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Abstract
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available to the investor. We show that the optimal policy is for the investor to focus
on controlling his exposure to the jump risk, while exploiting differences in the asset
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1. Introduction

Economists have long been aware of the potential benefits of international diversification,

while at the same time noting that the portfolios held by actual investors typically suffer

from a home bias effect (see e.g., Grubel (1968), Levy and Sarnat (1970), Solnik (1974),

Grauer and Hakansson (1987)). One possible explanation is due to the risk of contagion

across markets in times of crisis (see e.g., Claessens and Forbes (2001), Longin and Solnik

(2001), Ang and Chen (2002), Bae et al. (2003) and Hartmann et al. (2004).) A natural

way to capture contagion mathematically is by introducing jumps. Jumps of correlated

sign will generate the type of asymmetric correlation across markets that is often used to

justify the home bias exhibited by investors’ portfolios. Namely, when a downward jump

occurs, negative returns tend to be experienced simultaneously across most markets, which

then results in a high positive correlation in bear markets. When no jump occurs, the only

source of correlation is that generated by the driving Brownian motions and will typically

be much lower.

Studying the impact of jumps on portfolio choice has a long history, going back to

Merton (1971), who first studied a continuous-time consumption-portfolio problem. Many

papers have considered the portfolio problem, either in the simple one-period Markowitz

setting or in the more complex Merton setting, when asset returns are generated by jump

processes, for instance Poisson processes, stable processes or more general Lévy processes.

Early papers include Aase (1984), Jeanblanc-Picque and Pontier (1990) and Shirakawa

(1990). More recently, see Han and Rachev (2000) for a study of the Markowitz one-period

mean-variance problem when asset returns follow a stable-Paretian distribution; Kallsen

(2000) for a study of the continuous-time utility maximization in a market where risky se-

curity prices follow Lévy processes, and a solution (up to integration) for power, logarithmic

and exponential utility using the duality or martingale approach; Choulli and Hurd (2001)

give solutions up to constants of the primal and dual Merton portfolio optimization problem

for the exponential, power and logarithmic utility functions when a risk-free asset and a

exponential Lévy stock are the investment assets; Liu et al. (2003) study the implications

of jumps in both prices and volatility on investment strategies when a risk-free asset and a

stochastic-volatility jump-diffusion stock are the available investment opportunities; Emmer

and Klüppelberg (2004) study a continuous-time mean-variance problem with multiple as-
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sets; Madan (2004) derives the equilibrium prices in an economy with single period returns

driven by exposure to explicit non-Gaussian systematic factors plus Gaussian idiosyncratic

components. Cvitanic et al. (2005) propose a model where the asset returns have higher

moments due to jumps and study the sensitivity of the investment in the risky asset to the

higher moments, as well as the resulting utility loss from ignoring the presence of higher

moments.

The potential role of jumps in generating contagion across markets, and hence limiting

the benefits of diversification, has been investigated by Das and Uppal (2004), who evaluate

the effect on portfolio choice of systemic risk, defined as the risk from infrequent events that

are highly correlated across a large number of assets. They find that systemic risk reduces

the gains from diversifying across a range of assets, and makes leveraged portfolios more

susceptible to large losses. Upon calibrating their model to index returns, they find that the

loss from the reduction in diversification is not substantial. Ang and Bekaert (2002) consider

a two-regime model in a discrete-time setting, one with low correlations and low volatilities,

and one with higher correlations, higher volatilities, and lower conditional means. They

find that the existence of a high-volatility bear market regime does not negate the benefits

of international diversification for an investor who dynamically rebalances his portfolio in

response to regime switches.

In the presence of jumps, the portfolio choice problem had not been amenable to a

closed-form solution. With n assets, one must solve numerically an n−dimensional nonlinear
equation (as for instance in Das and Uppal (2004).) With more efficient global markets,

capital flows and a considerably larger number of available assets to invest in, an investor

has more investment opportunities than ever before. We would certainly like to be able to

consider models with a large number of assets n, where the characteristic Lévy triple has

specific forms of n dependence. This is difficult to do using existing methodologies.

Our contribution to the solution method is to show that by adopting a factor structure

for the asset returns and selecting a well-chosen basis in the space spanned by the jump

vector and the covariance matrix of returns, we can obtain the solution in closed-form, ir-

respectively of the number of assets. In our model, the structure of the Brownian volatility

matrix is taken to reflect the existence of one or more economic sectors, each sector compris-

ing a large number of related companies (or countries). The jump process takes the form
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of a “contagion risk factor” which generates highly correlated negative returns across the

range of assets. We start with the case where the Brownian covariance matrix corresponds

to only one economic sector, and then consider the more general case where the economy

consists of m sectors or regions of the world (each consisting of k firms or countries).

The closed form solution allows us to do explicit comparative statics, and give a precise

characterization of the optimal portfolio and resulting wealth dynamics. In particular, we

are able to distinguish between the optimal portfolio positions in the space spanned by the

jump risk (which the investor will attempt to limit) and those in the orthogonal space (where

the investor will seek to exploit the opportunities arising from the traditional risk-return

trade-off.)

Naturally, the closed form solution requires that one assumes specific jump distributions

and utility functions. But in general, we can still reduce the starting n−dimensional problem
to one of finding a constant in the one sector case, and to anm−dimensional constant vector
in the m−sector case. This dimension reduction is particularly important when the number
of assets available to the investors is large, that is when n→∞; in the m−sector case this
corresponds to a fixed number of sectors or regions of the world (m fixed) and a growing

number of firms in each sector or countries in each region (k →∞), with the total number
of assets given by n = mk.

In general terms, the structure of the solution is as follows. If there is enough cross-

sectional variability in the expected excess returns, then the investor will place a linearly

increasing amount of wealth in the risky assets as the number of assets n grows. This, in

turn, leads to increasing expected return and volatility of the portfolio value, both growing

linearly in the number of assets. And the optimal policy is to control the exposure to

jumps by keeping it bounded as the number of assets grows. As a result, the exposure

to jumps is dwarfed by the exposure to diffusive risk asymptotically in n. Indeed, the

additional investments in the risky assets are entirely in the direction that is orthogonal to

the jump risk; they are all achieved with zero net additional exposure to the jump risk. In

other words, the optimal investment policy is to control the overall exposure to jump risk,

and then exploit, in the orthogonal space, any perceived differences in expected returns

and diffusive variances. But in the special case where the expected excess returns have

little variability in the orthogonal space, the opportunities for diversification effects are
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weak since controlling the exposure to jumps trumps other concerns (including the usual

diversification policy.) The optimal portfolio in this case is not much better protected

against those correlated jumps than a nondiversified portfolio.

The rest of the paper is organized as follows. In Section 2, we present our model of asset

returns, and examine the investor’s portfolio selection problem. In Section 3, we consider

a one sector economy where the n risky assets have the same jump size and derive the

optimal portfolio weights in closed form. In Section 4, we study the dependence of the

optimal portfolio weights on the arrival intensity of the jumps, their magnitude, and the

degree of risk aversion of the investor. In Section 5, we extend the model to an m-sector

economy where sectors have different jump sizes and show how to solve the optimal portfolio

problem in that case, again in closed form. In Section 6, we study the situation where the

risky assets are subject to jumps but the investor assumes that the returns are driven

exclusively by Brownian motions but with first and second moments that are adjusted to

reflect the presence of the jumps; that is, the investor makes a partial adjustment to account

for the jumps, by lumping them together with Brownian volatility, and compare that partial

adjustment to the exact solution consisting in fully incorporating the effect of the jumps.

Extensions, limitations of our theory, and conclusions are in Section 7.

