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Abstract

This paper examines a new set of implications of existing asset pricing models for the corre-

lation between returns and consumption growth over the short and the long run. The findings

suggest that models with external habit formation and time varying risk aversion are not con-

sistent with two robust facts in the aggregate data. First, that stock market returns lead

consumption growth, and second, that the correlation between returns and consumption growth

is higher at low frequencies than it is at high frequencies. I show that in order to reconcile these

facts with a consumption based model, one needs to focus on a class of models that are ”forward

looking”, i.e. models that a) allow for both trend and cyclical fluctuations in consumption and

b) link expected returns to the cyclical fluctuations in consumption. The models by Bansal and

Yaron (2004) and Panageas and Yu (2006) provide examples of such models. The time series

findings are re-confirmed by examining the same set of facts in the cross section.
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1 Introduction

The standard consumption-based CAPM seems incompetent to reconcile the large equity premium,

the low risk-free rate, and the cross-sectional differences across characteristics-based sorted port-

folios1. Numerous generalizations based on the standard CCAPM have been proposed to address

these asset market anomalies2.

One of the most successful generalizations is the external habit-formation model. It has fea-

tured prominently in the recent asset pricing and business cycle literature3. In the habit-formation

model, the usual assumptions being made are that the habit level is an exponentially weighted

moving average of past consumption and that consumption growth is an i.i.d. process. Habit per-

sistence generates time variation in investor preferences. The effective risk aversion coefficient is

especially high after periods of unusually low consumption growth. As a result, the model can

explain the large equity premium, the predictability of stock returns, and a counter-cyclical risk

premium. Another type of successful models in this literature are the long-run risk model and

the trend-cycle model, where the consumption consists of a small but persistent cycle component

apart from the stochastic trend. The representative paper in this literature is Bansal and Yaron

(2004). Both types of models can successfully match the first two moments of the aggregate data.

More importantly, the main implcations of both types of models are crucially driven by their per-

sistent state variables. In Campbell and Cochrane’s habit formation model, the key variable is the

slow-moving surplus ratio. In the long-run and trend-cycle models, the key state variable is the

cyclical component. As a result, these models have clear low-frequency implications. This paper

mainly focuses on the low-frequency features of different leading asset pricing models. The long-run

correlation between consumption and asset returns is used to evaluate different models since these

two types of models have different implications on the long-run correlation between consumption

growth and asset returns.

Daniel and Marshall (1999) show that the performance of asset pricing models improves sig-

nificantly at the two-year horizon. Parker and Julliard (2005) show that the standard consumption-

based CAPM can explain the size and value premium much better in long horizons. Motivated

by these papers, I first look at the relationship between consumption growth and asset returns at

different frequencies. A few stylized facts are documented, then these stylized facts are used as

an out-of-sample test for the existing asset pricing models, especially the external habit formation

1Notable papers on this issue include Hansen and Singleton (1982), Mehra and Prescott (1985), Weil (1989), and

Hansen and Jagannathan (1991) on aggregate data, and Lettau and Ludvigson (2001) on cross-sectional data.
2A partial list of the papers on the generalization of the consumption CAPM consists of Abel (1990, 1999), Bansal

and Yaron (2004), Barberis, Huang and Santos (2001), Campbell and Cochrane (1999), Constantinides (1990), and

Constantinides and Duffie (1996).
3A partial list of related papers includes Buraschi and Jiltsov (2007), Menly, Santos and Veronesi (2004), Tallarini

and Zhang (2005), Verdelhan (2007), and Watcher (2006).
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model, given its popularity in the literature.

Specifically, the consumption and returns co-move more strongly over the long horizon than

over the short horizon, and asset market returns lead consumption growth. Since many asset

pricing models have implications on the relationship between asset prices and consumption over

long horizons, it would be interesting to investigate whether these long horizon implications can

match the data. Consumption CAPM is about how asset prices respond to shocks in consumption,

and how small consumption shocks can result in big movement in asset prices. Here, I focus my

analysis on the relation between consumption and returns. I could also analyze the relation between

consumption and price dividend ratios. However, given the issue of measurements on dividends

(Bansal and Yaron (2006)), I concentrate on the relation between consumption and returns.

In external habit-formation models, the habit level is an exponentially weighted average of past

consumption, and the expected return is a decreasing function of the surplus ratio. Therefore, these

models imply that past consumption growth predicts future returns. Although the models state

that consumption leads returns, the data suggests the exact opposite. In habit formation models,

the surplus ratio is persistent and the expected return is a decreasing function of the surplus ratio.

Given that the surplus ratio is approximately a weighted past average of consumption growth, the

model could generate a lower covariation between consumption growth and asset returns at low

frequencies. In this paper, I show that as long as the external habit formation model produces a

counter-cyclical equity premium, a pro-cyclical price dividend ratio, and an equity premium large

enough, the model produces counterfactual predictions including an increasing cospectrum, and a

negative low-frequency (long-horizon) correlation between consumption growth and asset returns.

For an asset pricing model to produce the desired lead-lag relation between consumption and

returns, it is necessary for the expected return to depend on some forward-looking variable which

can predict consumption growth in itself. If the log consumption is decomposed into a stochastic

trend and a cycle, then the level of the cycle can predict future consumption growth. Hence, if

an asset pricing model implies that the expected returns depend on the level of the cycle, then it

can produce the correct lead-lag relation between consumption and asset returns. Since expected

returns depend on the persistent cycle component, the co-movement between consumption and

asset returns is tighter over longer horizons. In particular, the model in Panageas and Yu (2006)

implies that expected stock market returns are high when the cycle is well below the trend. Bansal

and Yaron (2004) also have the same implications when they incorporate stochastic volatility in

consumption growth and the volatility is countercyclical.

Since expected asset returns depend on the level of the cycle, I test a conditional version of

the CCAPM by using the filtered cyclical component from the log consumption as the conditional

variable. The results indicate that these conditional models perform far better than unconditional

models and roughly as well as the Fama-French three-factor models on portfolios sorted by size,
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book-to-market, and past realized returns. This conditional version of CCAPM increases the cross-

sectional R-Squared from 24% to about 60%, as well as improving conditional CAPM R-Squared

from 1% to about 60%.

Related Literature: Lettau and Wachter (2006) and Santos and Veronesi (2006a) argue

that the external habit formation model generates counterfactual predictions in the cross section

of stock returns. Santos and Veronesi (2006a) show that given the homogeneous cash flow risk

for each firm, the external habit-formation model produces a growth premium rather than a value

premium. Lettau and Wachter (2006) make a similar point. Instead of focusing on the cross-section

of stocks which depends on how the heterogeneity of these stocks is modelled, I primarily focus

on analyzing the aggregate market. For the conditional CAPM, Lettau and Ludvigson (2001) use

cay and Santos and Veronesi (2006b) use labor income as conditional variables. They both show

that conditional variables can improve the unconditional CCAPM and CAPM greatly. Panageas

and Yu (2006) study the asset pricing implications of technological innovation. In the model, there

is a delayed reaction of consumption to a large technological innovation, which helps to explain

why short run correlations between returns and consumption growth are weaker than their long

run counterparts. The delayed reaction of consumption also endogenously generates a cyclical

component in consumption.

The remainder of the paper is organized as follows. In section 2, an external habit formation

model with i.i.d. consumption growth is analyzed. Section 3 presents the long–run risk and trend-

cycle models. In section 4, a general external habit formation model with predictable consumption

growth is examined. Section 5 consists of a few robustness checks. Section 6 investigates the cross-

sectional implications of the trend-cycle model and the habit formation model. Section 7 concludes

the paper. All the technical derivations appear in the appendix.

2 External Habit Formation Model

There are two important features in the external habit formation model. One feature is that a raise

in current consumption increases future effective risk aversion of the representative agent, the other

is the slow-moving external habit level. Most of the key results for the external habit persistence

model crucially depend on the slow-moving surplus ratio. In the meanwhile, this slow-moving

feature of the model has clear implications for the long-run. Therefore, it is worthwhile to explore

the low-frequency properties of the model.

I first set up a standard Campbell and Cochrane (1999) external habit-formation model with

an i.i.d. consumption growth rate. The cointegration constraint between dividends and consump-

tion is also incorporated into the model. Since the focus of this paper is the low-frequency impli-

cations of different models, this cointegration constraint could potentially play an important role.
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Furthermore, a number of recent papers, including Bansal, Dittmar and Lundblad (2001), Hansen,

Heaton and Li (2005), Bansal, Dittmar and Kiku (2006) and Bansal and Kiku (2007) suggest that

dividends and consumption are stochastically cointegrated, and that this cointegration is impor-

tant for understanding asset pricing. Then, a log-linear solution of the model is presented, and

the long-run implications of the model is analytically derived under the log-linear approximation.

I show that in order for the habit model to match the first two moments of the consumption and

asset market data, the model will counterfactually produce bigger correlation between consumption

growth and asset returns at high frequencies than at low frequencies and negative correlations at

low frequencies (or long horizons). Furthermore, consumption leads asset returns in this external

habit model. These implications contradict the data, as I will show later. As a robustness check,

in section 4, I use a general ARMA (2, 2) process for consumption growth in the external habit

formation model and the simulation results show that the conclusions in this section remain the

same.

2.1 External Habit Formation Model with I.I.D. Growth Rate

I now set up an external habit persistence model that closely follows the specification of Campbell

and Cochrane (1999). The cointegration constraint between log consumption and log dividends

is incorporated in the model. In this section, the consumption growth is an i.i.d. process as in

Campbell and Cochrane (1999). Let ct = log (Ct) and dt = log (Dt) denote log real per capita

values of the consumption and the stock dividend. The consumption growth rate gc,t = ct − ct−1 is

generated as

gc,t = µc + ǫc,t, (2.1)

where ǫc,t is an i.i.d. normal with standard error σc. The cointegrating constraint is that dt − ct is

a stationary process as follows

dt = µdc + ct + δt

δt = ρδδt−1 + ǫδ,t,

where ǫδ,t is an i.i.d. normal with standard error σδ and ρcδ is the correlation between ǫc,t and ǫδ,t.

This model assumes that 0 ≤ ρδ ≤ 1. It follows that the dividend growth gd,t is generated as

gd,t = dt − dt−1 = gc,t + δt − δt−1

= µc + ǫc,t + (ρδ − 1) δt−1 + ǫδ,t

This setup of the dynamics of consumption and dividends is a direct extension of Campbell and

Cochrane (1999). Here, ct and dt are each I (1), and these two series are cointegrated except for

the case of ρδ = 1, in which the model reduces to that of Campbell and Cochrane (1999) and the
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dividends can wander arbitrarily far from consumption as time passes. The agent is assumed to

maximize the life time utility

Et

∞
∑

k=0

δk (Ct+k −Xt+k)
1−γ − 1

1 − γ

where Ct is the real consumption, Xt is the agent’s habit level at time t, γ is the risk aversion

coefficient and δ is the time preference of the agent. The surplus ratio is defined as St = Ct−Xt

Ct
and

st = log (St). The dynamics of the log surplus ratio st is given by

st+1 = (1 − φ) s̄+ φst + λ (st) ǫc,t+1, (2.2)

where s̄ is the steady state of the log surplus ratio, φ determines the persistence of the surplus

ratio (which also largely determines the persistence of the price dividend ratio), and the sensitivity

function λ (s) is given by

λ (st) =

{

1
S̄

√

1 − 2 (st − s̄) − 1, st ≤ smax

0, st ≥ smax

with

smax = s̄+
1

2

(

1 − S̄2
)

, S̄ = σc

√

γ

1 − φ

In the continuous time limit, smax is the upper bound on st. The implication of the above speci-

fication is that the risk-free rate is a constant and habit moves non-negatively with consumption.

Under the assumption of external habit, the pricing kernel Mt satisfies

Mt+1 = δ

(

St+1

St

Ct+1

Ct

)

−γ

= δ exp {−γ [(φ− 1) (st − s̄) + [1 + λ (st)] ǫc,t+1 + µc]} .

Hence, by the Euler equation, the functional equation for the price dividend ratio Zt = Pd,t/Dt for

the asset that pays the dividend Dt is

Zt = Et

[

Mt+1 (Zt+1 + 1)
Dt+1

Dt

]

Therefore, the price dividend ratio Zt is a function of the state variable (st, δt), and can be obtained

as the solution to the following functional equation,

Z (st, δt) = δEt

[

exp {−γ [(φ− 1) (st − s̄) + [1 + λ (st)] ǫc,t+1 + µc]}
· (Z (st+1, δt+1) + 1) · exp (µc + ǫc,t+1 + (ρδ − 1) δt + ǫδ,t+1)

]

. (2.3)

The above setup is the standard external habit-formation model except the cointegration con-

straint. To further explore long-run implications of the model, in the following section, a log-linear

approximation of the model is provided and some qualitative features of the model in the long-run

are analytically derived.
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2.2 Log-linear Solution of the Model

Before solving the functional equation (2.3) numerically, it is worthwhile to work on the log-linear

approximation of the log price dividend ratio to gain intuitions of the model. Although the first

order approximation is not numerically accurate given the highly nonlinear nature of the model, it

provides right intuition. Assume that the log price dividend ratio zt = log (Zt) can be approximated

by a linear function of the state variables

zt ≈ a0 + a1st + a2δt,

where the constant coefficients a0, a1, and a2 are to be determined. Furthermore, I approximate

the nonlinear sensitivity function λ (s) by a linear function4,

λ (s) ≈ −aλ (s− smax) ,

where αλ is a proper constant to closely approximate the sensitivity function. The results that will

be obtained in the following manner are not sensitive to the choice of aλ. In the appendix, the

coefficients a0, a1, and a2 are solved in closed-form. Hence, a linear approximation of the log price

dividend ratio can be obtained. Now, plugging this linear approximation of the log price dividend

ratio back into the Campbell-Shiller log-linear approximation on returns gives5

rt+1 ≈ κ0 + gd,t+1 + ρzt+1 − zt

≈ α+ βSSt +

[

1 + a1ρ
1 − S̄

S̄

]

ǫc,t+1 + [1 + a2ρ] ǫδ,t+1, (2.4)

where βS = a1(ρφ−1)
S̄

and the constants α is given by equation (8.4) in the appendix. βS is negative

if and only if a1 is positive. Hence, as long as the price dividend ratio is procyclical, βS is negative,

and hence, the risk premium is countercyclical. Notice that the parameters ρ and κ0 satisfy

ρ =
exp (E [zt])

1 + exp (E [zt])

κ0 = − log ρ− (1 − ρ) log

(

1

ρ
− 1

)

.

