Competition and Financial Stability

Franklin Allen
Department of Finance
Wharton School
University of Pennsylvania
Philadelphia, PA 19104
allenf@wharton.upenn.edu

Douglas Gale
Department of Economics
New York University
269 Mercer Street
New York, NY 10003
douglas.gale@nyu.edu

March 3, 2003

Abstract

Competition in the financial sector is more complex than in the rest of the economy. On the one hand, concentration in the banking industry reduces (static) efficiency as it does in any industry. On the other hand, concentration may also affect the stability of the banking industry in ways that have no counterpart in other industries. In this paper we consider a variety of models of competition and stability in the banking sector. We argue that the standard view that there is a trade-off between competition and financial stability often does not hold. For example, with general equilibrium models with incomplete contracts, or Schumpeterian models of innovation, efficiency requires both perfect competition and financial instability.

1 Introduction

The idea that there is a trade-off between the degree of competition in the banking sector and the degree of financial stability is a long standing one.1 In an important paper, Keeley (1990) provided a theoretical framework and empirical evidence that deregulation of the banking sector in the 1970’s and 1980’s had increased competition and led to a reduction in monopoly rents. This reduction in ‘charter value’ magnified the agency problem between bank owners and the government deposit insurance fund. The bank owners or managers acting on their behalf had an increased incentive to take on extra risk given the guaranteed funds available to them because of deposit insurance. Similarly to the agency problem pointed out by Jensen and Meckling (1976), if the gamble was successful the equity owners would obtain the rewards while if it was unsuccessful the cost would be born by the deposit insurance fund. The extra risk that banks took on as a result of this agency problem caused a dramatic increase in bank failures during the 1980’s compared to previous decades.

Various empirical studies have found that the cost of financial instability is high. For example, Hoggarth and Saporta (2001) find that the average fiscal costs of banking resolution across countries are 16\% of GDP. For emerging countries alone the figure is 17.5\% and for developed countries it is 12\%. As Table 1 shows, the costs of banking crises alone at 4.5\% of GDP are much lower than the costs when banking and currency crises occur together at 23\% of GDP.

There is a large literature on the efficiency of the banking industry (for a survey see, e.g., Berger and Humphrey (1997)). This literature is mostly concerned with the cost and profit efficiency of retail banking. For example, Canoy et al. (2001) summarize the evidence as suggesting that the average bank operates at a cost level that is 10 or 20 percent above the best-practices level. This is just one (probably small) part of the total costs of deviations from perfect competition. Unfortunately, the total costs of a deviation from perfect competition have not been documented as carefully as the costs of financial instability. Part of the problem is that it is not even clear what notion of competition should be used. One possibility is the standard industrial organization model of oligopoly where the costs result from a higher price and a reduction in output compared to the perfect competition ideal (see, e.g. Freixas and Rochet (1997)). However, other models of competition can easily lead to starkly different conclusions. For example, Allen and Gale (2000a, Chapter 8) show that in a model with small switching costs where people move from location to location, a unitary banking system with many separate banks can lead to the monopoly price being charged, while a branch banking with only two banks can lead to a perfectly competitive price being charged. Another important notion of competition would be Schumpeterian competition where banks compete by innovating and this gives them a temporary monopoly. Documenting the costs of deviation from this type of competition would be a difficult undertaking.

Given the lack of a full documentation of the costs of imperfect competition and the high costs of financial instability policymakers appear keen to avoid crises. Two points are in order

1See Canoy et al. (2001) and Carletti and Hartmann (2002) for excellent surveys of the literature on financial stability and competition.
concerning this bias to avoid crises. The first is that the costs measured in studies such as Hoggarth and Saporta (2001) are the fiscal costs of resolution. A large proportion of these measured costs are transfers rather than deadweight economic costs. The latter are likely to be significantly smaller. The second is that these costs occur infrequently, perhaps every few decades whereas the costs of deviations from competition occur each year. These arguments suggest that the bias towards stability and away from competition that is observed among many policymakers is inappropriate.

Ideally, what is required is a careful study of the true economic costs of financial instability and deviations from perfect competition. As a prelude to this it is important to understand the nature of different costs in a theoretical framework. The purpose of this paper is to sketch such a framework. Section 2 starts by developing a benchmark model based on that in Allen and Gale (2003a). The benchmark is a general equilibrium model of financial intermediaries and markets. Similarly to the standard Arrow-Debreu welfare analysis, Allen and Gale (2003a) show that perfect competition leads to efficiency. If financial markets are complete and contracts between intermediaries and their customers are complete then the allocation is incentive efficient. In this case competition is consistent with financial stability. If financial markets are complete but contracts are incomplete the relationship between competition and financial stability is changed in an important way. If intermediaries promise a fixed payment as in a bank deposit contract then the allocation is constrained efficient. The key point here is that financial instability is necessary for efficiency. If the banks cannot meet the fixed payments that they have promised there is a financial crisis. This is constrained efficient. A deviation from competition may increase financial stability but cannot increase and is likely to reduce welfare. This result illustrates starkly that there should be no presumption that there is a trade-off between competition and stability.

In order for there to be a trade-off between competition and financial stability, it is necessary that there be a market failure of some kind. The most commonly cited failure in this context is the agency problem stressed by Keeley (1990). However, even in this case the nature of the trade-off between competition and stability is more complicated than was first thought. Allen and Gale (2000a, Chapter 8), Boyd and De Nicolo (2002) and Perotti and Suarez (2003) have shown that in a dynamic context there are many effects present. In such cases it is possible to show in a number of different circumstances that increased competition can actually increase financial stability. Section 3 covers these issues.

Another important aspect of competition is spatial competition as in Hotelling-type models. As mentioned above, Allen and Gale (2000a, Chapter 8) show that when search costs are introduced a large number of unitary banks may lead to the same price being charged as if there was a monopolist. On the other hand a system with two banks with branches at each location can lead to the same outcome as in a standard model of perfect competition. Spatial competition introduces a rich variety of effects concerning regional diversification and risk sharing. Depending on the precise form of the competition the profitability of banks may vary considerably. As a result any trade-off between competition and financial stability may be significantly affected. Section 4 considers the implications of spatial competition.