2. The Portfolio Selection Model

2.1. Asset Return Dynamics

Like most of the above-mentioned literature, our paper focuses on Merton’s problem of

maximizing expected utility of terminal wealth by investing in a set of risky assets. That

is, we select the amounts to be held in the n risky assets and the riskless asset at times

t ∈ [0, T ]. The available investment opportunities consist of a riskless asset with price S0,t
and n risky assets with prices St = [S1,t, . . . , Sn,t]

0. These follow the exponential Lévy

dynamics

dS0,t
S0,t

= rdt, (2.1)

dSi,t
Si,t−

= (r +Ri) dt+
Xn

j=1
σi,jdWj,t + JiZtdNt, i = 1, . . . , n (2.2)
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with a constant rate of interest r ≥ 0. Nt is a scalar Poisson process with constant intensity

λ, Wt = [W1,t, . . . ,Wn,t]
0 is an n−dimensional standard Brownian motion, and JiZt is

the random jump amplitude. Zt is a scalar random variable with probability measure

ν(dz) on [0, 1]. The economy-wide jump amplitude Zt is scaled on an asset-by-asset basis

by the scaling factor Ji ∈ [−1, 0]. We assume that the individual Brownian motions, the
Poisson jump and the random variables Z are mutually independent. The quantities Ri,

σij and jump scaling factors Ji are constant parameters. We write R = [R1, . . . , Rn]
0, J =

[J1, . . . , Jn]
0, and assume that

σ =

⎛⎜⎜⎝
σ1,1 · · · σ1,n
...

. . .
...

σn,1 · · · σn,n

⎞⎟⎟⎠ (2.3)

is a nonsingular matrix. Let Σ = σσ0.

The expected excess returns and the return covariance matrix over short time intervals

are given by

R̂ = R+ λJZ̄ (2.4)

Σ̂ij = (σσ
0)ij + λJiJjZ̄2 (2.5)

where Z̄ =
R 1
0 zν(dz), Z̄

2 =
R 1
0 z

2ν(dz).

2.2. Wealth Dynamics and Expected Utility

Let ω0,t denote the percentage of wealth (or portfolio weight) invested at time t in the

riskless asset and ωt = [ω1,t, . . . , ωn,t]
0 denote the vector of portfolio weights in each of the

n risky assets, assumed to be adapted cáglád processes. The portfolio weights satisfy

ω0,t +
Xn

i=1
ωi,t = 1. (2.6)

The investor consumes Ct at time t. In the absence of any income derived outside his

investments in these assets, the investor’s wealth, starting with the initial endowment X0,

follows the dynamics

dXt = −Ctdt+ ω0,tXt
dS0,t
S0,t−

+
Xn

i=1
ωi,tXt

dSi,t
Si,t−

=
¡
rXt +ω0tRXt −Ct

¢
dt + Xtω

0
tσdWt +Xtω

0
tJZtdNt. (2.7)
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The investor’s problem at time t is then to pick the consumption and portfolio weights

{Cs,ωs}t≤s≤∞ which maximize the infinite horizon, discounted at rate β, expected utility

of consumption

V (Xt, t) = max
{Cs,ωs; t≤s≤∞}

Et

∙Z ∞

t
e−βsU(Cs)ds

¸
(2.8)

subject to the dynamics of his discounted wealth (2.7), and with Xt given. We will consider

in detail in the rest of the paper the case where the investor has power utility, and in the

Appendix the cases of exponential and log utilities, respectively.

Using stochastic dynamic programming and the appropriate form of Itô’s lemma for

semi-martingale processes, the Hamilton-Jacobi-Bellman equation characterizing the opti-

mal solution to the investor’s problem is:

0 = max
{Ct,ωt}

½
e−βtU(Ct) +

∂V (Xt, t)

∂t
+

∂V (Xt, t)

∂X

¡
rXt +ω0tRXt −Ct

¢
+
1

2

∂2V (Xt, t)

∂X2
X2
t ω

0
tΣωt (2.9)

+ λ

Z 1

0

£
V
¡
Xt +Xtω

0
tJz, t

¢− V (Xt, t)
¤
ν (dz)

¾
with the transversality condition limt→∞E [V (Xt, t)] = 0 (see Merton (1969).)

Using the standard time-homogeneity argument for infinite horizon problems, we have

eβtV (Xt, t) = max
{Cs,ωs; t≤s≤∞}

Et

∙Z ∞

t
e−β(s−t)U(Cs)ds

¸
= max
{Cs,ωs; t≤s≤∞}

Et

∙Z ∞

0
e−βuU(Ct+u)du

¸
= max
{Cs,ωs; 0≤s≤∞}

Et

∙Z ∞

0
e−βuU(Cu)du

¸
≡ L(Xt)

is independent of time. Thus V (Xt, t) = e−βtL(Xt) and (2.9) reduces to the following

equation for the time-homogeneous value function L :

0 = max
{Ct,ωt}

½
U(Ct)− βL(Xt) +

∂L (Xt)

∂X

¡
rXt +ω0tRXt −Ct

¢
+
1

2

∂2L (Xt)

∂X2
X2
t ω

0
tΣωt

+ λ

Z 1

0

£
L
¡
Xt +Xtω

0
tJz
¢− L (Xt)

¤
ν (dz)

¾
(2.10)
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with the transversality condition

lim
t→∞E

h
e−βtL (Xt)

i
= 0. (2.11)

The maximization problem in (2.10) separates into one for Ct, with first order condition

∂U (Ct)

∂C
=

∂L (Xt)

∂X

and one for ωt :

max
{ωt}

½
∂L (Xt)

∂X
ω0tRXt +

1

2

∂2L (Xt)

∂X2
X2
t ω

0
tΣωt

+ λ

Z 1

0

£
L
¡
Xt +Xtω

0
tJz
¢− L (Xt)

¤
ν (dz)

¾
(2.12)

Given wealth Xt, the optimal consumption choice is therefore

C∗t =
∙
∂U

∂C

¸−1µ∂L (Xt)

∂X

¶
. (2.13)

In order to determine the optimal portfolio weights, wealth and value function, we need to

be more specific about the utility function U.

2.3. Power Utility

Consider an investor with power utility, U (c) = c1−γ/ (1− γ) for c > 0 and U (c) = −∞ for

c ≤ 0 with CRRA coefficient γ ∈ (0, 1)∪(1,∞). (In the Appendix, we treat the exponential
and log utility cases.) We will look for a solution to (2.10) in the form

L(x) = K−γx1−γ/ (1− γ) (2.14)

where K is a constant, so that

∂L (x)

∂x
= (1− γ)L(x)/x,

∂2L (x)

∂x2
= −γ (1− γ)L(x)/x2. (2.15)

Then (2.10) reduces to

0 = max
{Ct,ωt}

µ
U (Ct)− βL (Xt) + (1− γ)L(Xt)

¡
ω0tR+ r

¢− (1− γ)Ct
L (Xt)

Xt

− 1
2
γ (1− γ)L(Xt)ω

0
tΣωt (2.16)

+ λ

Z 1

0

h¡
1 +ω0tJz

¢1−γ
L (Xt)− L (Xt)

i
ν (dz)

¶
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that is

0 = min
{Ct,ωt}

µ
− U (Ct)

(1− γ)L (Xt)
+

β

(1− γ)
− ¡r +ω0tR

¢
+

Ct

Xt
(2.17)

+
1

2
γω0tΣωt − λ

(1− γ)

Z 1

0

h¡
1 +ω0tJz

¢1−γ − 1i ν (dz)¶
after division by − (1− γ)L(Xt) < 0, so that max becomes min.

2.4. Optimal Policies

The optimal policy for the portfolio weights ωt is

ω∗t = argmin{ωt}
g(ωt). (2.18)

where the functions

g(ω) = −ω0R+ γ

2
ω0Σω + λψ

¡
ω0J

¢
(2.19)

and

ψ
¡
ω0J

¢
= − 1

(1− γ)

Z 1

0

h¡
1 +ω0Jz

¢1−γ − 1i ν (dz) . (2.20)

are both convex.

