet we can still �nd values for 
c and �c for which

M c
t prices assets just as well as the true kernel based on assetholder consumption. The

densities in the left-hand column of Figure 2 are bimodal for �ci and �d, while aggregate

consumption is close to normal. This is similar to the example above (Figure 5), which does

deliver large pricing errors usingM c
t , but unlike that case the negative mass points are much

smaller relative to the positive mass points. In Figure 5, assetholder consumption growth

has a higher mean than aggregate consumption growth, whereas in Figure 5 it has about the

same mean. The densities in the right-hand column of Figure 6 are close to normal for �ci

and �d; while the density of aggregate consumption has skewness of about 4 and kurtosis

around 11, strongly non-normal. These examples illustrate an important point, namely that

are many ways to depart from normality in limited participation/incomplete markets models

that do not deliver an explanation of the empirical facts documented in Section 2.

3.3.1 Larger Cross-Sections of Returns

The analysis above was conducted for the case of two asset returns, a single risky asset and a

risk-free asset. To evaluate the pricing errors for a larger cross-section of returns, we consider

simple models of N assets, indexed by j, whose dividend processes take the form

�dj = �j�cit + "jt ; j = 1; :::N;

where "jt is an i.i.d. shock uncorrelated with �c
i
t. In analogy to the two-asset case above, the

vector of variables yt =
�
�ct;�c

i
t;�d

1
t ; :::;�d

N
t

�0
is assumed to be i.i.d. Since the log sto-

chastic discount factor, mi, is linear in the assetholder�s consumption growth, the �leverage�

parameter �j controls the covariance of each asset return with the log stochastic discount fac-

tor, and "jt controls the variance of individual risky returns. Assets on the log mean-variance

e¢ cient frontier (i.e., those that are perfectly correlated with mi) have shocks "jt with zero

variance. The farther an asset return is from the log mean-variance e¢ cient frontier, the

larger the variance of "jt . By varying �
j across assets, we create a spread in the covariance

of returns with stockholder consumption growth, and therefore a spread in risk-premia. The

purpose of this excercise is not to create a realistic cross-section of asset returns, but rather

to investigate the results in an overidenti�ed setting with more moment conditions than

parameters to be estimated.
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We use the same procedure as for the two-asset case to describe the joint density, h (y), of

aggregate consumption, asset-holder consumption and the N asset returns. We calibrate the

leading normal for N = 8 arti�cial assets, including a risk-free return, with �j = "jt = 0, and

a mean-variance e¢ cient return that is perfectly correlated with the log stochastic discount

factor, �j = 1 and "jt = 0: The six other asset returns are generated by a grid of values of

�j and Var
�
"jt
�
, and the equilibrium returns Rjt+1 are computed as described in the previous

subsection for to two-asset return case.

We search numerically for values for �c and 
c to minimize the quadratic form g (
c; �c) �
w0 (
c; �c)Ww (
c; �c), where w (
c; �c) is the (8� 1) vector of pricing errors for each asset

(i.e., wj(
c; �c) = E

�
�c

�
Ct
Ct�1

��
c
Rjt � 1

�
for j = 1; :::; 8) and W is the 8�8 identity

matrix. As before, we consider a large number of possible distributions h (y) by considering

di¤erent parameter combinations in a (y)2. Calibration of other parameters remains the

same as above for the two-asset case.

Table 11 presents the square root of the average-squared pricing error (RMSE), as a frac-

tion of the cross-sectional mean of the average returns, for several parameter assumptions.

Instead of presenting the results for thousands of distributional assumptions (corresponding

to hundreds of possible combinations of the nine parameters in a (y)2), we present the maxi-

mum and average RMSE (as a fraction of the cross-sectional average mean return) obtained

over a large grid search of distributional parameters. We also present these �gures for the

special case in which all variables are jointly lognormally distributed. The results are again

that the average pricing errors that arise from using aggregate consumption growth in place

of asset-holder consumption growth are often very small, indeed close to zero. For example,

when all variables are jointly lognormally distributed, the RMSE is 0.02% as a fraction of

the cross-sectional average mean return, whereas in the data they are 35% (Table 1). These

results echo the �ndings for the two-asset case: when variables are jointly lognormally dis-

tributed, a representative-agent pricing kernel based on per capita aggregate consumption

can often be found that has the same asset-pricing implications as the true pricing kernel,

although estimates of 
 and � will not correspond to any individual�s true risk-aversion or

time discount factor.

When we consider perturbations from the lognormal case, the typical result is again

a small RMSE. For example, when the covariance between aggregate consumption growth

and dividend growth is set to a small negative number (to match the empirical covariance

in annual data from Lettau and Ludvigson (2004)), the maximum RMSE, as a fraction of

the cross-sectional mean return, is 0.58%, and the average is 0.03%. Again this should be

compared with the 35% in the data. By contrast, when the covariance is set to a small positive

number (the negative of the point estimate in the data), we �nd a small number of cases in
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which the pricing error as a fraction of the cross-sectional average return is as large as 10%.

But these cases are relatively rare and occur in less than 0.2% of the parameter combinations.

Most models that use the wrong pricing kernel based on aggregate consumption deliver tiny

pricing errors even when aggregate consumption has a low correlation with asset-holder

consumption and only half its volatility. These results echo the �ndings reported above for

the two-asset case.

4 Conclusion

The asset pricing literature has delivered a number of prominent new theories in recent

years designed speci�cally to remedy shortcomings of the standard consumption-based asset

pricing model. In this paper we emphasize one shortcoming of the standard model that has

received little attention but that nevertheless provides a margin upon which the model fails

overwhelmingly: its inability to satisfy the unconditional moment restrictions implied by

theory. This failure is quantitatively large and present even when the range of parameters

for risk aversion and time preference is left unrestricted and chosen to maximize the model�s

chance of success. We argue that these empirical facts constitutes a puzzle for the standard

model that is at least as damning other, more well known, puzzles commonly emphasized

when studying calibrated models.