Section 5 develops a model of Schumpeterian competition. This type of competition is
very different from the standard price and quantity competition. In this case firms compete by innovating. The firm that makes the best innovation manages to capture the whole market. It is shown that in this context perfect competition is again desirable and can lead to efficiency. The reason for this is that the bank with the most successful innovation will capture the whole market. This provides exactly the right incentives for innovation. Clearly, this kind of innovation process is not consistent with financial stability. A bank that is a successful innovator will survive while one that is unsuccessful will not. Again as in the benchmark model efficiency requires a combination of perfect competition and financial instability. If the government is concerned with financial stability it may ensure that banks survive by regulating entry in different regions. We consider a setting where banks are assured of a monopoly in their region and consider the incentives to innovate. It is shown that this enforced stability leads to a welfare loss as might be expected. Less obvious is the result that there may be too little or too much investment in innovation. There can be too little because each bank only obtains profits from its own region. There can be too much because the bank is assured of a return no matter what happens.

It is often argued that one of the most important aspects of financial instability is contagion. This occurs when some shock, possibly small, spreads throughout the financial system and causes a systemic problem. Allen and Gale (2000b) developed a model of contagion with a perfectly competitive banking sector. It was shown that a shock that was arbitrarily small relative to the economy as a whole could cause all the banks in the financial system to go bankrupt. The contagion spreads through the interbank market. Section 6 extends the Allen and Gale (2000b) model of contagion to allow for imperfect competition in the banking sector. It is shown that in this case the economy is not as susceptible to contagion as it is with perfect competition. Each oligopolistic bank realises that it’s actions affect the price of liquidity. By providing sufficient liquidity to the market they can ensure that contagion and their own bankruptcy are avoided.

Finally, Section 7 contains concluding remarks.

2 A benchmark model of competition and crises

There are three dates \(t = 0, 1, 2 \) and a single good at each date. The good is used for consumption and investment.

The economy is subject to two kinds of uncertainty. First, individual agents are subject to idiosyncratic preference shocks, which affect their demand for liquidity (these will be described later). Second, the entire economy is subject to aggregate shocks that affect asset returns and the cross-sectional distribution of preferences. The aggregate shocks are represented by a finite number of states of nature. All agents have a common prior probability density over the states of nature. All uncertainty is resolved at the beginning of date 1, when the aggregate state is revealed and each agent discovers her individual preference shock.

Each agent has an endowment of one unit of the good at date 0 and no endowment at dates 1 and 2. So, in order to provide consumption at dates 1 and 2, they need to invest.
There are two assets distinguished by their returns and liquidity structure. One is a short-term asset (the short asset), and the other is a long-term asset (the long asset). The short asset is represented by a storage technology: one unit invested in the short asset at date \(t = 0 \) yields a return of one unit at date \(t + 1 \). The long asset yields a return after two periods. One unit of the good invested in the long asset at date 0 yields a random return of more than 1 unit of the good that depends on the aggregate state at date 2.

Investors’ preferences are distinguished ex ante and ex post. At date 0 there is a finite number \(n \) of types of investors, indexed by \(i = 1, \ldots, n \). We call \(i \) an investor’s ex ante type. An investor’s ex ante type is common knowledge and hence contractible.

While investors of a given ex ante type are identical at date 0, they receive a private, idiosyncratic, preference shock at the beginning of date 1. The date 1 preference shock is denoted by \(\theta_i \in \Theta_i \), where \(\Theta_i \) is a finite set. We call \(\theta_i \) the investor’s ex post type. Because \(\theta_i \) is private information, contracts cannot be explicitly contingent on \(\theta_i \).

Investors only value consumption at dates 1 and 2. An investor’s preferences are represented by a von Neumann-Morgenstern utility function, \(u_i(c_1, c_2; \theta_i) \), where \(c_t \) denotes consumption at date \(t = 1, 2 \). The utility function \(u_i(\cdot; \theta_i) \) is assumed to be concave, increasing, and continuous for every type \(\theta_i \). Diamond and Dybvig (1983) assumed that consumers were one of two ex post types, either early diers who valued consumption at date 1 or late diers who valued consumption at date 2. This is a special case of the preference shock \(\theta_i \).

The present framework allows for much more general preference uncertainty. Allen and Gale (2003a) assume first that financial institutions take the form of general intermediaries. Each intermediary offers a single contract and each ex ante type is attracted to a different intermediary. Contracts are contingent on the aggregate states \(\eta \) and individuals’ reports of their ex post types, subject to incentive compatibility constraints.

One can, of course, imagine a world in which a single “universal” intermediary offers contracts to all ex ante types of investors. A universal intermediary could act as a central planner and implement the first-best allocation of risk. There would be no reason to resort to markets at all. Our world view is based on the assumption that transaction costs preclude this kind of centralized solution and that decentralized intermediaries are restricted in the number of different contracts they can offer. This assumption provides a role for financial markets in which financial intermediaries can share risk and obtain liquidity.

At the same time, financial markets alone will not suffice to achieve optimal risk sharing. Because individual economic agents have private information, markets for individual risks are incomplete. The markets that are available will not achieve an incentive-efficient allocation of risk. Intermediaries, by contrast, can offer individuals incentive-compatible contracts and improve on the risk sharing provided by the market.

In the Diamond and Dybvig (1983) model, all investors are ex ante identical. Consequently, a single representative bank can provide complete risk sharing and there is no need for markets to provide cross-sectional risk sharing across banks. Allen and Gale (1994) showed that differences in risk and liquidity preferences can be crucial in explaining asset prices. This is another reason for allowing for ex ante heterogeneity.

In the context of general intermediaries with complete markets and complete contracts
Allen and Gale (2003a) show the following result holds.

Proposition 1 Under standard assumptions, an intermediated equilibrium exists and the allocation is incentive-efficient.

For Proposition 1 intermediaries use general, incentive-compatible contracts. In reality, we do not observe such complex contracts. There are many reasons for this which are well documented in the literature. These include transaction costs, asymmetric information and the nature of the legal system. These kinds of assumption can justify the use of debt and many other kinds of contracts that intermediaries use in practice. Since we are interested in developing a general framework we do not model any specific justification for incomplete contracts. Instead we assume that the contract incompleteness can take any form and prove results that hold for any type of incomplete contract.

With complete contracts, intermediaries can always meet their commitments. Default cannot occur. Once contracts are constrained to be incomplete, then it may be optimal for the intermediary to default in some states. In the event of default, it is assumed that the intermediary’s assets, including the Arrow securities it holds, are liquidated and the proceeds distributed among the intermediary’s investors. For markets to be complete, which is an assumption we maintain here, the Arrow securities that the bank issues must be default free. Hence, we assume that these securities are collateralized and their holders have priority. Anything that is left after the Arrow securityholders have been paid off is paid out pro rata to the depositors. Allen and Gale (2003a) demonstrate the following result for the case when contracts are incomplete and take the form of deposit contracts.