Since (γ,R,Σ, λ,J) are constant, the objective function g is time independent, so it

is clear that any optimal solution will be time independent. Furthermore, the objective

function is state independent, so any optimal solution will also be state independent. In

other words, any optimal ω∗t will be a constant ω∗ independent of time and state. Further,

the objective function g is strictly convex, goes to +∞ in all directions, and hence always

has a unique minimizer. In the pure diffusive case, λ = 0 and we obtain of course the

familiar solution

ω∗ =
1

γ
Σ−1R. (2.21)

As to the optimal consumption policy, with [∂U/∂C]−1 (y) = y−1/γ and ∂L (x) /∂x

= K−γx−γ in equation (2.13), we obtain

C∗t = K Xt. (2.22)
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Next, we evaluate equation (2.17) at the optimal policies (C∗t ,ω∗) to identify the constant

K :

K =
β

γ
− (1− γ)

γ

£
ω∗0R+ r

¤
+
1

2
(1− γ)ω∗0Σω∗ + λ

(1− γ)

γ
ψ
¡
ω∗0J

¢
. (2.23)

The constantK will be fully determined once we have solved below for the optimal portfolio

weights, ω∗.

Finally, we have to check that the transversality condition is satisfied. By plugging the

optimizers X∗ and C∗t into (2.8), and then taking expectations, one finds

E [V (X∗
t , t)] = E

∙Z ∞

t
e−βsU(C∗s )ds

¸
.

Now e−βsU (C∗s ) = KV (X∗
s , s) from which it follows that E [V (X

∗
t , t)] solves df/dt = −Kf

and hence decays exponentially to zero as t→∞, for any K > 0.

3. Optimal Portfolio in a One Sector Economy with Jumps

In order to fully solve the problem, we need to put more structure on the dynamics gener-

ating the asset returns.

3.1. Homogeneous Assets with a One-Factor Structure

To begin, we consider the simplest possible case, where the n risky assets have identical

jump size and expected excess return (gross of the jump compensation) characteristics

J = J̄1 (3.1)

R = R̄1 (3.2)

with J̄ and R̄ scalars, and where 1 is the n−vector 1 = [1, ..., 1]0. To fix ideas, let us assume
that J̄ < 0 in order to capture the downward risk inherent in the types of jumps we are

concerned about. As for Σ, we assume the one factor structure

Σ = v2

⎛⎜⎜⎝
1 ρ · · ·
ρ

. . . ρ

· · · ρ 1

⎞⎟⎟⎠ (3.3)
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where v2 > 0 is the variance of the returns generated by the diffusive risk, and−1/ (n− 1) <
ρ < 1 is their common correlation coefficient.

In terms of factor models, this model could be generated if we had one economy-wide

common Brownian factor (say, dFt) and n idiosyncratic Brownian shocks (say, dEi,t, i =

1, ..., n), all independent, so that

dSi,t
Si,t−

=
¡
r + R̄

¢
dt+ bdFt + σdEi,t + J̄ZtdNt (3.4)

where b is the asset’s common factor loading and σ its idiosyncratic volatility. With that,

we have v2 = b2+σ2, ρ = b2/(b2+σ2) and given this factor structure, R̄ is the assets’ alpha.

The key to characterizing the optimal portfolio solution in this simple situation (but

also in the more complex ones we will consider later) is to exploit the spectral decomposing

of the Σ matrix, and to look for the optimal portfolio solution ω on the same basis (i.e., as

a function of the same set of eigenvectors). In this case, this consists of the n−vector 1 and
its orthogonal hyperplane. That is, the spectral decomposition of the Σ matrix is:

Σ = κ1
1

n
110| {z }

= Σ̄

+ κ2

µ
I−1

n
110
¶

| {z }
= Σ⊥

(3.5)

where I denotes the n× n identity matrix and

κ1 = v2 + v2 (n− 1)ρ (3.6)

κ2 = v2 (1− ρ) (3.7)

are the two distinct eigenvalues of Σ, κ1 with multiplicity 1 and eigenvector 1 and κ2 with

multiplicity n− 1.

Let us decompose the portfolio vector ω on the same basis, namely

ω = ω̄1+ω⊥, (3.8)

where ω̄ is scalar and ω⊥ is an n−vector orthogonal to 1. Then, from (2.18), the optimal

ω̄∗ and ω⊥∗ must satisfy³
ω⊥∗, ω̄∗

´
= arg min

{ω⊥,ω̄}

½
−nω̄R̄+ 1

2
γnω̄2κ1 + λψ

¡
nω̄J̄

¢
+

1

2
γω⊥0Σ⊥ω⊥

¾
. (3.9)
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And we now see that this separates into two separate optimization problems: one for ω⊥

and one for the scalar ω̄ :³
ω⊥∗, ω̄∗

´
= arg min

{ω⊥,ω̄}
n
g⊥(ω⊥) + ḡ(ω̄)

o
(3.10)

where

g⊥(ω⊥) =
1

2
γω⊥0κ2

µ
I− 1

n
110
¶
ω⊥ (3.11)

ḡ(ω̄) = −nω̄R̄+ 1
2
γn2ω̄2κ1

1

n
+ λψ

¡
nω̄J̄

¢
. (3.12)

The optimal solution for ω⊥ in this case is obviously

ω⊥∗ = 0. (3.13)

As for the optimal solution for ω̄, with the change of variable n = nω̄, we see that

∗
n = arg min{ n}

½
− nR̄+

1

2
γ 2

nκ1/n+ λψ
¡

nJ̄
¢¾

. (3.14)

Letting n→∞, we have that κ1/n→ v2ρ and so ∗
n → ∗∞ where

∗
∞ = arg min{ ∞}

½
− ∞R̄+

1

2
γ 2

∞v
2ρ+ λψ

¡
∞J̄
¢¾

. (3.15)

Below, we will show how to determine the constant ∗
n (or, in the asymptotic case,

∗∞) in

closed form under further assumptions on the distribution of the jumps and the investor’s

utility function.

For now, we see that the optimal portfolio choice is characterized by

ω∗ = ω̄∗1+ω⊥∗ = ω̄∗1 = ∗
n1/n

and an investor who selects this optimal portfolio will achieve a wealth process X∗
t which

follows a geometric Lévy process1 with characteristic triple (b, c, µ) given by

b = X∗
t−ω

∗0R =X∗
t−

∗
n1
0R/n = X∗

t−
¡ ∗

nR̄+ r −K
¢

(3.16)

c = X∗2
t−ω

∗0Σω∗ = X∗2
t−

∗2
n κ1/n (3.17)

µ(dy) = λν(dz) where y = X∗
t−ω

∗0Jz = X∗
t−

∗
nJ̄z1

01/n = X∗
t−

∗
nJ̄z (3.18)

1See the Appendix for basic definitions regarding Lévy processes.
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with the equation (3.17) above following from Σ = Σ̄+Σ⊥ with 10Σ̄1 = κ11
01101/n = κ1n

and 10Σ⊥1 = 0.

All three of these quantities, b, c and µ, are O(1) as n → ∞, which means that the
diversification effects are extremely weak. Moreover, since the Lévy measure is O(1), the

optimal portfolio in this case is not much better protected against those contagion jumps

than a nondiversified portfolio.

3.2. Different Expected Excess Returns

The situation changes when we allow the n risky assets to have different expected excess

returns while retaining the homogeneous covariance structure and jumps. Decomposing on

the same basis as above, let

R = R̄1+R⊥ (3.19)

with
°°R⊥°°2 = R⊥0R⊥ = O(n), while J⊥ = 0, so that J = J̄1.

The optimal portfolio solution, as above, can be decomposed as ω = ω̄1+ω⊥ so that

the minimization problem again separates as in (3.10), where we now have

g⊥(ω⊥) = −ω⊥0R⊥ + 1
2
γω⊥0κ2

µ
I−1

n
110
¶
ω⊥ (3.20)

ḡ(ω̄) = −nω̄R̄+ 1
2
γn2ω̄2κ1

1

n
+ λψ

¡
nω̄J̄

¢
. (3.21)

The first order condition for minimizing (3.20) is

−R⊥ + γκ2

µ
I−1

n
110
¶
ω⊥∗ = 0

whose solution is now

ω⊥∗ =
1

γκ2
R⊥ =

1

γv2 (1− ρ)
R⊥ (3.22)

since 10ω⊥∗ = 0. Recalling that in our factor structure the elements of the R vector are the

assets’ alphas, (3.22) means that the investor is now going after the orthogonal component

of the vector of alphas (subject to the usual continuous-risk provisions: the higher his risk

aversion, the higher the continuous variance of the returns, and the more they are correlated,

the less he will invest.)
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Since ḡ in (3.21) is unaffected by the presence of R⊥, the optimal solution for ω̄ is

identical to that given above, namely ω̄∗ = ∗
n/n where

∗
n is given in (3.14). Also, as

before, in the limit where n→∞, we have again ∗
n → ∗∞ where ∗∞ is given in (3.15).

