Theory of the Firm

Itay Goldstein

Wharton School, University of Pennsylvania

Boundaries of the Firm

- Firms are economic units that make decisions, produce, sell, etc.
- What determines the optimal size of a firm? Should two plants be organized as two independent firms or as two divisions in one firm?
- Traditional economic analysis is silent about these issues, and takes the size of the firm as given.
- Moral hazard theory, with the exception of its multitasking part, also takes the size of the firm as given.

Grossman and Hart (1986): Incomplete Contracts and Property Rights

- Some states of the world cannot be contracted upon:
 - o Agents cannot think about all contingencies.
 - o They cannot communicate and negotiate about all possibilities.
 - o They cannot write a clear contract that courts can then enforce.
- If contracts cannot fully specify the usage of the asset in every state of the world, then who gets the right to choose?

- The owner can decide on the usage, when unspecified by contract.
 - o Contracts provide specific property rights, while ownership provides **residual property rights**.
- The owner of an asset will have a stronger incentive to make assetspecific investments, knowing that he has residual property rights.
- Transferring ownership of an asset from one party to another has a benefit encouraging investment by the acquirer and a cost discouraging investment by the acquired. The tradeoff generates implications for ownership structures and firm boundaries.

A Basic Model (Hart, Ch. 2)

- There are two assets, a1 and a2, and two managers, M1 and M2.
- a2 in combination with M2 can supply a unit of input to M1, who, in combination with a1, can use it to produce a unit of output and sell it on the market.
- There are two dates, 0 and 1:
 - o At date 0, *M1* and *M2* make (human-capital) investments to improve productivity. Those are denoted as *i* and *e*, respectively.

- o At date 1, *M1* and *M2* decide whether to conduct the transaction between them or go to the market.
- At date 0, it is too costly to write a contract on the date-1 use of the assets. The owner of an asset will have the right to choose.
- Three ownership structures are considered:
 - o Non-integration: M1 owns a1 and M2 owns a2.
 - o Type-1 integration: M1 owns a1 and a2.
 - o Type-2 integration: M2 owns a1 and a2.

Date-1 Payoffs and Surplus

- At date 1, *M1* receives:
 - o If trade occurs between M1 and M2, M1 receives R(i) p.
 - o If trade does not occur, M1 buys the input in the market and receives: $r(i,A) \overline{p}$.
 - The revenue is different for the lack of M2's human capital.
 - A denotes the assets that MI owns, and can be $\{a1\}$, $\{a1, a2\}$, or \emptyset .

- Similarly, for *M2*:
 - o If trade occurs between M1 and M2, M2 receives p C(e).
 - o If trade does not occur, M2 sells the input in the market and receives: $\overline{p} c(e, B)$.
 - B denotes the assets that M2 owns: $\{a2\}$, $\{a1, a2\}$, or \emptyset .
- The surplus in case of trade is R(i) C(e), while in case of no trade it is r(i,A) c(e,B).
- Assuming gains from trade: For all *i* and *e* and *A* and *B*:

$$R(i) - C(e) \ge r(i, A) - c(e, B).$$

Date-1 Division of Surplus

- Ex-post, at date-1, for a given ownership structure and investments, the parties can negotiate. Hence, they choose to trade.
- It is assumed that the gains from trade [(R-C)-(r-c)] are divided half-half, as in the **Nash bargaining solution**.
- The profits of *M1* and *M2* are then:

$$\pi_1 = R - p = r - \overline{p} + \frac{1}{2} [(R - C) - (r - c)]$$
$$= -\overline{p} + \frac{1}{2} (r + R - C + c),$$

$$\pi_2 = p - C = \overline{p} - c + \frac{1}{2} [(R - C) - (r - c)]$$
$$= \overline{p} - \frac{1}{2} (r - R + C + c).$$

- The price is given by: $p = \overline{p} + \frac{1}{2}[(R r) (c C)].$
 - o Note that integration involves transformation of ownership of physical capital, but not of human capital (e.g., under type-1 integration, *M1* controls *a2*, but has no say on what *M1* does).
 - o The division of surplus is independent of ownership structure.

Return on Investment

- Key assumption is that marginal return on investment is increasing in how many assets in the relationship the investor has access to.
- For *M1*:

$$R'(i) > r'(i, \{a1, a2\}) \ge r'(i, \{a1\}) \ge r'(i, \emptyset),$$

o where $R', r' > 0$; $R'', r'' < 0$.