Proposition 2 Under standard assumptions a banking equilibrium exists and the allocation is constrained-efficient.

This is an important result. It shows that, in the presence of complete markets and perfect competition, the incidence of default is optimal in a laisser-faire equilibrium. There is no scope for welfare-improving government intervention to prevent financial crises. In fact competition and financial instability are both necessary for constrained efficiency.

This result demonstrates that in a standard framework there is no trade-off between competition and financial stability. As we will see below this result extends to a number of other circumstances.

3 Agency costs

Keeley (1990) developed a simple model of risk taking by banks with two dates and two states when there is deposit insurance. He showed that as competition increased risk taking by banks also increased. In fact deposit insurance is not necessary for this effect to be present although it does exacerbate it. Allen and Gale (2000a, Chapter 8) develop a simple model of competition and risk taking to illustrate this.
When firms are debt-financed, managers acting in the shareholders’ interests have an incentive to take excessive risks, because the debtholders bear the downside risk while the shareholders benefit from the upside potential. This well known problem of risk shifting is particularly acute in the banking sector where a large proportion of the liabilities are in the form of debt (deposits). The risk-shifting problem is exacerbated by competition. Other things being equal, greater competition reduces the profits or quasi-rents available to managers and/or shareholders. As a result, the gains from taking excessive risks become relatively more attractive and this increases the incentive to exploit the non-convexity in the payoff function. Any analysis of the costs and benefits of competition has to weigh this effect against the supposed efficiency gains of greater competition.

To illustrate these ideas, consider the problem faced by a banking regulator who controls entry into the banking industry by granting charters to a limited number of banks. We use a model of Cournot competition, in which banks choose the volume of deposits they want, subject to an upward sloping supply of funds schedule. Having more banks will tend to raise the equilibrium deposit rate and increase the tendency to shift risks. What is the optimal number of charters? Should the regulator restrict competition by granting only a few charters or encourage competition by granting many?

3.1 A Static Model

Suppose that the regulator has chartered n banks, indexed $i = 1, ..., n$.

Each bank chooses a portfolio consisting of perfectly correlated risks. This assumption is equivalent to assuming that the risk of each investment can be decomposed into a common component and a purely idiosyncratic component. If there is a very large number of investments, the purely idiosyncratic components can be pooled perfectly. Then the idiosyncratic risks disappear from the analysis and we are left with a common component representing the systematic risks.

A portfolio is characterized by its size and rate of return. The bank’s investments have a two-point return structure: for each dollar invested, bank i will receive a return y_i with probability $p(y_i)$; with probability $(1 - p(y_i))$ they pay a return 0. The bank chooses the riskiness of its portfolio by choosing the target return y_i on its investments. The function $p(y_i)$ is assumed to be twice continuously differentiable and satisfies

$$p(0) = 1, p(\bar{y}) = 0, \quad p'(y_i) < 0, p''(y_i) \leq 0, \forall 0 < y_i < \bar{y}.$$

The higher the target return, the lower the probability of success and the more rapidly the probability of success falls. Because the investments have perfectly correlated returns, the portfolio return has the same distribution as the returns to the individual investments.

Let $d_i \geq 0$ denote the total deposits of bank i, which is by definition the total number of dollars the bank has to invest. (For the moment, we ignore bank capital). There is an upward sloping supply-of-funds curve. If the total demand for deposits is $D = \sum_i d_i$, then the opportunity cost of funds is $R(D)$, where $R(D)$ is assumed to be a differentiable function
satisfying
\[R'(D) > 0, R''(D) > 0, R(0) = 0 \text{ and } R(\infty) = \infty. \]

We assume that all deposits are insured, so the supply of funds is independent of the riskiness of the banks’ portfolios. Deposit insurance is modelled further below.

The payoff to bank \(i \) is a function of the riskiness of its own portfolio and the demand for deposits of all the banks:

\[
\pi_i(y, d) = p(y_i)[y_id_i - R(D)d_i],
\]

where \(d = (d_1, ..., d_n) \) and \(y = (y_1, ..., y_n) \). Note that we have ignored the cost of deposit insurance to the bank in calculating its net return.

Since a bank can always ensure non-negative profits by choosing \(d_i = 0 \), it will always earn a non-negative expected return in equilibrium, that is, \(y_id_i - R(D)d_i \geq 0 \). There is no need to introduce a separate limited-liability constraint.

In a Nash-Cournot equilibrium, each bank \(i \) chooses an ordered pair \((y_i, d_i)\) that is a best response to the strategies of all the other banks. Consider an equilibrium \((y, d)\) in which each bank \(i \) chooses a strictly positive pair \((y_i, d_i) \gg 0 \). As a necessary condition for a best response, this pair must satisfy the following first-order conditions:

\[
p(y_i)[y_i - R(D) - R'(D)d_i] = 0
\]
\[
p'(y_i)[y_i - R(D)]d_i + p(y_i)d_i = 0.
\]

Assuming the equilibrium is symmetric, that is, \((y_i, d_i) = (y, d)\) for every \(i \), the first-order conditions reduce to

\[
y - R(nd) - R'(nd)d = 0
\]
\[
p'(y)[y - R(nd)] + p(y) = 0
\]

and this implies that

\[
-\frac{p'(y)}{p(y)} = y - R(nd) = R'(nd)d.
\]

Given our assumptions on \(p(y) \), an increase in \(y \) reduces \(-p(y)/p'(y)\). Suppose that there are two symmetric equilibria, \((y, d)\) and \((y', d')\). Then \(y > y' \) implies that \(R'(nd)d < R'(nd')d' \), which, given our assumptions on \(R(D) \), implies that \(d < d' \) and \(R(nd) < R(nd') \). Then clearly \(y - R(nd) > y' - R(nd') \), contradicting the first equation. So there is at most one solution to this set of equations, which determines both the size and the riskiness of the banks’ portfolio in a symmetric equilibrium.

Proposition 3 Under the maintained assumptions, there is at most one symmetric equilibrium \((y^*, d^*) \gg 0 \) which is completely characterized by the conditions

\[
-\frac{p(y)}{p'(y)} = y - R(nd) = R'(nd)d.
\]
What can we now say about the effect of competition on risk taking?

Suppose that we identify the degree of competitiveness of the banking sector with the degree of concentration. In other words, the larger the number of banks, the more competitive the banking sector is. So a first attempt at answering the question would involve increasing \(n \) ceteris paribus and observing how the riskiness of the banks’ behavior changes.