Hence, ρ and κ0 are determined endogenously. This is quite easy to implement numerically.

The habit level Xt can be further approximated as an exponentially weighted average of past

consumption

Xt ≈
∞
∑

k=1

1 − φ

φ
φkCt−k, (2.5)

4Another linear approximation around the steady state s̄, λ (s) ≈
1
S̄
− 1 + 1

S̄
(s − s̄) is also used and the results

are almost identical.
5Since the riskfree rate is a constant in this model, the returns are equivalent with the excess returns.
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where φ is the measure of habit persistence. Equation (2.5) implies that the habit level Xt and

the consumption level are cointegrated. Substitute equation (2.5) back into the definition of the

surplus ratio, approximate to the first order and simplify to obtain

St ≈ S̃t ≡
∞
∑

j=1

φj−1gt+1−j . (2.6)

Hence, the asset returns can be approximated by

rt+1 ≈ α+ βS

∞
∑

j=1

φj−1gt+1−j +

[

1 + a1ρ
1 − S̄

S̄

]

ǫc,t+1 + [1 + a2ρ] ǫδ,t+1. (2.7)

With the above approximation on returns, some long-run properties of the model can be analytically

derived now. TheK-horizon covariance between asset returns and consumption is (see the appendix

for the detailed calculations)

cov





K
∑

j=1

rt+j ,
K
∑

j=1

gc,t+j



 = − βSσ
2
c

1 − φ
− φ

(

1 − φK−1
)

βSσ
2
c

(1 − φ)2

+

[(

1 − a1ρ−
a1 (1 − ρ)

S̄ (1 − φ)

)

σ2
c + (1 + a2ρ)σcδ

]

·K.

When horizon K is sufficiently large, the sign of the correlation at very long horizons will be

determined by the coefficient in front of K in the above equation. Hence, the model implies a

negative long-horizon correlation if and only if

1 − a1ρ−
a1 (1 − ρ)

S̄ (1 − φ)
+ (1 + a2ρ)

σcδ

σ2
c

< 0. (2.8)

Furthermore, the correlation between consumption growth and asset returns is decreasing as the

horizon increases. To see this, first write down the long-horizon asset returns

K
∑

j=1

rt+j ≈ αK + βS

K
∑

j=1

S̃t+j−1 +

(

1 + a1ρ
1 − S̄

S̄

) K
∑

j=1

ǫc,t+j + (1 + a2ρ)
K
∑

j=1

ǫδ,t+j . (2.9)

The long horizon correlation between asset returns and growth rate comes from the last three

terms in the above equation. Notice that the surplus ratio S̃t+j−1 is a smoothed average of the

past consumption growth rate. As the horizon K increases, more negative correlation results from

the second term since βS < 0 while the correlation from the last two terms stays constant. Hence,

the correlation between consumption growth and asset returns decreases as horizon K increases.

The above approximation analysis provides good intuition on how the model works and the

qualitative features of the model in the long-run. To obtain the quantitative implications of the

model, I further solve this model numerically by assuming that the log price dividend ratio is a
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quadratic function of the state variables6. Using the linear approximation as the initial value, the

algorithm converges very fast. The parameter values are chosen close to Campbell and Cochrane’s

(1999) as in table 1. Since the cointegration is incorporated into the model, the persistence param-

eter ρδ for the difference of log dividends and log consumption need to be chosen. That parameter

is taken from Bansal, Gallant and Tauchen (2007)7. 48, 000 quarters of artificial data are simulated

to calculate population values for a variety of statistics. Table 2 shows the summary statistics of

the equity premium, riskfree rate, and price dividend ratio from the simulated model. To facilitate

the comparison with Campbell and Cochrane (1999), I report the simulated moments of the con-

sumption and asset returns together with that of both the post-war sample and the long sample

from table 2 of Campbell and Cochrane (1999). As in Campbell and Cochrane (1999), the external

habit formation model matches these moments well.

The long-run feature of the model is demonstrated in table 3, which lists the correlation

between consumption growth and asset returns at different horizons. For the data, this correlation

is increasing as the horizon increases until 6 quarters, then slowly declines. However, for the habit

formation model, the correlation is monotonically decreasing with horizon8, and the correlations are

negative at very long horizons. When ρδ is set to 1, consumption and dividends are not cointegrated

as in Campbell and Cochrane (1999), the correlation between consumption and dividends is indeed

lower as shown in the last column of table 3. The correlation is also monotonically decreasing,

and the correlations are more negative at very long horizons. Here, the focus of the analysis is the

dynamics of correlations over different horizons, not the level of the correlations. The correlation

between consumption growth and asset returns is too large in the model, which is a common

drawback for most asset pricing models. Furthermore, the level of correlation can be lowered when

the parameter values are changed to other combinations. However, the decreasing pattern in the

correlation over long-horizon remains.

A formal way to address the long-run implications of the model is the cross-spectral analysis of

consumption growth and asset returns. Moreover, the spectral analysis (i.e., the phase spectrum)

can provide information on the lead-lag relation between consumption and asset returns. Since

spectral analysis is not a standard tool in finance, a brief explanation of coherence, cospectrum

and phase spectrum is now provided below. The coherence of the consumption growth rate and

stock market returns at frequency λ measures the correlation between the consumption growth and

returns at frequency λ. Essentially, the coherency analysis splits each of the two series into a set

6As in Tallarini and Zhang (2004), Bansal, Gallant and Tauchen (2007) , a quadratic polynomial approximation

works well enough.
7In Lettau and Wachter (2007), they use ρδ = 0.91 for annual frequency, or equivalently, ρδ = 0.9922 for monthly

frequency. The results will remain the same if ρδ is set to be 0.9922
8If the model is simulated at monthly frequency, and time-averaged to quarterly frequency, the correlation could

increase from first quarter to second quarter, then it decreases monotonically as the horizon increases.
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of Fourier components at different frequencies, then determines the correlation of a set of Fourier

components for the two series around each frequency. When the frequency is λ, the corresponding

length of the cycle is 1/λ quarters. Hence, when λ = 0.5, the corresponding cycle is 2 quarters.

Since the coherency is always positive, the sign of the correlation at different frequencies can’t be

told from the coherency spectrum. To identify the sign of the correlation, the cospectrum needs to

be examined. The cospectrum at frequency λ can be interpreted as the portion of the covariance

between consumption growth and asset returns that is attributable to cycles with frequency λ.

Since the covariance can be positive or negative, the cospectrum can also be positive or negative.

The slope of the phase spectrum at any frequency λ is the group delay at frequency λ, and precisely

measures the number of leads or lags between consumption growth and asset returns. When this

slope is positive, consumption leads the market return. On the other hand, when this slope is

negative, asset market returns lead consumption growth.

In the appendix, it is shown that the cross-spectrum between consumption growth and asset

returns can be given by

f12 (λ) =
1

2π

(

βS
ei·λ − φ

1 + φ2 − 2φ cos (λ)
+ 1 + a1ρ

1 − S̄

S̄

)

σ2
c +

1

2π
[1 + a2ρ]σcδ. (2.10)

Hence, the cospectrum Csp (λ) (the real part the the cross-spectrum f12 (λ)) can be given by

Csp (λ) =

(

βS
cos (λ) − φ

1 + φ2 − 2φ cos (λ)
+ 1 + a1ρ

1 − S̄

S̄

)

σ2
c

2π
+ (1 + a2ρ)

σcδ

2π
.

Taking the derivative of the above equation yields

C ′

sp (λ) =
−βS sin (λ)

2π (1 + φ2 − 2φ cos (λ))2
(

1 − φ2
)

,

which is positive as long as βS < 0 . Hence, the portion of the covariance contributed by component

at frequency λ is increasing as the frequency λ is increased when βS < 0. This partially confirms

the early result that the correlation between consumption growth and asset returns decreases as

the horizon increases.

Another way to show the negative correlations at long horizons is to examine the sign of

the cross-spectrum between consumption growth and asset returns at the frequency λ = 0. The

cross-spectrum at frequency zero is

f12 (0) =
1

2π

(

−a1 (1 − ρ)

S̄ (1 − φ)
+ 1 − a1ρ

)

σ2
c +

1

2π
(1 + a2ρ)σcδ.

Later it will be shown that equation (2.8) will typically be satisfied in the models that can match the

first two moments of the aggregate data. When equation (2.8) holds, the low-frequency correlations

between consumption growth rate and asset returns are negative (since the function f12 (λ) is

continuous in λ), which is in contradiction with the real data. Therefore, the sign of the correlation
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of at frequency λ = 0 is the same with the sign of the long-horizon correlation, which is not

unexpected.

From the expression for the cross-spectrum in equation (2.10), the phase spectrum φ (λ) can

be calculated as follows

tan (φ (λ)) =
βS sin (λ)σ2

c

βS (cos (λ) − φ)σ2
c +

[(

1 + a1ρ
1−S̄

S̄

)

σ2
c + (1 + a2ρ)σcδ

]

(1 + φ2 − 2φ cos (λ))
.

(2.11)

To investigate the lead-lag relation between consumption growth and asset returns, I need to

examine the sign of the slope of the phase spectrum by differentiating equation (2.11). Indeed,

if the correlation between consumption innovation and return innovation is positively correlated,

then it follows that

φ′ (λ) ∝ −a1 (ρφ− 1)

S̄
+ 2φ

(

1 + a1ρ
1 − S̄

S̄

)

+ 2φ [1 + a2ρ]
σcδ

σ2
c

−
{

1 + a1ρ
1 − S̄

S̄
+ (1 + a2ρ)

σcδ

σ2
c

+ φ2 − a1ρφ
2 +

a1φ

S̄
+ (1 + a2ρ)φ

2σcδ

σ2
c

}

cos (λ)

≥ −
[

1 − a1ρ−
a1 (1 − ρ)

S̄ (1 − φ)
+ (1 + a2ρ)

σcδ

σ2
c

]

(1 − φ)2 ,

where ”∝” denotes that the signs on the left and right sides of ”∝” are the same and the last

inequality requires the following assumption

(1 − a1ρ)
(

1 + φ2
)

+
a1 (ρ+ φ)

S̄
+ (1 + a2ρ)

(

1 + φ2
) σcδ

σ2
c

≥ 0,

which is true if the correlation between the innovation in consumption and innovation in returns is

positive, that is
(

1 + a1ρ
1 − S̄

S̄

)

σ2
c + (1 + a2ρ)σcδ ≥ 0. (2.12)

Note that a positive slope at frequency λ (φ′ (λ) > 0) implies that consumption growth leads

asset returns at frequency λ. Hence, when equation (2.8) holds and the correlation between the

innovation in consumption and innovation in returns is positive, consumption growth leads asset

market returns in the external habit formation model. The above discussions lead to the following

two propositions. I relegate all proofs to the appendix.

Proposition 1:

If equation (2.8) holds,

1 − a1ρ− a1
(1 − ρ)

S̄ (1 − φ)
+ (1 + a2ρ)

σcδ

σ2
c

< 0,

then there exist a frequency λ∗ such that, for λ < λ∗, the correlation between the consumption

growth rate and asset returns at frequency λ is negative. If, in addition, equation (2.12) holds,
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the slope of the phase spectrum between consumption growth and asset returns is positive. Hence,

consumption growth leads asset returns.

Proposition 2:

Under the external habit-formation model, the analytical approximation shows that when

βS =
a1 (ρφ− 1)

S̄
< 0,

the cospectrum between consumption growth and asset returns is an increasing function of the

frequency. The portion of the covariance between consumption growth and asset returns that is

attributable to cycles with frequency λ is increasing with the frequency λ. Hence, the high frequency

cycles contribute more to the covariance between consumption growth and asset returns.

It is very natural for consumption to lead returns in this model since the expected returns

depend on the surplus ratio which is a smoothed average of the past consumption innovations.

