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1 Introduction

Barro (2006), Longstaff and Piazzesi (2004), and Rietz (1988) show that disasters — infre-
quent large declines in aggregate output and consumption — produce dramatic improvement
in the ability of representative agent models to reproduce prominent features of US asset
returns, including the equity premium. We follow a complementary path, using equity in-
dex options to infer the distribution of returns, including extreme events like the disasters
apparent in macroeconomic data.

The primary challenge for theories based on disasters lies in estimating their probability
and magnitude. Since disasters are, by definition, rare, it is difficult to estimate their
distribution reliably from the relatively short history of the US economy. Rietz (1988)
simply argues that they are plausible. Longstaff and Piazzesi (2004) argue that disasters
based on US experience can explain only about one-half of the equity premium. Barro (2006)
and Barro and Ursua (2008) study broader collections of countries, which in principle can
tell us about alternative histories the US might have experienced. They show that these
histories include occasional drops in output and consumption that are significantly larger
than we see in typical business cycles. Equity index options are a useful source of additional
information, because their prices tell us how market participants value extreme events,
whether they happen in our sample or not. The challenge here lies in distinguishing between
true and risk-neutral probabilities. We use a streamlined version of a model estimated by
Broadie, Chernov, and Johannes (2007) that identifies both. Roughly speaking, risk-neutral
probabilities are identified by option prices (cross-section information) and true probabilities
are identified by the distribution of equity returns (time-series information). The resulting
estimates provide independent evidence of the quantitative importance of extreme events
in US asset returns.

The idea is straightforward, but the approaches taken in the macro-finance and option-
pricing literatures are different enough that it takes some work to put them on a comparable
basis. We follow a somewhat unusual path because we think it leads, in the end, to a more
direct and transparent assessment of the role of disasters in asset returns. We start with
the pricing kernel, because every asset pricing model has one. We ask, specifically, whether
pricing kernels generated from representative agent models with disasters are similar to
those implied by option pricing models.

The question is how to measure the impact of disasters. We find two statistical concepts
helpful here: entropy (a measure of volatility or dispersion) and cumulants (close relatives
of moments). Alvarez and Jermann (2005) show that mean excess returns, defined as
differences of logs of gross returns, place a lower bound on the entropy of the pricing kernel.
If the log of the pricing kernel is normal, then entropy is proportional to its variance. But
departures from normality, and disasters in particular, can increase entropy and thereby
improve a model’s ability to account for observed excess returns. We quantify the impact of
departures from normality with high-order cumulants. Disasters and other departures from
normality can contribute to entropy by introducing skewness, kurtosis, and so on. These



ideas are laid out in Section 2, where we also show how the pricing kernel is related to the
risk-neutral probabilities commonly used in option pricing models.

In Section 3 we illustrate the macro-finance approach to disasters: log consumption
growth includes a non-normal component and power utility converts consumption growth
into a pricing kernel. We show how infrequent large drops in consumption growth generate
positive skewness in the log pricing kernel and increase its entropy. The impact can be
large, even with moderate risk aversion. It’s important that the departures from normality
have this form: adding large positive changes to consumption growth can reduce entropy
relative to the normal case.

Do option prices indicate a similar contribution from large adverse events? The answer
is, roughly, yes, but the language and modelling approach are quite different. Option pricing
models typically express asset prices in terms of risk-neutral probabilities rather than pricing
kernels. This is more than language; it governs the choice of model. Where macro-finance
models generally start with the true probability distribution of consumption growth and
use preferences to deduce the risk-neutral distribution, option pricing models infer both
from asset prices. The result is a significantly different functional form for the pricing
kernel. In Section 4 we describe the risk-neutral probabilities implied by consumption-
based models. In Section 5 we show how data on equity returns and option prices can be
used to estimate true and risk-neutral probability distributions. The modelling strategy is to
use the same functional form for each, but allow the parameters to differ. We describe how
the various parameters are identified and verify the quantitative importance of high-order
cumulants. Both consumption- and option-based models imply substantial contributions
to entropy from odd high-order cumulants. In this sense, option prices are consistent with
the macroeconomic evidence on disasters. Options, however, imply much greater entropy
than models designed to reproduce the equity premium alone. Evidently the market places
a large premium on whatever risk is involved in selling options.

In Section 6 we explore the differences between the evidence from consumption data
and option prices by looking at each from the perspective of the other. If we consider a
consumption-based disaster model, how do the option prices compare to those we see in the
market? And if we infer consumption growth from option prices, how does it compare to
the macroeconomic evidence of disasters? Both of these comparisons suggest that option
prices imply more modest disasters than the macroeconomic evidence suggests.

We conclude with a discussion of extensions and related work.

2 Preliminaries

We start with an overview of the tools and evidence used later on. The tools allow us
to characterize departures from (log)normality, including disasters, in a convenient way.
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Once these tools are developed, we describe some of the evidence they’ll be used to explain.
Most of this is done for the iid (independent and identically distributed) environments
we use in Sections 3 to 6. There are many features of the world that are not iid, but
this simplification allows us to focus without distraction on the distribution of returns,
particularly the possibility of extreme negative outcomes. We think it’s a reasonably good
approximation for this purpose, but return to the issue briefly in Section 7.

2.1 Pricing kernels, entropy, and cumulants

One way to express modern asset pricing is with a pricing kernel. In any arbitrage-free
environment, there is a positive random variable m that satisfies the pricing relation,

Et

(
mt+1r

j
t+1

)
= 1, (1)

for (gross) returns rj on all traded assets j. Here Et denotes the expectation conditional
on information available at date t. In the stationary ergodic settings we consider, the same
relation holds unconditionally as well; that is, with an expectation E based on the ergodic
distribution. In finance, the pricing kernel is often a statistical construct designed to account
for returns on assets of interest. In macroeconomics, the kernel is tied to macroeconomic
quantities such as consumption growth. In this respect, the pricing kernel is a link between
macroeconomics and finance.

Asset returns alone tell us some of the properties of the pricing kernel, hence indirectly
about macroeconomic fundamentals. A notable example is the Hansen-Jagannathan (1991)
bound. We use a similar bound derived by Alvarez and Jermann (2005). Both relate
measures of pricing kernel dispersion to expected differences in returns. We refer to the
Alvarez-Jermann measure of dispersion as entropy for reasons that will become clear shortly.
With this purpose in mind, we define the entropy of a positive random variable x as

L(x) = log Ex− E log x. (2)

Entropy has a number of properties that we use repeatedly. First, entropy is nonnegative
and equal to zero only if x is constant (Jensen’s inequality). In the familiar lognormal case,
where log x ∼ N (κ1, κ2), entropy is L(x) = κ2/2 (one-half the variance of log x). We’ll see
shortly that L(x) also depends on features of the distribution beyond the first two moments.
Second, L(ax) = L(x) for any positive constant a. Third, if x and y are independent, then
L(xy) = L(x) + L(y).

The Alvarez-Jermann bound relates the entropy of the pricing kernel to expected dif-
ferences in log returns:

L(m) ≥ E
(
log rj − log r1

)
(3)

for any asset j with positive returns. See Alvarez and Jermann (2005, proof of Proposition
2) and Appendix A.1. Here r1 is the (gross) return on a one-period risk-free bond, so
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the right-hand side is the mean excess return or premium on asset j over the short rate.
Inequality (3) therefore transforms estimates of return premiums into estimates of the lower
bound of the entropy of the pricing kernel.

The beauty of entropy as a dispersion concept for the study of disasters is that it includes
a role for the departures from normality they tend to generate. Recall that the moment
generating function (if it exists) for a random variable x is defined by

h(s; x) = E (esx) ,

a function of the real variable s. With enough regularity, the cumulant-generating function,
k(s) = log h(s), has the power series expansion

k(s; x) = log E (esx) =
∞∑

j=1

κj(x)sj/j! (4)

for some suitable range of s. This is a Taylor (Maclaurin) series representation of k(s)
around s = 0 in which the “cumulant” κj is the jth derivative of k at s = 0. Cumulants
are closely related to moments: κ1 is the mean, κ2 is the variance, and so on. Skewness γ1

and excess kurtosis γ2 are

γ1 = κ3/κ
3/2
2 , γ2 = κ4/κ2

2. (5)

The normal distribution has a quadratic cumulant-generating function, which implies zero
cumulants after the first two. Non-zero high-order cumulants (κj for j ≥ 3) thus summarize
departures from normality. For future reference, note that if x has cumulants κj , ax has
cumulants ajκj [replace s with as in (4)].