• Similarly, for *M2*:

$$|C'(e)| > |c'(e, \{a1, a2\})| \ge |c'(e, \{a2\})| \ge |c'(e, \emptyset)|,$$

o where $C', c' < 0$; $C'', c'' > 0$.

First-Best Investment

• If the two parties could coordinate their investment decisions, they would reach a solution that maximizes the total surplus:

$$R(i) - i - C(e) - e$$
.

• Denoting the first-best solution by (i^*, e^*) , we get:

$$R'(i^*)=1,$$

$$|C'(e^*)| = 1.$$

• Yet, the parties are not able to coordinate or write a contract on their investment levels. These are **observable but not verifiable.**

Investment Choice

- *M1* and *M2* choose their investments non-cooperatively, each one maximizing his expected utility, taking the other's investment as given (Nash Equilibrium).
- *M1* chooses *i* to maximize:

$$\pi_1 - i = -\overline{p} + \frac{1}{2} (r(i,A) + R(i) - C(e) + c(e,B)) - i,$$

o leading to the following first-order condition:

$$1/2(r'(i,A) + R'(i)) = 1.$$

• M2 chooses e to maximize:

$$\pi_2 - e = \overline{p} - \frac{1}{2} (r(i, A) - R(i) + C(e) + c(e, B)) - e,$$

o leading to the following first-order condition:

$$1/2(|c'(e,B)| + |C'(e)|) = 1.$$

• We can immediately see that the equilibrium levels of *i* and *e* are below the first-best:

o
$$r'(i, A) < R'(i)$$
 and $|c'(e, B)| < |C'(e)|$.

Why We Don't Achieve First-Best?

- The parties do not internalize the full benefit of the investment.
 - o When M1 invests, the return increases by R'.
 - o However, M1 realizes only:
 - r': direct benefit.
 - -1/2(R'-r'): share in surplus.
 - o The sum of r' and 1/2(R'-r') is lower than R'. This is a reflection of a **hold-up** problem.

The Effect of Ownership

- The ownership structure determines the return a party gets on its investment in the case of no trade.
- Using subscripts 0, 1, and 2, to denote no integration, type-1 integration, and type-2 integration, respectively, we get that:

$$i^* > i_1 \ge i_0 \ge i_2,$$

 $e^* > e_2 \ge e_0 \ge e_1,$

• Giving ownership to one party increases its investment and reduces the other party's investment.

Optimal Ownership

- Optimal ownership maximizes the total surplus.
- We choose between:

$$S_0 = R(i_0) - i_0 - C(e_0) - e_0,$$

$$S_1 = R(i_1) - i_1 - C(e_1) - e_1$$

$$S_2 = R(i_2) - i_2 - C(e_2) - e_2.$$

• We can easily imagine establishing optimal ownership if one party is unique and is offering the reservation utility to the other party.

Implications

- Overall, optimal ownership finds the balance between the effect on *M1*'s investment and the effect on *M2*'s investment.
 - o In general, transferring ownership from one party to another increases one type of investment and decreases the other.
- If M1's (M2's) investment is inelastic, such that he chooses the same investment under all ownership structures, then type-2 (type-1) integration is optimal.

- o No point of giving ownership to someone who doesn't respond to incentives.
- If *M1*'s (*M2*'s) investment is relatively unproductive, then type-2 (type-1) integration is optimal.
 - o Investment being relatively unproductive can be captured by surplus decreasing to $\theta(R(i) i)$, and θ being sufficiently small.
 - o No point of giving ownership to someone whose investment is not important.

- If assets a1 and a2 are independent, $r'(i, \{a1, a2\}) = r'(i, \{a1\})$ and $c'(e, \{a1, a2\}) = c'(e, \{a2\})$, then non-integration is optimal.
 - There is no benefit, only cost, from shifting ownership on *a1* from *M1* to *M2*.
- If assets al and a2 are strictly complementary, $r'(i,\{a1\}) = r'(i,\{\emptyset\})$ or $c'(e,\{a2\}) = c'(e,\{\emptyset\})$, then some form of integration is optimal.
 - o Once a party does not control one asset, there is no additional cost, only benefit, from taking the other asset out of his control.