Now, I want to see when equation (2.8) can be satisfied, so the low-frequency correlation between

consumption and asset returns is negative. Notice that δt = dt − ct, hence, it is reasonable to

assume that σcδ ≤ 0. Notice that −1 ≤ a2ρ = ρδ−1
1−ρρδ

ρ ≤ 0, hence, (1 + a2ρ)
σcδ

σ2
c
≤ 0. Therefore, for

equation (2.8) to hold, only need the condition 1 − a1ρ− a1
(1−ρ)

S̄(1−φ)
< 0. Furthermore, since a1 can

be found as the positive root of a quadratic equation, which usually ranges from 0.5 to 1.5, and S̄

is usually less than 0.1 to produce a high equity premium, the condition 1 − a1ρ − a1
(1−ρ)

S̄(1−φ)
< 0

can be easily satisfied. Therefore, equation 2.8 typically holds. Notice that equation 2.8 holds as

long as a1 is not too small. Since a1 is the exposure of price dividend ratio to surplus ratio, if a1 is

too small, the model can’t produce quantitative results for the first two moments of the aggregate

data. Hence, for the model to make quantitative sense, a1 can’t be too small, and the condition in

proposition 1 is typically satisified.

If βS < 0, then the expected asset returns are high when the surplus ratio is low. Hence,

the equity premium is countercyclical. Therefore, a negative βS is a very reasonable assumption.

Indeed, as I show in the appendix, under very mild conditions, βS is negative. For example, when

the correlation between consumption growth and dividend growth is positive, βS is negative. Also

notice that βS < 0 if and only if a1 > 0. A positive a1 implies a procyclical price dividend ratio.

Therefore, as long as the external habit persistence model produces a procyclical price dividend

ratio, the cospectrum between consumption growth and asset returns is an increasing function of

the frequency λ, which contradicts the data.

Proposition 1 implies that the low-frequency correlation between consumption growth and

asset returns is typically negative for a external habit formation model. At first glance, this seems

contradictory to the cointegration constraint between dividends and consumption. However, the

low-frequency correlation between consumption growth and asset returns is not necessarily positive.

To see this, it follows from the Campbell-Shiller decomposition of the returns, the cumulative
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returns can be written as

K
∑

j=1

rt+j ≈ Kκ0 +
K
∑

j=1

gd,t+j + ρ
K
∑

j=1

zt+j −
K
∑

j=1

zt+j−1

= Kκ0 +
K
∑

j=1

gd,t+j + (ρ− 1)
K−1
∑

j=1

zt+j + zt+K − zt.

Since the log price dividend ratio zt is stationary, the correlation between long-run returns and long-

run consumption resulting from the term zt+K − zt is negligible. In the long run,
∑K

j=1 gd,t+j and
∑K

j=1 gc,t+j are perfectly correlated. However, the term (ρ− 1)
∑K−1

j=1 zt+j is negatively correlated

with
∑K

j=1 gc,t+j because ρ− 1 is negative and the price dividend ratio is positively correlated with

the surplus ratio (zt ≈ a0 + a1st + a2δt). To see why price dividend ratio is positively correlated

with the surplus ratio, I argue as follows. When the realized consumption growth is high, the

surplus ratio is also high. Hence, the effective risk aversion is low. Therefore, the impled discount

rate is lower and the price dividend ratio is higher. That is, the price dividend ratio is positively

correlated with the consumption growth rate. Since each zt+j includes a smoothed average of past

consumption growth, the covariance between (1 − ρ)
∑K−1

j=1 zt+j and
∑K

j=1 gc,t+j could be higher

than the covariance between
∑K−1

j=1 gd,t+j and
∑K

j=1 gc,t+j if the horizon K is big enough.When

the negative effect between (ρ− 1)
∑K−1

j=1 zt+j and
∑K

j=1 gc,t+j dominates, the long-run correlation

between consumption growth and asset returns could be negative. The following simple example

can also provide some intuition. Suppose that the consumption realizations are very low over many

periods, then the cumulative consumption growth rate is also low. Furthermore, low consumption

realizations result in low surplus ratios during these periods, and hence, a high expected return

in each of these periods. As a result, the realized asset returns are very likely to be large during

these periods. Consequently, the long-horizon correlation between consumption growth and asset

returns could be negative in this model.

Proposition 1 and proposition 2 provide the qualitative features of the cross-spectral between

consumption and asset returns by a log-linear approximation. The exact cross-spectral can be

obtain based on 48, 000 quarters of artificial data simulated from the model with the parameter

values given by table 1. The top panel of figure 1 plots the coherency between consumption growth

and asset returns from the simulation of the model, and the middle panel plots the cospectrum.

It can be seen that in the simulated model, the cospectrum is increasing as shown by the solid

line. The dotted line is the cospectrum from the analytical approximation. The approximation is

quite accurate in general. Given the highly nonlinearity of the model, the difference between the

linear approximation and the exact solution is not negligible for some region. However, the shape

of the spectrum is very similar. The bottom panel is the phase spectrum which is increasing. It can

be seen that the exact solution and the analytic approximation are extremely close for the phase
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spectrum. Since the phase spectrum determines the sign of the cospectrum, the claim about the

sign of correlations based on the analytical approximation is also valid under the exact solution.

For the real data, the top panel of figure 2 confirms Daniel and Marshall’s (1999) finding that

the coherency between the quarterly consumption growth and the quarterly market excess return is

much higher at low frequencies (around 0.5) than at high frequencies (around 0.1). Therefore, most

of the correlation between the consumption growth and asset market returns comes from the co-

movement at low frequencies. The middle panel also shows that most of the covariance comes from

the low frequency covariation. The 95% confidence interval is also given by the dotted line, and the

confidence interval for cospectrum is above 0 at frequency 0, while the cospectrum at frequency 0

is negative for the simulated model. The high frequency cospectrum is close to zero. The bottom

panel of figure 2 shows that the phase spectrum is nearly monotonically decreasing. For most

frequencies, in this phase spectrum, the slope is negative. Hence, it is the market returns that lead

consumption growth. Figure 3 plot the coherency, cospectrum, and phase spectrum for both the

model and the data together. From this graph, it can be seen that, the coherency, cospectrum and

the phase spectrum are all declining in the data, while they are all increasing in the external habit

formation model. In the simulated model, the correlation between consumption innovation and

return innovation is very large. Therefore, it is not surprising that there is a very high coherency

between consumption growth rate and asset returns as in figure 1. This excessively high correlation

between consumption and asset returns is a common problem for most asset pricing models.

Instead of simulating the model for 48, 000 quarters in one shot, I run 1000 Monte Carlo

experiments, each with 100 years of observations. Band-pass filter is used to calculate the low-

frequency (with cycle longer than 5 years) and high-frequency (with cycle between 0.5 and 5 years)

correlations between consumption and asset returns in each Monte Carlo experiment. Then, the

difference between the low-frequency correlation and high-frequency correlation is obtained for each

experiment. The Monte Carlo result shows that the 90% quantile of the differences is negative.

Hence, we can reject the hypothesis at 10% level that the model can produce a larger low-frequency

correlation than high-frequency correlation. Furthermore, in the data, the difference between low-

frequency correlation and high frequency correlation is about 15%˜35%. None of the 1000 Monte

Carlo experiments can produce such a big difference. Hence, it can be safely claimed that the

model can’t produce the same long-horizon feature as that in the data.

I have shown that the external habit formation model with difference utility form can’t match

the long-run features of the data. Abel (1990) proposes a ratio form of external habit formation

model (Abel calls this catching up with the Joneses). Under Abel’s model, it can be shown that both

coherency and cospectrum between consumption growth and gross equity returns are increasing as

those in the difference form of external habit formation models9. Even with predictable consumption

9Notice that under i.i.d. consumption growth case, the coherence and cospectrum between consumption and excess
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growth, the above results are still true if the risk aversion coefficient is large enough to produce a

reasonable equity premium.

3 Long-Run Risk and Trend-Cycle Models

Section 2 has shown that the standard external habit formation model has difficulty matching

coherency, cospectrum and phase spectrum between consumption growth and asset market returns.

Hence, the question is what kind of model can produce the correct long-run correlation and lead-lag

relation between consumption growth and asset returns. In the standard Lucas tree model, where

i.i.d. consumption growth and CRRA preferences are assumed, the coherency, cospectrum and

phase spectrum are all flat. To obtain a decreasing coherency, cospectrum, and phase spectrum, it

is necessary to modify either the preferences or the consumption dynamics. It is difficult to match

the first two moments of the equity premium and the riskfree rate by modifying the consumption

dynamics alone10. The external habit formation model is a representative model with generalized

preferences which are proposed to resolve asset pricing puzzles. As an out-of-sample test, it has been

shown in last section that this type of model can not generate the same shape of the cross-spectrum

as that in the data.

If in a model, the expected return depends on a forward-looking variable, which can predict

consumption growth in itself, then the model could potentially produce the desired lead-lag relation

between consumption and asset returns. When the log consumption is decomposed to a stochastic

trend and a cycle, the level of the cycle can predict the future consumption growth. Hence, if an

asset pricing model (for example, Panageas and Yu (2006)) implies that expected returns depend

on the level of the cycle, then the model could produce the correct lead-lag relation between

consumption and asset returns. Since expected returns depend on the persistent cycle component,

the co-movement could be tighter between consumption and asset returns over longer horizons. As

a result, this type of model could potentially produce the right low-frequency property as that in the

data. In the following, I give an sketch of a structural trend-cycle model to provide the motivation

for the consupmtion dynamics and expected return dynamics. Then through a reduced-form model

to show the intuition on how this type of model can produce the right patterns in the cross-spectra.

At last, two structrual models are simulated to show that these models can generate the desired

returns is constant. While in the data, the coherence and cospectrum between consumption growth and gross returns

(and excess returns) are all decreasing.
10If the CRRA preferences are maintained, but the consumption growth is a predictable process (for example,

AR(1)), and a large risk aversion coefficient is assumed to generate enough equity premium, then the model could

generate decreasing coherency and cospectrum. However, the phase spectrum would be increasing in this case since

the expected return depends on the state variable, past consumption growth. This dependence is especially strong

when risk aversion coefficient is large.
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long-run features.

3.1 Structural Trend-Cycle Model in Panageas and Yu (2006)

In this section, I give a sketch of the trend-cycle model in Panageas and Yu (2006) to motivate the

dynamics for consumption and the expected returns. There exists a continuum of firms indexed

by j ∈ [0, 1]. Each firm owns a collection of trees that have been planted in different technological

epochs, and its total earnings is just the sum of the earnings produced by the trees it owns. Each

tree in turn produces earnings that are the product of three components: a) a vintage specific

component that is common across all trees of the same technological epoch, b) a time invariant

tree specific component and c) an aggregate productivity shock. To introduce notation, let YN,i,t

denote the earnings stream of tree i at time t, which was planted in the technological epoch N

∈ (−∞..− 1, 0, 1, ..+ ∞). In particular, assume the following functional form for YN,i,t:

YN,i,t =
(

A
)N

ζ(i)θt (3.1)

(

A
)N

captures the vintage effect. A > 1 is a constant. ζ(·) is a positive strictly decreasing function

on [0, 1], so that ζ(i) captures a tree specific effect. θt is the common productivity shock and evolves

as a geometric Brownian motion. Technological epochs arrive at the Poisson rate λ > 0. Once a

new epoch arrives, the index N becomes N + 1, and every firm gains the option to plant a single

tree of the new vintage at a time of its choosing.

Firm heterogeneity is introduced as follows: Once epoch N arrives, firm j draws a random

number ij,N from a uniform distribution on [0, 1]. This number informs the firm of the type of tree

that it can plant in the new epoch. In particular a firm that drew the number ij,N can plant a tree

with tree specific productivity ζ(ij,N ). These numbers are drawn in an i.i.d fashion across epochs.

Any given firm determines the time at which it plants a tree in an optimal manner. Planting

a tree requires a fixed cost which is the same for all trees of a given epoch. Let KN,t ∈ [0, 1] denote

the mass of firms that have updated their technology in technological epoch N up to time t. It is

formally shown that KN,t will coincide with the index of the most profitable tree that has not been

planted yet (in the current epoch). Hence, the aggregate output is given as

Yt =

[

∑

n=−∞..N−1

A
(n−N)

(∫ Kn,τn

0
ζ(i)di

)

+

∫ KN,t

0
ζ(i)di

]

A
N
θt

where τn = τn+1 denotes the time at which epoch n ended (and epoch n + 1 started). Further

define F (x) =
∫ x

0 ζ(i)di. Then, the total consumption ct = log (Ct) = log (Yt) can be rewritten as

ct = log(θt) +N log(A) + xt (3.2)

where
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xt = log

[

∑

n=−∞..N−1

A
(n−N)

F (Kn,τn) + F (KN,t)

]

, (3.3)

and xt is a geometrically declining average of the random terms F (Kn,τn). This means that xt

would behave exactly as an autoregressive process (across epochs). Hence, the model is able to

produce endogenous cycles, on top of the pure random walk stochastic trend log(θt) + N log(A)

that we assumed at the outset. Notice that the expected excess return on the market is a weighted

averge of the returns on asset in place, and the returns on the options to adopt the new technologies

and the expected return on options are higher than that of asset in place. When the current level of

consumption is below its stochastic trend, this implies that there is a large number of unexploited

investment opportunities for firms. Accordingly, the relative weight of growth options will be

substantial. Hence, up to first order approximation, the expected excess return can be written as

µt − r ≈ α+ βxt. (3.4)

In a nutshell, this model implies that the consumption consists of a random walk and an

autoregressive cycle and the expected excess return is approximately a linear function of the cyclical

component in consumption. To see how the trend-cycle models can produce the right pattern of

cross-spectrum, it is easiest to first work on a reduced-form model. Then I simulate two structural

models: Bansal and Yaron (2004) and Panageas and Yu (2006). Previous literature usually assumes

that the consumption growth rate follows an i.i.d. process. However, a predictable consumption

growth rate is key for trend-cycle models. Hence, before turning to the reduced-form model, an

ARMA process is fitted for the quarterly data on consumption growth rate.