With this machinery in hand, we can express the entropy of the pricing kernel in terms
of the cumulant-generating function and the cumulants of log m:

L(m) = log E
(
elog m

)
− E log m

= k(1; log m)− κ1(log m) =
∞∑

j=2

κj(log m)/j!. (6)

This use of the cumulant-generating function is in the spirit of Martin (2008), as are many
of its uses in later sections. If log m is normal, entropy is one-half the variance (κ2/2), but
in general there will be contributions from skewness (κ3/3!), kurtosis (κ4/4!), and so on.

As Zin (2002, Section 2) suggests, it’s not hard to imagine using high-order cumulants
to account for properties of returns that are difficult to explain in lognormal settings. We
refer to this as Zin’s “never a dull moment” conjecture after a phrase from his paper. We
use the following language and metrics to capture this idea. We refer to departures from
normality of the log of the pricing kernel as reflecting extreme events and measure their
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impact with high-order cumulants. Disasters are a special case in which the extreme events
include a significant positive contribution from odd high-order cumulants. This gives us a
three-way decomposition of entropy: one-half the variance (the normal term, so to speak)
and contributions from odd and even high-order cumulants. We compute odd and even
cumulants from the odd and even components of the cumulant-generating function. An
arbitrary cumulant-generating function k(s) has odd and even components

kodd(s) = [k(s)− k(−s)]/2 =
∑

j=1,3,...

κj(x)sj/j!

keven(s) = [k(s) + k(−s)]/2 =
∑

j=2,4,...

κj(x)sj/j!.

Odd and even high-order cumulants follow from subtracting the first and second cumulants,
respectively.

2.2 Risk-neutral probabilities

In option pricing models, there is rarely any mention of a pricing kernel, although theory
tells us one must exist. Option pricers speak instead of true and risk-neutral probabilities.
We use a finite-state iid setting to show how pricing kernels and risk-neutral probabilities
are related.

Consider an iid environment with a finite number of states x that occur with (true)
probabilities p(x), positive numbers that represent the frequencies with which different
states occur (the data generating process, in other words). With this notation, the pricing
relation (1) is

E
(
mrj

)
=

∑
x

p(x)m(x)rj(x) = 1

for (gross) returns rj on all assets j. One example is a one-period bond, whose price is
q1 = Em =

∑
x p(x)m(x) = 1/r1. Risk-neutral (or better, risk-adjusted) probabilities are

p∗(x) = p(x)m(x)/Em = p(x)m(x)/q1. (7)

The p∗s are probabilities in the sense that they are positive and sum to one, but they are
not the data generating process. The role of q1 is to make sure they sum to one. They lead
to another version of the pricing relation,

q1
∑

x

p∗(x)rj(x) = q1E∗rj = 1, (8)

where E∗ denotes the expectation computed from risk-neutral probabilities. In (1), the
pricing kernel performs two roles: discounting and risk adjustment. In (8) those roles are
divided between q1 and p∗, respectively.
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Option pricing is a natural application of this approach. Consider a put option: the
option to sell an arbitrary asset with future price q(x) at strike price b. Puts are bets on
bad events — the purchaser sells prices below the strike, the seller buys them — so their
prices are an indication of how they are valued by the market. If the option’s price is qp (p
for put), its return is rp(x) = [b− q(x)]+/qp where (b− q)+ ≡ max{0, b− q}. Equation (8)
gives us its price in terms of risk-neutral probabilities:

qp = q1E∗[b− q(x)]+.

As we vary b, we trace out the risk-neutral distribution of prices q(x) (Breeden and Litzen-
berger, 1978).

But what about the pricing kernel and its entropy? Equation (7) gives us the pricing
kernel:

m(x) = q1p∗(x)/p(x). (9)

Since q1 is constant in our iid world, the entropy of the pricing kernel is

L(m) = L(p∗/p) = log E(p∗/p)−E log(p∗/p) = −E log(p∗/p). (10)

The first equality follows because q1 is constant [recall L(ax) = L(x)]. The second is an
application of the definition of entropy, equation (2). The last one follows because

E(p∗/p) =
∑

x

[p∗(x)/p(x)]p(x) =
∑

x

p∗(x) = 1.

The expression on the right of (10) is sometimes referred to as the entropy of p∗ relative to
p, which provides a justification for our earlier use of the term.

As before, entropy can be expressed in terms of cumulants. The cumulants in this case
are those of log(p∗/p), whose cumulant-generating function is

k[s; log(p∗/p)] = log E
(
es log(p∗/p)

)
=

∞∑

j=1

κj [log(p∗/p)]sj/j!. (11)

The definition of entropy (2) contributes the analog to (6):

L(p∗/p) = k[1; log(p∗/p)]− κ1[log(p∗/p)]

=
∞∑

j=2

κj [log(p∗/p)]/j! = −κ1[log(p∗/p)]. (12)

The second line follows from k[1; log(p∗/p)] = log E(p∗/p) = 0 (see above). Here we can
compute entropy from the first cumulant, but it’s matched by an expansion in terms of
cumulants 2 and up, just as it was in the analogous expression for log m. All of these
cumulants are readily computed from the cumulant-generating function (11).
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To summarize: we can price assets using either a pricing kernel (m) and the true proba-
bilities (p) or the price of a one-period bond (q1) and the risk-neutral probabilities (p∗). The
three objects (m, p∗, p) are interconnected: once we know two (and the price of a one-period
bond), equation (7) gives us the other. That leaves us with three kinds of cumulants cor-
responding, respectively, to the true distribution of the random variable x, the risk-neutral
distribution, and the (log) pricing kernel (a function of x). We report all three later in the
paper.

2.3 Evidence

Our goal is to put these tools to work in accounting for broad features of macroeconomic
and financial data: consumption growth, asset returns, and option prices. Here’s a quick
overview of US data.

In Table 1 we report familiar evidence on annual consumption growth and equity returns
for both a long sample (1889-2006) and a shorter one (1986-2006) that corresponds to our
data on options. The numbers are similar to those reported by Alvarez and Jermann (2005,
Tables I-III), Barro (2006, Table IV), and Mehra and Prescott (1985, Table 1). There has
been some variation over time in the equity premium (larger in the more recent sample)
and consumption growth (less volatile in the recent past), but both may be closer to the
long sample once we include the most recent observations.

In Table 2 we describe prices of options on S&P 500 contracts. Prices are reported as
implied volatilities: values of the volatility parameter of the Black-Scholes-Merton formula
that generates the observed option price. This convention allows a simple comparison to the
lognormal case, in which volatility is the same at all strike prices. In the table, we report
average implied volatilities of options for a range of strike prices. Observations are annual.
They cover options of maturities 1, 3, and 12 months. Since the macroeconomic data are
annual, the annual maturity is the most natural in this context, but shorter maturities are
more informative about extreme events. An option of maturity n months, for example,
reflects the n-month distribution of index returns. As we increase n, the standardized
distribution becomes more normal and extreme events are relatively less important. Shorter
options are also more frequently traded.

Option prices have two features that we examine more closely in Section 5. Similar
evidence has been reviewed recently by Bates (2008, Section 1), Drechsler and Yaron (2008,
Section 2), and Wu (2006, Section II). The first feature is that implied volatilities are greater
than sample standard deviations of returns (compare Table 1). Since prices are increasing
in volatility, it implies that option prices are high relative to the lognormal Black-Scholes-
Merton benchmark. The second is that implied volatilities, hence option prices, are higher
for lower strike prices: the well-known volatility skew. This feature is more evident at
shorter maturities, precisely because they are more sensitive to extreme events. It’s also
intriguing from a disaster perspective, because it suggests market participants value adverse
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events more than is implied by a lognormal model. The question for us whether the extra
value assigned to bad outcomes corresponds to the disasters documented in macroeconomic
research.

Table 3 is a summary of the evidence: a collection of ballpark numbers that we use as
targets for theoretical examples. Thus we consider examples in which the log excess return
on equity has a mean of 0.0440 (4.40%) and a standard deviation of 0.1500. Similarly, log
consumption growth has a mean of 0.0200 and a standard deviation of 0.0350. None of these
numbers are definitive, but they give us a starting point for considering the quantitative
implications of theoretical models.

3 Disasters in macroeconomic models and data

Barro (2006), Longstaff and Piazzesi (2004), and Rietz (1988) construct representative-
agent exchange economies in which infrequent large declines in consumption improve their
ability to generate realistic asset returns: illustrations, in other words, of Zin’s “never a
dull moment” conjecture. We describe their mechanism with two numerical examples that
highlight the role of high-order cumulants.