Are prominent modi�cations to the standard model capable of explaining these phenom-

ena? If so, then in these models use of the standard pricing kernel to explain asset returns

should generate large unconditional asset pricing errors, as in the data. Alas, we �nd that

new pricing kernels do not necessarily generate new pricing implications. Instead, we show

that if asset return and consumption data were in fact generated by leading asset pricing

models, then parameters for risk aversion and time preference could almost certainly be found

that imply the standard model has the same explanatory power in tests of unconditional as-

set pricing restrictions as those models currently at the forefront of theoretical asset pricing.

This is true both for explaining the behavior of a single risky asset and a risk-free asset, and

for explaining larger cross-sections of risky returns. Moreover, some leading models imply

that the standard model is equally capable of explaining asset returns even when it is based

both on the wrong consumption measure and on the wrong underlying preferences. We show

that leading asset pricing models can, in many cases, explain why an econometrician obtains

implausibly high estimates of � and 
 when �tting data to the standard consumption-based

model. But they cannot explain why the standard model fails so resoundingly to satisfy the

most basic unconditional moment restrictions implied by theory. A complete explanation of

aggregate stock market behavior must account for these empirical regularities.
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Failure to account for these empirical regularities cannot be uncovered by studying cali-

brated models or by estimation procedures that rely solely on a model�s �rst-order conditions

for identi�cation. That is because the �rst-order conditions of any model are not a complete

description of the joint distribution of asset returns and aggregate quantities. But an econo-

metrician who observes this joint distribution in the data can use it to ask whether its key

properties are matched by the simulated data of theoretical models.

Intuitively, how is it that asset pricing models capable of explaining the equity premium

puzzle, and the host of other consumption-based asset pricing puzzles in the literature,

are incapable of explaining the large unconditional Euler equation errors of the standard

consumption-based model? In thinking about this, it is helpful to consider a simple exam-

ple. We know that the equity premium puzzle can be �solved� by taking the standard

consumption-based model and applying su¢ ciently high risk-aversion (Mehra and Prescott

(1985)).16 The di¢ culty with this resolution of the puzzle is that, in order to show that

high risk-aversion delivers the right equity premium as an equilibrium outcome, the result-

ing equilibrium returns must be derived from theoretical Euler equations that are exactly

satis�ed. To the extent that these Euler equations are not satis�ed in historical data, such

a resolution would seem to rest on a fundamental misspeci�cation of the joint behavior of

asset returns and aggregate quantities.

What types of changes might bring asset pricing models more in line with the data along

this dimension? We provide one example of a limited participation/incomplete markets

model that can explain the large unconditional Euler equation errors generated by the stan-

dard model. In this example, consumption of assetholders is considerably more volatile than

aggregate consumption and weakly correlated with it, whereas it is highly correlated with the

risky asset return. But it is not enough for assetholder consumption to merely behave di¤er-

ently from aggregate consumption. In the example we provide, the distribution of aggregate

consumption is close to normal, but the densities of assetholder consumption growth and

returns appear highly non-normal and strongly bimodal. This suggests that careful attention

to the joint properties of the pricing kernel, aggregate consumption, and returns is crucial

for explaining these empirical regularities in frictionless models. Classes of economic models

with endogenously distorted beliefs, as surveyed in the work of Hansen and Sargent (2000)

or illustrated in the learning model of Cogley and Sargent (2004), also suggest interesting

possibilities for explaining these phenomena. In such models, beliefs are distorted away

from what a model of rational expectations would impose, so asset return volatility can be

driven by �uctuations in beliefs not necessarily highly correlated with consumption. Other

16This creates a risk-free rate puzzle and the resulting model has a number of other shortcomings, hence

leading asset pricing models depart from the standard model in more substantive ways. But for the sake of

building intuition, we may assume that equity premium puzzle is all we care about.
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candidates include any modi�cations to the standard model that would make unconditional

Euler equations more di¢ cult to satisfy with equality, especially in recessions. Possibilities

include binding restrictions on the ability to trade and smooth consumption, such as borrow-

ing constraints, short-sales constraints, and transactions costs (e.g., Luttmer (1996); He and

Modest (1995); Heaton and Lucas (1996, 1997); Ludvigson (1999)). An important area for

future research will be to determine whether such modi�cations are capable of delivering the

empirical facts, once introduced into plausibly calibrated economic models with empirically

credible frictions.
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5 Appendix

1. Data Description

This appendix describes the data. The sources and description of each data series we use

are listed below.

CONSUMPTION

Consumption is measured as expenditures on nondurables and services, excluding shoes and

clothing. The quarterly data are seasonally adjusted at annual rates, in billions of chain-

weighted 1996 dollars. The components are chain-weighted together, and this series is scaled

up so that the sample mean matches the sample mean of total personal consumption expen-

ditures. Our source is the U.S. Department of Commerce, Bureau of Economic Analysis.

POPULATION

A measure of population is created by dividing real total disposable income by real per

capita disposable income. Consumption, is in per capita terms. Our source is the Bureau of

Economic Analysis.

PRICE DEFLATOR

Real asset returns are de�ated by the implicit chain-type price de�ator (1996=100) given for

the consumption measure described above. Our source is the U.S. Department of Commerce,

Bureau of Economic Analysis.

ASSET RETURNS

� Three-Month Treasury Bill Rate: secondary market, averages of business days, discount
basis%; Source: H.15 Release �Federal Reserve Board of Governors.

� Six size/book-market returns: Six portfolios, monthly returns from July 1926-December
2003. The portfolios, which are constructed at the end of each June, are the inter-

sections of 2 portfolios formed on size (market equity, ME) and 3 portfolios formed

on the ratio of book equity to market equity (BE/ME). The size breakpoint for

year t is the median NYSE market equity at the end of June of year t. BE/ME

for June of year t is the book equity for the last �scal year end in t-1 divided by

ME for December of t-1. The BE/ME breakpoints are the 30th and 70th NYSE

percentiles. Source: Kenneth French�s homepage, http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/data_library.html.

� The stock market return is the Center for Research and Security Prices (CRSP) value-
weighted stock market return. Our source is the Center for Research in Security Prices.