3.2 The Estimation of Consumption Dynamics

The estimation results indeed show that a good description for log consumption is a stochastic trend

plus an AR(2) cycle, which is equivalent to an ARIMA (2, 1, 2) process11. For an ARIMA (2, 1, 2)

log consumption ct, the consumption growth rate gc,t has the following dynamics

gc,t − µc = ρc,1 (gc,t−1 − µc) + ρc,2 (gc,t−2 − µc) + ǫc,t + θc,1ǫc,t−1 + θc,2ǫc,t−2 (3.5)

11As in Morley, Nelson and Zivot (2003), there is a one-to-one correspondence between ARIMA(2,1,2) and a trend-

cycle decomposition with an AR(2) cycle component for the log consumption level. Furthermore, the AR(2) cyclic

component is the simplest cycle dynamics such that all the parameters in the trend-cycle model are identifiable. In

later analysis, we will assume that log consumption follows a trend-cycle process which is equivalent to the current

ARIMA(2,1,2).
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where ǫc,t˜WN
(

0, σ2
c

)

. This ARIMA (2, 1, 2) process has the following equivalent trend-cycle rep-

resentation for log consumption,

ct = Tt + xt

Tt = Tt−1 + µc + ξt

xt = ρx,1xt−1 + ρx,2xt−2 + ǫx,t (3.6)

where Tt is the stochastic trend, xt is the cyclical component in the log consumption, ǫx,t˜WN
(

0, σ2
ǫx

)

,

ξt˜WN
(

0, σ2
ξ

)

and corr (ξt, ǫx,t) = ρξ,ǫx . Table 4 gives the estimates for the consumption process.

All coefficients of the ARIMA (2, 1, 2) are significant at 5% level. Moreover, the implied correla-

tion between the trend innovation and the cycle innovation is highly negative with ρξ,ǫx = −0.9569.

This negative correlation is consistent with the implication of Panageas and Yu (2006), in which the

investment and consumption experience a delay when a new round of technological advancement

arrives. Morley, Nelson and Zivot (2003) also find a large negative correlation coefficient between

the innovations in the trend and cycle components in the GDP. A positive productivity shock

(i.e., the invention of the internet) will immediately shift the long run path of output upwards,

leaving actual output below the trend until it catches up. This yields a negative contemporaneous

correlation since this positive trend shock is associated with a negative shock to the transitory

component.

3.3 A Reduced-Form Trend-Cycle Model

In this section, a reduced-form trend-cycle risk model is analyzed to provide intuition on why

this type of model can produce the desired pattern in the cross-spectrum. I assume that the log

consumption ct consists of a stochastic trend component Tt plus an AR(2) cycle component xt as in

equation (3.6), which is equivalent to the ARIMA(2, 1, 2) process for log consumption. Hence, the

consumption growth rate is given by gc,t = xt − xt−1 + ξt. The expected return is further assumed

to be negatively correlated with current cycle component xt in the following way12,

Et (rt+1) = α0 + βxt, where β < 0.

In a reduced-form model without cointegration constraint, the realized return can be written as

rt = α0 + βxt−1 + ut,

where the innovation ut is normally distributed with mean 0 and standard error σu. If the dividends

(in logs) are assumed to be cointegrated with the consumption (in logs)

12Since the cycle component xt is assumed to be an AR (2) process, it is more reasonable to assume that expected

returns also depend on the lagged cycle component. Here, for simplicity, I ignore the lagged cyclical component. The

results are robust if the lagged cyclical component is included in the expected returns.
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δt ≡ dt − ct = µdc +
∞
∑

k=0

ψkǫδ,t−k,

where
∑

∞

k=1 |ψk| < ∞. Then, as shown in the appendix, by plugging the constraint on the condi-

tional expected returns into the Campbell-Shiller’s log-linear approximation on returns, it follows

that

rt ≈ α0 + ǫδ,tψ̄ + ǫx,t · (ρ∗ − βρρ̄) + ξt + βxt−1, (3.7)

where ψ̄, ρ∗, and ρ̄ are proper constants defined by equation (8.6) in the appendix. Therefore, the

cointegration constraint simply adds a restriction on the innovations in returns

ut ≡ ǫδ,tψ̄ + ǫx,t · (ρ∗ − βρρ̄) + ξt.

To determine the cross-spectrum between consumption growth and asset returns, we only need to

know the correlation between the innovation in returns ut and innovation in growth rate (ξt, ǫx,t).

Instead of estimating the parameters ψk, ρδ,ξ ≡ corr (ǫδ,t, ξt), ρδ,ǫx ≡ corr (ǫδ,t, ǫx,t) (which might

have substantial errors), and taking care of the internal link between the parameter ρ, the price div-

idend ratio and returns, here I just fix the correlations ρu,ξ ≡ corr (ut, ξt) and ρu,ǫx ≡ corr (ut, ǫx,t)

at different values and plot the cross-spectrum under different scenarios. This approach allows me

to examine the sensitivity of the cross-spectrum to the underlying parameters.

Figure 4 through figure 7 plot the coherency, cospectrum, and phase spectrum under different

parameter values. I fix the values for the parameters on the consumption dynamics and change the

values of β, ρu,ξ, and ρu,ǫx . Moreover, σu is fixed at 0.08 to match the market volatility. In figure

4, the parameter values are β = −2, ρu,ξ = 0, and ρu,ǫx = 0. In the data, these correlations are

indeed very small. It can be seen that all the of them are downward sloping. When the values on

the correlation are changed to ρu,ξ = 0.2, ρu,ǫx = −0.2, and ρu,ξ = 0.5, ρu,ǫx = −0.5, the coherency

increases and the slope is steeper. However, this decreasing pattern remains. As the predictability

of returns is increased to β = −5, the results are similar. To see why this reduced-form model

can produce desired pattern of the spectrum, first examine the long horizon correlation between

consumption growth rate and asset returns. For simplicity, assume xt is an AR(1) process, then

K
∑

j=1

gt+j =
K
∑

j=1

ξt+j +
K
∑

j=1

ǫx,t+j + (ρx,1 − 1)
K
∑

j=1

xt+j−1 (3.8)

K
∑

j=1

rt+j ≈ Kα0 +

K
∑

j=1

ut+j + β

K
∑

j=1

xt+j−1. (3.9)

The correlation cumulative consumption and cumulative returns is a weighted average of the corre-

lations between the three summations in equation 3.8 and the two summation in equation 3.9. Since

the correlation between (ρx,1 − 1)
∑K

j=1 xt+j−1 and β
∑K

j=1 xt+j−1 is just 1. Hence, if the weight on
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this correlation is high, the correlation between consumption and return will be high. The weight

depends on the variance of the individual summation terms. Since
∑K

j=1 ξt+j ,
∑K

j=1 ǫx,t+j , and
∑K

j=1 ut+j are just summations of i.i.d. shocks, their variances just increase linearly with horizon.

However,
∑K

j=1 xt+j−1 is a summation of persistent terms, its variance will increase faster than

linearly because of the cross-covariances. Hence, as horizon increases, the weight on the correlation

between (ρx,1 − 1)
∑K

j=1 xt+j−1 and β
∑K

j=1 xt+j−1 will increase. Since this correlation is 1, the

correlation between cumulative consumption growth and cumulative returns also increases with

horizon. To see the lead-lag relation, assume that the current cycle xt−1 is relatively low, then the

expected future consumption growth is high. Moreover, the expected asset returns are also high.

Hence, given a high realized asset return, it is likely that the past cycle level xt−1 is low. Since the

cycle component xt is mean-reverting, then the future consumption growth is expected to be high.

Hence, high asset returns predict a high consumption growth rate.

3.4 Simulation From Structural Models: Bansal and Yaron (2004) and Panageas

and Yu (2006)

I have shown through a reduced-form trend-cycle model that this type of models can produce

the desired relationship between growth and asset returns in long horizons. Now, based on a

calibrated structural model in Panageas and Yu (2006)13, 48, 000 quarters of excess returns and

the consumption growth rate are simulated and the cross-spectra of these two simulated series are

plotted. Figure 8 plots the coherency, cospectrum, and the phase spectrum for the simulated data.

These spectra are indeed all decreasing. The magnitude of the cospectrum is higher than that

in the data because the calibrated model has a higher consumption volatility14, return volatility,

and correlation between consumption and return than those values in the data. Moreover, the

correlation between consumption growth and asset returns increases with horizons first, then slowly

decreases, which is the same with the pattern in the data.

Since Bansal and Yaron (2004) is a representative long-run risk model which has attracted

a lot of attention in the current literature, I explore its long-run implications in the following.

Following Bansal and Yaron (2004), the dynamics of consumption and dividends are assumed to

13In Panageas and Yu (2006), their model features two types of shocks: ”small” , frequent and disembodied shocks

to productivity and ”large” technological innovations, which are embodied into new vintages of the capital stock.

The latter types shocks affect the economy with lags, since firms need to invest before they can take advantage of

the new technology. This delayed reaction of consumption to large technological innovation helps them explain why

the short-run correlation between consumption and asset returns are weaker than their long-run counterparts.
14The model is calibrated to match the long sample of consumption data which has a much higher volatility.

20



be

xt+1 = ρxxt + ϕeσtet+1

gc,t+1 = µ+ xt + σtηt+1

gd,t+1 = µd + φxt + ϕdσtut+1

σ2
t+1 = σ2 + ν1

(

σ2
t − σ2

)

+ σwwt+1.

where the innovations et, ηt, ut, and wt are i.i.d. N (0, 1). It follows from equation (A12) and

equation (A14) of Bansal and Yaron (2004), the excess returns can be approximated by

rt+1 ≈ βm,wλm,wσ
2
w − 0.5β2

m,wσ
2
w +

(

βm,eλm,e − 0.5β2
m,e − 0.5ϕ2

d

)

σ2
t

+κ1,mA1,mϕeσtet+1 + κ1,mA2,mσwwt+1 + ϕdσtut+1, (3.10)

where all the constants are defined in appendix of Bansal and Yaron (2004). Taking the parameter

values from the calibrated model of Bansal and Yaron (2004), the model can match the first two

moments of equity premium, risk free rate and consumption growth. With the above return and

consumption dynamics, 48, 000 quarters of artificial data are simulated. The resulting coherency,

cospectrum and phase spectrum are all decreasing as shown in figure 9. Furthermore, the correlation

between asset returns and consumption growth increases with horizons first, then slowly decreases,

which is the same with the pattern in the data.

I also run 1000 Monte Carlo experiments, each with 100 years of observations, as in section

2. Band-pass filter is used to obtain the difference between the low-frequency correlation and high-

frequency correlation for each experiment. The Monte Carlo result shows that the 90% quantile

of the differences is 0.3903, while this difference in the data is about 15%˜35%. Hence, the 90%

confidence interval from the model includes the corresponding value from the data. The same is

true for the model in Panageas and Yu (2006), with a 90% quantile of the differences equal 0.4844.

4 Habit Formation Model With Predictable Cash Flow

It has been shown that the external habit model with i.i.d. consumption growth specification can

not produce a consistent cross-spectrum between consumption and asset returns as seen in the

data. It has also been shown that when consumption is assumed to have a cyclical component,

the long-run risk and trend cycle models could produce the desired relation between consumption

growth and asset returns. As a robustness check, I use the same ARMA (2, 2) consumption growth

for the external habit formation model (as estimated in section 5) and assume that consumption

is cointegrated with dividends as follows,

gc,t = µc (1 − ρc,1 − ρc,2) + ρc,1gc,t−1 + ρc,2gc,t−2 + ǫc,t + θc,1ǫc,t−1 + θc,2ǫc,t−2

δt ≡ dt − ct − µdc = ρδδt−1 + ǫδ,t.
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Hence, the dividend growth is given by

gd,t = µc (1 − ρc1 − ρc2) + ρc,1gc,t−1 + ρc,2gc,t−2

+ǫc,t + θc,1ǫc,t−1 + θc,2ǫc,t−2 + (ρδ − 1) δt−1 + ǫδ,t.

Here, the same dynamics for the log surplus ratio st as in equation (2.2) is assumed. Therefore,

the state variables in this economy are (δt, gt, gt−1, st, ǫc,t, ǫc,t−1). In this model, the riskfree rate is

no longer a constant. Instead, it depends on the state variables. However, its variation is still very

small. Notice that

EtMt+1 = δEt exp {−γ [(φ− 1) (st − s̄) + λ (st) ǫc,t+1 + gc,t+1]}

= δ exp

{

0.5γ2 [1 + λ (st)]
2 σ2

c − γ

[

(φ− 1) (st − s̄) + µc (1 − ρc,1 − ρc,2)

+ρc,1gc,t + ρc,2gc,t−1 + θc,1ǫc,t + θc,2ǫc,t−1

]}

.