The economic environment consists of preferences for a representative agent and a
stochastic process for consumption growth. Preferences are governed by an additive power
utility function,

E0

∞∑

t=0

βtu(ct),

with u(c) = c1−α/(1 − α) and α ≥ 0. If consumption growth is gt = ct/ct−1, the pricing
kernel is

log mt+1 = log β − α log gt+1. (13)

With power utility, the properties of the pricing kernel follow from those of consumption
growth. Entropy is

L(m) = L(e−α log g) (14)

and the cumulants of log m are related to those of log g by

κj(log m) = κj(log g)(−α)j/j!, j ≥ 2. (15)

See Section 2.1. If log consumption growth is normal, then so is the log of the pricing
kernel. Entropy is then one-half the variance of consumption growth times the risk aversion
parameter squared. The impact of high-order cumulants depends on (−α)j/j!. The minus
sign tells us the negative odd cumulants of log consumption growth generate positive odd
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cumulants in the log pricing kernel. Negative skewness in consumption growth, for example,
generates positive skewness in the pricing kernel and thus helps with the Alvarez-Jermann
bound. The magnitudes of high-order cumulants are controlled by αj/j!. Eventually the
denominator grows faster than the numerator, but for moderate values of j, risk aversion
can magnify the contributions of high-order cumulants relative to the contribution of the
variance. Yaron refers to this as a “bazooka”: if α > 1, even moderate high-order cumulants
in log consumption growth can have a large impact on the entropy of the pricing kernel.

We follow Barro (2006) in choosing an iid process for consumption growth so that we
can focus on the role played by its distribution. Let consumption growth be

log gt+1 = wt+1 + zt+1 (16)

with components (wt, zt) that are independent of each other and over time. Since the
components are independent, the cumulant-generating function of log g is the sum of those
for w and z. Similarly, the entropy of the pricing kernel is the sum of the entropy of the
components:

L(m) = L(e−αw) + L(e−αz).

Similarly, the cumulants of log m are sums of the cumulants of the components:

κj(log m) = (−α)jκj(w) + (−α)jκj(z), j ≥ 2.

(That’s why they call them cumulants: they “[ac]cumulate.”) We let w ∼ N (µ, σ2), so that
any contribution to high-order cumulants comes from z.

The question is the behavior of z. We consider two examples. In both cases, parameter
values are adapted from Barro (2006), Barro and Ursua (2008), and Barro, Nakamura,
Steinsson, and Ursua (2009), who show that sharp downturns are an infrequent but recurring
feature of national consumption and output data.

3.1 Example 1: Bernoulli disasters

The simplest example of a disaster process is a Bernoulli random variable. Suppose the
second component of consumption growth is

zt =
{

0 with probability 1− ω
θ with probability ω.

(17)

Here ω and θ < 0 represent the probability and magnitude of a sharp drop in consumption
growth (a disaster) relative to its mean. If θ > 0 we have the opposite (a boom). Barro
(2006) uses a more complex disaster distribution and Rietz (1988) allows time-dependence,
but this is enough to make their point: that an infrequent extreme drop in consumption can
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have a large impact on asset returns, even when we hold constant the mean and variance
of log consumption growth.

With this structure, we can readily compute entropy and cumulants. The entropy of
the two components follows from applying its definition (2):

L(e−αw) = (−α)2σ2/2 (18)

L(e−αz) = log
(
1− ω + ωe−αθ

)
+ αωθ. (19)

Both are zero at α = 0 and increase with α. The first expression is the usual “one-half the
variance” of the normal case. The second introduces high-order cumulants; see Appendix
A.2.

Two numerical examples, reported as the first two columns of Table 4, illustrate the
potential quantitative significance of the disaster component. Column (1) has normal log
consumption growth (z = 0). Column (2) incorporates a Bernoulli disaster. Parameters
in both cases are chosen to match the target values in Table 3. The target values for the
mean and variance of log g are κ1(log g) = 0.020 and κ2(log g) = 0.0352. Finally, we add the
disaster component. We set ω = 0.01 and θ = −0.3: a one percent chance of a 30 percent
fall in (log) consumption relative to its mean. These choices are somewhat arbitrary, but
they’re similar to those of Barro and Rietz. Barro (2006) uses a distribution of disasters
with an overall probability of 0.017 and a distribution whose mean is similar. Rietz uses
smaller probabilities and larger disasters.

With these quasi-realistic numbers, we can explore the ability of the model to satisfy
the Alvarez-Jermann bound. The observed equity premium implies that the entropy of
the pricing kernel is at least 0.0440. Without disasters (that is, with ω = 0), the logs
of consumption growth and the pricing kernel are normal. The mean and variance of log
consumption growth imply µ = 0.0200 and σ2 = 0.0352. The Alvarez-Jermann bound
implies α2κ2(log g)/2 = α20.0352/2 ≥ 0.0440 or α ≥ 8.47. We can satisfy the Alvarez-
Jerman bound for the equity premium, but only with a risk aversion parameter greater
than 8. There’s a range of opinion about this, but some argue that risk aversion this
large implies implausible behavior along other dimensions; see, for example, the extensive
discussion in Campanale, Castro, Clementi (2007, Section 4.3) and the references cited
there.

When we add the disaster component, a smaller risk aversion parameter suffices. We do
this holding constant the mean and variance of log consumption growth, so the experiment
has a partial derivative flavor: it measures the impact of high-order cumulants, holding
constant the mean and variance. We choose µ to equate the mean growth rate to the
sample mean: µ + ωθ = 0.0200. Similarly, we choose σ to match the sample variance:

σ2 + ω(1− ω)θ2 = κ2(log g) = 0.0352.

The resulting parameter values are reported in the second column of Table 4. As long as
ω < 1/2 and θ < 0, the disaster component z introduces negative skewness and positive
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kurtosis into log consumption growth. Both are evident in first panel of Figure 1, where
we plot cumulants 2 to 10 for log consumption growth. Each cumulant κj(log g) makes a
contribution κj(log g)(−α)j/j! to the entropy of the pricing kernel. The next two panels
of the figure show how the contributions depend on risk aversion. With α = 2, negative
skewness in consumption growth is converted into a positive contribution to entropy, but
the contribution of high-order cumulants overall is small relative to the contribution of the
variance. That changes dramatically when we increase α to 10, where the contribution of
high-order cumulants is now greater than that of the variance. This is Yaron’s bazooka in
action: even modest high-order cumulants make significant contributions to entropy if α is
large enough.

Figure 2 gives us another perspective on the same issue: the impact of high-order
cumulants on the entropy of the pricing kernel as a function of the risk aversion parameter α.
The horizontal line is the Alvarez-Jerman lower bound, our estimate of the equity premium
in US data. The line labelled “normal” is entropy without the disaster component. We
see, as we noted earlier, that the entropy of the pricing kernel for the normal case is below
the lower bound until α is above 8. The line labelled “disasters” incorporates the Bernoulli
component. The difference between the two lines shows that the overall contribution of
high-order cumulants is positive and increases with risk aversion. When α = 2 the extra
terms increase entropy by 16%, but when α = 8 the increase is over 100% (Yaron’s bazooka
again).

It’s essential that the extreme events be disasters. If we reverse the sign of θ, the result is
the line labelled “booms” in Figure 2. We see that for every value of α, entropy is below even
the normal case. The impact of high-order cumulants is apparently negative. Table 5 shows
us exactly how this works. With Bernoulli disasters (and α = 10), the entropy of the pricing
kernel (0.1614) comes from the variance (0.0613), odd high-order cumulants (0.0621), and
even high-order cumulants (0.0380). When we switch from disasters to booms, the odd
cumulants change sign — see equation (15) — reducing overall entropy. Another example
illustrates the role of the probability and magnitude of the disaster. Suppose we halve θ and
double ω, with σ adjusting to maintain the variance of consumption growth. Then entropy
falls sharply and the contribution of high-order cumulants almost disappears. In this sense,
both the low probability and large magnitude in the example are quantitatively important.

We’ve chosen to focus on the entropy of the pricing kernel, but you get a similar picture
in this setting if you look at the equity premium. The short rate r1 = 1/q1 = 1/Em is
constant in our iid environment. We define “levered equity” as a claim to the dividend
dt = cλ

t . This isn’t, of course, either equity or levered, but it’s a convenient functional
form that is widely used in the macro-finance literature to connect consumption growth
(the foundation for the pricing kernel) to returns on equity (the asset of interest). In the
iid case, the log return is a linear function of log consumption growth:

log re
t+1 = λ log gt+1 + constant. (20)

See Appendix A.4. The leverage parameter λ allows us to control the variance of the equity
return separately from the variance of consumption growth and thus to match both. We use
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an excess return variance of 0.152, so λ is the ratio of the standard deviation of the excess
return (0.15) to the standard deviation of log consumption growth (0.035), approximately
4.3.