2. Detailed Description of Models

The utility function in the CC and MSV models take the form

U = E

( 1X
t=0

�t
(Cit �X i

t)
1�
 � 1

1� 


)
; 
 > 0 (24)

where Cit is individual consumption and Xt is habit level which they assume to be a function

of aggregate consumption, and � is the subjective discount factor. In equilibrium, identical

agents choose the same level of consumption, so Cit is equal to aggregate consumption, Ct.

CC de�ne the surplus consumption ratio

St �
Ct �Xt

Ct
< 1;

and model its log process as evolving according to a heteroskedastic �rst-order autoregressive

process (where as before lowercase letters denote log variables):

st+1 = (1� �) s+ �st + � (st) (ct+1 � ct � g) ;

where �, g, and s are parameters. � (st) is the so-called sensitivity function that CC choose

to satisfy three conditions: (1) the risk-free rate is constant, (2) habit is predetermined at

steady state, and (3) habit moves nonnegatively with consumption everywhere. We refer the

reader to the CC paper for the speci�c functional form of � (st) : The stochastic discount

factor in the CC model is given by

MCC
t+1 = �

�
Ct+1
Ct

St+1
St

��

:

In all of the models considered here, the return on a risk-free asset whose value is known

with certainty at time t is given by

Rft+1 � (Et [Mt+1])
�1 ;

where Mt+1 is the pricing kernel of whichever model we are considering.

MSV model the behavior of Yt; the inverse surplus consumption ratio:

Yt =
1

1� (Xt=Ct)
> 1:

Following Campbell and Cochrane (1999), MSV assume that Yt follows a mean-reverting

process, perfectly negatively correlated with innovations in consumption growth:

�Yt = k
�
Y � Y

�
� � (Yt � �) (�ct � Et�1�ct) ;



where Y is the long-run mean of Y and k, �; and � are parameters, calibrated as in MSV.

Here �ct � log (Ct=Ct�1), which they assume it follows an i.i.d. process

�ct = �+ �vt;

where vt is a normally distributed i.i.d. shock. The stochastic discount factor in the MSV

model is

MMSV
t+1 = �

�
Ct+1
Ct

Yt
Yt+1

��

:

Since the MSV model is a representative-agent model, we modify it in order to study

the role of limited participation. Assume that asset prices are determined by the framework

above, where a valid stochastic discount factor is a function of any stockholder�s consumption

Cit and stockholder�s habit X
i
t . The process for stockholder consumption is the same as in

MSV, described above, but now with i subscripts:

�cit = �i + �iv
i
t;

where vit is a normally distributed i.i.d. shock. Aggregate consumption is assumed to follow

a separate process given by

�ct = �c + �cv
c
t ;

with vct a normally distributed i.i.d. shock. We analyze the results over a range of cases for

the correlation between vit and v
c
t , and their relative volatilities �i=�c.

For the representative stockholder, we model the �rst di¤erence of Y i
t as in MSV:

�Y i
t = k

�
Y
i � Y i

�
� �

�
Y i
t � �

� �
�cit � Et�1�c

i
t

�
;

and compute equilibrium asset returns based on the stochastic discount factor MMSV i
t+1 =

�
�
Cit+1=C

i
t

��
 �
Y i
t =Y

i
t+1

��

: As before, this is straightforward to do using the analytical

solutions provided in MSV.

Next, we compute two types of unconditional pricing errors. First, we compute the

pricing errors generated from erroneously using aggregate consumption in the pricing kernel

in place of assetholder consumption. That is, we compute the pricing errors that arise from

using M ch
t+1 � �c (Ct+1=Ct)

�
c �Y c
t =Y

c
t+1

��
c
in place of MMSV i

t+1 to price assets, where �c and


c are chosen freely to �t the data, and where Y c
t follows the process

�Y c
t = k

�
Y
c � Y c

�
� � (Y c

t � �) (�ct � Et�1�ct) :

With the exception of �, all parameters are set as in MSV. The parameter � is set to keep

the mean return on the aggregate wealth portfolio the same as in MSV. Thus, if �i=�c = 2,

the value of � in MSV is divided by two.



To model multiple risky securities, MSV model the share of aggregate consumption that

each asset produces,

sjt =
Dj
t

Ct
for j = 1; :::; n;

where n represents the total number of risky �nancial assets paying a dividend D. MSV

assume that these shares are bounded, mean-reverting and evolve according to

�sjt = �j
�
sj � sjt

�
+ sjt� (si) �t;

where � (sj) is an N�dimensional row vector of volatilities and �t is an N�dimensional
column vector of standard normal random variables, and �j and sj are parameters. (N �
n + 1 because MSV allow for other sources of income, e.g., labor income, that support

consumption.) Cross-sectional variation in unconditional mean returns across risky securities

in this model is governed by cross-sectional variation in the covariance between shares and

aggregate consumption growth: Cov
�
�sjt
sjt
; �ct
ct

�
, for j = 1; :::; n. This in turn is determined

by cross-sectional variation in �j, sj and � (sj) : We create n arti�cial risky securities using

an evenly spaced grid of values for these parameters. The values of �j lie on a grid between

0 and 1, and the values of sj 2 [0; 1) lie on a grid such that the sum over all j is unity.

The parametric process for � (sj) follows the speci�cation in MSV in which the volatilities

depend on a N -dimensional vector of parameters vj as well as the individual share processes

� (sj) = v
j �

nX
k=0

skt v
k:

We choose the parameters �j, sj, and vj, to generate a spread in average returns across

assets. In analogy to the empirical exercise (Panel B of Table 1), we do this for n = 6 risky

securities plus the aggregate wealth portfolio return and the risk-free for a total of 8 asset

returns.