Therefore, the optimal wealth process Xt follows a geometric Lévy process with the

characteristic triple

b = X∗
t−

∗
nR̄+

1

γv2 (1− ρ)
X∗
t−R

⊥0R⊥ +X∗
t− (r −K) (3.23)

c = X∗2
t−

∗2
n κ1/n+

1

γ2v2 (1− ρ)
X∗2
t−R

⊥0R⊥ (3.24)

µ(dy) = λν(dz) where y = X∗
t−

∗
nJ̄z. (3.25)

Here, since R⊥0R⊥ = O(n) and κ1 = O(n) while κ2 = O(1), we have that b and c are O(n),

due to the second term in equations (5.18), and (3.24) respectively, while the Lévy measure

remains O(1) as n → ∞. This means that nonhomogeneous expected excess returns R⊥
lead the investor to place a linearly increasing amount of wealth in the risky assets as n

grows, which in turns leads to increasing expected returns b and variance c, both growing

linearly in the number of assets. On the other hand, as n grows, the exposure to contagion

jumps remains bounded, and is dwarfed by the exposure to diffusive risk.

Indeed, the additional investment in the risky assets due to the presence ofR⊥ is entirely

in the direction of ω⊥, which is orthogonal to J. So these additional amounts invested in

the risky assets are all achieved with zero net additional exposure to the jump risk. Thus,

compared to the case where R⊥ = 0, the presence of R⊥ with R⊥0R⊥ = O(n) allows the

investor to optimize in such a way as to increase their expected gains (at the expense of

increased variance resulting from the diffusive risk), while keeping the exposure to jumps

fixed.

3.3. Fully Explicit Portfolio Weights

To fully compute the optimal policy, we need to specify the utility function and the distrib-

ution ν (dz) driving the common jumps; then we can compute the integral in (3.15). Some

special cases lead to a closed form solution for the last remaining constant, ∗
n for any given

number n of assets, or in the asymptotic case, ∗∞, yielding fully closed form solutions for

the optimal portfolio weights.

13



Consider for instance the case of a power utility investor with CRRA coefficient γ = 2

and jump measure satisfying a power law, ν (dz) = dz/z. Equation (3.15) specializes to

∗
∞ = argmin{ }

f∞ ( ) (3.26)

where

f∞ ( ) = − R̄+ 2v2ρ+ λ

Z 1

0

h¡
1 + J̄z

¢−1 − 1i dz/z (3.27)

= − R̄+ 2v2ρ− λ log
¡
1 + J̄

¢
.

The first order condition (FOC) for is given by

−R̄+ 2 v2ρ− λJ̄
¡
1 + J̄

¢−1
= 0. (3.28)

The optimal solution must satisfy

∗
∞ < −1/J̄ (3.29)

otherwise, there is a positive probability of wealth Yt becoming negative, which is inadmis-

sible in the power utility case. Equation (3.28) admits a unique root ∗∞ satisfying the

solvency constraint (3.29), and that solution is given by

∗
∞ =

−2ρν2 + J̄R̄+
q¡
2ν2ρ− J̄R̄

¢2
+ 8J̄(R̄+ J̄λ)ν2ρ

4J̄ν2ρ
. (3.30)

It is also worth nothing that
∗
∞ <

R̄

2v2ρ
(3.31)

so that the optimal investment in the risky assets is always less than what it would be in

the absence of jumps. This is natural since J̄ < 0. Visual inspection of (3.30) also reveals

that J̄ and λ do not have a symmetric effect on the optimal portfolio weights (more on that

below.) Figure 1 plots ∗∞ as a function of J̄ and λ.

In the exact small sample case, the optimal solution to (3.14) under the solvency con-

straint is

∗
n =
−2κ1/n+ J̄R̄+

q¡
2κ1/n− J̄R̄

¢2
+ 8J̄(R̄+ J̄λ)κ1/n

4J̄κ1/n
. (3.32)

14



Figure 2 plots the objective function, fn ( ) = ḡ( /n) and shows its convergence to f∞ ( )

as n→∞, along with argmin fn ( ) = ∗
n, converging to

∗∞.

Other cases that lead to a closed form solution for ∗∞ and ∗
n include power utility

with γ = 3 and either power law jumps ν (dz) = dz/z, or uniform jumps ν (dz) = dz.

In either case, the FOC is then a cubic equation, solvable in closed form using standard

methods. Another case is one where the investor has log utility with jumps of a fixed size,

ν (dz) = δ (z = z̄)dz, for some z̄ ∈ [0, 1] . Then the FOC leads to a quadratic equation, as
(3.28).

4. Comparative Statics

Based on the explicit solution for the portfolio weights, we can investigate how the optimal

portfolio responds to different jump intensities, jump sizes and degrees of risk aversion.

4.1. Response to Jumps of Different Arrival Intensity

We have

∗
∞ →−∞ as λ→∞ (4.1)

∗
∞ → min

µ
R̄

2v2ρ
,− 1

J̄

¶
as λ→ 0. (4.2)

The first limit means that the investor will go short to an unbounded extent on all the risky

assets if the arrival rate of the jumps goes to infinity. This is to be expected, since J̄ < 0

and we impose no short sale constraints.

Further, ∗∞ tends to −∞ when λ→∞ at the following rate

∗
∞ = −

√
λp
2v2ρ

(1 + o(1)).

If, on the other hand, the jumps become less and less frequent, then ∗∞ tends to a finite limit

driven by the diffusive characteristics of the assets. In particular, the higher the variance of

the assets and/or the more heavily correlated they are, the smaller the investment in each

one of them. And the higher the expected excess return of the assets R̄, the higher the
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amount invested. For a small perceived jump risk (λ small), the optimal solution behaves

like
∗
∞ = min

µ
R̄

2v2ρ
,− 1

J̄

¶
+

J̄λ¯̄
R̄+ J̄λ

¯̄ + o(λ).

Of course, the first correction term is always negative so that the optimal policy is always

within (3.29) and (3.31)

In the exponential utility case, there is no solvency constraint on ∗∞ so the limit as

λ→ 0 is simply R̄/(γv2ρ).

4.1.1. Jumps vs. Expected Return Trade-off

The weights ∗∞ are monotonic in λ, with

∂ ∗∞
∂λ

=
J̄q¡

2ν2ρ− J̄R̄
¢2
+ 8J̄(R̄+ J̄λ)ν2ρ

< 0.

If R̄ > 0, there exists a critical value λ̃ such that

∗
∞ > 0 for λ < λ̃ (4.3)

∗
∞ ≤ 0 for λ ≥ λ̃. (4.4)

That is, as long as jumps do not occur too frequently (λ < λ̃), the investor will go long on

the assets in order to capture their expected return, even though that involves taking on

the (negative) risk of the jumps. When the jumps occur frequently enough (λ ≥ λ̃), then

the investor decides to forgo the expected return of the assets and focuses on canceling his

exposure to the jump risk by going short these assets.

The critical value λ̃ is given by

λ̃ = − R̄

J̄
R 1
0 zν (dz)

(4.5)

Clearly, the higher R̄ relative to (−J̄), the higher λ̃. And the smaller the expected value of
Z, the bigger λ̃. With ν (dz) = dz/z, we get

λ̃ = −R̄
J̄
. (4.6)
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Now, if R̄ ≤ 0, then ∗∞ ≤ 0 for every λ ≥ 0. In that case, there is no point in ever
going long those assets since both the expected return and the jump components negatively

impact the investor’s rate of return.

4.1.2. Flight to Quality

The solution above can explain a well documented empirical phenomenon. Starting from

a situation where λ < λ̃, if the perception of the jump risk increases (λ ↑ λ̃), then the

optimal policy for the investor is to flee-to-quality, by reducing his exposure to the risky

assets ( ∗∞ ↓ 0) and investing the proceeds in the riskless asset. If the perception of the
jump risk exceeds the critical value λ̃ given in (4.5), then the investor should go even further

and start short—selling the risky assets.