- o Complementary assets should be owned by the same party (but not under joint ownership).
- If one party's human capital is essential, e.g., for M1, $c'(e, \{a1, a2\}) = c'(e, \{\emptyset\})$, he should own both assets.
 - o No point in giving ownership to a party when the other party is essential for the relationship.
- If both human capitals are essential, all ownership structures are equally good.
 - o In this case, no party benefits from ownership without trade.

Hart and Moore (1990): Extending the Property-Rights Theory

- The Grossman-Hart model reviewed above may seem a bit special as it only talks about the incentives of managers/entrepreneurs.
- Hart and Moore (1990) consider broader implications by asking what ownership does to employees' incentives.
- The identity of the owner of the assets will affect the incentives of employees, who are linked to the assets.

Basic Setup

- The economy consists of a set \underline{S} of I risk neutral individuals, and a set \underline{A} of N assets $(a_1, ..., a_N)$.
- There are two dates. At date 0, agent i makes a human-capital investment x_i ($x = (x_1, ..., x_I)$) At date 1, agents produce and trade.
- The cost of investment is $C_i(x_i)$, where $C'_i(x_i) > 0$ and $C''_i(x_i) > 0$.
- Agents decide on investments non-cooperatively, and then, given investments, gains from trade are determined via bargaining.

Date-1 Coalitions and Surplus

- At date 1, agents can form coalitions to use the assets in their control.
- Coalition S of agents, controlling subset A of assets, generates value of v(S, A|x).
 - o Assets controlled by coalition S denoted as $\alpha(S)$.
 - o Control means either that an agent in the coalition owns the assets or that agents in the coalition together have majority.

- Value is increasing in assets and agents in the coalition, so optimal value ex-post for a given x is $v(\underline{S}, \underline{A}|x) \equiv V(x)$.
- Agents achieve this via negotiation.
- They split the value among them according to **Shapley values**:

$$B_i(\alpha|x) = \sum_{S|i \in S} p(S)[v(S, \alpha(S)|x) - v(S\setminus\{i\}, \alpha(S\setminus\{i\})|x)]$$

o The logic is to compensate the agent for his marginal contribution to a coalition, and calculate an average across all coalitions.

- o Here, $p(S) = \frac{(s-1)!(I-s)!}{I!}$ is the probability of ending up in coalition *S* with random ordering.
 - s is the number of agents in coalition S.
- o $v(S, \alpha(S)|x)$ is the value achieved by the coalition when agent i is included, and $v(S\setminus\{i\}, \alpha(S\setminus\{i\})|x)$ is the value achieved when the agent is excluded.
 - From every coalition, the agent gets the difference between the two, which summarizes his marginal contribution.

Date-0 Investment

• In Coalition S, agent i's marginal return on investment is:

$$\frac{\partial v(S,A|x)}{\partial x_i} = v^i(S,A|x)$$

$$\circ v^i(S, A|x) \ge 0$$
 and $v^{ii}(S, A|x) \le 0$.

$$\circ v^i(S, A|x) = 0 \text{ if } i \notin S.$$

$$0 \frac{\partial v^i(S,A|x)}{\partial x_j} \ge 0 \text{ for all } j \ne i.$$

$$\circ v^i(S, A|x) \ge v^i(S', A'|x)$$
 for all $S' \subseteq S$ and $A' \subseteq A$.

Social Optimum

• The first-best solution maximizes surplus assuming that the grand coalition *S* will form:

$$\max_{x} W(x) \equiv V(x) - \sum_{i=1}^{I} C_i(x_i)$$

• Hence, the first order condition for all i characterizing the first best x^* is:

$$v^{i}(\underline{S},\underline{A}|x^{*}) = C'_{i}(x_{i}).$$

Investment in a Non-Cooperative Equilibrium

• Agent *i* chooses investment to maximize the difference between his return (based on Shapley value) and cost. This yields the following first-order condition given the equilibrium behavior of others $x^e(\alpha)$:

$$\frac{\partial B_i(\alpha|x)}{\partial x_i} = \sum_{S|i \in S} p(S) v^i (S, \alpha(S)|x^e(\alpha)) = C_i' (x_i^e(\alpha))$$

• The right-hand side is clearly below $v^i(\underline{S},\underline{A}|x)$ for a given x, and this reflects under-investment.