Closed-form solutions are not available for the individual risky securities, but MSV show

that equilibrium price-dividend ratios on the risky assets are given by the approximate

relation
P jt

Dj
t

� aj0 + aj1St + aj2
sj

sjt
+ aj3

sj

sit
St; (25)

where St � 1=Y i
t and where Y

i
t again denotes the inverse surplus ratio of an individual

assetholder indexed by i, which should not be confused with the indexation by j, which

denotes a security. The parameters aj0, a
j
1; a

j
2; and a

j
3 are all de�ned in terms of the other

parameters above. Using these solutions for individual price-dividend ratios, we create a

cross-section of equilibrium risky securities using

Rit+1 =

 
P jt+1=D

j
t+1 + 1

P jt =D
j
t

!
exp

�
�djt+1

�
: (26)



Bansal and Yaron (2004) consider a representative-agent who maximizes utility given by

recursive preferences of Epstein and Zin (1989, 1991) and Weil (1989). The utility function

to be maximized takes the form

U = E

( 1X
t=0

�t
n
(1� �)C

1�

�

t + �
�
EtU

1�

t+1

� 1
�

o �
1�


)
; (27)

where � � (1� 
) = (1� 1= ) ;  is the intertemporal elasticity of substitution in consump-
tion (IES), 
 is the coe¢ cient of relative risk aversion, and � is the subjective discount factor.

The stochastic discount factor under Epstein-Zin-Weil utility used in BY takes the form

MBY
t+1 =

 
�

�
Ct+1
Ct

�� 1
 

!�
R��1w;t+1; (28)

where Rw;t+1 is the simple gross return on the aggregate wealth portfolio, which pays a

dividend equal to aggregate consumption, Ct.
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Figure 1: Pricing Errors for CRRA Preferences

Notes: The figure plots the annualized pricing error E[(Ct/Ct−1)
−γ(Rs

t − Rf
t )] (in %) as a

function of γ.



Figure 2: Pricing Errors for CRRA Preferences

Notes: The figures plot the negative of the annualized root-mean-squared pricing errors
[

E[δ(Ct/Ct−1)
−γRs

t − 1]2 + E[δ(Ct/Ct−1)
−γRf

t − 1]2
]1/2

(in %) implied by CRRA preference

as a function of γ and δ. Pricing errors that exceed 10% are assigned a value of 10%.



Figure 3: Pricing Errors: Contour Plots

Notes: This figure shows contour plots of the pricing errors depicted in Figure 1.



Figure 4: QQ Plots

Notes: This figure shows quantile-quantile (QQ) plots of the logs of consumption growth, stock

returns, and the riskfree rate. Each panel plots the sample quantiles (on the y-axis) against

the quantiles of a given distribution (on the x-axis) as well pointwise 5% and 95% bands. The

univariate QQ plots (denoted ∆c, rs and rf ) compare quantiles of the sample distributions to

those of a normal distribution. The multivariate QQ plot for the joint distribution of ∆c, rs and

rf shows the quantiles of the squared Mahalanobis distances against those of a χ2
3 distribution.

The squared Mahalanobis distance Mt for a p-dimensional multivariate distribution xt with

mean µx and variance-covariance matrix V is defined as Mt = (xt−µx)′V −1(xs−µx). Under
the null hypothesis that ∆c, rs and rf are jointly normally distributed,Mt has a χ

2
p distribution.
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Notes: An example of distributions that produce large pricing errors when aggregate consumption
and returns are fitted to a power utility model.
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Notes: Plots of marginal densities for two Hermite parameter configurations.



Table 1: Pricing Error with CRRA Preferences

Panel A: CRSP-VW Return and Riskfree Rate

ωs ωf δc γc PE(Rf ) (in %) PE(Rs) (in %) RMSE/E[Rt]

1 1 1.411 89.780 -2.73 2.69 0.60

1000 1 1.405 90.688 -5.38 0.00 0.84

1 1000 1.425 90.881 0.00 5.38 0.84

Excluding Periods with low Consumption Growth

1 1 2.555 326.117 -0.73 0.73 0.16

1000 1 2.550 366.128 -1.46 0.00 0.23

1 1000 1.478 83.103 0.00 1.46 0.23

Panel B: CRSP-VW Return, Riskfree Rate, and 6 FF Portfolios

δ γ RMSE RMSE/E[Rt]

1.39 87.18 3.05 0.35

Excluding Periods with low Consumption Growth

2.58 356.07 1.94 0.23

Notes: This table reports the minimized annualized postwar data pricing error for CRRA pref-

erences. The preference parameters δc and γc are chosen to minimize the mean square pricing er-

ror for different sets of returns: minδ,γ
[

g(δ, γ)′Wg(δ, γ)
]

where g(δ, γ) = E[δ(Ct/Ct−1)
−γRt − 1]

and W is a weighting matrix. In Panel A, R includes Rs and Rf and the weighting matrix is

W = [ωs 0, 0 ωf ]. In Panel B, R includes the six baseline Fama-French portfolios and W = I.

The table also reports results when the periods with the lowest six consumption growth rates

are eliminated. Rs is the CRSP-VW stock returns, Rf is the 3-month T-bill rate and Ct is real

per-capita consumption of nondurables and services excluding shoes and clothing. PE(Rs) and

PE(Rf ) denote the average pricing errors E[δc(Ct/Ct−1)
−γcRst−1] and E[δc(Ct/Ct−1)

−γcRft −1].
E[Rt] is the average of the mean returns of the assets under considerations. RMSE is the square

root of the average squared pricing error. The data span the period 1951Q4 to 2002Q4.



Table 2: Low Consumption Growth Periods

Quarter Ct/Ct−1 − 1 Rs
t Rf

t

1980Q02 -1.28 16.08 3.59

1990Q04 -0.87 8.75 2.16

1974Q01 -0.85 -1.26 2.37

1958Q01 -0.84 7.03 0.65

1960Q03 -0.64 -4.93 0.67

1953Q04 -0.60 7.87 0.47

Notes: This table reports consumption growth, the return of the CRSP-VW stock returnsRs and

the 3-month T-bill rate Rf (all in in percent per quarter) in the six quarters of our sample with

the lowest consumption growth rates. The consumption measure is real per-capita expenditures

on nondurables and services excluding shoes and clothing. The data span the period 1951Q4 to

2002Q4.