With a fixed supply-of-funds schedule \(R(\cdot) \) it is most likely that the volume of deposits will remain bounded as \(n \) increases. More precisely, if we assume that \(R(D) \to \infty \) as \(D \to \infty \) then it is clear that \(D \to \infty \) is inconsistent with equilibrium and this implies that \(d \to 0 \) as \(n \to \infty \). This in turn implies that \(R'(nd)d \to 0 \) from which it immediately follows that \(y - R(nd) \to 0 \) and \(p(y) \to 0 \), or in other words, that \(y \) and \(R(nd) \) both converge to \(\bar{y} \).

Proposition 4 If \(R(D) \to \infty \) then in any symmetric equilibrium, \(y - R(nd) \to 0 \) and \(y \to \bar{y} \) as \(n \to \infty \).

The effect of increasing competition is to make each bank much smaller relative to the market for funds and this in turn reduces the importance of the price effect (the \(R'(nd)d \) term) in the bank’s decision. As a result, banks behave more like perfect competitors and will increase their business as long as profits are positive. Equilibrium then requires that profits converge to zero, and this in turn implies that banks have extreme incentives for risk taking. In the limit as \(n \to \infty \), they will choose the riskiest investments possible in an attempt to earn a positive profit.

3.1.1 The Effect of Replicating the Market

This exercise is enlightening but somewhat artificial since it assumes that we are dealing with a market of fixed size and increasing the number of banks without bound in order to achieve competition. Normally, one thinks of perfect competition as arising in the limit as the number of banks and consumers grows without bound. One way to do this is to replicate the market by shifting the supply-of-funds function as we increase the number of banks. Precisely, suppose that the rate of return on deposits is a function of the deposits \(\text{per bank} \):

\[
R = R(D/n).
\]

In effect, we are assuming that, as the number of banks is increased, the number of depositors is increased proportionately, so that the supply of funds in relation to a particular bank is unchanged.

The effect of this change in the model is to make it more like the traditional model of a market in which, as the number of firms increases, the effect of any firm supply on the price of the product becomes vanishingly small. Here the effect of any bank’s demand for deposits on the equilibrium deposit rate becomes vanishingly small in the limit as the number of banks becomes unboundedly large. To see this, note that the first-order conditions become:

\[
y - R(d) - R'(d)dn^{-1} = 0
\]
and
\[p'(y)[y - R(d)] + p(y) = 0. \]

As before, we can ensure that \(d \) remains bounded as \(n \to \infty \) by assuming that \(R(d) \to \infty \) as \(n \to \infty \). Then the last term on the left hand side of the first equation will vanish as \(n \to \infty \), leaving a limiting value of \((y, d)\) that satisfies \(y = R(d) \). Substituting this in the second equation tells us that \(p(y) = 0 \). In other words, as the number of banks increases, the profit margins fall to zero, with the result that banks choose riskier and riskier investments.

Proposition 5 If \(R(D) \to \infty \) then in any symmetric equilibrium, \(y - R(d) \to 0 \) and \(y \to \bar{y} \) as \(n \to \infty \).

This is a highly stylized model, so the results have to be taken with a grain of salt; nonetheless, they illustrate clearly the operative principle, which is that competition, by reducing profits, encourages risk taking.

In this particular case, we have constant returns to scale in banking, so that in the limit, when there is a large number of individually insignificant banks, profits must converge to zero. In other words, banks will expand the volume of their deposits and loans until the deposit rate approaches the expected return on investments. But this gives them an extreme incentive to shift risks to the depositors or the deposit insurance agency, since it is only by doing so that they can get positive profits at all.

With constant returns to scale, zero profits is always a necessary condition of equilibrium in a competitive industry. However, there are other ways of ensuring the same outcome even if constant returns to scale is not assumed. We replicated the market by increasing the number of banks and potential depositors in the same proportion. This is an interesting thought experiment, but it is not the same as the comparative static exercise the regulator is undertaking. Presumably, the regulator has to choose \(n \) optimally, taking as given the supply-of-funds schedule. Suppose that \(m \) is the number of depositors and \(n \) the number of banks. Then the market supply-of-funds schedule can be written \(R(D/m) \) if \(R(\cdot) \) is the individual supply-of-funds schedule. When \(m \) is very large, the supply of funds is elastic, other things being equal, so the banks will take the marginal cost of funds as being equal to the average cost \(R(D/m) \). However, increasing the number of banks \(n \) in relation to \(m \) will force profits down. If \(d \) remains bounded away from zero, the average cost of funds must increase to \(\infty \) and if \(d \) goes to zero, profits will also go to zero. In this way, the regulator can achieve the effects of free entry, but there is no need to do this in order to ensure competition. Competition, in the sense of price-taking behavior, follows from having a large market, that is, a large value of \(m \), independently of whether \(n \) is large or not. Clearly, the regulator does not want to drive profits to zero if it can be helped, because of the incentives for risk taking that that creates.

3.1.2 Deposit Insurance

The preceding analysis assumes that all deposits are insured and that the costs are not born by the banks. This is clearly unrealistic, so it makes sense to consider explicitly the cost
of deposit insurance. We assume that the premium for deposit insurance is set before the banks choose their strategies and that it is the same for each bank, independently of the strategy chosen. In equilibrium, the premium accurately reflects the cost of deposit insurance provided by a risk neutral insurer.

Let \(\pi \) denote the premium per dollar of deposits. Then the objective function of bank \(i \) is
\[
P(y_i)(y_i - R(D) - \pi)d_i
\]
and the first-order conditions in a symmetric equilibrium in which banks choose the strategy \((y, d)\) will be:
\[
y - R(d) - \pi - R'(d)dn^{-1} = 0
\]
\[
p'(y)[y - R(d) - \pi] + p(y) = 0.
\]
In equilibrium, the premium must be set so that the expected return on deposits is equal to the return demanded by depositors:
\[
R(d) = p(y)(R(d) + \pi).
\]
Substituting \(\pi = [(1 - p(y))/p(y)]R(d) \) into the first-order conditions yields
\[
y - R(d)/p(y) - R'(d)dn^{-1} = 0
\]
\[
p'(y)[y - R(d)/p(y)] + p(y) = 0.
\]
Let \((y^n, d^n)\) be a symmetric equilibrium when there are \(n \) banks and suppose that \((y^n, d^n) \rightarrow (y^0, d^0)\) as \(n \rightarrow \infty \). Then the first-order conditions imply that
\[
\lim_{n \rightarrow \infty} y^n - R(d^n)/p(y^n) = 0
\]
which is only possible if \(y^n \rightarrow \bar{y} \) and \(p(y^n) \rightarrow 0 \), as before.