Hence, the risk-free rate follows

rf
t = − log (EtMt+1)

= − log (δ) + γ

[

(φ− 1) (st − s̄) + µc (1 − ρc,1 − ρc,2)

+ρc,1gc,t + ρc,2gc,t−1 + θc,1ǫc,t + θc,2ǫc,t−1

]

− 0.5γ2 [1 + λ (st)]
2 σ2

c .

To solve for the price dividend ratio, a log-linear approximation on the log P/D ratio is derived

the same way as in the i.i.d. case. Then, this linear approximated function is used as the initial

point to numerically solve for the exact price dividend ratio. This approach stabilizes the numerical

solution. Table 6 lists the parameter values used in the simulation. The parameters for consumption

dynamics are taken from the estimation results in section 2, table 4. Table 7 reports the summary

statistics of the equity premium, risk-free rate, and price dividend ratio from the simulated data.

As in the i.i.d. case, the model can match both the equity premium and risk-free rate.

Table 8 shows the correlation between consumption and asset returns at different horizons.

The correlation is decreasing for the simulated model as the horizon increases. Figure 10 plots

the coherency, cospectrum, and phase spectrum in this generalized model. It can be seen that

the long-run correlation between consumption growth and asset returns are still negative as that

in the last section. Furthermore, from the phase spectrum, consumption still leads asset returns,

same as in the last section. Although there is a hump-shaped cospectrum as that in the data, the

cospectrum in the model is very large at high frequencies compared with these quantities in the

data. Hence, the main message in the i.i.d. case remains true even the consumption growth rate is

assumed to be an ARMA (2, 2) process in the external habit formation model.

To understand why the results still hold in the case with predictable consumption growth,

a simplified model with AR (1) consumption growth is considered in the following. That is, let

ρc,2 = 0, θc,1 = 0, and θc,2 = 0. The previous analysis shows that the cointegration constraint
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doesn’t play a significant role. Therefore, to simplify the model further, assume ρδ = 1. Under this

set of simplified assumptions, it is shown in the appendix that

rt+1 ≈ α1 +

(

ρa3 + 1 + ρa1
1 − S̄

S̄

)

ǫc,t+1 + ǫδ,t+1

+γρc,1gc,t +
(φρ− 1) a1

S̄
S̃t (4.1)

where α1 is some proper constant. Notice that (φρ−1)a1

S̄
is usually around 1, and ρc,1 is around

0.5. It follows from the same argument below equation (2.9) in section 2 that the correlations

between consumption growth and asset returns are decreasing as horizons increase, as long as the

risk aversion coefficient γ is not too big. If we allow a large risk aversion γ, then equation (4.1)

implies that consumption predict return positively, which is also in contradiction with data since it

is the return that predicts consumption growth. Accordingly, the external habit persistence model

with a predictable consumption growth can’t produce decreasing coherency, cospectrum, and phase

spectrum.

5 Robustness Checks

At the end of section 2, a cross-spectral analysis shows that the coherency, cospectrum, and phase

spectrum between quarterly consumption growth and quarterly asset returns are decreasing. The

purpose of this section is to show that these features in the data are robust across different data

samples and econometric methods. Furthermore, a band-pass filter analysis and Granger’s causality

test are applied to the simulated data from different models. The results corroberate the previous

cross-spectral analysis.

5.1 Band-Pass Filter and Granger’s Causality Test

In this section, band-pass filter analysis and Granger’s causality test are performed on the real

data and artificial data simulated from different models. The band-pass filter (see Baxter and King

(1999)) is used to extract the low frequency and high frequency components of consumption and

asset returns. The resulting correlations between the consumption growth rate and the market

return at different frequencies are then calculated. The correlation is 0.114 for higher frequencies

(with cycle among 2˜20 quarters) and 0.342 for lower frequencies (with cycle longer than 20 quar-

ters). Table 9 lists the low-frequency and high-frequency correlations for different models and the

data. I can be seen that the external habit formation models produce a higher correlations at high

frequencies, while the long–run risk model, trend-cycle models and the real data generate a higher

correlations at lower frequencies. This confirms the earlier from the coherency and cospectrum.

The phase spectrum analysis in section 2 shows that stock market returns lead consumption
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growth. Now, I conduct a formal Granger’s causality test. To implement this test, I assume an

autoregressive lag length of 2 and estimate the following equation by OLS

rt = c1 + α1rt−1 + α2rt−2 + β1gc,t−1 + β2gc,t−2 + ur,t,

where rt is the quarterly market excess return, and gc,t is the quarterly consumption growth rate.

Then an F test of the following null hypothesis is conducted

H0 : β1 = β2 = 0.

Similarly, I can estimate the following OLS

gc,t = c2 + γ1gc,t−1 + γ2gc,t−2 + η1rt−1 + η2rt−2 + uc,t,

then conduct an F test of the null hypothesis

H0 : η1 = η2 = 0.

The p-value of Granger’s causality test of consumption Granger-causing return is 0.4482, while

the p-value of Granger’s causality test of return Granger-causing consumption is 4.3770 × 10−4.

Hence, the statistical test indicates that stock market returns do Granger-cause consumption,

while consumption does not Granger-cause stock market returns. Therefore, Granger’s causality

test confirms our phase spectrum result. For the annual data, the results are stronger.

The table 10 and 11 report the Granger causality test for the Fama-French 25 portfolios and the

consumption growth rate. Table 10 gives the p-value for the test of consumption growth Granger-

causes asset returns. All these p-values are large, so consumption growth does not Granger-cause

asset returns. Table 11 gives the p-value for the test of asset returns Granger-cause consumption

growth. All of these p-values are very small. Hence, the Fama-French 25 portfolio returns do

Granger-cause the consumption growth. This confirms our results for the aggregate market data.

Table 12 presents the p-values from Granger’s causality tests for different models and real

data. The results show that for the external habit formation models, the consumption growth

Granger causes asset returns. However, it is the asset returns that Granger cause consumption for

the long-run risk model, trend-cycle model, and the real data. Hence, the band-pass filter analysis

and the Granger’s causality tests reconfirm the earlier results from cross-spectral analysis.

5.2 Parametric Estimation for Cross-Spectrum and Spectral Analysis for An-

nual Data

To reconfirm the results from the cross-spectral analysis for the real data in section 2, a more

detailed cross-spectral analysis is performed for the real data in this section. Section 2 has shown
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that the coherency, cospectrum and the phase spectrum between consumption and asset returns

are all decreasing for the quarterly data. When the whole sample is chopped into two sub-samples,

the resulting graphs looks nearly identical as the graphs in figure 2.

A parametric method is also be used to estimate the cross-spectrum. First, I estimate a

V AR (2) for consumption growth and market excess returns. Then, by using the estimated pa-

rameter values, the cross-spectrum between consumption growth and asset returns can be obtained

analytically as plotted in figure 11 (detailed calculations are given in the appendix). It can be seen

that the decreasing pattern remains. The phase spectrum is increasing for very high frequencies.

However, it is decreasing for horizons longer than 1 year. It is worth noting that the phase spectrum

at very high frequencies are sensitive to different estimation methods and sub-samples. In particu-

lar, the confidence intervals at high frequencies are very wide. However, all of the other decreasing

patterns are very robust to different estimation approaches and sub-samples. Since there might be

serious measurement errors in the pre-war consumption data, I will mainly focus on the post-war

quarterly consumption data. Furthermore, the quarterly data has more observations, so the power

of the statistical inference is larger. However, as a robustness check, I also plot the cross-spectrum

for annual data in figure 12. The observed patterns are the same with those in the quarterly data.

The higher correlation at long horizons could result from frictions such as delayed consumption.

However, it is hard to believe that these frictions can affect the correlation at horizons longer than

1 year. Therefore, the higher correlation between consumption growth and asset return must

originate from more fundamental economic reasons. This paper does not investigate the origin of

these forces.

6 Cross-Sectional Analysis (Very Preliminary)

I have shown that the low-frequency features in the aggregate data can be used to evaluate asset

pricing models. The same spectral analysis can be applied to individual portfolios. Since value

premium is a long-standing puzzle in the literature, the same procedure is applied to evaluate

different models which are proposed to resolve the value premium puzzle. Figure 13 plots the

cross-spectra between consumption and growth portfolio and value portfolio. It can be seen that

the slope of the coherency and cospectrum is steeper for value portfolio than growth portfolio.

Actually, the correlation between the average returns for 10 book-to-market portfolios and the

slopes for the coherency between 10 book-to-market portfolios and consumption is about 0.9. In

the following, I use this property to evaluate different asset pricing models which can produce value

premium, especially those models with slow-moving features. To show how the procedure works,

two recent models are chosen to investigate. One is the duration model proposed by Lettau and

Watcher (2006) which generates a value through the duration effect of cash flow. First, calculate
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the correlation between the average returns for 10 book-to-market portfolios and the slopes for

the coherency between 10 book-to-market portfolios and consumption for the calibrated model in

Lettau and Watcher (2006). This correlation is about −0.95, while this number is about 0.9 in the

data (EXPLAIN WHY HERE). Further, figure 14 plots the cross-spectra for between consumption

and value stocks, and the growth stocks from Bansal and Yaron’ model. Here, the value stocks are

those with a high value of φ. The pattern is the same with the data as shown in figure 13.

Furthermore, cross-sectional implications of the tend-cycle model is tested. The objective is to

see whether the trend-cycle decomposition can help to explain cross-sectional asset returns. Since

the conditional expected return is related the cyclical component, I first use Kalman filter to extract

that component from the consumption data, then use this cyclical component as a conditional

variable (the same way as cay in Letteu and Ludvigson (2001)). The following cross-sectional

results show that the cyclical component can help the conditional CCAPM and CAPM explain

cross-sectional differences in asset returns. From table 13 and table 14, it can be seen that the

conditional CCAPM and CAPM can explain the 10 size, book-to-market, and momentum portfolios

with a R-squared of about 60%. The R-squared is improved significantly over the unconditional

models. The Fama-French three-factor model can only explain about 30% of the cross-sectional

difference in these 30 portfolios. However, the Fama-French 3 factor model can explain 77% of the

cross-sectional variations in the Fama-French 25 portfolios. Our conditional CCAPM and CAPM

can also explain about 60% of the variations for Fama-French 25 portfolios, which is slightly below

that of the Fama-French three-factor model. When I use the Kalman filter to extract the cyclical

component, I can fix the correlation between trend innovation and cycle innovation at 0. If I use this

cyclical variable as the conditional variable, the R-squared in the cross-sectional regression becomes

much lower. Therefore, the negative correlation between trend innovation and cycle innovation is

crucial for our empirical cross-sectional analysis. Since the surplus ratio is also a state variable in

the external habit-formation model, I also test the conditional consumption-based CAPM with the

surplus ratio as the conditional variable. Figure 15 plots the fitted and the realized quarterly return

under the unconditional CAPM and consumption CAPM. As expected, the R-squared is very small

for both of the unconditional models. Figure 16 graphs the pricing errors of the two versions of

the conditional consumption CAPM. The top panel uses cyclical component in consumption as the

conditional variable, and the pricing error is relatively small for the 25 Fama-French portfolios. The

bottom panel uses the approximate surplus ratio (St ≈
∑20

k=1 φ
kgt−k) as the conditional variable,

the pricing error is still relatively large, although there is a significant improvement when compared

to the unconditional model.
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7 Conclusions

In this paper, I argue that the standard external habit formation model has a difficult time gener-

ating the same coherency, cospectrum and phase spectrum between consumption and the market

returns as in the data. However, when the log consumption is decomposed to a stochastic trend

and an AR (2) cycle, and the expected return is a decreasing function of the cyclical component,

the model can generate the same pattern as that found in the data. Instead of matching the first

two moments of the aggregate data as most of the current literature does, I analyze the asset pric-

ing model from a different perspective, by especially focusing on the low-frequency implications. I

conclude that forward-looking behavior in the model is important for the model to be consistent

with the observed data.
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8 Appendix

Parametric Estimation of the Cross-spectrum:

I first estimate the following V AR (2) for consumption growth and asset returns,

rt = c1 + α1rt−1 + α2rt−2 + β1gt−1 + β2gt−2 + ut

gc,t = c2 + γ1gc,t−1 + γ2gc,t−2 + η1rt−1 + η2rt−2 + ǫc,t,

After the parameters are estimated, the cross-spectrum can be found in closed-form by the following

argument. First, write down the equations for the orthogonal increment processes Zgc , Zr, Zǫc , and

Zu in the spectral representations of {gc,t}, {rt}, {ǫc,t} , and {ut},

dZr =
(

α1e
−iλ + α2e

−2iλ
)

dZr +
(

β1e
−iλ + β2e

−2iλ
)

dZg + dZu

dZgc =
(

γ1e
−iλ + γ2e

−2iλ
)

dZgc +
(

η1e
−iλ + η2e

−2iλ
)

dZr + dZǫc

Rearrange to obtain

dZgc =
η̄

De
dZu +

(1 − ᾱ)

De
dZǫc

dZr =
1 − γ̄

De
dZu +

β̄

De
dZǫc ,

where

X̄ = X1e
−iλ +X2e

−2iλ for X = α, β, γ, and η,

and

De = (1 − ᾱ) (1 − γ̄) − β̄η̄.