Table 3: Tests of Joint Normality

Skewness p-value Excess Kurtosis p-value

∆c 0.43 0.01 1.44 0.00

rs 0.89 0.00 1.46 0.00

rf 0.22 0.20 1.06 0.00

(∆c, rs) 1.11 0.00 2.72 0.00

(∆c, rf ) 1.05 0.00 3.12 0.00

(rs, rf ) 1.06 0.00 2.84 0.00

(∆c, rs, rf ) 1.54 0.00 4.64 0.00

Notes: This table reports multivariate skewness and kurtosis following Mardia (1970). Let xt
be a p-dimensional random variable with mean µ and variance-covariance matrix V of sample

size T . Multivariate skewness S and (excess) kurtosis K and asymptotic distributions are given

by

S =

(

1

T 2

T
∑

t=1

T
∑

s=1

g3ts

)1/2
TS2

6
∼ χ2p(p+1)(p+2)/6

K =
1

T

T
∑

t=1

g2tt − p(p+ 2)

√
TK

√

(8p(p+ 2))
∼ N(0, 1),

where gts = (xt − µ̂)′V̂ −1(xs − µ̂) and µ̂ and V̂ are sample estimates of µ and V . S and K

are zero if x is jointly normally distributed. If x is univariate S and K are equivalent to the

standard univariate definitions of skewness and kurtosis.



Table 4: Pricing Errors

Model δc γc E[δ(Ct/Ct−1)
−γRs

t − 1] E[δ(Ct/Ct−1)
−γRf

t − 1]

CC Habit 1.28 57.48 0.00% 0.00%

MSV Habit 1.71 30.64 0.00% 0.00%

BY LR Risk 0.93 48.97 0.00% 0.00%

Notes: This table reports the annualized pricing errors for stock returns Rs and the riskfree rate

Rf from simulated data from Campbell and Cochrane’s habit model (CC Habit), Menzly, Santos

and Veronesi’s habit model (MSV Habit) and Bansal and Yaron’s long run risk model (BY LR

Risk) for CRRA preferences. The preference parameters δc and γc are chosen to minimize

the mean square pricing error minδ,γ
[

g(δ, γ)′Wg(δ, γ)
]

where g(δ, γ) = E[δ(Ct/Ct−1)
−γRt − 1].

R = [Rs, Rf ]′ and W = I.



Table 5: Properties of Guvenen’s Model

Panel A: Consumption Growth

Ct/Ct−1 − 1 Ci
t/C

i
t−1 − 1 Cn

t /C
n
t−1 − 1 Rs

t Rf
t

Mean 0.01 0.02 0.00 1.31 0.64

Std. Dev. 2.04 4.53 0.83 7.30 1.69

Correlation 1.00 1.00 0.99 1.00 0.17
1.00 1.00 0.98 0.99 0.17
0.99 0.98 1.00 0.99 0.16
1.00 0.99 0.99 1.00 0.19
0.17 0.17 0.16 0.19 1.00

Panel B: Stochastic Discount Factor

M i
t (0.99, 2.00) M c

t (0.99, 2.00) M c
t (0.99, 4.49)

Mean 0.99 0.99 0.99

Std. Dev. 0.09 0.04 0.09

Correlation 1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00

Panel C: Pricing Errors

Consumption (δ, γ) E[Mt(δ, γ) R
s
t − 1] E[Mt(δ, γ) R

f
t − 1]

SH (0.99, 2.00) 0.02% 0.02%

AC (0.99, 2.00) 0.39% -0.34%

AC (0.99, 4.49) 0.00% 0.01%

Notes: This table reports properties of Guevenen’s model. Panel A reports the properties of con-

sumption growth rates of aggregate consumption Ct/Ct−1, stockholders consumption Cit/C
i
t−1,

nonstockholders consumption Cnt /C
n
t−1, stock returns Rst and the riskfree rate Rft in Guvenen’s

model. Panel B reports properties of stochastic discount factors. The first row reports proper-

ties of the SDF for stockholders consumption. The remaining rows report SDF properties for

total consumption and different preference parameters. The stochastic discount factors are of

the CRRA form Mt = δ(Ct/Ct−1)
−γ . The first parameter in parenthesis is δ, the second one is

γ. Panel C reports the annual pricing error Guvenen’s model. The preference parameters δ and

γ are chosen to minimize the equally weighted sum of pricing errors for the stock returns Rs and

the riskfree rate Rf . The first row labelled “SH” reports the pricing errors for stockholders con-

sumption. The remaining rows labelled “AC” report pricing errors for aggregate consumption

and different preference parameters. All statistics are quarterly.



Table 6: Limited Participation Habit Model with Habit SDF

σi/σc ρ(Ci
t/C

i
t−1, Ct/Ct−1)

−1.0 −0.5 −0.25 0.25 0.5 1.0

δc

1 0.85 0.73 0.32 0.54 0.85 0.96

2 0.88 0.75 0.56 0.62 0.90 0.97

5 0.84 0.68 0.36 0.72 0.99 1.02

γc

1 -1.18 -1.70 -2.43 5.23 2.50 0.83

2 -2.07 -3.41 -4.78 8.51 3.96 1.63

5 -4.72 -8.98 -16.54 19.04 9.29 4.36

E[M ch
t R

s
t ]− 1 (in %)

1 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00

E[M ch
t R

f
t ]− 1 (in %)

1 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00

Notes: This table reports preference parameters and pricing errors in Menzly, Santos and

Veronesi’s (2004) habit model. Consumption growth of stockholders is assumed to follow a ran-

dom walk with a mean of 2% and standard deviation of 1%. All parameters are as in Menzly,

Santos and Veronesi except α, which is set obtain the same average stock return as in Menzly-

Santos-Veronesi. The preference parameters δc and γc are chosen to minimize the mean square

pricing error minδ,γ
[

g(δ, γ)′Wg(δ, γ)
]

where g(δ, γ) = E[M ch
t Rt − 1],M ch

t = δ( Ct
Ct−1

Yt−1
Yt

)−γ ,

R = [Rs, Rf ]′. Ct is aggregate consumption, Yt is the inverse of the consumption surplus ratio

computed from aggregate consumption, Rs is the return of equity, Rf is the riskfree rate, and

W = I.