3.1.3 Efficiency

Let us leave distributional questions on one side for the moment, although historically they have been at the center of the arguments for competition in banking, and suppose that the regulator is only interested in maximizing surplus. Reverting to the constant-returns-to-scale case, two necessary conditions for Pareto optimality are that the average cost of funds be equal to the expected value of investments, and that the expected return on investments should be a maximum:
\[
R(D/m) = p(y)y
\]
\[
p(y)y \geq p(y')y', \forall y' \in [0, \bar{y}].
\]
Neither of these conditions will hold in equilibrium when \(m \) and \(n \) are very large. The first condition requires that the volume of deposits expand until the cost of funds equals the expected value of investments. However, when the market is highly competitive, we have \(y - R(D/m) \approx 0 \), so that \(p(y)y - R(D/m) < 0 \). As we also saw, the second condition cannot
be satisfied in equilibrium, since as the market grows large \((m, n \to \infty)\), we have \(y \to \bar{y} < \infty\) and \(p(y) \to 0\), so \(p(y)y \to 0\). This is not only sub-optimal but the worst possible outcome because it minimizes the total surplus.

Suppose instead that we hold the value of \(m\) fixed and adjust \(n\) to maximize total surplus, taking the equilibrium values \((y(n), d(n))\) as given functions of \(n\) determined by the equilibrium conditions
\[
y - R(nd/m) - R'(nd/m)dm^{-1} = 0
\]
and
\[
p'(y)[y - R(nd/m)] + p(y) = 0.
\]
A “small change” in \(n\) will increase the expected revenue by
\[
\{p'(y(n))y(n) + p(y(n))\}ny'(n) + p(y(n))y(n)
\]
and the cost by
\[
R(nd(n)/m)\{nd'(n) + d(n)\},
\]
so a necessary condition for an (interior) optimum is
\[
\{p'(y(n))y(n) + p(y(n))\}ny'(n) + p(y(n))y(n) = R(nd(n)/m)\{nd'(n) + d(n)\}.
\]
This can be rewritten as
\[
p(y(n))y(n) - R(nd(n)/m)d(n) = \{p'(y(n))y(n) + p(y(n))\}ny'(n) + R(nd(n)/m)nd'(n)
\]
where the left hand side is the expected surplus generated by a single bank and the right hand side is the change in expected revenue per bank as \(n\) increases plus the change in the cost per bank of the funds borrowed. Since the left hand side is positive, the right hand side must be positive, too. But we know that the second term on the right must be negative since adding more banks reduces the volume of business each bank does, so the first term on the right is positive. We know that \(y'(n)\) is negative—increased competition leads to increased risk taking—so the term in braces must be negative. Assuming that \(p(y)y\) is concave in \(y\), this tells us that \(n\) will be chosen so that \(y(n)\) is greater than the value that maximizes expected revenue.

On the other hand, it will not, as we have seen, be as great as the value under free entry, since it is never optimal to let \(n \to \infty\). It may in fact, be optimal to let the number of banks remain quite small.

3.2 Loan Market Competition

The simple model in Allen and Gale (2000a) focuses on competition in the deposit market. The problem the bank solves is a portfolio problem in the sense that asset prices and asset return distributions are taken as given. Boyd and De Nicolo (2002) point out that the focus on the deposit market is crucial for the results obtained concerning the trade-off between
competition and stability. They extend the Allen and Gale (2000a) model to consider the loan market as well. They specifically consider the optimal contracting problem between the bank and firms that borrow from it. They are able to show that in this case there as markets become more competitive the risk of bank failure declines. In other words competition and stability are consistent.

The reason that the results in the previous subsections are reversed is more competition in the loan market means lower rates. This means borrowing firms have less of an incentive to take risks and as a result the failure rate goes down. The effect of competition in the deposit market is the same as before but Boyd and De Nicolo are able to show that the loan market effect dominates. As competition between banks increases the risks taken by borrowers is unambiguously reduced and financial stability is improved.

3.3 Dynamic Competition

The results in Subsection 3.1 demonstrate how the limited liability of managers and shareholders in a modern banking corporation can produce a convex objective function which in turn leads to risk-shifting behavior. This kind of behavior is most likely to occur when the bank is “close to the water line”, that is, when the risk of bankruptcy is imminent. For banks which are not in immediate danger of bankruptcy, the risk-shifting argument may be less relevant. However, even if a bank is not near the water line, there may be other reasons for thinking that its objective function is convex. Consider, for example, the winner-takes-all nature of competition. When banks compete for market share, the bank that ends up with the largest share may be able to exploit its market power to increase profitability. In this case, the profit function may be convex in market share, that is, doubling market share may more than double profits. Another reason is the presence of increasing returns to scale. If larger banks have lower average costs, then profits will be a convex function of the size of the bank. Either of these possibilities will give the bank an incentive to take riskier actions, even when the bank is not in immediate danger of bankruptcy.

These incentives for risk-taking behavior are naturally studied in a dynamic context. Suppose that a group of banks are competing over time. Their activities are constrained by the minimum capital ratio, so the only way to expand is to acquire more capital. Because of agency costs or the adverse signaling effects, it may be expensive for banks to raise capital from external sources, so they try to accumulate capital by retaining earnings. The relative size of the bank matters, because it gives the bank a competitive edge over other banks. Because their reduced-form profit functions are convex and they are constrained by their capital, the game is a race to see who can accumulate capital or market share fastest.

When banks compete to capture greater market share or to reap economies of scale, they consider not only the effect of their actions on immediate profits but also on their future position in the market. How the bank’s current actions will affect its future position in the market depends on the nature of the risks involved and on the behavior of the other banks. Even if the profit function is only convex when the bank is close to the bankruptcy point, the bank’s objective function may be convex over a much wider region because the bank’s
objective function incorporates or discounts future possibilities which are still far away. This may influence the shape of the bank’s objective function globally, through backward induction.

Allen and Gale (2002a, Chapter 8) consider a variety of different models and effects. They show that risk taking can either be increased or decreased by competition in a dynamic setting.