Because the jump risk affects all the assets, the perception of an increase in the intensity

of the jumps leads the investor to dump all the risky assets indiscriminately.

4.2. Response to Jumps of Different Magnitudes

If we now concentrate on the effect of an increase in the jump size instead of the jump

magnitude, then

∂ ∗∞
∂J̄

=
1

2J̄2

⎛⎝1− 2ρν2 + J̄R̄q¡
2ν2ρ− J̄R̄

¢2
+ 8J̄(R̄+ J̄λ)ν2ρ

⎞⎠ > 0

for, as usual, J̄ < 0. The monotonicity implies that as the jump size gets closer to zero

(J̄ ↑ 0), the investor increases his holdings in the risky assets and conversely as J̄ ↓ (−1).

As to the sign of ∗∞, we have

∗
∞ > 0 for − R̄/λ < J̄ < 0 (4.7)

∗
∞ < 0 for − 1 < J̄ < −R̄/λ. (4.8)

as long as R̄/λ < 1. If R̄/λ > 1, the expected return is high enough relative to the jump

intensity that the investor will always maintain a positive investment ∗∞ > 0 in the different

assets, no matter how large the jump size (within the constraint J̄ > −1, of course.)
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4.3. Sensitivity to Risk Aversion

Here we consider the effect of the CRRA coefficient γ on ∗∞. For a CRRA investor, the

first order condition of equation (3.15) is given by

−R̄+ γ ∞v2ρ− λ

Z 1

0
J̄z
¡
1 + ∞J̄z

¢−γ
ν (dz) = 0, (4.9)

then, making use of the implicit function theorem, we get

∂ ∗∞
∂γ

= −
∗∞v2ρ+ λ

R 1
0 J̄z

¡
1 + ∗∞J̄z

¢−γ
ln
¡
1 + ∗∞J̄z

¢
ν (dz)

γ
³
v2ρ+ λ

R 1
0 J̄

2z2
¡
1 + ∗∞J̄z

¢−γ−1
ν (dz)

´ . (4.10)

The denominator is always positive but the numerator could be negative, zero or positive

depending on the sign of ∗∞. That is,

∂ ∗∞
∂γ

=

⎧⎪⎪⎨⎪⎪⎩
> 0 if ∞ < 0

= 0 if ∗∞ = 0

< 0 if ∗∞ > 0

. (4.11)

This, in turn, implies that the higher the CRRA coefficient of an investor the smaller will

be his ∗∞ in absolute value. In the limit where γ increases to ∞, | ∗∞| decreases to zero.

5. Optimal Portfolio in a Multi—Sector Economy with Jumps

We now generalize our previous results by studying the more realistic portfolio selection

problem in an economy composed of m sectors (or regions of the world), each containing k

firms (or countries). The total number of assets available to the investor is n = mk. As-

ymptotically, in terms of the impact of jumps on diversification, we are primarily interested

in the situation where m is fixed and k goes to infinity with n. But we provide the full

solution, including the special case where all the assets are fundamentally different, that is

k = 1 and m = n.

In an asset pricing framework, we are now considering a multifactor model for the

returns process. Specifically, we consider a situation where we have one economy-wide

common Brownian factor (say, dFt), m sector-specific common Brownian factors (say, dFl,t,

18



l = 1, ...,m), and n idiosyncratic Brownian shocks (say, dEi,t, i = 1, ..., n), all independent,

so that the model (2.2) can be rewritten in the form

dSi,t
Si,t−

= (r +Ri)dt+ bdFt +
Xm

l=1
blδi,ldFl,t + σdEi,t + JiZtdNt (5.1)

where δi,l = 1 if asset i belongs to sector l, and 0 otherwise. The b0s are the respective

factor loadings, and σ is the asset’s idiosyncratic volatility. It follows that the continuous

(or Brownian) part of the covariance between the returns of assets i and j is

Cov (dSi,t/Si,t−, dSj,t/Sj,t−) =

(
(b2 + b2l )dt if assets i and j are in the same sector l

b2dt otherwise

while the continuous part of the variance is Var (dSi,t/Si,t−) = (b2 + b2l + σ2)dt when asset

i belongs to sector l.

The above implies the following structure for the variance-covariance matrix of returns:

Σ
n×n =

⎛⎜⎜⎝
Σ1 v2ρ0 · · ·
v2ρ0

. . . v2ρ0

· · · v2ρ0 Σm

⎞⎟⎟⎠ (5.2)

is block diagonal with sector blocks

Σl
k×k

= v2l

⎛⎜⎜⎝
1 ρl · · ·
ρl

. . . ρl

· · · ρl 1

⎞⎟⎟⎠ (5.3)

where 1 > ρl > ρ0 ≥ 0 (in full generality, we can start directly from (5.2)-(5.3) and only

require ρl ≥ −1/(k − 1) and ρ0 ≥ −1/(n− 1)).

5.1. No Cross—Sectorial Diffusive Correlation

We start with the situation where the diffusive risk generates correlated returns within

sectors, but not across sectors, that is ρ0 = 0 in (5.2). Then the only source of cross-

sectorial correlation is due to the jumps.

The spectral decomposition of the resulting Σ matrix is

Σ =
Xm

l=1
κ1l
1

k
1l1

0
l| {z }

= Σ̄

+
Xm

l=1
κ2l

µ
Ml−1

k
1l1

0
l

¶
| {z }

= Σ⊥

(5.4)
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where

κ1l = v2l + v2l (k − 1)ρl (5.5)

κ2l = v2l (1− ρl) (5.6)

are the 2m distinct eigenvalues of Σ. The multiplicity of each κ1l is 1, and the multiplicity

of each κ2l is k−1. The eigenvector for κ1l is 1l, the n−vector with ones placed in the rows
corresponding to the l−block and zeros everywhere else, that is

1l = [0, . . . , 0, 1, . . . , 1| {z }
sector l

, 0, . . . , 0]0, (5.7)

where the first 1 is located in the k (l − 1) + 1 coordinate. Ml is an n × n block diagonal

matrix with a k × k identity matrix Ik placed in the l−block and zeros everywhere else:

Ml
n×n

=

⎛⎜⎜⎝
0 · · · 0
... Ik

...

0 · · · 0

⎞⎟⎟⎠ , (5.8)

Corresponding to the above spectral structure, we have the orthogonal decomposition Rn =

V̄ ⊕ V ⊥ where V̄ is the span of {1l}l=1,..,m.

As for the jump vector J in our m—sector economy, we assume that J ∈ V̄ :

J =
Xm

l=1
jl1l = [j1, . . . , j1| {z }

sector 1

, j2, . . . , j2| {z }
sector 2

, . . . , jm, . . . , jm| {z }
sector m

]0 (5.9)

meaning that firms within a given sector have the same response to the arrival of a Poisson

jump, i.e., to a change in Nt. But the proportional response jl of firms of different sectors

to the arrival of a jump can be different.

Finally, we assume that the vector of expected excess returns has the form

R =
Xm

l=1
rl1l + R

⊥ = R̄+R⊥. (5.10)

Here, we allow the expected excess returns to differ both within and across sectors, by

allowing R⊥ 6= 0 . As in the one factor case, the components of R play the role of the

assets’ alphas. The general R⊥ is orthogonal to each 1l and has the form

R⊥ = [R⊥01 , ...,R⊥0m ]
0
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where each of the k-vectors R⊥l is orthogonal to the k-vector 1. As in section 3.2, we may

suppose that each component of R⊥ is O(1).