Table 7: Limited Participation Habit Model with CRRA SDF

σi/σc ρ(Ci
t/C

i
t−1, Ct/Ct−1)

−1.0 −0.5 −0.25 0.25 0.5 1.0

δc

1 0.55 0.29 0.07 4.41 2.38 1.56

2 0.55 0.28 0.06 4.54 2.44 1.59

5 0.52 0.25 NA 5.03 2.66 1.68

γc

1 -25.96 -52.40 -105.62 101.67 51.91 25.96

2 -26.72 -53.93 -108.87 104.56 53.44 26.72

5 -29.40 -59.33 NA 114.78 58.84 29.40

E[M c
tR

s
t ]− 1 (in %)

1 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 NA 0.00 0.00 0.00

E[M c
tR

f
t ]− 1 (in %)

1 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 NA 0.00 0.00 0.00

Notes: This table reports preference parameters and pricing errors in Menzly, Santos and

Veronesi’s (2004) habit model. Consumption growth of stockholders is assumed to follow a

random walk with a mean of 2% and standard deviation of 1%. All parameters are as in Men-

zly, Santos and Veronesi except α, which is set obtain the same average stock return as in

Menzly-Santos-Veronesi. The preference parameters δc and γc are chosen to minimize the mean

square pricing error minδ,γ
[

g(δ, γ)′Wg(δ, γ)
]

where g(δ, γ) = E[M c
tRt − 1],M c

t = δ( Ct
Ct−1

)−γ ,

R = [Rs, Rf ]′. Ct is aggregate consumption, Rs is the return of equity, Rf is the riskfree rate,

and W = I. “NA” indicates that the numerical minimization did not converge.



Table 8: Limited Participation Habit Model with CRRA SDF and Larger Cross Section

σi/σc ρ(Ci
t/C

i
t−1, Ct/Ct−1)

−1.0 −0.5 −0.25 0.25 0.5 1.0

δc

1 0.99 0.97 0.93 1.02 1.01 1.01

2 0.99 0.97 0.97 1.02 1.01 1.01

5 0.99 0.97 0.97 1.02 1.01 1.01

γc

1 -29.47 -54.86 -116.62 123.39 64.28 30.41

2 -25.48 -63.03 -117.93 111.78 61.78 31.53

5 -37.39 -59.39 -133.63 135.24 64.45 32.47

RMSE/E[Rt] (in %)

1 2.36 2.11 1.55 1.72 4.04 2.19

2 2.28 2.44 0.98 0.53 0.79 1.35

5 0.80 0.65 0.75 0.61 0.83 0.53

Notes: This table reports preference parameters and pricing errors in Menzly, Santos and

Veronesi’s (2004) habit model. Consumption growth of stockholders is assumed to follow a

random walk with a mean of 2% and standard deviation of 1%. All parameters are as in Men-

zly, Santos and Veronesi except α, which is set obtain the same average stock return as in

Menzly-Santos-Veronesi. The preference parameters δc and γc are chosen to minimize the mean

square pricing error minδ,γ
[

g(δ, γ)′Wg(δ, γ)
]

where g(δ, γ) = E[M c
tRt− 1],M c

t = δ( Ct
Ct−1

)−γ . Ct

is aggregate consumption. R includes the return of the market Rs, the riskfree rate Rf and

the returns of six individual assets. RMSE/E[Rt] gives the RMSE as a percentage of the cross

sectional mean return of the eight assets. The weighting matrix W is the identity matrix.



Table 9: Limited Participation Habit Model with CRRA SDF and Time Aggregated Data

σi/σc ρ(Ci
t/C

i
t−1, Ct/Ct−1)

−1.0 −0.5 −0.25 0.25 0.5 1.0

δc

1 0.16 0.03 0.00 15.26 10.65 3.56

2 0.16 0.03 0.00 15.33 10.73 3.61

5 0.15 0.02 NA 15.55 11.09 3.82

γc

1 -77.04 -136.32 -270.70 257.24 180.54 77.16

2 -77.84 -138.31 -274.43 258.74 181.17 77.96

5 -80.96 -145.70 NA 264.13 184.56 81.08

E[M c
tR

s
t ]− 1 (in %)

1 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.01 0.00 0.00 0.00

5 0.00 0.00 NA 0.00 0.00 0.00

E[M c
tR

f
t ]− 1 (in %)

1 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.01 0.00 0.00 0.00

5 0.00 0.00 NA 0.00 0.00 0.00

Notes: This table reports preference parameters and pricing errors in Menzly, Santos and

Veronesi’s (2004) habit model. Consumption growth of stockholders is assumed to follow a

random walk with a mean of 2% and standard deviation of 1%. All parameters are as in Men-

zly, Santos and Veronesi except α, which is set obtain the same average stock return as in

Menzly-Santos-Veronesi. The preference parameters δc and γc are chosen to minimize the mean

square pricing error minδ,γ
[

g(δ, γ)′Wg(δ, γ)
]

where g(δ, γ) = E[M c
tRt − 1],M c

t = δ( Ct
Ct−1

)−γ ,

R = [Rs, Rf ]′. Ct is aggregate consumption, Rs is the return of equity, Rf is the riskfree rate,

and W = I. “NA” indicates that the numerical minimization did not converge. The model is

simulated on a quarterly frequency. The pricing errors are computed using the growth rate of

annual consumption (the sum of four subsequent quarters) and compounded annual returns.