Perotti and Suarez (2003) also consider the effect of dynamic competition in a model where there can be a duopoly or monopoly. They introduce the notion of a solvency shock where a bank is hit by a random shock that causes capital losses on lending to risky projects. This effect introduces an incentive for banks to be prudent and lend to safe projects. They will be less exposed to the risk of being driven out of business and will emerge as a monopolist if the other duopolist is hit by a solvency shock. This “last one standing effect” makes banks unambiguously more prudent and encourages stability.

These dynamic models illustrate how crucial the particular details of the model are in determining whether or not competition leads to more or less financial

4 Spatial competition

There are evidently a number of respects in which financial services are different from other commodities. Models which serve well to describe other industries may not be appropriate for the banking sector or, more generally, for the financial services sector. For the same reason, the nature of competition in banking may be different from other industries. Traditional opposition to concentration in banking is based on the twin fears of monopoly power and X-inefficiency, where the welfare analysis of these two problems has been based largely on models borrowed from the industrial organization literature, models which were intended to describe non-service industries.

In this section, we consider spatial models of competition in the banking sector which suggest that small banks may be less aggressively competitive than large banks. The first is from Allen and Gale (2000a). We then consider other Hotelling-type models of spatial competition where the results concerning the trade-off between competition and diversification are very sensitive to the particular assumptions made.

4.1 Unitary Banking versus Branch Banking

The model presented below exploits two types of imperfections arising from asymmetric information. The first is the presence of “lock-in” effects. Information is costly for both banks and their customers, whether borrowers or depositors, and once relationship-specific investments in information have been made, the parties may find themselves “locked-in” to the relationship. For example, a borrower having incurred a fixed cost of revealing its type to a bank, will suffer a loss if it switches to another bank. In addition there is the well known “lemons effect”, that arises if the borrower leaves the bank with which it has been doing business for many years. These lock-in effects will be modeled by simply assuming
that there is a fixed cost of switching banks. As is well known (see, e.g., Diamond (1971)),
switching costs give the bank a degree of monopoly power, even if the bank is not “large”.

There are other reasons why banks are monopolistic competitors. For locational reasons
their services are not perfect substitutes. Differences in size and products and specialized
knowledge also make them imperfect substitutes. Here, we focus on the lock-in effect.

The second essential imperfection arises from the fact that a bank’s customers have
incomplete information about the services offered by a bank and the prices at which these
services are offered, at the time when the relationship is begun. In fact, the smaller the bank
is, the less likely it is that the bank’s reputation will be an adequate source of information
about the quality and prices of the bank’s products.

A third important feature of this model is the fact that banks offer a variety of services.
The simplest example of this is the case of a bank with a large number of branches. Since
customers have different preferences over branch location, branches at different locations are
offering different services. This means that a bank with many branches is offering a bundle
of different services to their customers.

Location is not the only dimension along which banks differ, of course. They will offer
different menus of accounts, or concentrate on different types of lending business; they will
attract a different mix of retail or wholesale funds; they may diversify into non-bank products
such as insurance or mutual funds. Location is a convenient metaphor for these different
dimensions.

By exploiting these three features of the model, lock-in effects, limited information, and
product diversity, we can reverse the usual presumption that greater concentration leads to
more efficient outcomes.

4.1.1 The Model

There is a finite set of locations indexed by \(\ell = 1, \ldots, L \) and at each location there are
two banking offices \(j = 1, 2 \). Time is divided into an infinite number of discrete periods
\(t = 1, 2, \ldots \). There is a large number of individuals allocated exogenously to the different
locations. Each period, these individuals have a demand for a unit of banking services which
provides them with a surplus \(v \). The value of banking services to individuals is distributed
according to the distribution function \(F(v) \), that is, \(F(v) \) is the fraction of the population
with valuation less than or equal to \(v \).

At each date consumers are randomly assigned to a new location. They have an equal
probability of arriving at any location and we assume that the number of locations is so large
that the probability of returning to the same location is negligible and can be ignored. This
is an extreme assumption, to be sure, but it serves to eliminate inconvenient and apparently
unimportant complications. Each location is also assumed to receive a representative sample
of the different types of individuals so, whatever the number of individuals at a given location,
the distribution of types is \(F(v) \).

For simplicity, banks are assumed to have a zero marginal cost of providing banking
services. Profit is thus identical to revenue.
At each date, the market is assumed to clear as follows. First, the individuals who have gathered at a particular location choose which bank to patronize. They do this before they know the price that the bank will charge. Next, the bank sets the price for its product (the interest rate on loans or deposit accounts, or the fees for other bank services). Finally, the consumers make one of three choices: to purchase the current bank’s services at the quoted price, to switch to the other bank, whose price by now has been fixed, or to do without the services of a bank. There is a fixed cost $c > 0$ of switching from one banking office to the other.

We consider two limiting cases of bank organization. In the first, which we call *unitary banking*, each bank has a single branch. In other words, each banking office represents an independent bank. In the second case, which we call *branch banking*, there are only two banks, each owning one branch in each location. That is, all the banking offices are organized into two large networks. Regardless of the form of organization, we use the term banking office to denote the smallest unit of the bank, whether it constitutes the entire bank or a branch of a larger bank network.

Individuals are assumed to observe only what happens at their own bank in each period and, since they move to a different location in each period, they have no knowledge of the previous behavior of the bank they are patronizing in the current period. The banks themselves are assumed to condition their behavior in each location on their experience at the same location. This maintains an informational symmetry between the unitary and branch-banking forms of industrial organization, i.e., unitary banking and branch banking, since in each case only local information is being used to condition the (local) pricing decision.

4.1.2 Unitary Banking

In this form of industrial organization each bank consists of a single office. A bank sets the price of its product in each period to maximize the present value of profits. In the static version of this model, it is well known that the unique equilibrium involves each banking office choosing the monopoly price. More precisely, suppose that there is a unique price p_M such that

$$p_M(1 - F(p_M)) \geq p(1 - F(p)), \forall p.$$

A bank will clearly never want to charge more than p_M. If the two banks at some location happen to charge prices $p \leq p' \leq p_M$, where $p < p_M$, the bank charging p can always raise its price by ϵ without losing any customers, because of the fixed cost of switching. This will clearly increase its profits, so the only equilibrium is for both banking offices to charge p_M.