For a given pricing kernel, entropy places an upper bound on the expected excess return
of any asset over the short rate. The asset that hits the bound (the “high-return asset”)
has return rt+1 = 1/mt+1. Equity is precisely this asset when α = λ, but in other cases
the equity premium is strictly less than entropy. We see in Figure 3 that the difference
is small in our numerical example for values of α between zero and twelve. The formulas
used to generate the figure are reported in Appendix A.4. The parameters, including the
value of α that matches the equity premium, are reported in Table 4. As we found with
the Alvarez-Jermann bound, the normal model requires greater risk aversion to account for
a given equity premium.

3.2 Example 2: Poisson disasters

We turn now to a more realistic model of disasters. The model is a Poisson-normal mixture
in which we add a random number of “jumps” to log consumption growth. The distribution
over the number of jumps is Poisson and the jumps themselves are normal. The added
complexity has a number of benefits. One is that it gives us a better approximation to
the empirical distribution of disasters. Another is that this specification is easily scaled to
different time intervals. For this reason and others, this specification is commonly used in
work on option pricing, where it is referred to as the Merton (1976) model. It also allows
a more direct comparison to the estimates of option pricing models. In the macro-finance
literature, it has been applied by Bates (1988), Martin (2007), and Naik and Lee (1990).

We continue with the two-component structure, equation (16), with one component
normal and the other a Poisson-normal mixture. The central ingredient of the second
component is a Poisson random variable that takes on nonnegative values j (the number
of jumps) with probabilities e−ωωj/j!. Here ω is the average number of jumps per year.
Conditional on j, the second component is normal:

zt|j ∼ N (jθ, jδ2) for j = 0, 1, 2. . . . . (21)

This differs from the Bernoulli model in two respects: there is a positive probability of more
than one jump and the jump size has a distribution rather than fixed size. If ω is small,
the first is insignificant but the second increases entropy and high-order cumulants. The
entropy of this component of the pricing kernel is

L(e−αz) = ω(e−αθ+(αδ)2/2 − 1) + αωθ. (22)

This and other properties of Poisson-normal mixtures are derived in Appendix A.3. There-
fore, the entropy of the pricing kernel is

L(m) = (−ασ)2/2 + ω(e−αθ+(αδ)2/2 − 1) + αωθ, (23)
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the sum of the entropies of the normal and Poisson-normal components.

We illustrate the properties of this example with numbers similar to those used in the
Bernoulli example. With ω = 0.01, there is probability 0.9900 of no jumps, 0.0099 of one
jump, and 0.0001 of more than one jump. With larger values of ω the probability of multiple
jumps can be substantial, but in this example it’s miniscule. We set the mean jump size
θ = −0.3, the same number we used earlier. The only significant change is the dispersion
of jumps: we set δ = 0.15. These parameter values are close to those suggested by Barro,
Nakamura, Steinsson, and Ursua (2009). Finally, we choose µ and σ to match the sample
mean and variance of log consumption growth. In the model, the mean is µ + ωθ and the
variance is σ2 + ω(θ2 + δ2). Given the parameters of the second component, we choose µ
and σ to match our target values of the mean and variance of log consumption growth. All
of these parameters (and more) are listed in column (3) of Table 4.

This example is qualitatively similar to the previous one, but the dispersion in disasters
generates greater entropy. The contributions of high-order cumulants are summarized in
Figure 4 and Table 5. Figure 5 shows that the model satisfies the Alvarez-Jermann bound
at smaller values of α. We match the equity premium with α = 5.38, smaller than the value
of 6.59 needed for the Bernoulli example; see Tables 4 and 5.

4 Risk-neutral probabilities in representative-agent models

As a warmup for our study of options, we consider the risk-neutral probabilities implied by
the examples of the previous section. In general, risk aversion (α > 0) generates risk-neutral
distributions that are shifted left (more pessimistic) relative to true distributions. The form
of this shift depends on the distribution.

Our first example has lognormal consumption growth. Suppose log g = w with w ∼
N (µ, σ2). Then

p(w) = (2πσ2)−1/2 exp[−(w − µ)2/2σ2].

The pricing kernel is m(w) = β exp(−αw) and the one-period bond price is q1 = Em =
β exp[−αµ + (ασ)2/2]. Equation (7) gives us the risk-neutral probabilities:

p∗(w) = p(w)m(w)/q1 = (2πσ2)−1/2 exp[−(w − µ + ασ2)2/2σ2].

Thus risk-neutral probabilities have the same form (normal) with mean µ∗ = µ− ασ2 and
standard deviation σ∗ = σ. The mean shifts the distribution to the left by an amount that
depends on risk aversion. The log probability ratio is

log [p∗(w)/p(w)] = [(w − µ)2 − (w − µ∗)2]/2σ2 = −(ασ)2/2− α(w − µ),
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which implies the cumulant-generating function

k[s; log(p∗/p)] = log E
(
es log p∗/p

)
= [(ασ)2/2](−s + s2).

The cumulants are (evidently) zero after the first two. Entropy follows from equation (12),

L(p∗/p) = (ασ)2/2,

which is what we reported in equation (18).

Our second example has Bernoulli consumption growth. Let log g = z, with z equal to
0 with probability 1 − ω and θ with probability ω. If we ignore the discount factor β (we
just saw that it drops out when we compute p∗), the pricing kernel is m(z) = e−αz. The
one-period bond price is q1 = 1− ω + ω exp(−αθ). Risk-neutral probabilities are

p∗(z) = p(z)m(z)/q1 =
{

(1− ω)/q1 if z = 0
ω exp(−αθ)/q1 if z = θ.

Thus p∗ is Bernoulli with probability

ω∗ = ωe−αθ/(1− ω + ωe−αθ)

and magnitude θ∗ = θ. Note that p∗ puts more weight on the bad state than p. The
probability ratio,

p∗(z)/p(z) =
{

1/q1 if z = 0
exp(−αθ)/q1 if z = θ,

implies the cumulant-generating function

k[s; log(p∗/p)] = log
[
(1− ω) + ωe−sαθ

]
− s log

[
(1− ω) + ωe−αθ

]
.

Entropy is therefore

L(p∗/p) = (1− ω) log q1 + ω log(q1/e−αθ) = log(1− ω + ωe−αθ) + αωθ,

which is what we saw in equation (19).

In our final example, consumption growth is a Poisson-normal mixture. The Poisson-
normal mixture (21) is based on a state space that includes both the number of jumps and
the distribution conditional on the number of jumps: say (j, z). The same logic we used in
the other examples then tells us that the risk-neutral distribution has the same form, with
parameters

ω∗ = ω exp(−αθ + (αδ)2/2), θ∗ = θ − αδ2, δ∗ = δ. (24)

Similar expressions are derived by Bates (1988), Martin (2007), and Naik and Lee (1990).
Risk aversion (α > 0) places more weight on bad outcomes in two ways: they occur more
frequently (ω∗ > ω if θ < 0) and are on average worse (θ∗ < θ). Entropy is the same as
reported in (22).

We won’t bother with multi-component models, but they follow similar logic. If log
consumption growth is the sum of independent components, then entropy is the sum of the
entropies of the components, as in equation (23).
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5 Disasters in option models and data

In the macro-finance literature, pricing kernels are typically constructed as in Section 3:
we apply a preference ordering (power utility in our case) to an estimated process for
consumption growth (lognormal or otherwise). In the option-pricing literature, pricing
kernels are constructed from asset prices alone: true probabilities are estimated from time
series data on prices or returns, risk-neutral probabilities are estimated from cross-section
data, and the pricing kernel is computed from the ratio. The approaches are complementary;
they generate pricing kernels from different data. The question is whether they lead to
similar conclusions. Do options on US equity indexes imply the same kinds of extreme
events that Barro and Rietz suggested? Equity index options are a particularly informative
class of assets for this purpose, because they tell us not only the market price of equity
returns overall, but the prices of specific outcomes, including outcomes well outside the
norm.

5.1 The Merton model

We look at option prices through the lens of the Merton model, a functional form that
has been widely used in the empirical literature on option prices. The starting point is a
stochastic process for asset prices or returns. Since we’re interested in the return on equity,
we let

log re
t+1 − log r1 = wt+1 + zt+1. (25)

We use the return, rather than the price, because it fits neatly into our iid framework, but
the logic is the same either way. As before, the components (wt, zt) are independent of each
other and over time. Market pricing of risk is built into differences between the true and
risk-neutral distributions of the two components. We give the distributions the same form,
but allow them to have different parameters. The first component, w, has true distribution
N (µ, σ2) and risk-neutral distribution N (µ∗, σ2). By convention, σ is the same in both
distributions, a byproduct of its continuous-time origins. The second component, z, is a
Poisson-normal mixture. The true distribution has jump intensity ω and the jumps are
N (θ, δ2). The risk-neutral distribution has the same form with parameters (ω∗, θ∗, δ∗).