γ δ ρ(∆c,∆ci) ρ(∆ci,∆d) σ(i)/σ(c) µ(∆ci)/µ(∆c) γc δc PrErrR(s) PrErrR(f) Sk[c] Ku[c] Sk[i] Ku[i] Sk[d] Ku[d]
5 0.99 0.1 0.9 1 0.85 36.211 2.5613 4.95E-10 4.90E-10 4.0917 11.195 -0.0042337 3 0.036111 3.0009
5 0.99 0.1 0.9 1 1.5 36.217 2.3988 2.12E-10 2.10E-10 4.0899 11.181 -0.004228 3 0.036063 3.0009
5 0.99 0.1 0.9 2 0.85 71.495 6.0675 1.14E-09 1.12E-09 4.0952 11.207 0.0078509 3 0.04699 3.0015
5 0.99 0.1 0.9 2 1.5 71.53 5.6869 1.50E-09 1.49E-09 4.0934 11.193 0.0078403 3 0.046927 3.0015
5 0.99 0.1 0.9 4 0.85 129.08 14.235 9.75E-08 9.67E-08 4.1018 11.229 0.032021 3.0007 0.068751 3.0032
5 0.99 0.1 0.9 4 1.5 129.22 13.395 -9.01E-08 -8.50E-08 4.1 11.215 0.031977 3.0007 0.068658 3.0031

γ δ ρ(∆c,∆ci) ρ(∆ci,∆d) σ(i)/σ(c) µ(∆ci)/µ(∆c) γc δc PrErrR(s) PrErrR(f) Sk[c] Ku[c] Sk[i] Ku[i] Sk[d] Ku[d]
5 0.99 0.1 0.9 1 0.85 -64.06 0.1052 -1.41E-14 -1.40E-14 4.1037 11.313 -0.0041596 3 -0.66437 3.2899
5 0.99 0.1 0.9 1 1.5 -64.05 0.0987 -1.27E-08 -1.27E-08 4.1034 11.303 -0.0041543 3 -0.66356 3.2891
5 0.99 0.1 0.9 2 0.85 -118.7 0.0121 -6.34E-14 -6.22E-14 4.1071 11.324 0.0077134 3 -0.65304 3.2802
5 0.99 0.1 0.9 2 1.5 -118.6 0.0113 -8.05E-11 -8.07E-11 4.1067 11.314 0.0077036 3 -0.65225 3.2795
5 0.99 0.1 0.9 4 0.85 -210.4 0.0002 -6.58E-13 -6.60E-13 4.1134 11.346 0.031459 3.0007 -0.63043 3.2614
5 0.99 0.1 0.9 4 1.5 -210.2 0.0001 -2.31E-13 -2.31E-13 4.1131 11.336 0.03142 3.0007 -0.62966 3.2607

γ δ ρ(∆c,∆ci) ρ(∆ci,∆d) σ(i)/σ(c) µ(∆ci)/µ(∆c) γc δc PrErrR(s) PrErrR(f) Sk[c] Ku[c] Sk[i] Ku[i] Sk[d] Ku[d]
5 0.99 0.1 0.9 1 0.85 35.488 1.7114 -7.93E-09 -8.00E-09 0.2175 3.0307 0.49692 2.4804 0.46153 2.2946
5 0.99 0.1 0.9 1 1.5 35.488 1.6032 -7.94E-09 -7.99E-09 0.2175 3.0307 0.49691 2.4804 0.46153 2.2946
5 0.99 0.1 0.9 2 0.85 70.978 2.7445 9.82E-09 9.64E-09 0.2175 3.0307 0.49692 2.4804 0.46154 2.2946
5 0.99 0.1 0.9 2 1.5 70.978 2.571 9.82E-09 9.64E-09 0.2175 3.0307 0.49691 2.4804 0.46153 2.2946
5 0.99 0.1 0.9 4 0.85 141.96 4.3612 2.26E-07 2.25E-07 0.2175 3.0307 0.49692 2.4804 0.46154 2.2946
5 0.99 0.1 0.9 4 1.5 141.96 4.0855 2.26E-07 2.25E-07 0.2175 3.0307 0.49692 2.4804 0.46153 2.2946

Table 10: Lim. Partic./Inc. Markets Pricing Errors for Stock Return and Risk-Free Rate: Hermite Densities

Cov(∆c,∆d)=0.00017

Cov(∆c,∆d)=0.00017

Cov(∆c,∆d)=-0.00017



γ δ ρ(∆c,∆ci) ρ(∆ci,∆d) σ(i)/σ(c) µ(∆ci)/µ(∆c) γc δc PrErrR(s) PrErrR(f) Sk[c] Ku[c] Sk[i] Ku[i] Sk[d] Ku[d]
5 0.99 0.1 0.9 1 0.85 -35.46 0.4115 -4.87E-08 -4.88E-08 -0.218 3.0308 0.49691 2.4804 0.46152 2.2946
5 0.99 0.1 0.9 1 1.5 -35.46 0.3855 -4.88E-08 -4.88E-08 -0.218 3.0308 0.4969 2.4804 0.46151 2.2946
5 0.99 0.1 0.9 2 0.85 -70.92 0.1587 4.66E-15 4.66E-15 -0.218 3.0308 0.49691 2.4804 0.46152 2.2946
5 0.99 0.1 0.9 2 1.5 -70.92 0.1487 4.22E-15 5.33E-15 -0.218 3.0308 0.4969 2.4804 0.46151 2.2946
5 0.99 0.1 0.9 4 0.85 -141.8 0.0146 1.21E-13 1.22E-13 -0.218 3.0308 0.49692 2.4805 0.46153 2.2946
5 0.99 0.1 0.9 4 1.5 -141.8 0.0137 1.15E-13 1.18E-13 -0.218 3.0308 0.49691 2.4804 0.46152 2.2946

γ δ ρ(∆c,∆ci) ρ(∆ci,∆d) σ(i)/σ(c) µ(∆ci)/µ(∆c) γc δc PrErrR(s) PrErrR(f) Sk[c] Ku[c] Sk[i] Ku[i] Sk[d] Ku[d]
5 0.99 0.1 0.9 1 0.85 34.614 1.6892 -3.03E-10 -2.94E-10 0.2389 3.0373 0.54147 2.5713 0.50496 2.39
5 0.99 0.1 0.9 1 1.5 34.619 1.5825 -3.03E-10 -2.96E-10 0.2425 3.0385 0.55543 2.6008 0.51853 2.4204
5 0.99 0.1 0.9 2 0.85 69.241 2.6948 1.24E-11 1.20E-11 0.2377 3.0369 0.53729 2.5614 0.50128 2.3818
5 0.99 0.1 0.9 2 1.5 69.249 2.5247 1.26E-11 1.24E-11 0.2413 3.0381 0.55113 2.5905 0.51472 2.4118
5 0.99 0.1 0.9 4 0.85 138.64 4.3376 -2.37E-09 -1.87E-09 0.2353 3.0361 0.52911 2.542 0.49409 2.3659
5 0.99 0.1 0.9 4 1.5 138.64 4.0636 -2.40E-09 -1.89E-09 0.2389 3.0373 0.54269 2.5705 0.50727 2.3952