In a dynamic context things are generally more complicated, because of the possibility of supporting a different equilibrium by means of punishment strategies. Under the maintained assumptions, however, there is no possibility of using such strategies to increase the set of equilibria. Because individuals only observe what happens at their own locations and never return to the same location, nothing that a banking office does in the current period will be observed by individuals who will visit that location in the future. Further, since banks at other locations do not condition their behavior on what happens at this location, there is no
possibility of the bank’s future customers being indirectly informed of a deviation through another bank’s reaction to this bank’s current deviation. Our informational assumptions have effectively severed any possible feedback from a current change in price to a future change in demand, so the argument used in the static model continues to apply. We conclude, then, that the unique, subgame perfect equilibrium of the unitary banking game consists of each bank, in each location, charging the monopoly price \(p_M \) in every period. Consumers whose valuation \(v \) is greater than \(p_M \) will purchase banking services; those whose valuation is less than \(p_M \) will not. The equilibrium is inefficient for the usual reason: the monopoly price is too high and the monopoly quantity is too low.

4.1.3 Branch Banking

Now suppose that banking offices are formed into two large networks. Each bank has one branch in each of the locations. Although consumers move from location to location they can stay with the same bank if they wish. The possibility of staying with the same bank generates a plethora of other equilibria. We describe one such equilibrium to illustrate the possibilities.

In each period, at each location, half the customers patronize each of the banks. Along the equilibrium path, the banks charge a price \(p = \varepsilon > 0 \) in every period. If, in any period, one of the banking offices has deviated from the equilibrium strategy, all the customers will leave the bank that last deviated and henceforth patronize branches belonging to the other bank. The banks continue to charge the same price. If no bank deviated, but some of the customers deviated in the past, the banks continue to charge the same price and the customers continue to patronize the two banks equally. The profits (for a single banking office) from deviating last one period are less than or equal to \((p_M - \varepsilon)(1 - F(p_M)) \); on the other hand, it loses the profits from these customers in each future period until they all disappear from the game. Customers only last a finite number of periods, but if the number of locations is large, they will be around on average for a very long time. Each period, a fraction \(\ell^{-1} \) of the customers dies and is replaced. So the equilibrium profits lost by a single banking office’s deviation are equal to \(\varepsilon/(1 - \ell^{-1})(1 - \delta)(1 - F(\varepsilon)) \). For \(\delta \) sufficiently close to 1 and \(\ell \) sufficiently large, the profits from deviating are less than the profits of the equilibrium strategy. This shows that under branch banking, it is possible to support equilibria which are “more efficient” than the unique equilibrium in the case of unitary banking, where “more efficient” means that the sum of consumers’ and producers’ surplus is greater.

How should we interpret these results? The lock-in effects in the banking sector may be substantially greater than in most service industries and may be one of its distinguishing features. Small banks with a limited range of services and a limited geographical presence may have a greater incentive to exploit the lock-in effect than a large bank, because the large bank is always competing for the customer’s future business, in another product line or another location.
4.2 Spatial Competition and Diversification

We next consider another model of spatial competition in the tradition of Hotelling. It is shown that competition can be consistent with diversification and hence stability. However, the precise way in which this works depends crucially on the particular assumptions made.

Let locations be denoted by \(n = 0, \pm 1, \pm 2, ... \) and assume there is a single bank at each location. Identical individuals are uniformly distributed on the real line. Each has one unit of a good that can be invested by the bank in a risky asset with return \(R_n \). From simplicity assume that the returns \(R_n \) are i.i.d. with distribution

\[
R_n = \begin{cases}
R & \text{w.pr. } \pi \\
0 & \text{w.pr. } 1 - \pi.
\end{cases}
\]

In a symmetric equilibrium a bank will draw clients from the interval \([n - 1/2, n + 1/2] \) and offer them a risk sharing contract that promises a payment \(D \) if the project is successful and nothing otherwise (the banker is risk neutral but has limited liability). The expected utility of the contract is

\[
\pi U(D) + (1 - \pi) U(0) = \pi U(D) \text{ if } U(0) = 0.
\]

The bank chooses \(D \) to maximize profits taking as given the expected utility \(\bar{u} \) offered by the adjacent banks. Assuming linear transportation costs of one util per unit distance, the marginal agent \(m < n \) who goes to bank \(n \) is determined by the condition that

\[
\pi U(D) - (n - m) = \bar{u} - (m - n + 1) \text{ or } 2(n - m) = \pi U(D) - \bar{u} + 1.
\]

The profit per agent is \(\pi (R - D) \) so total profits are

\[
\pi (R - D) 2(n - m) = \pi (R - D) (\pi U(D) - \bar{u} + 1).
\]

The first-order condition is

\[
\pi U'(D) = \frac{1}{R - D}.
\]

If we allow a bank to occupy several locations, it can pool several independent risks, which allows it to offer better risk sharing to its customers. However, it may face less competition. Whether it does depends on precisely which locations a bank is allowed to occupy. For example, if two banks occupy alternate locations, we get improved risk sharing with no loss of competition. Here there is no trade-off between competition and stability. If a bank occupies a sequence of adjacent locations, it can extract a large amount of surplus from the consumers located in the middle. Here there is a trade-off between competition and stability.

5 Schumpeterian Competition

Perhaps one of the most important notions of competition is that where different firms or banks compete to innovate. The reason it is so important is that innovation can produce
large changes over time and have large effects on welfare. It is also a particularly important in terms of financial stability. If banks innovate they may be able to capture the market and drive other banks out of business. This Schumpeterian type of competition may thus be associated with financial instability. We start by considering a “winner-takes-all” model of competition which has this feature.

5.1 Winner-Takes-All Competition

There is a finite number of locations \(n = 1, \ldots, N \) with a firm at each location. There are two dates, \(t = 0, 1 \). At date 0, the firm \(n \) invests \(k_n \geq 0 \) to invest in the development of a product. The opportunity cost of capital is denoted by \(R \). The value of the product developed by firm \(n \) is \(V_n(k_n, \omega) \). We assume that \(V(0, \omega) = 0 \) for all \(\omega \) so capital is essential to the development of a useful product. We assume that once the new product is developed it can be produced at constant marginal cost and, without essential loss of generality, we set the marginal cost equal to zero.

At date 1 identical consumers are uniformly distributed on the line interval \([0, N]\). Each consumer wants to consume at most one unit of a new product.

Firms engage in Bertrand competition which will lead to an outcome in which the best product captures the entire market and the price charged for this product is equal to the difference between the value of the first and second-best products. The price for every other product is zero.

At the first date, we look for a Nash equilibrium in the investment levels.

Proposition 6 If \(k^* \) is a solution to the planner’s problem, then \(k^* \) is a Nash equilibrium of the firms’ investment “game”.