Related work supports a return process with these features. Ait-Sahalia, Wang, and
Yared (2001) report a discrepancy between the risk-neutral density of S&P 500 index returns
implied by the cross-section of options and the time series of the underlying asset returns,
but conclude that the discrepancy can be resolved by introducing a jump component. One
might go on to argue that two jumps are needed: one for macroeconomic disasters and
another for more frequent but less extreme financial crashes. However, Bates (2009) studies
the US stock market over the period 1926-2006 and shows that a second jump component
plays no role in accounting for macroeconomic events like the Depression.
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Given this structure, the pricing kernel follows from equation (9). Its entropy is

L(m) = L(p∗/p)

=
1
2

(
µ− µ∗

σ

)2

+ (ω∗ − ω) + ω

[
log

ω

ω∗
− log

δ

δ∗
+

(θ − θ∗)2 + (δ2 − δ∗2)
2δ∗2

]
. (26)

The source of this expression and the corresponding cumulant-generating function are re-
ported in Appendix A.5.

5.2 Parameter values

We use parameter values from Broadie, Chernov, and Johannes (2007), who summarize and
extend the existing literature on equity index options. The parameters of the true distribu-
tion are estimated from the time series of excess returns on equity. We use the parameters
of the Poisson-normal mixture — namely (ω, θ, δ) — reported in Broadie, Chernov, and
Johannes (2007, Table I, the line labelled SVJ EJP). These estimates also include stochas-
tic volatility, which we ignore because it conflicts with our iid structure. The estimated
jump intensity ω is 1.512, which implies much more frequent jumps than we used in our
consumption-based model. With this value, the probability of 0 jumps per year is 0.220,
1 jump per year 0.333, 2 jumps 0.25, 3 jumps 0.13, 4 jumps 0.05, and 7 or more jumps
about 0.001. Properties related to extreme events can be difficult to estimate precisely, as
we noted in the introduction. The issue is their frequency. If they occur (say) once every
hundred years, a long dataset is a necessity. If they’re more frequent, as estimates based on
US stock returns imply, we can get precise estimates from a finer time interval, even over
shorter samples. Given parameters for the Poisson-normal component, µ and σ are chosen
to match the mean and variance of excess returns to their target values. In the model, the
mean excess return (the equity premium) is µ + ωθ, which determines µ. The variance is
σ2 + ω(θ2 + δ2), which determines σ. The results are reported in Table 4.

The risk-neutral parameters for the Poisson-normal mixture are estimated from the
cross section of option prices: specifically, prices of options on the S&P 500 over the period
1987-2003. The depth of the market varies both over time and by the range of strike prices,
but there are enough options to allow reasonably precise estimates of the parameters. The
numbers we report in Table 4 are from Broadie, Chernov, and Johannes (2007, Table IV,
line 5). In practice, option prices identify only the product ω∗θ∗, so they set ω∗ = ω and
choose θ∗ and δ∗ to match the level and shape of the implied volatility smile. Finally, µ∗ is
set to satisfy (8), which implies µ∗ + σ2/2 + ω∗[exp(θ∗ + δ∗2/2)− 1] = 0.

Figure 6 shows how θ∗ and δ∗ are identified from the cross section of 3-month option
prices. We express prices as implied volatilities and graph them against “moneyness,” with
higher strike prices to the right. In the data, we measure moneyness as the log of the ratio of
the strike price to the spot price. In the figure, the solid line illustrates the slope and shape
of the implied volatility smile in the model. Since the model fits extremely well, we can take
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this as a reasonable representation of the data. The downward slope and convex shape are
both evidence of departures from lognormality. They also illustrate how the parameters are
identified. Consider three values of θ∗: −0.0259 (= θ), +0.0259, and the estimated value
−0.0482. We plot volatility smiles for all three values with δ∗ = δ. Evidently θ∗ controls
the slope. When it’s positive, the smile slopes upward, and when it’s a smaller negative
value than our estimate the smile is flatter. All of these smiles lie below the estimated one.
The value of δ∗ affects the level and curvature of the smile. This is evident from the smile
for δ∗ = δ, a substantially smaller value. The combination produces an implied volatility
smile that closely approximates the slope and curvature we see in the data.

5.3 Pricing kernels implied by options

In Table 4 we report the parameters of the option model and some of their implications, and
in Table 5 we report the entropy of the pricing kernel and its components. Three features
of the option model deserve emphasis.

The first and most important feature of the option model is that odd high-order cumu-
lants make a substantial contribution to entropy. In this respect, the option model agrees
with the macroeconomic models of disasters we examined earlier. The contribution of odd
high-order cumulants is larger than we saw in macroeconomic models, but smaller as a
fraction of entropy.

The second feature is that disasters are more moderate in our option model [column (4)]
than in a similar model based on consumption data [column (3)]. The units are different
(consumption growth v. returns), so it’s not a direct comparision unless the two are linked
— as they are in our equation (20). With this caveat in mind, note that standardized
measures of skewness and kurtosis are substantially smaller in the option model than in the
model based on consumption evidence. This is true whether we look at the true distribution,
the risk-neutral distribution, or the distribution of the pricing kernel. The same holds for
tail probabilities: probabilities of extreme negative realizations of consumption growth or
the return on equity. Outcomes more than 3 and 5 standard deviations to the left of the
mean are more likely in the model based on consumption evidence [column (3) of the table]
than in the model based on option prices [column (4)].

The third feature is that entropy is significantly higher. While the macro models had
entropy less than 0.1, the option model implies entropy of almost 0.8. This reflects, in
large part, the high price of options. The prices are high in the sense that selling them
generates high average returns; see, for example, Broadie, Chernov, and Johannes (2009).
These high average returns imply high entropy via the Alvarez-Jermann bound. Evidently
a bound based on the equity premium is too loose: other investment strategies generate
higher average excess returns and therefore imply higher entropy.

We look more closely at the differences between consumption- and option-based models
in the next section.
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6 Comparing consumption- and option-based models

We’ve seen that disasters implied by options are considerably different from those apparent
in consumption data. We explore the difference further in this section, looking at option
prices implied by consumption growth, consumption growth implied by option prices, and
risk aversion implicit in options data. These comparisons highlight the relations between
true and risk-neutral probabilities implied by consumption- and option-based models, re-
spectively.

Consider first the option prices implied by our consumption-based model. In essence,
we are taking the true distribution of consumption growth implied by consumption data,
computing the risk-neutral distribution by applying power utility, and using the risk-neutral
distribution to compute option prices. The only missing link is the connection between con-
sumption growth (the natural random variable for consumption-based models) and equity
returns (the natural variable for option-based models). In our environment, the two are
connected by (20): equity returns are a log-linear function of consumption growth with
slope λ. To convert the consumption growth process to a return process, we multiply θ and
δ by λ and keep the jump intensity ω the same. Risk-neutral parameters then follow from
(24).

Implied volatility smiles for the consumption-based model are pictured in Figure 7 along
with those for the estimated Merton model. Similar consumption-based volatility smiles are
reported by Benzoni, Collin-Dufresne, and Goldstein (2005) and Du (2008). What’s new is
the explicit comparison to an estimated option pricing model. We report two smiles in each
case, corresponding to 3-month and 12-month options. The two models are clearly different.
The consumption-based model has a steeper smile, greater curvature, and lower at-the-
money volatility. The reason, again, is that it has both higher risk-neutral probabilities of
large disasters (the left side of the figure) and lower probabilities of less extreme outcomes
(the middle and right of the figure). Stated simply: the difference in extreme outcomes
between models based on macroeconomic and options data results in significantly different
option prices. This is evident, for example, in the large difference in risk-neutral skewness
and kurtosis reported in columns (3) and (4) of Table 4.

Now consider the reverse: the consumption growth process implied by the risk-neutral
distribution of equity returns indicated by option prices. Here we are taking the risk-neutral
distribution and computing the true distribution using (again) power utility. This procedure
places more structure on the problem than we used in the option model — namely, power
utility. Given this structure, we can infer the true distribution without relying on the limited
time series evidence available for estimating it directly from consumption. Again, we need
to rescale the parameters, dividing θ∗ and δ∗ by λ. Given these values, we compute the
parameters of the true distribution using (24). Finally, we set σ to match our target for the
standard deviation of log consumption growth and α to match the equity premium. The
results are reported in column (5) of Table 4.
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The consumption process derived this way from option prices generates disasters in
the sense that large declines in consumption growth are substantially more likely than in
a lognormal model. They are, however, more moderate than we see in macroeconomic
data. This is evident in the standardized measures of skewness and excess kurtosis. It’s
also evident in the probabilities of tail events. The probability of (at least) 3 standard
deviation declines is similar in the two models. Roughly speaking, there’s just under a 1
percent chance of a drop in consumption similar to the US in the Depression. However, 5
standard deviation declines are much more likely in the consumption-based model [column
(3)] than in the option-based model [column (5)]. The risk aversion parameter must be
larger to compensate for the more modest disasters. We see this directly in Table 5, where
the contribution of high-order cumulants is much smaller than in the Poisson model based
on consumption evidence.