Hence, the cross-spectrum can be obtained as

2πf11 =

∣

∣

∣

∣

η̄

De

∣

∣

∣

∣

2

σ2
u +

∣

∣

∣

∣

(1 − ᾱ)

De

∣

∣

∣

∣

2

σ2
ǫc

+ 2real

([

η̄

De

] [

(1 − ᾱ)

De

]

′
)

σǫc,u

2πf22 =

∣

∣

∣

∣

1 − γ̄

De

∣

∣

∣

∣

2

σ2
u +

∣

∣

∣

∣

β̄

De

∣

∣

∣

∣

2

σ2
ǫc

+ 2real

(

[

(1 − γ̄)

De

] [

β̄

De

]′
)

σǫc,u

2πf12 =
η̄

De

(

1 − γ̄

De

)

′

σ2
u +

(1 − ᾱ)

De

(

β̄

De

)′

σ2
ǫc

+

[

η̄

De

(

β̄

De

)′

+
(1 − ᾱ)

De

(

1 − γ̄

De

)

′

]

σǫc,u.

Log-Linear Approximation to Price Dividend Ratio and Returns:

To derive the log-linear approximation to the price dividend ratio and asset returns, let mt =

log (Mt) be the log IMRS. Plugging the log-linear approximation to returns rt+1 ≈ k0 + gd,t+1 +

ρzt+1 − zt, and the linear approximation to log price dividend ratio zt ≈ a0 + a1st + a2δt into the
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Euler equation, I obtain

1 = Et (exp (mt+1 + rt+1))

= exp

























[

γ (φ− 1) s̄+ log (δ) + k0 + µc (1 − ρc1) (1 − γ)

+a0ρ− a0 + a1ρ (1 − φ) s̄+ 0.5 [1 + a2ρ]
2 σ2

δ

]

+ [−γ (φ− 1) − a1 + a1ρφ] st

+ [a2ρρδ − a2 + (ρδ − 1)] δt

+0.5 [1 + a1ρλ (st) − γ [1 + λ (st)]]
2 σ2

c

+ [1 + a1ρλ (st) − γ [1 + λ (st)]] [1 + a2ρ]σcδ

























Replacing the sensitivity function λ (s) with its linear approximation λ (s) ≈ −aλ (s− smax) in the

above equation, then, setting the coefficients in front of the state variables to be zero, it follows

that

a2 =
ρδ − 1

1 − ρρδ
, (8.1)

a1 can be determined as the unique positive root of the following quadratic equation if consumption

growth is positively correlated with dividend growth15,

0 =

[

2aλρ
2 − 2ρ2

S̄2

]

a2
1 +

[

ρφ− 1

0.5σ2
c

− 1

0.5σ2
c

aλ [1 + a2ρ]σc,δρ− 2aλρ (1 + γ) + 4γρ
1

S̄2

]

a1

+

[

1

0.5σ2
c

aλ [1 + a2ρ]σc,δγ + 2aλγ − γ (φ− 1)

0.5σ2
c

− 2γ2

S̄2

]

(8.2)

and a0 can be determined by the following equation,

a0 =
1

1 − ρ















γ (φ− 1) s̄+ log (δ) + k0 + µc (1 − γ)

+a1ρ (1 − φ) s̄+ 0.5 [1 + a2ρ]
2 σ2

δ

+0.5σ2
c





(a1ρ− γ)2 1
S̄2 (1 + 2s̄) + 2 (1 − a1ρ) (a1ρ− γ) (1 + aλsmax)

+ (1 − a1ρ)
2 + [1 − γ + (a1ρ− γ) aλsmax] · [1 + a2ρ]

σc,δ

0.5σ2
c



















(8.3)

Plug this linear approximation on price dividend ratio back into the Campbell-Shiller log-linear

15Notice that λ′ (s) ≤
1

S̄2 , hence, it is natural to choose 0 < aλ < 1
S̄2 to approximate the sensitivity function.

Hence, the coefficient 2aλρ2
−

2ρ2

S̄2 in the quadratic equation (8.2) is negative. Further, the constant term in the

quadratic equation satisfies

1

0.5σ2
c

aλ [1 + a2ρ] σc,δγ + 2aλγ −
γ (φ − 1)

0.5σ2
c

−
2γ2

S̄2

=

»„

1 − ρ

1 − ρρδ

«

σc,δ

σ2
c

+ 1

–

2aλγ

If we assume
σc,δ

σ2
c

≥ −1, then the constant term in the quadratic equation is positive. Hence, there is a unique positive

root for equation (8.2). Notice that ǫc,t is the innovation in ct, and ǫδ,t is the innovation in dt minus the innovation

in ct. As long as the innovations in ct and the innovations dt are positively correlated (i.e. the consumption growth

and dividend growth are positively correlated),
σc,δ

σ2
c

> −1 holds.
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approximation on returns to obtain

rt+1 ≈ κ0 + gd,t+1 + ρzt+1 − zt

= [κ0 + µc − a0 + a0ρ+ a1ρ (1 − φ) s̄] + [a1ρφ− a1] st + [(ρδ − 1) − a2 + a2ρρδ] δt

+ [1 + a1ρλ (st)] ǫc,t+1 + [1 + a2ρ] ǫδ,t+1

≈ [κ0 + µc − a0 + a0ρ+ a1ρ (1 − φ) s̄] + [a1ρφ− a1]

(

St

S̄
+ log

(

S̄
)

− 1

)

+ [(ρδ − 1) − a2 + a2ρρδ] δt + [1 + a1ρλ (st)] ǫc,t+1 + [1 + a2ρ] ǫδ,t+1

≈
[

κ0 + µc − a0 + a0ρ+ a1ρ (1 − φ) s̄+ (a1ρφ− a1)
(

log
(

S̄
)

− 1
)]

+
a1ρφ− a1

S̄
St

+ [1 + a1ρλ (st)] ǫc,t+1 + [1 + a2ρ] ǫδ,t+1

Letting

α = κ0 + µc − a0 + a0ρ+ a1ρ (1 − φ) s̄+ (a1ρφ− a1)
(

log
(

S̄
)

− 1
)

(8.4)

βS ≈ a1 (ρφ− 1)

S̄
, (8.5)

and further approximating λ (st) with λ (s̄) = 1−S̄
S̄

, it follows that

rt+1 = α+ βSSt +

[

1 + a1ρ
1 − S̄

S̄

]

ǫc,t+1 + [1 + a2ρ] ǫδ,t+1.

Proof of Proposition 1 & 2:

First, surplus ratio St can be approximated by a smoothed average of past consumption

innovations as equation (2.6). Notice that the habit level can be approximated by

Xt ≈
∞
∑

k=1

ρkCt−k =

∞
∑

k=1

1 − φ

φ
φkCt−k

where the weight ρk = 1−φ
φ
φk. Plug the above equation back into the definition of surplus ratio St

to obtain

St = 1 −
∞
∑

k=1

ρk
Ct−k

Ct

= 1 −
∞
∑

k=1

ρk exp



−
t
∑

j=t−k+1

gj





≈ 1 −
∞
∑

k=1

ρk



1 −
t
∑

j=t−k+1

gj





=
∞
∑

j=1





∞
∑

k=j

ρk



 gt+1−j

=
∞
∑

j=1

φj−1gt+1−j .

30



Hence, equation (2.6) follows. Now, substituting equation (2.6) back into equation (2.4), then

I replace each term in equation (2.4) and equation (2.1) by its spectral representation. Noting

that the resulting equations are valid for all t, I obtain the following equations for the orthogonal

increment processes Zgc , Zr, Zǫc and Zǫδ
in the spectral representations of {gt}, {rt}, {ǫc,t} and

{ǫδ,t}:

dZgc (λ) = dZǫc (λ)

dZr (λ) = βS

∞
∑

j=1

φj−1e−ijλ · dZgc (λ) +

[

1 + a1ρ
1 − S̄

S̄

]

dZǫc (λ) + [1 + a2ρ] dZǫδ
(λ)

Notice that
∑

∞

j=1 φ
j−1e−ijλ = e−i·λ

1−φe−i·λ and solve for dZgc (λ) and dZr (λ) to obtain

dZgc (λ) = dZǫc (λ)

dZr (λ) =

[

βS
e−i·λ

1 − φe−i·λ
+ 1 + a1ρ

1 − S̄

S̄

]

dZǫc (λ) + [1 + a2ρ] dZǫδ
(λ) .

It follows that the multivariate spectrum is given by

2πf11 (λ) = σ2
c

2πf22 (λ) =

∣

∣

∣

∣

βS
e−i·λ

1 − φe−i·λ
+ 1 + a1ρ

1 − S̄

S̄

∣

∣

∣

∣

2

σ2
c + [1 + a2ρ]

2 σ2
δ

+2Re

(

β
e−i·λ

1 − φe−i·λ
+ 1 + a1ρ

1 − S̄

S̄

)

[1 + a2ρ]σcδ

2πf12 (λ) =

(

βS
e−i·λ

1 − φe−i·λ
+ 1 + a1ρ

1 − S̄

S̄

)′

σ2
c + [1 + a2ρ]σcδ

=

(

βS
ei·λ − φ

1 + φ2 − 2φ cos (λ)
+ 1 + a1ρ

1 − S̄

S̄

)

σ2
c + [1 + a2ρ]σcδ

For the cospectrum Csp (λ), which measure the portion of the covariance between consumption

growth and the asset returns attributable to cycles with frequency λ, it is the real part of the

cross-spectrum f12 (λ), then

Csp (λ) =

(

βS
cos (λ) − φ

1 + φ2 − 2φ cos (λ)
+ 1 + a1ρ

1 − S̄

S̄

)

σ2
c + [1 + a2ρ]σcδ

Therefore, the derivative of the cospectrum is

C ′

sp (λ) = βS

− sin (λ)
(

1 + φ2 − 2φ cos (λ)
)

− 2φ sin (λ) (cos (λ) − φ)

(1 + φ2 − 2φ cos (λ))2

=
−βS sin (λ)

(1 + φ2 − 2φ cos (λ))2
[

1 − φ2
]

≥ 0

Hence, the portion of covariance contributed by components at frequency λ is increasing as I
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increasing the frequency λ. By definition, the coherency and the phase are

h (λ) =
|f12|√
f11f22

tan (φ (λ)) =
β − sin(λ)

1+φ2
−2φ cos(λ)

σ2
ǫ

(

β cos(λ)−φ

1+φ2
−2φ cos(λ)

+ 1 + a1ρ
1−S̄

S̄

)

σ2
c + [1 + a2ρ]σcd

.

At the frequency λ = 0, the cross-spectrum is

f12 (0) =

(

βS
1 − φ

1 + φ2 − 2φ
+ 1 + a1ρ

1 − S̄

S̄

)

σ2
c + [1 + a2ρ]σcδ

=

(

−a1 (1 − ρ)

S̄ (1 − φ)
+ 1 − a1ρ

)

σ2
c + [1 + a2ρ]σcδ

Therefore, if and only if
(

−a1(1−ρ)
S̄(1−φ)

+ 1 − a1ρ
)

σ2
c + [1 + a2ρ]σcδ < 0, the low frequency correlation

between consumption growth and asset returns is negative. To find the conditions for a nega-

tive correlation at long horizons, first write down the long horizon returns and the long horizon

consumption growth rate

K
∑

j=1

rt+j ≈
K
∑

j=1

α+ βSS̃t+j−1 +

(

1 + a1ρ
1 − S̄

S̄

)

ǫc,t+j + (1 + a2ρ) ǫδ,t+j

≈ Kα+ βS

K
∑

j=1

∞
∑

k=1

φk−1ǫc,t+j−k +

(

1 + a1ρ
1 − S̄

S̄

) K
∑

j=1

ǫc,t+j + (1 + a2ρ)

K
∑

j=1

ǫδ,t+j

K
∑

j=1

gc,t+j = Kµc +
K
∑

j=1

ǫc,t+j .

Then, the long horizon covariances between return and consumption are

cov





K
∑

j=1

rt+j ,
K
∑

j=1

gc,t+j





= βS

K−1
∑

i=1

1 − φK−i

1 − φ
σ2

c +K

([

1 + a1ρ
1 − S̄

S̄

]

σ2
c + [1 + a2ρ]σcδ

)

= −βSσ
2
c

1

1 − φ
− βSσ

2
c

φ

1 − φ

1 − φK−1

1 − φ
+K

(

σ2
c

βS

1 − φ
+

[

1 + a1ρ
1 − S̄

S̄

]

σ2
c + [1 + a2ρ]σcδ

)

.
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Notice that the long run variances are

var





K
∑

j=1

rt+j



 = var





∑K−1
i=1

[

βS
1−φK−i

1−φ
+ 1 + a1ρ

1−S̄
S̄

]

ǫc,t+i + βS

∑

∞

i=0

[

φi 1−φK

1−φ

]

ǫc,t−i

+
[

1 + a1ρ
1−S̄

S̄

]

ǫc,t+K + [1 + a2ρ]
∑K

j=1 ǫδ,t+j





=





(K − 1)
(

βS

1−φ
+ 1 + a1ρ

1−S̄
S̄

)2
+
(

βS

1−φ

)2
φ2 1−φ2(K−1)

1−φ2

−2
(

βS

1−φ
+ 1 + a1ρ

1−S̄
S̄

)

βS

1−φ
φ1−φK−1

1−φ



σ2
c

+

[

1 − φK

1 − φ

]2

σ2
c

β2
S

1 − φ2
+

(

1 + a1ρ
1 − S̄

S̄

)2

σ2
c +K (1 + a2ρ)

2 σ2
δ

+

[

(K − 1)
β

1 − φ
+K

(

1 + a1ρ
1 − S̄

S̄

)

− βφ

1 − φ

1 − φK−1

1 − φ

]

(1 + a2ρ)σcδ

Hence, the correlation at horizon K is just

√

cov(
PK

j=1 rt+j ,
PK

j=1 gc,t+j)
var(

PK
j=1 rt+j)var(

PK
j=1 gc,t+j)

. When the horizon K

is sufficiently large, the following quantity determines the sign of the correlation at the very long

horizon

σ2
c

βS

1 − φ
+

[

1 + a1ρ
1 − S̄

S̄

]

σ2
c + [1 + a2ρ]σcδ

=
a1 (ρφ− 1)

S̄ (1 − φ)
σ2

c +

[

1 + a1ρ
1 − S̄

S̄

]

σ2
c + [1 + a2ρ]σcδ

=

[

1 − a1ρ−
a1 (1 − ρ)

S̄ (1 − φ)

]

σ2
c + (1 + a2ρ)σcδ.