In this case the allocation produced by the winner-takes-all competition is efficient. The innovating banks have exactly the right incentives to invest. However, only one bank survives in each period. In other words there is considerable financial instability. In order to prevent this instability the government may wish to restrict competition and give each bank a monopoly in a particular region. We turn next to this restricted competition.

5.2 Restricted Competition

Next assume that the firm located at \(n \) has a legal monopoly of the region \([n - 1/2, n + 1/2]\). Then it maximizes \(E[V(k_n, \omega) - Rk_n] \). Clearly, surplus must be lower, both because we are not providing the best product to all consumers but also because we are not using the right investment level.

Will investment be too high or too low? Examples can be constructed to show that the answer is ambiguous. On the one hand losers are protected under the “competitive” arrangement. On the other hand winners suffer because they cannot capture the entire market.
Contagion

One of the most important aspects of competition and financial stability is the nature of any instability that can occur. In the sections above what was usually meant by instability was an increased number of bank failures. In the agency models, for example, if banks took more risks because of increased competition there would be more bank failures. However, there is another type of instability that policymakers have placed particular emphasis on. These are the risks associated with contagion and financial fragility. Contagion occurs when a (possibly small) shock that initially affects only a particular region or sector or perhaps even a few institutions can spread by contagion to the rest of the financial sector and then infect the larger economy. There are a number of different types of contagion that have been suggested in the literature. The first is contagion through interlinkages between banks and financial institutions (see, e.g., Rochet and Tirole (1996a, b), Freixas and Parigi (1998), Freixas, Parigi and Rochet (2000), and Allen and Gale (2000b) for theoretical analyses and Van Rijckeghem and Weber (2000) for empirical evidence). The second is contagion of currency crises (see, e.g., Masson (1999), Eichengreen, Rose and Wyplosz (1996) and Glick and Rose (1999)). The third is contagion through financial markets (see, e.g., King and Wadwhani (1990), Kyle and Xiong (2001) and Kodres and Pritsker (2002)).

The notion of financial fragility is closely related to that of contagion. When a financial system is fragile a small shock can have a big effect. The shock may be spread by contagion. A financial crisis may rage out of control and bring down the entire economic edifice. (see, e.g., Kiyotaki and Moore (1997), Chari and Kehoe (2000), Lagunoff and Schreft (2001) and Allen and Gale (2003b)).

In this section we are interested in the relationship between contagion and financial fragility and competition. Allen and Gale (2000b) develop a model of financial contagion through the interbank market. They assumed perfect competition. In that case a small aggregate shock in liquidity demand in a particular region can lead to systemic. Although the shock is small it may cause a bank to go bankrupt and liquidate its assets. This in turn causes other banks which have deposits in it to also go bankrupt and so on. Eventually all banks are forced to liquidate their assets at a considerable loss. Perfect competition in the interbank market plays an important role in this contagion. Since each bank is small and acts as a price taker, no bank has an incentive to provide liquidity to the troubled bank.

Saez and Shi (2002) have argued that if banks are limited in number they may have an incentive to act strategically and provide liquidity to the original bank that had the original problem. This will prevent the contagion make the banks providing funds in this way better off. A formal model of this phenomenon that captures the role of imperfect competition would be similar to the model in Bagnoli and Lipman (1989). They consider the problem of the provision of public goods through private contributions. There is a critical level of resources required to provide the public good. Each person becomes pivotal and in this case the public good can be provided. Similarly, here each bank would be pivotal in the provision of liquidity to prevent contagion. Gradstein, Nitzan and Slutsky (1993) show that Bagnoli and Lipman’s result is not very robust to the introduction of uncertainty. It remains to
be seen whether a model of contagion and imperfectly competitive banks would also not be robust.

A model of an imperfectly competitive interbank market may therefore be more stable than the case where there is perfect competition. As in the original agency model of Keeley (1990) there is again a trade-off between competition and financial stability.

7 Concluding remarks

In this paper we have considered a variety of different models of competition and financial stability. These include general equilibrium models of financial intermediaries and markets, agency models, models of spatial competition, Schumpeterian competition and contagion. There is a very wide range of possibilities concerning the relationship between competition and financial stability. In some situations there is a trade-off as is conventionally supposed but in others there is not. For example, with general equilibrium and Schumpeterian models efficiency requires the combination of perfect competition and financial instability.

There is a large policy literature based on the conventional view that there is a trade-off between competition and stability. Since competition is generally viewed as being desirable because it leads to allocational efficiency, this perceived trade-off lead to calls for increased regulation of the banking sector to ensure the coexistence of competition and financial stability. The most popular instrument for achieving this end was the imposition of minimum capital requirements on banks. If the owners of banks were forced to put up significant amounts of capital, they would be unwilling to take risks because they would again stand to loose large amounts of funds. The Basel Agreement of 1988 imposed capital controls on banks so that the incentive to take risks would be reduced and they could compete on equal terms. A large literature has developed analyzing the effect of capital controls. For example, Hellman, Murdock and Stiglitz (2000) showed in the context of a simple model of moral hazard that capital controls were not sufficient. In addition to capital controls, deposit rate controls were also necessary to achieve Pareto efficiency.

Our analysis suggests that the issue of regulation and its effect on competition and financial stability is complex and multi-faceted. Careful consideration of all the factors at work both at a theoretical and empirical level is required for sound policy.
References

22

Table 1

Average Cumulative Fiscal Costs of Banking Crises in 24 Crises, 1977-2000

<table>
<thead>
<tr>
<th></th>
<th>Number of crises</th>
<th>Non-performing loans (percentage of total loans)</th>
<th>Fiscal costs of banking resolution (percentage of GDP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All countries</td>
<td>24</td>
<td>22</td>
<td>16</td>
</tr>
<tr>
<td>Emerging market countries</td>
<td>17</td>
<td>28</td>
<td>17.5</td>
</tr>
<tr>
<td>Developed countries</td>
<td>7</td>
<td>13.5</td>
<td>12</td>
</tr>
<tr>
<td>Banking crisis alone</td>
<td>9</td>
<td>18</td>
<td>4.5</td>
</tr>
<tr>
<td>Banking and currency crises of which</td>
<td>15</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>Emerging market countries</td>
<td>11</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Developed countries</td>
<td>4</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>Banking and currency crises with previous fixed exchange rate of which</td>
<td>11</td>
<td>26</td>
<td>27.5</td>
</tr>
<tr>
<td>Emerging market countries</td>
<td>8</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>Developed countries</td>
<td>3</td>
<td>18</td>
<td>16</td>
</tr>
</tbody>
</table>