Both of these comparisons use power utility to connect true and risk-neutral parameters,
yet the parameter values of the option model are inconsistent with power utility. One
example is the difference between δ and δ∗, which is zero with power utility [equation 24)].
Nevertheless, we can derive something like risk aversion from our option model. Note that
in (13), risk aversion is implicit in the relation between the pricing kernel and consumption
growth:

α = −∂ log m

∂ log g
.

In the option model, the analogous expression is

RA = −∂ log(p∗/p)
∂ log re

· ∂ log re

∂ log g
.

See Leland (1980). In our setting, the second term is λ, so the action is in the first term.

Risk aversion defined this way need not have much to do with the risk aversion of
individual agents, but it’s a useful way of describing how the market prices risk. Option
prices imply that RA depends, in general, on the state; see Appendix A.6. In our case, it’s
larger for negative returns than for positive ones, with risk aversion of 14 for returns of –10%
and 3.5 for returns of +10%. Related work has generated a wide range of patterns, but
they all find that risk aversion varies with the state. See, for example, Ait-Sahalia and Lo
(2000), Jackwerth (2000), Rosenberg and Engle (2002), and Ziegler (2007). What we find
interesting is the possibility that risk premiums on assets might reflect not only disasters in
outcomes but pricing of disasters that gives them greater weight than power utility.

7 Summary and extensions

We have described, in a relatively simple theoretical setting, how option prices can be used
to infer the probabilities of disasters, including the infrequent sharp declines in consumption
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growth documented in macroeconomic data by Barro (2006) and others. Options on the
S&P 500 index value bad outcomes more than good ones, and in this sense are similar
to the macroeconomic evidence. The disasters implied by option prices are, however, more
modest. The analysis that leads to these conclusions leans heavily on three supports: power
utility over aggregate consumption, iid consumption growth, and a close connection between
aggregate dividends and consumption. Each deserves a closer look.

Perhaps the most interesting extension of the theory is to consider going beyond power
utility or even the representative agent framework. Power utility is the workhorse of macroe-
conomics and finance, but our option model suggests greater aversion to bad outcomes than
good ones. If this turns out to be a robust feature of the evidence, it’s worth thinking about
where it comes from. One possibility is explore alternative preferences, including skewness
aversion (Harvey and Siddique, 2000), Chew-Dekel risk preferences (reviewed by Backus,
Routledge, and Zin, 2004, Section 3), ambiguity (applied to options by Drechsler, 2008,
and Liu, Pan, and Wang, 2005), and habits (applied to options by Du, 2008). Another
promising avenue is heterogeneity across agents. Certainly there is clear evidence of imper-
fect risk-sharing across individuals and good reason to suspect that this might affect asset
prices. Alvarez, Atkeson, and Kehoe (2009), Bates (2008), Chan and Kogan (2002), Guve-
nen (2009), and Lustig and Van Nieuwerburgh (2005) are notable examples. The question
for us is whether these extensions provide a persuasive explanation for prices of equity index
options.

Another interesting extension is time-dependence. There’s overwhelming evidence that
short-term interest rates, implied volatilities, and expected returns on a variety of assets
change through time. None of this is consistent with our iid setting. The question is
whether time-dependence is quantitatively important in assessing the role of extreme events,
particularly their impact on the entropy of the pricing kernel. It’s possible the role is small.
We know, for example, that the variance of the conditional mean of the pricing kernel is much
less than the mean conditional variance; see Cochrane and Hansen (1992, Section 2.7). A
similar relation holds for entropy. Nevertheless, recent work by Drechsler and Yaron (2008)
and Wachter (2008) suggest that time-variation in the distribution over extreme events can
be quantitatively important for asset pricing.

The third extension is to loosen the link between dividends and consumption. We’ve
followed a long tradition in tying dividends to consumption. The tradition is largely a
matter of convenience, because it’s simpler to have one random variable rather than two.
Our focus on the pricing kernel and its entropy reinforces this message, since neither depends
on the dividend process. Nevertheless, the work of Bansal and Yaron (2007), Gabaix (2009),
and Longstaff and Piazzesi (2004) suggests that this extension has promise in accounting
for the behavior of equity prices and returns.
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A Appendix

A.1 The Alvarez-Jermann bound

The Alvarez-Jermann bound (3) is a byproduct of Proposition 2 in Alvarez and Jermann
(2005). The proof goes like this:

• Bound on mean log return. Since log is a concave function, Jensen’s inequality and
the unconditional version of the pricing relation (1) imply that for any positive return
r,

E log m + E log r ≤ log(1) = 0,

with equality if and only if mr = 1. Therefore no asset has higher expected (log)
return than the inverse of the pricing kernel:

E log r ≤ −E log m. (27)

In finance, the asset with this return is sometimes called the “growth optimal portfo-
lio.” We call it the “high-return asset.”

• Short rate. A one-period (risk-free) bond has price q1
t = Etmt+1, so its return is

r1
t+1 = 1/Etmt+1.

• Entropy of the one-period bond price. With the bound in mind, our next step is to
express E log r1 in terms of unconditional moments. The entropy of the one-period
bond price does the trick:

L(q1) = log Eq1 − E log q1 = log Em + E log r1. (28)

• Alvarez-Jermann bound. (27) and (28) imply

L(m) ≥ E
(
log rj − log r1

)
+ L(q1).

Inequality (3) follows from L(q1) ≥ 0 (entropy is nonnegative). In practice, L(q1) is
small; in the iid case, it’s zero.

We find the loglinear perspective of the Alvarez-Jerman bound convenient, but the familiar
Hansen-Jagannathan bound also depends (implicitly) on high-order cumulants of logm.
The bound is

Var(m)1/2/Em ≥ E
(
rj − r1

)
/Var(rj − r1)1/2,
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where the expression on the right is the Sharpe ratio. The bound depends on

Em = E
(
elog m

)
= ek(1)

Var(m) = E(m2)− (Em)2 = ek(2) − e2k(1),

where k(s) is the cumulant generating function of log m. Because k(s) depends on the
high-order cumulants of log m, the bound does, too. The squared Sharpe ratio is bounded
above by

Var(m)/E(m)2 = ek(2)−2k(1) − 1.

If the cumulants are small (true for a small enough time interval), this is approximately
k(2)− 2k(1). Expressed in similar form, entropy is k(1)− k′(0).

A.2 Entropy and cumulants of Bernoulli random variables

We derive the entropy and cumulants of a Bernoulli random variable, as in Section 3. Let z
take on the values 0 and 1 with probabilities 1−ω and ω. Entropy follows from its definition
(2):

L(ez) = log
(
1− ω + ωe1

)− ω.

Cumulants can be used to quantify the contribution of specific terms. The cumulant-
generating function for w is

k(s) = log Eesz = log(1− ω + ωes).

Cumulants are derivatives evaluated at s = 0: κj = k(j)(0). The derivatives

k(1)(s) = e−k(s)ωes

k(2)(s) = k(1)(s)[1− k(1)(s)]
k(3)(s) = k(2)(s)[1− 2k(1)(s)]
k(4)(s) = k(3)(s)[1− 2k(1)(s)]− 2[k(2)(s)]2

k(5)(s) = k(4)(s)[1− 2k(1)(s)]− 6k(2)(s)k(3)(s)

imply the cumulants

κ1 = ω

κ2 = κ1(1− κ1) = ω(1− ω)
κ3 = κ1(1− κ1)(1− 2κ1) = ω(1− ω)(1− 2ω)
κ4 = κ3(1− 2κ1)− 2(κ2)2 = ω(1− ω)(6ω2 − 6ω + 1)
κ5 = κ4(1− 2κ1)− 6κ2κ3 = ω(1− ω)(1− 2ω)(12ω2 − 12ω + 1).

It’s evident that odd moments come from ω 6= 1/2. The example in Section 3 is the same
random variable multiplied by θ.
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A.3 Entropy and cumulants of Poisson-normal mixtures

We’ll look at a Poisson-normal mixture shortly, but it’s useful to start with a Poisson
random variable z that equals j with probability e−ωωj/j! for j = 0, 1, 2, . . .. Recall that
the power series representation of the exponential function is

eω =
∞∑

j=0

ωj/j!,

which ensures that the probabilities sum to one. The moment-generating function is

h(s) =
∞∑

j=0

e−ωωj/j!esj =
∞∑

j=0

e−ω(ωes)j/j! = exp[ω(es − 1)].