With this structure, we will be looking for a vector of optimal portfolio weights of the

form

ω =
Xm

l=1
ω̄l1l + ω⊥ = ω̄ +ω⊥. (5.11)

The minimization problem again separates as³
ω⊥∗, ω̄∗

´
= arg min

{ω⊥,ω̄}
n
g⊥(ω⊥) + ḡ(ω̄)

o
(5.12)

where

g⊥(ω⊥) = −ω⊥0R⊥ + 1
2
γω⊥0Σ⊥ω⊥ (5.13)

ḡ(ω̄) = −k
Xm

l=1
ω̄lrl +

1

2
γk
Xm

l=1
ω̄2l κ1l + λψ

³
k
Xm

l=1
ω̄ljl

´
(5.14)

The first order condition for minimizing g⊥(ω⊥) leads to the optimal solution

ω⊥∗ =
1

γ
Σ−1R⊥ (5.15)

where, by the block diagonal form of Σ in (5.2), can be written in the form ω⊥∗ =

[ω⊥∗01 , ...,ω⊥∗0m ]0 with

ω⊥∗l =
1

γκ2l
R⊥l

for l = 1, . . . ,m.

The problem of minimizing ḡ(ω̄) is an analogue of what happens with one sector, as in

Section 3, but in dimension m, and similarly its solution has a limit as k goes to infinity

with n (the number of sectors m being fixed). With the change of variable n = kω̄ we see

that

∗
n = arg min{ n}

½
−
Xm

l=1
lnrl +

1

2
γ
Xm

l=1

2
lnκ1l/k + λψ

³Xm

l=1
lnjl

´¾
(5.16)

Letting k →∞, we get ∗
n → ∗∞ where

∗
∞ = arg min{ ∞}

½
−
Xm

l=1
l∞rl +

1

2
γ
Xm

l=1

2
l∞v

2
l ρl + λψ

³Xm

l=1
l∞jl

´¾
, (5.17)

which, compared to (3.15), is an m−dimensional minimization problem, instead of a one-
dimensional one. But the convexity of the objective function implies the existence of the
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minimizer. As in the one-factor case, we will determine below ∗
n (and in the asymmptotic

case, ∗∞) in closed form.

The wealth processX∗
t of the optimizing investor will thus have geometric Lévy dynamics

for a CRRA with ω∗ given by ω̄∗+ω⊥∗. The characteristic triple of X∗
t for a CRRA investor

is then

b = X∗
t−
Xm

l=1

∗
lnrl +X∗

t−
Xm

l=1

1

γv2l (1− ρl)
R⊥0l R

⊥
l (5.18)

+X∗
t− (r −K)

c = X∗2
t−
Xm

l=1

∗2
lnκ1l/k +X∗2

t−
Xm

l=1

1

γ2v2l (1− ρl)
R⊥0l R

⊥
l (5.19)

µ(dy) = λν(dz) where y = X∗
t−
Xm

l=1

∗
lnjlz. (5.20)

Under the natural condition thatR⊥0l R
⊥
l = O(k), we are lead to conclusions similar to those

we drew in section 3.2. As k, the number of stocks per sector, increases, the optimal portfolio

can achieve expected gains at the expense of variance which both grow approximately

linearly with k, while keeping the exposure to jumps bounded. Essentially this result

is achieved by the investor apportioning an increasing fraction of assets in the subspace

orthogonal to the vectors 1l.

For the example of ν(dz) = dz/z of section 3.3 we get the following objective functions

for a power utility investor with CRRA coefficient γ = 2 in the m-sector case:

fn ( ) = −
Xm

l=1
lnrl +

Xm

l=1

2
lnκ1l/k

− λ log
³
1 +

Xm

l=1
lnjl

´
. (5.21)

The first order conditions for n are given by

−rl + 2 lnκ1l/k − λjl

³
1 +

Xm

l=1
lnjl

´−1
= 0 for l = 1, . . . ,m. (5.22)

These first order conditions form a system of m quadratic equations. Equations (5.22)

admit a unique solution n satisfying the solvency constraint
Pm

l=1 lnjl > −1. These are
solvable in closed form. For example, in the special case of a two-sector economy (m = 2),
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the solution is

∗
1n =

− ¡2κ12/k + r2J̄2
¢
J̄1κ11/k + r1

¡
J̄21κ12/k + 2J̄

2
2κ11/k

¢− J̄1A

4
¡
J̄21κ12/k + J̄22κ11/k

¢
κ11/k

(5.23)

∗
2n =

− ¡2κ11/k + r1J̄1
¢
J̄2κ12/k + r2

¡
2J̄21κ12/k + J̄22κ11/k

¢− J̄2A

4
¡
J̄21κ12/k + J̄22κ11/k

¢
κ12/k

(5.24)

where

A =

sµ
r2J̄2κ11

k
+

r1J̄1κ12
k

+ 2
κ11κ12
k2

¶2
+ 8λ

µ
J̄21κ12
k

+
J̄22κ11
k

¶
κ11κ12
k2

. (5.25)

Figure 3 plots the objective function, fn ( ) = ḡ( /k) that we obtain in a two-sector

economy, that is the function (5.21) with m = 2.

5.2. Cross—Sectorial Diffusive Correlation

We now allow the diffusive risk to generate correlated returns within sectors, as well as

across sectors. In addition, the jumps generate cross-sectorial correlation. That is, we allow

for a non-zero ρ0 in (5.2). where 1 > ρ > ρ0 ≥ −1/ (n− 1) and, as before, n = mk. For

simplicity, we make the within-sector correlation coefficient ρl = ρ, and v2l = v2 identical

across sectors.

This Σ matrix then has the three distinct eigenvalues

κ1 = v2 + v2k (m− 1)ρ0 + v2 (k − 1)ρ
κ2 = v2 − v2kρ0 + v2 (k − 1) ρ
κ3 = v2 (1− ρ)

with multiplicity 1, m− 1 and (k − 1)m respectively. In parallel with the previous section,

we focus on the orthogonal decomposition Rn = V̄ ⊕ V ⊥ where V ⊥, the κ3-eigenspace,

consists of vectors orthogonal to each 1l and V̄ is the m-dimensional subspace spanned by

the vectors {1l}l=1,...,m.

We again assume that J =
Pm

l=1 jl1l ∈ V̄ , in other words, that firms within the same

sector have the same response to the arrival of a Poisson jump, but not necessarily for firms

across sectors. The vector of expected excess returns again has the form

R =
Xm

l=1
rl1l + R

⊥ = R̄+R⊥. (5.26)
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where the general R⊥ is orthogonal to each 1l and has the form

R⊥ = [R⊥01 , ...,R⊥0m ]
0

As in section 3.2, we may suppose that each component of R⊥ is O(1).

The vector of optimal portfolio weights has the form

ω =
Xm

l=1
ω̄l1l + ω⊥ = ω̄ +ω⊥. (5.27)

The minimization problem again separates as³
ω⊥∗, ω̄∗

´
= arg min

{ω⊥,ω̄}
n
g⊥(ω⊥) + ḡ(ω̄)

o
(5.28)

where now

g⊥(ω⊥) = −ω0⊥R⊥ + γ

2
κ3ω

⊥0ω⊥ (5.29)

ḡ(ω̄) = −k
Xm

l=1
ω̄lrl +

γ

2

kκ1
m

³Xm

l=1
ω̄l
´2

+
γ

2
kκ2

∙Xm

l=1
ω̄2l −

1

m

³Xm

l=1
ω̄l

´2¸
(5.30)

+ λψ
³
k
Xm

l=1
ω̄ljl

´
.

The essential structure of the solution can be deducted from that of the previous section.