It can be seen that the sign of long-run correlation is the same with the sign of the correlation of

at frequency λ = 0.

By differentiating equation (2.11), the sign of the slope of the phase spectrum can be examined.

Indeed,

φ′ (λ) ∝
{

βS (cos (λ) − φ)σ2
c +

[(

1 + a1ρ
1 − S̄

S̄

)

σ2
c + [1 + a2ρ]σcδ

]

(

1 + φ2 − 2φ cos (λ)
)

}

·βS cos (λ) − βS sin (λ)

{

−βS sin (λ)σ2
c + 2φ

[(

1 + a1ρ
1 − S̄

S̄

)

σ2
c + [1 + a2ρ]σcδ

]

sin (λ)

}

Rearrange and simplify to obtain

φ′ (λ) ∝ −a1 (ρφ− 1)

S̄
+ 2φ

(

1 + a1ρ
1 − S̄

S̄

)

+ 2φ [1 + a2ρ]
σcδ

σ2
c

−
{

1 + a1ρ
1 − S̄

S̄
+ (1 + a2ρ)

σcδ

σ2
c

+ φ2 +
−a1ρS̄φ

2

S̄
+
a1φ

S̄
+ (1 + a2ρ)φ

2σcδ

σ2
c

}

cos (λ)

≥ a1
(1 − ρ) (1 − φ) + ρS̄ (1 − φ)2

S̄
− (1 − φ)2 − (1 + a2ρ)

σcδ

σ2
c

(1 − φ)2

= −
[

1 − a1
1 − ρ+ ρS̄ (1 − φ)

S̄ (1 − φ)
+ (1 + a2ρ)

σcδ

σ2
c

]

(1 − φ)2 ,

where the inequality requires the following assumption

(1 − a1ρ)
(

1 + φ2
)

+
a1ρ

S̄
+
a1φ

S̄
+ (1 + a2ρ)

(

1 + φ2
) σcδ

σ2
c

> 0,
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which is true if the correlation between the innovations of return and consumption is positive.

Log-linear Approximation for the Habit Model with ARMA (2, 2) Consumption Growth:

First, I assume a linear approximation of the P/D ratio,

zt = a0 + a1st + a2δt + a3gc,t + a4gc,t−1 + a5ǫc,t + a6ǫc,t−1

Plugging back into the Euler equation, we have

1 = exp















































[

γ (φ− 1) s̄+ log (δ) + k0 + µc (1 − ρc1 − ρc2) (1 − γ)

+a0ρ− a0 + a3ρµc (1 − ρc,1 − ρc,2) + a1ρ (1 − φ) s̄

]

[−γ (φ− 1) − a1 + a1ρφ] · st

+ [a2ρρδ + (ρδ − 1) − a2] · δt
+ [ρc,1 − a3 + λδc − γρc,1 + a3ρρc,1 + a4ρ] · gc,t

+ [−γρc,2 + a3ρρc,2 − a4 + ρc,2] · gc,t−1

+ [θc,1 − γθc,1 + a6ρ+ a3ρθc,1 − a5] · ǫc,t
+ [θc,2 − γθc,2 + a3ρθc,2 − a6] · ǫc,t−1

+0.5 [1 − γ (1 + λ (st)) + a1ρλ (st) + a5ρ+ a3ρ]
2 σ2

c + 0.5 [1 + a2ρ]
2 σ2

δ

+ [1 − γ (1 + λ (st)) + a1ρλ (st) + a5ρ+ a3ρ] [1 + a2ρ]σcδ















































Again, the sensitivity function λ (s) can be replaced with its linear approximation. Then, by

matching the coefficients, I obtain

a2 =
ρδ − 1

1 − ρρδ

and,

a3 = −(ρc,1 − γρc,1) + (ρc,2 − γρc,2) ρ

(ρρc,1 − 1) + ρ2ρc,2

a4 = −(ρc,1 − γρc,1) ρρc,2 − (ρc,2 − γρc,2) (ρρc,1 − 1)

(ρρc,1 − 1) + ρ2ρc,2

and

a6 = θc,2 − γθc,2 + a3ρθc,2

a5 = θc,1 − γθc,1 + a6ρ+ a3ρθc,1

Furthermore, a1 can be found as the positive root of the following quadratic equation,

0 =

[

aλσ
2
cρ

2 − σ2
c

ρ2

S̄2

]

a2
1

+

[

σ2
c

2ργ

S̄2
− aλσ

2
cρ (1 + a3ρ+ a5ρ+ γ) + (ρφ− 1) − aλ [1 + a2ρ]σcδρ

]

a1

+aλσ
2
c (1 + a3ρ+ a5ρ) γ − σ2

c

γ2

S̄2
− γ (φ− 1) + aλ [1 + a2ρ] γσcδ
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At last, a0 can be found as follows,

a0 =
1

(1 − ρ)





















γ (φ− 1) s̄+ log (δ) + k0 + µc (1 − ρc1 − ρc2) (1 − γ)

+a3ρµc (1 − ρc,1 − ρc,2) + a1ρ (1 − φ) s̄+ 0.5 [1 + a2ρ]
2 σ2

δ

+0.5σ2
c









(a1ρ− γ)2 1
S̄2 (1 + 2s̄) + (1 − a1ρ+ a3ρ+ a5ρ)

2

+2 (a1ρ− γ) (1 + aλsmax) (1 − a1ρ+ a3ρ+ a5ρ)

+ [1 − γ + a3ρ+ a5ρ+ aλ (a1ρ− γ) smax] [1 + a2ρ]
σcδ

0.5σ2
c





























Hence, a linear approximation of the log P/D ratio is obtained. Then the approximated return is

rt+1 ≈ α+ βSSt + βδδt + βg,1gc,t + βg,2gc,t−1 + βǫ,1ǫc,t + βǫ,2ǫc,t−1

+ (1 + a5ρ+ a3ρ+ a1ρλ (st)) ǫc,t+1 + (a2ρ+ 1) ǫδ,t+1

where

α = κ0 + µc (1 − ρc1 − ρc2) − a0 + ρa0 + a1ρ (1 − φ) s̄+ a3ρµc (1 − ρc,1 − ρc,2)

βS ≈ a1 (ρφ− 1)

S̄
βδ = ρδ − 1 + a2ρρδ − a2 ≡ 0

βg,1 = ρc,1 + a3ρρc,1 + a4ρ− a3

βg,2 = ρc,2 + a3ρρc,2 − a4

βǫ,1 = θc,1 + a3ρθc,1 + a6ρ− a5

βǫ,2 = θc,2 + a3ρθc,2 − a6

The Reduced Form Forward-Looking Risk Model with Cointegration:

In the following, I will derive equation (3.7) in section (3). First, notice that

(

1 − ρx,1L− ρx,2L
2
)

−1
= (1 − ρ̂1L)−1 (1 − ρ̂2L)−1

=
∞
∑

k=0

(ρ̂1L)k
∞
∑

k=0

(ρ̂2L)k =
∞
∑

k=0

ρ̃kL
k

where

ρ̂i =
−2ρx,2

ρx,1 ±
√

ρ2
x,1 + 4ρx,2

, and ρ̃k =
k
∑

j=0

ρ̂j
1ρ̂

k−j
2

then, xt =
∑

∞

k=0 ρ̃kǫx,t−k. I can rewrite the dynamics of consumption growth and dividend growth

as follows

gc,t =
∞
∑

k=0

ρ̃kǫx,t−k −
∞
∑

k=0

ρ̃kǫx,t−1−k + ξt ≡
∞
∑

k=0

ρ̃∗kǫx,t−k + ξt

∆dt =
∞
∑

k=0

ρ̃∗kǫx,t−k + ξt + ∆δt
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where

ρ̃∗k = ρ̃k + ρ̃k−1, and ρ̃−1 ≡ 0.

Substituting the above equations into the log-linearized equation in asset returns rt, it follows

rt − Et−1rt = (Et − Et−1)





∞
∑

j=0

ρj∆dt+j −
∞
∑

j=1

ρjrt+j





= −







∞
∑

j=0

ρjEt−1 [∆δt+j ] −
∞
∑

j=0

ρjEt [∆δt+j ]







+ ξt

+







∞
∑

j=0

ρjEt

[

∞
∑

k=0

ρ̃∗kǫx,t+j−k

]

−
∞
∑

j=0

ρjEt−1

[

∞
∑

k=0

ρ̃∗kǫx,t+j−k

]







+







∞
∑

j=1

ρjEt−1

(

β
∞
∑

k=0

ρ̃kǫx,t+j−1−k

)

−
∞
∑

j=1

ρjEt

(

β
∞
∑

k=0

ρ̃kǫx,t+j−1−k

)







.

Each of the three terms in the curly bracket will be simplified in order. For the first term,

∞
∑

j=0

ρjEt−1 [∆δt+j ] −
∞
∑

j=0

ρjEt [∆δt+j ]

=

∞
∑

j=0

ρjEt−1

[

∞
∑

k=0

ψkǫδ,t+j−k −
∞
∑

k=0

ψkǫδ,t+j−1−k

]

−
∞
∑

j=0

ρjEt

[

∞
∑

k=0

ψkǫδ,t+j−k −
∞
∑

k=0

ψkǫδ,t+j−1−k

]

=
∞
∑

j=0

ρj





∞
∑

k=j+1

ψkǫδ,t+j−k −
∞
∑

k=j

ψkǫδ,t+j−1−k



−
∞
∑

j=0

ρj





∞
∑

k=j

ψkǫδ,t+j−k −
∞
∑

k=max(0,j−1)

ψkǫδ,t+j−1−k





= ǫδ,t (ρ− 1)
∞
∑

j=0

ρjψj

where ψ−1 is defined to be 0. For the second term,

∞
∑

j=0

ρjEt

[

∞
∑

k=0

ρ̃∗kǫx,t+j−k

]

−
∞
∑

j=0

ρjEt−1

[

∞
∑

k=0

ρ̃∗kǫx,t+j−k

]

=
∞
∑

j=0

ρjEt





∞
∑

k=j

ρ̃∗kǫx,t+j−k



−
∞
∑

j=0

ρjEt−1





∞
∑

k=j+1

ρ̃∗kǫx,t+j−k



 = ǫx,t

∞
∑

j=0

ρj ρ̃∗j

and for the last term,

∞
∑

j=1

ρjEt−1

(

β

∞
∑

k=0

ρ̃kǫx,t+j−1−k

)

−
∞
∑

j=1

ρjEt

(

β

∞
∑

k=0

ρ̃kǫx,t+j−1−k

)

= β
∞
∑

j=1

ρj





∞
∑

k=j

ρ̃kǫx,t+j−1−k −
∞
∑

k=j−1

ρ̃kǫx,t+j−1−k



 = −βǫx,t

∞
∑

j=1

ρj ρ̃j−1
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Therefore, it follows that

rt = a0 + ǫδ,tψ̄ + ǫx,t

∞
∑

j=0

ρj ρ̃∗j − βǫx,t

∞
∑

j=1

ρj ρ̃j−1 + ξt + βxt−1

= a0 + ǫδ,tψ̄ + ǫx,t · (ρ∗ − βρρ̄) + ξt + βxt−1

where

ψ̄ = (1 − ρ)
∞
∑

j=0

ρjψj ; ρ∗ =
∞
∑

j=0

ρj ρ̃∗j , ρ̄ =
∞
∑

j=0

ρj ρ̃j (8.6)

Based on the derived dynamics on consumption and asset returns, the equations for the orthog-

onal increment processes in the spectral representations can be derived as before, and then the

expressions for the coherency, cospectrum and the phase can be analytically obtained.
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Table 1: Parameter choices for the external habit formation model with i.i.d. consumption: All the

parameter values are annualized.

Statistics Variable Value

Mean consumption growth (%) gc 1.89

Standard deviation of consumption growth (%) σc 1.22

Log risk-free rate (%) rf 0.094

Persistence coefficient in habit φ 0.87

Persistence coefficient in δt ρδ 0.89

Standard deviation of the innovation in δt σδ 0.112

Risk aversion coefficient γ 2

Correlation between innovation in consumption and δt ρc,δ -0.1

Subjective discount factor δ 0.89

Table 2: Summary statistics of simulated data for external habit formation model with i.i.d. con-

sumption growth, and cointegrated consumption and dividends. All the quantities are annualized.