γ δ ρ(∆c,∆ci) ρ(∆ci,∆d) σ(i)/σ(c) µ(∆ci)/µ(∆c) γc δc PrErrR(s) PrErrR(f) Sk[c] Ku[c] Sk[i] Ku[i] Sk[d] Ku[d]
5 0.99 0.1 0.9 1 0.85 -36.69 0.3989 -2.05E-11 -2.08E-11 -0.218 3.0311 0.54207 2.5712 0.506 2.3923
5 0.99 0.1 0.9 1 1.5 -36.68 0.3737 -1.81E-11 -1.83E-11 -0.221 3.0321 0.55607 2.6007 0.51961 2.4228
5 0.99 0.1 0.9 2 0.85 -73.97 0.1449 -3.45E-10 -3.50E-10 -0.215 3.0303 0.53788 2.5613 0.50231 2.3841
5 0.99 0.1 0.9 2 1.5 -73.95 0.1358 -3.37E-10 -3.42E-10 -0.218 3.0313 0.55174 2.5905 0.51578 2.4142
5 0.99 0.1 0.9 4 0.85 -150.4 0.0104 0 1.33E-15 -0.209 3.0287 0.52967 2.5418 0.49508 2.3681
5 0.99 0.1 0.9 4 1.5 -150.4 0.0098 6.66E-16 4.44E-16 -0.212 3.0296 0.54328 2.5704 0.50829 2.3975

Cov(∆c,∆d)=-0.00017

Cov(∆c,∆d)=0.00017

Cov(∆c,∆d)=-0.00017

Notes: This table reports output on the pricing error associated with erroneously using aggregate consumption in place of asset-holder consumption, for a 
range of parameter values and joint distributions. γ i is the persumed value of asset-holder risk-aversion; δ i is the presumed value of the asset-holder's 
subjective discount rate; ρ(∆c,∆c i) denotes the correlation between aggregate consumption growth and asset-holder consumption growth in the leading 
normal; ρ(∆ci,∆d) denotes the correlation between asset-holder consumption growth and dividend growth in the leading normal; σ(∆c i)/σ(∆c) denotes the 
standard deviation of asset-holder consumption growth divided by the standard deviation of aggregate consumption growth in the leading normal; µ(∆c i)/µ(∆c) 
denotes the mean of asset-holder consumption growth divided by the mean of aggregate consumption growth in the leading normal; γ c and δc are the values 
of γ and δ that minimize the pricing errors using aggregate consumption; PrErrR(s) is the pricing error for the Euler equation associated with the stock return; 
PrErrR(f) is the pricing error of the Euler equation associated with the risk-free rate, and Sk[ ], Ku[ ] refer to the skewness and kurtosis of aggregate 
consumption (c), asset-holder consumption (i), and dividends (d). 



Distribution γ δ ρ(∆c,∆ci) σ(∆ci)/σ(∆c) µ(∆ci)/µ(∆c) Cov(∆c,∆d) γc δc Max RMSE Avg RMSE
J. Log N. 5 0.99 0.13 2 1.5 0.00017 78.24 2.77 0.02% 0.02%

Non-Normal 5 0.99 0.13 2 1.5 0.00017 6.83 1.09 10.10% 0.25%
J. Log N. 5 0.99 0.13 2 1.5 -0.00017 -78.24 0.12 0.02% 0.02%
Non-Normal 5 0.99 0.13 2 1.5 -0.00017 -82.8 0.209 0.58% 0.03%

Table 11: Lim. Partic./Inc. Markets Pricing Errors in a Larger Cross-Section: Hermite Densities 

Notes: This table reports the average pricing errors for models with 8 asset returns. The column labled "Distribution" denotes whether the joint 
distribution of ∆c, ∆ci and dividend growth for each of the 8 assets is modeled as lognormal or not. "J. Log N." reports results for the jointly 
lognormal case; "Non-Normal" reports the results for cases in which a perturbation from the lognormal was used to describe the joint 
distribution of aggregate consumption, asset-holder consumption, and the 8 asset returns. The numbers in the column labled "Max RMSE" give 
the square root of the average squared pricing error, as a fraction of the cross-sectional average mean return, that is the maximum  over all 
Non-Normal perturbations (over 100) considered. The numbers in the column labled "Avg RMSE" give the square root of the average squared 
pricing error, as a fraction of the cross-sectional average mean return, that is the average of over Non-Normal perturbations (over 100) 
considered. γi is the persumed value of asset-holder risk-aversion; δi is the presumed value of the asset-holder's subjective discount rate; 
ρ(∆c,∆ci) denotes the correlation between aggregate consumption growth and asset-holder consumption growth in the leading normal; 
ρ(∆ci,∆d) denotes the correlation between asset-holder consumption growth and dividend growth in the leading normal; σ(∆ci)/σ(∆c) denotes 
the standard deviation of asset-holder consumption growth relative to the standard deviation of aggregate consumption growth in the leading 
normal; µ(∆ci)/µ(∆c) denotes the mean of asset-holder consumption growth divided by the mean of aggregate consumption growth in the 
leading normal. γc and δc are the values of γ and δ that minimize the equally weighted sum of squared pricing errors when aggregate 
consumption is used in place of stockholder consumption, for the hermite distribution that delivers the maximum RMSE, as a percentage of the 
cross-sectional mean return.  For the jointly lognormal case, the average is the maximum since there is only one distribution to average over. 