First, the minimizer of g⊥(ω⊥) can be written in the form ω⊥∗ = [ω⊥∗01 , ...,ω⊥∗0m ]0 with

ω⊥∗l =
1

γκ3
R⊥l

for l = 1, . . . ,m. The m-dimensional minimization of ḡ(ω̄) can always be solved, and the

resulting solution has n dependence similar to before. With the change of variable n = kω̄

we see that the minimizer ∗
n = argmin{ n} ḡ($n/k) will have the limit ∗

n → ∗∞ as

k→∞, where

∗
∞ = arg min{ ∞}

½
−
Xm

l=1
l∞rl +

γv2

2

½
(m− 1)ρ0 + ρ

m

³Xm

l=1
l∞
´2

+ (ρ− ρ0)

∙Xm

l=1

2
l∞ −

1

m

³Xm

l=1
l∞
´2¸¾

(5.31)

+ λψ
³Xm

l=1
l∞jl

´o
,
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The wealth processX∗
t of the optimizing investor will thus have geometric Lévy dynamics

for a CRRA investor with ω∗ given by ω̄∗+ω⊥∗. The characteristic triple of X∗
t for a CRRA

investor is then

b = X∗
t−
Xm

l=1

∗
lnrl +

1

γv2 (1− ρ)
X∗
t−
Xm

l=1
R⊥0l R

⊥
l +X∗

t− (r −K) (5.32)

c =
κ1 − κ2

n
X∗2
t−
³Xm

l=1

∗
ln

´2
+

κ2
k
X∗2
t−
Xm

l=1

∗2
ln

+
1

γv2 (1− ρ)
X∗2
t−
Xm

l=1
R⊥0l R

⊥
l (5.33)

µ(dy) = λν(dz) where y = X∗
t−
Xm

l=1

∗
lnjlz. (5.34)

Under the natural condition thatR⊥0l R
⊥
l = O(k) the conclusions are the same as those of the

previous section: As k, the number of stocks per sector, increases, the optimal portfolio can

achieve expected gains at the expense of variance which both grow approximately linearly

with k, while keeping the exposure to jumps bounded.

6. Partial Response to the Jumps

Suppose now that the true model is as before but the investor (mistakenly) thinks instead

that the risky assets are driven by Brownian motions only, with no jumps:

dSi,t
Si,t−

=
³
r + R̂i

´
dt+

nX
j=1

σ̂i,jdWj,t, i = 1, . . . , n. (6.1)

While this investor ignores the Poisson process and assumes that returns are driven only by

Brownian motions, he still accounts correctly for the additional variance and covariances

generated by the jumps.

6.1. A Misspecified Model that Matches the First Two Moments

In this case the total expected excess returns are

R̂idt = Et

∙
dSi,t
Si,t−

¸
− rdt =

¡
Ri + JiλZ̄

¢
dt (6.2)

and the total variance-covariance matrix Σ̂ = σ̂σ̂0 is given by

Σ̂dt = Et

∙µ
dSt
St−

¶µ
dSt
St−

¶0¸
=
¡
Σ+ λJJ0Z̄2

¢
dt (6.3)
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Now the investor thinks that ωNJ∗ has to satisfy:

ωNJ∗ = arg min
{ωNJ}

g(ωNJ) (6.4)

where

g(ωNJ) = − ¡ωNJ
¢0
R̂+

1

2
γ
¡
ωNJ

¢0
Σ̂ωNJ (6.5)

We again assume a one sector economy with different expected excess returns, then

R̂ =
¡
R̄+ λJ̄Z̄

¢
1+R⊥,

Σ̂ =
¡
Σ̄+ λJ̄2Z̄2

¢
110 +Σ⊥,

ωNJ = ω̄NJ1+ω⊥,

thus, the minimization problem becomes³
ω⊥∗, ω̄NJ∗

´
= arg min

{ω⊥,ω̄NJ}
n
g⊥(ω⊥) + ḡ(ω̄NJ)

o
(6.6)

where

g⊥(ω⊥) = −ω⊥0R⊥ + 1
2
γω⊥0Σ⊥ω⊥, (6.7)

ḡ(ω̄NJ) = −nω̄NJ
¡
R̄+ λJ̄Z̄

¢
+
1

2
γn2

¡
ω̄NJ

¢2 ¡
Σ̄+ λJ̄2Z̄2

¢
(6.8)

The optimal solution for ω⊥ in this case is

ω⊥∗ =
1

γv2 (1− ρ)
R⊥. (6.9)

As for the optimal solution for ω̄NJ , with the change of variable NJ
n = nω̄NJ , we see

NJ∗
n =

1

γ

³κ1
n
+ λJ̄2Z̄2

´−1 ¡
R̄+ λJ̄Z̄

¢
. (6.10)

Letting n→∞, we have that NJ∗
n → NJ∗∞ where

NJ∗
∞ =

1

γ

¡
v2ρ+ λJ̄2Z̄2

¢−1 ¡
R̄+ λJ̄Z̄

¢
. (6.11)

It is important to notice that ω⊥∗ is the same whether the investor recognizes the presence

of jumps or not.
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6.2. Higher Moment Effect

On the other hand, matching the first two moments is not sufficient to fully deliver the

optimal solution. We can compare NJ∗∞ to

∗
∞ = arg min{ ∞}

½
− ∞R̄+

1

2
γ 2

∞v
2ρ+ λψ

¡
∞J̄z

¢¾
Taking the third order Taylor’s expansion of ψ

¡
∞J̄z

¢
with respect to ∞, we get

ψ
¡

∞J̄z
¢
= −J̄ ∞Z̄ +

1

2
γJ̄2 2

∞Z̄2 (6.12)

+
1

3!
J̄3 3

∞Z̄3ψ
000 (0) + o

¡
3
∞
¢
,

then

∗
∞ = arg min{ ∞}

½
− ∞

¡
R̄+ λJ̄Z̄

¢
+
1

2
γ 2

∞
¡
Σ̄+ λJ̄2Z̄2

¢
+
1

3!
λJ̄3 3

∞Z̄3ψ
000 (0) + o

¡
3
∞
¢¾

.

where Z̄3 =
R 1
0 z

3ν(dz). Hence, if J̄ < 0 then we have

∗
∞ < NJ∗

∞ . (6.13)

This result suggests that the investor who recognizes the presence of jumps will invest

more money in the riskless asset. This is an effect driven by differences in the higher

moments of the two processes, the one that is correctly specified (with jumps) and the one

that is misspecified (no jumps but still a partial adjustment consisting of matching the

first two moments correctly.) In the same spirit, Cvitanic et al. (2005) recently proposed

a model where their single risky asset can jump, thereby leading to higher moments in the

distrtibution of that asset’s returns. They found that ignoring higher moments can lead to

significant overinvestment in the risky asset.

7. Extensions, Limitations and Conclusions

We have proposed a new approach to characterize in closed form the portfolio selection

problem for an investor concerned with the possibility of market contagion effects, and who
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seeks to control this risk by diversification or other means. The framework is illustrated by

certain families of asset return models of increasing complexity, where each family allows

models for an unbounded number of assets. We can address certain questions. How exactly

does increasing the number of available assets improve the investor’s exposure to both

diffusive and contagion risk? How does the portfolio of an investor who fears contagion differ

from the portfolio of one who does not? Is there a simple form for the optimal portfolio which

is achieved asymptotically as the number of assets grows to infinity? Is there a systematic

way to add complexity to the market model while retaining computational tractability?

In this paper, the standard multi—asset geometric Brownian motion models is extended

to an exponential Lévy models by the inclusion of correlation effects through a one dimen-

sional jump distribution. For the general exponential Lévy model, the portfolio selection

problem for n assets reduces to the minimization of a convex function in n dimensions.

However, the crucial assumption of a special relation between the diffusive correlation ma-

trix and the jump distribution, J⊥ = 0, enables a further reduction of the problem to a

convex optimization in the dimension of the number of sectors m, which we can take to

be small while the total number of assets n is typically large. As an empirical strategy,

one could imagine determining the number of sectors through spectral analysis or similar

techniques, in order to determine endogenously the shape of the Σ matrix.

Our analysis allows us to draw the following three conclusions. First, our examples

show that when the asset returns are sufficiently nonhomogeneous the total amount in the

optimal portfolio invested in risky assets, hence the expected return and volatility, all grow

linearly with n, while the exposure to the jumps remains bounded. Moreover, the optimal

portfolio is asymptotically normally distributed as n gets large. Finally, the investor who

correctly accounts for jumps always invests less in the risky assets than the investor who

fails to include these jumps.

One can ask if these conclusions continue to hold and the approach remains valid when

extensions and generalizations of this work are considered:

1. The first extension to consider is to allow the jump dimension to grow to the number of

sectors m, while retaining the condition J⊥ = 0. In that case, the selection problem

again reduces to an m dimensional optimization, and hence our main conclusions
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remain intact.