Statistics Equity Postwar Sample Long Sample

E(gc) 1.90 1.89 1.72

σ(gc) 1.22 1.22 3.32

E(rf ) 0.094 0.094 2.92

E(r − rf ) 6.71 6.69 3.90

σ(r − rf ) 15.34 15.7 18.0

exp[E(p− d)] 18.2987 24.7 21.1

σ(p− d) 0.3136 0.26 0.27

AC1(p− d) 0.8432 0.87 0.78
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Table 3: Long-horizon correlations for external habit-formation model with i.i.d. consumption

growth. The calculations are based on quarterly frequency data. ρδ = 1 is the case where con-

sumption and dividends are not cointegrated.

Horizon (in quarters) Data Habit-Formation(ρδ = 0.89) Habit-Formation(ρδ = 1)

1 0.1561 0.8731 0.7604

2 0.2041 0.8568 0.7353

3 0.2466 0.8400 0.7101

4 0.2702 0.8234 0.6854

5 0.2779 0.8074 0.6612

6 0.2844 0.7916 0.6377

7 0.2812 0.7761 0.6151

8 0.2769 0.7612 0.5938

9 0.2551 0.7465 0.5728

10 0.2259 0.7322 0.5529

Table 4: Estimation for consumption dynamics based on quarterly consumption data.

ARIMA(2, 1, 2) µc ρc,1 ρc,2 θc,1 θc,2 σc

Estimate 0.0055 1.3040 -0.5535 -1.0288 0.4359 0.0042

Standard Error 0.0005 0.3756 0.2388 0.3661 0.1489 0.0002

Trend+AR(2) µc ρx,1 ρx,2 σx σξ ρξ,ǫx

Implied V alue 0.0055 1.3040 -0.5535 0.0050 0.0068 -0.9569

The following consumption dynamics is estimated

gc,t − µc = ρc,1 (gc,t−1 − µc) + ρc,2 (gc,t−2 − µc) + ǫc,t + θc,1ǫc,t−1 + θc,2ǫc,t−2 (8.7)

where ǫc,t˜WN
(

0, σ2

c

)

. This ARIMA (2, 1, 2) process has the following equivalent trend-cycle representation

for log consumption,

ct = Tt + xt

Tt = Tt−1 + µc + ξt

xt = ρx,1xt−1 + ρx,2xt−2 + ǫx,t (8.8)

where Tt is the stochastic trend, xt is the cyclical component in the log consumption, ǫx,t˜WN
(

0, σ2

ǫx

)

,

ξt˜WN
(

0, σ2

ξ

)

and corr (ξt, ǫx,t) = ρξ,ǫx
.
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Table 5: Long-horizon correlations under the parameter values β = −2, ρξ,ǫx = −0.9569, ρu,ξ, = 0

and ρu,ǫx = 0 for the reduced-form of forward-looking risk model.

horizon data Forward-Looking

1 0.1561 0.0969

2 0.2041 0.1943

3 0.2466 0.2652

4 0.2702 0.3133

5 0.2779 0.3464

6 0.2844 0.3674

7 0.2812 0.3795

8 0.2769 0.3869

9 0.2551 0.3919

10 0.2259 0.3909
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Table 6: Parameter choices for the external habit formation model with ARMA(2, 2) consumption

growth : All parameter values are in quarterly frequency.

Statistics Variable Value

Mean consumption growth (%) gc 0.5458

Standard deviation of the innovation in consumption (%) σc 0.4158

Persistence coefficient in habit φ 0.9658

AR(1) Coefficient of Consumption Growth ρc1 1.3034

AR(2) Coefficient of Consumption Growth ρc2 -0.5535

MA(1) Coefficient of Consumption Growth θc1 -1.0288

MA(2) Coefficient of Consumption Growth θc2 0.4359

Persistence coefficient in δt ρδ 0.9719

Standard deviation of the innovation in δt σδ 0.056

Risk aversion coefficient γ 2

Correlation between innovation in consumption and δt ρc,δ -0.1

Subjective discount factor δ 0.9740

Table 7: Summary statistics of simulated data for the external habit-formation model with

ARMA(2, 2) consumption growth. All the quantities are annualized.

Statistics Equity

E(gc) 2.18

σ(gc) 0.90

E(rf ) 1.21

σ(rf ) 0.68

E(r − rf ) 6.26

σ(r − rf ) 17.73

exp[E(p− d)] 16.7159

σ(p− d) 0.3754

AC1(p− d) 0.8414
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Table 8: Long-horizon correlations for the external habit-formation model with ARMA(2,2) con-

sumption growth. The calculations are based on quarterly data.

horizon (in quarters) data Habit-Formation

1 0.1561 0.7680

2 0.2041 0.7214

3 0.2466 0.6987

4 0.2702 0.6886

5 0.2779 0.6813

6 0.2844 0.6727

7 0.2812 0.6619

8 0.2769 0.6486

9 0.2551 0.6335

10 0.2259 0.6172

Table 9: Band-Pass Filter Analysis: Band-pass filter analysis for the real data and artificial data

simulated from different models. Here, C-C is the Campbell and Cochrane (1999) model, IID is the

external habit formation model with IID consumption growth and cointegrated consumption and

dividends. ARMA is the external habit formation model with ARMA(2,2) consumption growth

and cointegrated consumption and dividends. B-Y is the calibrated model from Bansal and Yaron

(2004), P-Y is the calibrated model from Panageas and Yu (2006). High frequency includes com-

ponents with cycle less than 8 years. Low frequency includes components with cycle more than 8

years, which are the medium and long run components.

C-C IID ARMA B-Y P-Y data

Low-Frequency Correlation 0.4551 0.4666 0.6032 0.2809 0.7040 0.3417

High-Frequency Correlation 0.7833 0.8876 0.7901 -0.0291 0.3811 0.1138
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Table 10: Granger’s Causality Test: p-value of the test of consumption growth Granger-causes

asset returns based on quarterly data.

BM1 MB2 BM3 BM4 BM5

S1 0.2061 0.2255 0.2815 0.4396 0.5542

S2 0.1138 0.2249 0.5238 0.3315 0.6353

S3 0.0849 0.2774 0.4562 0.5686 0.3665

S4 0.1155 0.2585 0.3853 0.8124 0.8279

S5 0.3041 0.3664 0.6938 0.7115 0.6400

Table 11: Granger’s Causality Test: p-value of the test of asset returns Granger-cause consumption

growth based on quarterly data.

BM1 MB2 BM3 BM4 BM5

S1 0.0016 0.0045 0.0035 0.0081 0.0032

S2 0.0034 0.0071 0.0044 0.0048 0.0026

S3 0.0024 0.0013 0.0017 0.0014 0.0026

S4 0.0051 0.0137 0.0018 0.0004 0.0174

S5 0.0008 0.0137 0.0443 0.0027 0.0136

Table 12: Granger’s Causality Test: The p-values of Granger’s causality test for real data and

artificial data simulated from different models.C-C is the Campbell and Cochrane (1999) model, IID

is the external habit formation model with IID consumption growth and cointegrated consumption

and dividends. ARMA is the external habit formation model with ARMA(2,2) consumption growth

and cointegrated consumption and dividends. B-Y is the calibrated model from Bansal and Yaron

(2004), P-Y is the calibrated model from Panageas and Yu (2006). All the data are quarterly

frequency.

C-C IID ARMA B-Y P-Y data

Consumption Causes Returns 0 0 0 0.7740 0.7900 0.4482

Returns Cause Consumption 0.2361 0.2249 0.2015 0 0 4.3770 × 10−4
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Table 13: Conditional CAPM: : 30 portfolios with 10 size, 10 BM and 10 momentum portfolios.

The conditional variable is the cyclical component in the log consumption. The portfolio data is

downloaded from Kenneth French’s website, and the consumption data is take from FED at Saint

Louis. (To compare our result with cay, we only use data from 1952Q1-2005Q4)

Row Constant Rm Cycle Cycle ·Rm R2

1 3.674 -0.328 0.0042

(3.6758) (-0.3424)

2 2.294 1.232 -3.9312 -15.1479 0.6086

(2.5589) (1.3831) (-4.6591) (-2.8213)

3 1.037 2.467 -24.6311 0.4384

(1.0828) (2.5871) (-4.5858)

Table 14: Conditional CCAPM: : 30 portfolios with 10 size, 10 BM and 10 momentum portfolios.

The conditional variable is the cyclical component in the log consumption.

Row Constant gc Cycle Cycle · gc R2

1 2.019 4.0814 0.2411

(4.4048) (2.9822)

2 2.924 4.0151 -3.5451 -0.0296 0.6247

(7.7356) (2.0745) (-5.3980) (-5.0146)

3 2.827 1.6138 -0.0316 0.5913

(7.4106) (1.4106) (-5.3752)
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Figure 1: The coherency, cospectrum, and phase spectrum between consumption growth rate and

the stock market excess return in the simulated model: The solid line is calculated from the

analytical approximation, and the dotted line is calculated from the 40,000 quarters of simulation.

A 95% confidence band is also plotted.
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Figure 2: The nonparametric estimation of the coherency, cospectrum, and phase spectrum between

the quarterly consumption growth rate and quarterly stock market excess returns in the data: The

quarterly consumption data and population data over the period 1952Q1-2006Q4 are taken from

Fed St Louis, and the quarterly excess market return is taken from CRSP VW index. A modified

Bartlett estimate of the multivariate spectrum is used with lag = 20 quarters.49
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Figure 3: The smoothed lines are the coherency, cospectrum, and phase spectrum between the

quarterly consumption growth rate and quarterly stock market excess returns in the data: The

rough lines are the coherency, cospectrum, and phase spectrum between consumption and asset

returns for the simulated model with i.i.d. consumption growth.
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Figure 4: The three panels are the coherency, cospectrum, and phase spectrum between consump-

tion growth rate and the stock market excess returns under the parameter values β = −2, ρu,ξ, = 0

and ρu,ǫx = 0 for the reduced-form of forward-looking risk models.
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Figure 5: The three panels are the coherency, cospectrum, and phase spectrum between consump-

tion growth rate and the stock market excess returns under the parameter values β = −2, ρu,ξ, = 0.2

and ρu,ǫx = −0.2 for the reduced-form of forward-looking risk models.
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Figure 6: The three panels are the coherency, cospectrum, and phase spectrum between consump-

tion growth rate and the stock market excess returns under the parameter values β = −2, ρu,ξ, = 0.5

and ρu,ǫx = −0.5 for the reduced-form of forward-looking risk models.
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Figure 7: The three panels are the coherency, cospectrum, and phase spectrum between consump-

tion growth rate and the stock market excess returns under the parameter values β = −5, ρu,ξ, = 0

and ρu,ǫx = 0 for the reduced-form of forward-looking risk models.
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Figure 8: The three panels are the coherency, cospectrum, and phase spectrum between the quar-

terly consumption growth rate and the quarterly stock market excess returns for the simulated data

in a calibrated model of Panageas and Yu (2006)
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Figure 9: The three panels are the coherency, cospectrum, and phase spectrum between the quar-

terly consumption growth rate and the quarterly stock market excess returns for the simulated data

in a calibrated model of Bansal and Yaron (2004)
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Figure 10: The coherency and phase spectrum between consumption growth rate and the stock

market excess return in the simulated external habit model with ARMA(2, 2) consumption growth

rate.
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Figure 11: The parametric estimation of the coherency, cospectrum, and phase spectrum between

consumption growth rate and the stock market excess return in the data: The quarterly con-

sumption data and population data over the period 1952Q1-2006Q4 are taken from BEA, and the

quarterly excess market return is taken from CRSP VW index. We first fit an VAR(2) on the

consumption and returns, then obtain the analytical cross-spectrum by plugging in the estimated

parameter values.
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Figure 12: The nonparametric estimation of the coherency, cospectrum, and phase spectrum be-

tween annual consumption growth rate and the annual stock market excess return in the data: The

annual consumption data and population data over the period 1930-2006 are taken from BEA, and

the annual excess market return is calculated from CRSP VW index. A modified Bartlett estimate

of the multivariate spectrum is used with lag = 28 years.
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Figure 13: The coherency and cospectrum between consumption growth and growth stocks, and

the coherency and cospectrum between consumption and value stocks for real data. The solid line

is the spectra between consumption and growth stocks, while the dotted line is for the spectra

between consumption and value stocks.
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Figure 14: The coherency and cospectrum between consumption growth and growth stocks, and

value stocks for the model of Bansal and Yaron (2004), where the solid line is the spectra between

consumption and value stocks (φ = 4), while the dotted line is for the spectra between consumption

and growth stocks (φ = 1).
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Figure 15: Realized vs. fitted returns: 25 Fama-French portfolios. The upper panel is the uncon-

ditional CAPM, the bottom panel is the unconditional consumption CAPM.
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Figure 16: Realized vs. fitted returns: 25 Fama-French portfolios. The upper panel is the con-

ditional consumption CAPM where the conditional variable is the cycle, the bottom panel is the

conditional consumption CAPM where the conditional variable is the approximate surplus ratio.
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