The cumulant-generating function is therefore

k(s) = log h(s) = ω(es − 1).

Cumulants follow directly.

The Poisson-normal mixture has a similar structure. Conditional on j, z is normal with
mean jθ and variance jδ2. The conditional moment-generating function is exp[(sθ +
s2δ2/2)j]. The mgf for the mixture is the probability-weighted average,

h(s) =
∞∑

j=0

e−ωωj/j! exp[(sθ + s2δ2/2)j] = exp
(
ω(esθ+(sδ)2/2 − 1)

)
,

which implies the cgf

k(s) = ω
(
esθ+(sδ)2/2 − 1

)
.

The same approach can be used for jumps with any distribution. If we set θ = 1 and δ = 0,
we get the cgf of the original Poisson.

We find cumulants the usual way, taking derivatives of k. The first five are

κ1 = ωθ

κ2 = ω(θ2 + δ2)
κ3 = ωθ(θ2 + 3δ2)
κ4 = ω(θ4 + 6θ2δ2 + 3δ4)
κ5 = ωθ(θ4 + 10θ2δ2 + 15δ4).

Here you can see that the sign of the odd moments is governed by the sign of θ. Negative
odd cumulants evidently require θ < 0.
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A.4 Equity premium and cumulants with power utility

Most of our analysis is loglinear, which allows us to express asset prices and returns as
functions of cumulant-generating functions of (say) the log of consumption growth. The
notation is a little obscure, but it’s wonderfully compact. The idea and many of the results
follow Martin (2008).

Let’s start with the short rate. A one-period risk-free bond sells at price q1
t = Etmt+1 and

has return r1
t+1 = 1/q1

t = 1/Etmt+1. In the iid case, the short rate is constant and equals

log r1 = − log E(m)

= − log β − log E
(
e−α log g

)
= − log β − k(−α; log g).

The second equality is based on the definition of the pricing kernel, equation (13). The last
one follows from the definition of the cumulant-generating function k, equation (4).

We now turn to equity, defined as a claim to a dividend process dt = cλ
t . If the price-dividend

ratio on this claim is qe, the return is

re
t+1 = gλ

t+1(1 + qe
t+1)/qe

t .

In the iid case, qe is constant. The pricing relation (1) and our power utility pricing kernel
(13) then imply

qe/(1 + qe) = E
(
βgλ−α

)
= βE

(
e(λ−α) log g

)
.

Thus we have, in compact notation,

log [qe/(1 + qe)] = log β + k(λ− α; log g)
log re

t+1 = λ log gt+1 − log β − k(λ− α; log g)
log r1

t+1 = − log β − k(−α; log g)
log re

t+1 − log r1
t+1 = λ log gt+1 + k(−α; log g)− k(λ− α; log g).

The equity premium is therefore

E
(
log re

t+1 − log r1
t+1

)
= λκ1(log g) + k(−α; log g)− k(λ− α; log g)

= L(e−α log g)− L(e(λ−α) log g)

=
∞∑

j=2

κj(log g)[(−α)j − (λ− α)j ]/j!.

The second line follows because the first-order cumulants cancel. The third is the usual
cumulant expansion of entropy. They tell us that the equity premium is the entropy of
the pricing kernel minus a penalty (entropy must be positive). It hits its maximum when
λ = α, in which case equity is the high return asset.
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A similar approach reveals the connection between true and risk-neutral cumulants of log
consumption growth log g = w (w because it’s easier to type). The cumulant generating
function for the true distribution is

k(s) = log E (esw) .

The pricing kernel is m(w) = βe−αw, which implies q1 = βk(−α). Risk-neutral probabilities
are p∗(w) = p(w)m(w)/q1 = p(w)e−αw/k(−α) . The cumulant generating function is
therefore

k∗(s) = k(s− α)− k(−α).

This is a standard math result. We find its cumulants by differentiating:

κ∗n =
∞∑

j=0

κn+j(−α)j/j!.

Note, for example, that risk-neutral cumulants depend on higher-order true cumulants.
Positive excess kurtosis, for example, reduces risk-neutral skewness.

A.5 Cumulant-generating functions based on risk-neutral probabilities

We derive the salient features of models in which the true and risk-neutral distributions are
Poisson mixtures of normals with different parameters.

We start with a normal example that serves as a component of the Poisson mixture. Let the
log return follow (25), where z = 0 and w has true distribution of N (µ, σ2) and risk-neutral
distribution N (µ∗, σ∗2). The density functions are

p(w) = (2πσ2)−1/2 exp[−(w − µ)2/2σ2]
p∗(w) = (2πσ∗2)−1/2 exp[−(w − µ∗)2/2σ∗2].

This differs from our earlier examples in allowing the variance to differ between the two
distributions. In continuous time, σ∗ = σ is needed to assure absolute continuity of the true
and risk-neutral probability measures with respect to each other. In discrete time, there is
no such requirement; see, for example, Buhlmann, Delbaen, Elbrechts, and Shiryaev (1996).
The risk-neutral pricing relation (8) implies µ∗ + σ∗2/2 = 0.

We can derive all of the relevant properties from these inputs. The log probability ratio is

log[p∗(w)/p(w)] = (1/2) log ϕ + [(w − µ)2 − ϕ(w − µ∗)2]/2σ2,
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where ϕ = σ2/σ∗2 > 0. The moment-generating function of the log probability ratio is

h(s; log p∗/p) = E
(
es log p∗/p

)

=
∫ ∞

−∞
p∗(w)sp(w)1−sdw

= (2πσ2)−1/2ϕs/2

∫ ∞

−∞
exp{−[(1− s)(w − µ)2 + sϕ2(w − µ∗)2]/2σ2}dw

= ϕs/2[1− s(1− ϕ)]−1/2 exp
(

s(s− 1)(µ∗ − µ)2

2σ∗2[1− s(1− ϕ)]

)

for 1 − s(1 − ϕ) > 0 (automatically satisfied if s = 0 or s = 1). The last line follows from
completing the square. Thus the cumulant-generating function is

k(s; log p∗/p) = (s/2) log ϕ− (1/2) log[1− s(1− ϕ)] +
(

s(s− 1)(µ∗ − µ)2

2σ∗2[1− s(1− ϕ)]

)
.

Entropy is minus the first derivative evaluated at zero:

− κ1(log p∗/p) = (1/2)[log ϕ + 1− ϕ] + (µ− µ∗)2/2σ∗2. (29)

If ϕ = 1 (σ∗ = σ), we have

k(s; log p∗/p) = s(s− 1)(µ∗ − µ)2/2σ2,

and the only nonzero cumulants are the first two. Otherwise, high-order cumulants are
generally nonzero.

Now let’s ignore the normal component and focus on z. Both the true and risk-neutral
distributions have Poisson arrivals and normal jumps, but the parameters differ. Conditional
on a number of jumps j, the density functions are

p(z|j) = e−ωωj/j! · (2πjδ2)−1/2 exp[−(zj − jθ)2/(2jδ2)]

p∗(z|j) = e−ω∗ω∗j/j! · (2πjδ∗2)−1/2 exp[−(zj − jθ∗)2/(2jδ∗2)].

The moment generating function for log p∗/p is

h(s; log p∗/p) =
∞∑

j=0

e−ωωj/j!
[
es(ω−ω∗)+js log(ω∗/ω)h(s; z)j

]
.

Using (29) we have

h(s; z) = ϕs/2[1− s(1− ϕ)]−1/2 exp
(

s(s− 1)(θ∗ − θ)2

2δ∗2[1− s(1− ϕ)]

)
,

where ϕ = δ2/δ∗2. Therefore the cumulant-generating function is

k(s; log p∗/p) = s(ω − ω∗)

+ ω

[
(ω∗/ω)sϕs/2[1− s(1− ϕ)]−1/2 exp

(
s(s− 1)(θ∗ − θ)2

2δ∗2[1− s(1− ϕ)]

)
− 1

]
.

26



Entropy is minus the first derivative evaluated at zero:

− κ1(log p∗/p) (30)
= (ω∗ − ω) + ω[log(ω/ω∗)− 1/2 · log ϕ + 1/2 · (ϕ− 1)] + ω(θ − θ∗)2/2δ∗2.

Because the normal and Poisson mixture components are independent, their cumulant-
generating functions are additive. Therefore, the entropy for the full model is the sum of
the entropy of the normal case [equation (29) with ϕ = 1] and the entropy of the Poisson
mixture of normals [equation (30)].