2. Another extension to consider is to generalize the cross sectorial correlation structure:

it is clear that much more general correlation structures will preserve the condition

J⊥ = 0 and hence the dimensional reduction, leading to similar conclusions. In fact,

one could consider modelling the spectral decomposition of the Σ matrix directly,

instead of parametrizing the matrix itself and then determining its spectral decom-

position. Of course, the form of the matrix is easier to interpret or derive from an

economic model than its spectral decomposition, which argues for the indirect (or

structural) approach. But the reduced form approach has the advantage of greater

generality, since we are no longer constrained to being able to derive the spectral

decomposition explicitly from the assumed form of the Σ matrix.

3. Stochastic volatility of the type considered in Liu et al. (2003) requires solving our

nonlinear equations for weight vectors stepwise in time, in parallel with ordinary

differential equations (which themselves depend on the current portfolio weights).

This does not appear doable in closed form.

4. Portfolio constraints such as short-selling constraints are sometimes introduced into

portfolio theory but, when generic constraints are imposed on the optimal portfolio,

we cannot expect the dimensional reduction to be preserved or our conclusions to hold.

However, a utility function such as power utility which becomes −∞ for wealth below

a finite threshold, sometimes automatically implies certain constraints: it appears

that in this case, much of our analysis remains intact.

5. One further extension to consider is to allow J⊥ 6= 0. In this case, the reduction

in dimension breaks down: One is left with a problem of full complexity, and there

is little of interest we can prove. While the condition J⊥ = 0 is without economic

justification, breaking it seems to be the last thing a mathematician would want to do

because the extra generality does not justify the additional computational complexity

of the solution. Since in any real life application there can never be enough market

data to calibrate the jumps, the specification of the jumps will always be largely

subjective. The main purpose of adding jumps must be to stress test or correct a

proposed optimal portfolio, and in this case imposing J⊥ = 0 on the jumps is justified

by mathematical elegance rather than economics.
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6. Finally, we would like to be able to better capture contagion, in the form not just

of simultaneous jumps (as we are currently able to model) but rather in the form

of a jump in one sector causing an increase in the likelihood that a different jump

will occur in another sector. Self-exciting jump processes seem a promising approach

which we intend to investigate in future work.
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Appendix

A. Lévy Processes

We give here a definition of Lévy processes and our notation. An n dimensional Lévy

process Lt is specified by its “characteristic triple” (b, c, µ) where b ∈ Rn is the drift or
mean return vector, c ∈ Rn×n is the diffusion matrix, or local variance of the continuous

part of Lt, and µ is the jump or Lévy measure on Rn, which satisfiesZ
Rn

³
1 ∧ kxk2

´
µ(dx) <∞.

The characteristic function of Lt is given by the Lévy-Khintchine formula

E(eiu
0Lt) = exp

Ã
t

Ã
iu0b− 1

2
u0cu+

Z
Rn\{0}

µ(dx)
³
eiu

0x − 1− iu0h (x)
´!!

(A.1)

for u ∈ Rnand h (x) is a truncation function which, because we are dealing with finite

intensity measures, can be set to zero (see e.g., Chapter II.2 in Jacod and Shiryaev (2003).)

The stochastic differential equation for Lt written in terms of its characteristics is

dLt = bdt + c1/2dWt +

Z
Rn
x N (µ)(dx, dt) (A.2)

where c1/2 is a matrix square root satisfying c1/2(c1/2)0 = c, and N (µ) is called the Poisson

random measure associated with the Lévy measure µ.

We can identify the right hand side of equation (2.2) as the dynamics of a Lévy process

with triple (r +R,σσ0, µ) where µ(dl) = λν(dz) with l = Jz a measure on a line segment

in the direction of J in Rn. We say that St itself has geometric Lévy dynamics, meaning

that each component satisfies dSi,t/Si,t− = dLi,t where Lt = [L1,t, . . . ,Ln,t]
0 follows an SDE

of the type (A.2).

B. Exponential Utility

For Merton’s problem with CRRA utility function the optimal wealth process X∗
t achieved

by picking the constant portfolio fractions ω∗ is itself a one dimensional geometric Lévy
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process whose characteristic triple is (X∗
t− (ω∗0R+ r −K) , X∗2

t−ω∗0σσ0ω∗,µ) where µ(dy) =

λν(dz) with y = X∗
t−ω0Jz. In this case, the investor keeps constant fractions of wealth in

each risky asset, and the constant remaining fraction 1−Pj ωj in the riskless asset.

Now, consider an investor with exponential utility, U (C) = −1q exp(−qC) with CARA
coefficient q > 0. We can look for a solution to (2.10) in the form

L(x) = −K
q
e−rqx (B.1)

so that
∂L (x)

∂x
= −rqL(x), ∂2L (x)

∂x2
= r2q2L(x). (B.2)

Then (2.10) reduces to

0 = max
{Ct,ωt}

©
U(Ct)− βL(Xt)− rqL(Xt)

¡
Xtr +Xtω

0
tR−Ct

¢
+

1

2
r2q2L(Xt)X

2
t ω

0
tΣωt + λ

Z 1

0

h
e−rqXtω0tJzL (Xt)− L (Xt)

i
ν (dz)

¾
(B.3)

that is

0 = min
{Ct,ωt}

½
U(Ct)

rqL(Xt)
− β

qr
− ¡Xtr +Xtω

0
tR−Ct

¢
+

1

2
rqX2

t ω
0
tΣωt +

λ

rq

Z 1

0

h
e−qXtω0tJz − 1

i
ν (dz)

¾
(B.4)

after division by qL(Xt) (note that max becomes min as a result of qL(Xt) < 0).

The optimal policy of ω = Xtωt is given by the objective function

min
{ω}

µ
−ω0R+ 1

2
rqω0Σω +

λ

rq

Z 1

0

h
e−rqω

0Jz − 1
i
ν (dz)

¶
, (B.5)

and the optimal consumption choice is therefore

C∗t = rXt − 1
q
log (rK) . (B.6)

Finally, we evaluate equation (B.4) at C∗ and ω∗ to identify K,

K =
1

r
exp

µ
1− β

r
− qω∗0R+

1

2
rq2ω∗0Σω∗ +

λ

r

Z 1

0

h
e−qω

∗0Jz − 1
i
ν (dz)

¶
. (B.7)
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C. Log Utility

Finally, consider an investor with log utility, U (x) = log (x). We can look for a solution to

(2.10) in the form

L(x) = K−1
1 log (x) +K2 (C.1)

where K1 and K2 are constant, so that

∂L (x)

∂x
= K1x

−1,
∂2L (x)

∂x2
= −K1x

−2. (C.2)

Then (2.10) reduces to

0 = max
{Ct,ωt}

©
log(Ct)− βK−1

1 log(Xt)− βK2 +K−1
1 X−1

t

¡
rXt +ω0tRXt −Ct

¢
− 1

2
K−1
1 ω0tΣωt + λK−1

1

Z 1

0
log
¡
1 +ω0tJz

¢
ν (dz)

¾
(C.3)

that is

0 = min
{Ct,ωt}

©− ln(Ct) + βK−1
1 ln(Xt) + βK2 −K−1

1 r −K−1
1 ω0tR+K−1

1 X−1
t Ct

+ K−1
1

1

2
ω0tΣωt − λK−1

1

Z 1

0
ln
¡
1 +ω0tJz

¢
ν (dz)

¾
(C.4)

The optimal policy of ωt is given by the objective function,

min
{ωt}

µ
−ω0tR+

1

2
ω0tΣωt − λ

Z 1

0
log
¡
1 +ω0tJz

¢
ν (dz)

¶
, (C.5)

and the optimal consumption choice is therefore

C∗t = K1Xt. (C.6)

To identify K1 and K2, we evaluate equation (C.4) at C∗ and ω∗,

K2 =
1

β

½
log (β) +

r

β
+
1

β
ω∗0R− 1− 1

2β
θ∗0Σθ∗ +

λ

β

Z 1

0
log
¡
1 + θ∗0Jz

¢
ν (dz)

¾
(C.7)

K1 = β. (C.8)
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Figure 1: Optimal portfolio weight ∗∞ as a function of J̄ and λ.
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Figure 2: Scalar objective function used to determine the optimal portfolio weight ∗
n and

its large asset asymptotic limit, ∗∞.
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Figure 3: Bivariate objective function in a two-sector economy.
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