A.6 Risk aversion implied by the Merton model

We compute risk aversion as:

RA = −∂ log(p∗/p)
∂ log g

= −∂ log(p∗/p)
∂ log re

· ∂ log re

∂ log g

=
(

1
p
· ∂p

∂ log re
− 1

p∗
· ∂p∗

∂ log re

)
· λ.

Given the normal distribution of jumps, the density conditional on the number of jumps j
is

p(log re, j) = e−ωωj/j! · [2π(σ2 + jδ2)]−1/2 exp
{−(log re − µ− jθ)2/[2(σ2 + jδ2)]

}
.

The (marginal) density for log-returns is

p(log re) =
∞∑

j=0

p(log re|j)p(j) =
∞∑

j=0

p(log re, j).

Therefore,

∂p(log re)
∂ log re

= −
∞∑

j=0

p(log re, j) · (log re − µ− jθ)/(σ2 + jδ2).

A similar expression holds for the risk-neutral distribution.

As a result, implied risk aversion is

RA/λ =
1∑∞

j=0 p∗(log re, j)

∞∑

j=0

p∗(log re, j) · (log re − µ∗ − jθ∗)/(σ2 + jδ∗2)

− 1∑∞
j=0 p(log re, j)

∞∑

j=0

p(log re, j) · (log re − µ− jθ)/(σ2 + jδ2). (31)

Note that RA is a function of the state through log re.
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Table 1
Properties of consumption growth and asset returns

Variable Mean Std Dev Skew Kurt Auto

Consumption and returns, 1889-2006
Consumption growth 0.0200 0.0353 –0.35 1.10 –0.07
Return on one-year bond 0.0182 0.0573 0.03 2.29 0.35
Return on equity 0.0622 0.1737 –0.50 0.18 0.04
Excess return on equity 0.0440 0.1748 –0.60 0.71 0.07
Consumption and returns, 1986-2006
Consumption growth 0.0186 0.0131 –0.59 –0.20 0.48
Return on one-year bond 0.0221 0.0190 –0.45 –0.68 0.41
Return on equity 0.0845 0.1470 –0.58 –0.52 0.15
Excess return on equity 0.0625 0.1397 –0.67 –0.58 0.17

Notes. Entries are sample moments. Mean is the sample mean, Std Dev is the standard
deviation, Skew is skewness, Kurt is excess kurtosis, and Auto is the first autocorrelation.
Consumption growth is log(ct/ct−1) where c is real per capita consumption. Returns are
logarithms of gross real returns and the excess return is the difference between the log-
returns on equity and the one-year bond. The one-year bond is the treasury security of
maturity closest to one year. Equity is the S&P 500. Consumption and return data are
from Shiller’s web site (Shiller, 2007).
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Table 2
Mean implied volatilities on S&P 500 options

Log of Ratio of Strike Price to Spot Price

Maturity –0.04 0.0 0.04

1 month 0.2157 0.1829 0.1653
3 months 0.2052 0.1865 0.1719
12 months 0.1959 0.1858 0.1761

Notes. Implied volatilities are derived from S&P 500 options. The data are annual, 1986-
2006, except for 12-month options, which start in 1991.
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Table 3
Target values for model economies

Property Value

Mean of log consumption growth, E log g 0.0200
Standard deviation of log consumption growth, Var(log g)1/2 0.0350
Equity premium, E(log re − log r1) 0.0440
Standard deviation of equity excess return, Var(log re − log r1)1/2 0.1500
Implied volatility (strike = price) 0.1800
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Table 4
Parameter values and properties of model economies

Normal Bernoulli Poisson Merton Implied
Cons Gr Cons Gr Cons Gr Returns Cons Gr

Parameter (1) (2) (3) (4) (5)

Preferences
α 10.52 6.59 5.38 — 10.07
True distribution
µ 0.0200 0.0230 0.0230 0.0832 0.0283
σ 0.0350 0.0183 0.0100 0.1377 0.0212
ω — 0.0100 0.0100 1.5120 1.3864
θ — –0.3000 –0.3000 –0.0259 –0.0060
δ — — 0.1500 0.0407 0.0229
Risk-neutral distribution
µ∗ 0.0071 0.0208 0.0225 0.0547 0.0238
ω∗ — 0.0680 0.0695 1.5120 1.5120
θ∗ — –0.4210 –0.4210 –0.0482 –0.0112
δ∗ — — 0.1500 0.0981 0.0229
Properties of distributions
γ1 (true) 0 –6.11 –11.02 –0.07 –0.31
γ2 (true) 0 50.26 145.06 0.05 0.87
γ∗1 (risk-neutral) 0 –3.15 –4.33 –0.32 –0.53
γ∗2 (risk-neutral) 0 8.72 20.20 0.46 0.91
γ1 (log m) 0 6.11 11.02 –0.08 0.31
γ2 (log m) 0 50.26 145.06 2.16 0.87
Tail prob (≤ −3 st dev) 0.0013 0.0100 0.0090 0.0040 0.0086
Tail prob (≤ −5 st dev) 0.0000 0.0100 0.0079 0.0000 0.0002
Entropy
L(m) = L(p∗/p) 0.0678 0.0478 0.0449 0.7647 0.0650

Notes. Entries are parameters and properties of examples with different specifications of
disasters. Columns (1)-(3) and (5) are consumption-based models in which log consumption
growth has a standard deviation of 0.0350 and risk aversion α is chosen to match the equity
premium (0.0440). Column (4) is the Merton model parameterized to option prices and
equity returns. Column (5) takes this model, scales the risk-neutral parameters to fit con-
sumption growth, and sets the true parameters by applying the relations implied by power
utility [equation (24)]. γ1 and γ2 are the traditional measures of standardized skewness
and excess kurtosis, defined in equation (5). We report versions for the true distribution of
log consumption growth or the log return on equity, the risk-neutral distribution, and the
distribution of the pricing kernel. Tail probabilities refer to the probabilities that log con-
sumption growth or the log return on equity are less than −3 and −5 standard deviations,
respectively, from their mean.
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Table 5
Contributions to entropy of the pricing kernel

High-Order Cumulants

Model Entropy Variance/2 Odd Even

Normal consumption growth
α = 2 0.0025 0.0025 0 0
α = 5 0.0153 0.0153 0 0
α = 10 0.0613 0.0613 0 0
α = 10.52∗ 0.0678 0.0678 0 0
Bernoulli consumption growth
α = 2 0.0029 0.0025 0.0004 0.0000
α = 5 0.0234 0.0153 0.0060 0.0021
α = 10 0.1614 0.0613 0.0621 0.0380
α = 10, θ = +0.3 (boom) 0.0372 0.0613 –0.0621 0.0380
α = 10, θ = −0.15, ω = 0.02 0.0765 0.0613 0.0115 0.0038
α = 6.59∗ 0.0478 0.0266 0.0147 0.0065
Poisson consumption growth
α = 2 0.0033 0.0025 0.0007 0.0002
α = 5 0.0356 0.0153 0.0132 0.0071
α = 10 0.5837 0.0613 0.2786 0.2439
α = 5.38∗ 0.0449 0.0177 0.0173 0.0099
Models fit to option prices
Merton equity returns 0.7647 0.4699 0.1130 0.1819
Implied consumption growth 0.0650 0.0621 0.0023 0.0006

Notes. Entries include entropy and its components for a variety of examples. Entropy is the
sum of contributions from the variance and odd and even high-order cumulants (those of
order j ≥ 3). An asterisk denotes a value of α that matches the observed equity premium.
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Figure 1
Bernoulli disasters: cumulants of log consumption growth and contribu-
tions to entropy
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Notes. The top panel summarizes the cumulants of log consumption growth, κj(log g).
The next two panels summarize their contributions to the entropy of the pricing kernel,
κj(log m) = (−α)jκj(log g)/j!, for risk aversion α equal to 2 and 10, respectively.
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Figure 2
Bernoulli disasters: entropy of the pricing kernel

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Risk Aversion α

E
nt

ro
py

 o
f P

ric
in

g 
K

er
ne

l L
(m

)

Alvarez−Jermann lower bound
normal

disasters

booms

37



Figure 3
Bernoulli disasters: entropy and the equity premium
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Figure 4
Poisson disasters: cumulants of log consumption growth and contributions
to entropy
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Figure 5
Poisson disasters: entropy and equity premium
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Figure 6
Implied volatility smiles for 3-month options
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Notes. The lines represent implied volatility “smiles” for the Merton model with estimated
parameters and some alternatives. Moneyness is measured as the difference of the return
from zero or, equivalently, the proportional difference of the strike from the price.
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Figure 7
Implied volatility smiles based on option and consumption data
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