- Based on this observation, Hart and Moore show that the equilibrium vector of efforts will exhibit under-investment.
- The intuition is similar to that in Grossman and Hart (1986):
 - o When deciding on his level of investment, an individual doesn't consider the full benefit, but rather only what additional benefit the investment will give him in the bargaining process.
 - o Hence he ignores the externality and ends up under-investing.
- Ownership affects what agents internalize and how much they invest.

Optimal Ownership: Some Results

- When only one agent makes investment, he should own all assets.
 - o As in Grossman and Hart (1986), shifting ownership from one agent to another decreases the investment of the first and increases the investment of the other.
 - An agent's incentive to invest is affected by the assets controlled by coalitions he is part of.
 - o When only one agent is investing there is no tradeoff.

- For any coalition of agents, an asset should be owned by the coalition or its complement.
 - o Since incentive to invest comes from assets owned by a coalition, there is waste in leaving an asset 'not owned'.
 - o A direct implication is that not more than one agent should have veto power over an asset.
 - Otherwise, if two agents are not in the same coalition and they share control, the asset is not owned by the coalition or its complement.

- If an agent is *indispensable* to an asset, then he should own it.
 - The definition is that without agent *i* in the coalition, the asset has no effect on the marginal product of investment for the other members of the coalition:

$$v^{j}(S,A) = v^{j}(S,A \setminus \{a_n\}) \text{ if } i \notin S.$$

- The asset encourages investment only when it is owned by a coalition that has agent *i*. To maximize such coalitions, we let the agent own the asset.
- o This shows the effect of ownership on the investments of others.

- If an agent is *dispensable* and makes no investment, he should not have any control rights.
 - o The definition is that other agents' marginal product from investment is unaffected by whether the agent is in the coalition or not:

$$v^{j}(S,A) = v^{j}(S \setminus \{k\}, A) \text{ if } j \in S, j \neq k$$

- o Reducing the agent's ownership will not reduce others' investments by the above definition.
- o The agent himself is not investing.

- Complementary assets should always be controlled together.
 - o Definition is that the two assets are unproductive unless they are used together:

$$v^i(S, A \setminus \{a_m\}) = v^i(S, A \setminus \{a_n\}) = v^i(S, A \setminus \{a_m, a_n\}) \text{ if } i \in S.$$

- o The idea is that by grouping the two assets in the same ownership, we make sure that in all coalitions with one asset, the other one will be as well.
- o Otherwise, there is waste, since each asset makes a contribution only with the other one on board.

Clarifying the Role of Employees: Example

- Suppose that there are two assets a_1 and a_2 .
- Each asset has a big worker (potentially employer) and a small worker (employee).
 - o Big workers are denoted as m_1 , m_2 , and small ones as w_1 , w_2 .
- Suppose that small workers are only productive if they work with the assets they are linked to. We ignore synergies across workers.
- We will study the effect of ownership on small workers' incentives.

- Suppose that we consider two ownership structures: non-integration $(m_1 \text{ controls } a_1 \text{ and } m_2 \text{ controls } a_2)$ and type-1 integration $(m_1 \text{ controls } a_1 \text{ and } a_2)$.
- The FOC for w_1 under non-integration is:

$$\frac{1}{3}v^{w1}(\{m_1, m_2\}, \{a_1, a_2\}) + \frac{1}{6}v^{w1}(\{m_1\}, \{a_1\}) = C'_{w1}(x^e_{w1})$$

While under integration it is:

$$\frac{1}{3}v^{w1}(\{m_1, m_2\}, \{a_1, a_2\}) + \frac{1}{6}v^{w1}(\{m_1\}, \{a_1, a_2\}) = C'_{w1}(x^e_{w1})$$

Recall that w_1 cares only about coalition with a_1 .

• The FOC for w_2 under non-integration is:

$$\frac{1}{3}v^{w2}(\{m_1, m_2\}, \{a_1, a_2\}) + \frac{1}{6}v^{w2}(\{m_2\}, \{a_2\}) = C'_{w2}(x_{w2}^e)$$

While under integration it is:

$$\frac{1}{3}v^{w2}(\{m_1, m_2\}, \{a_1, a_2\}) + \frac{1}{6}v^{w2}(\{m_1\}, \{a_1, a_2\}) = C'_{w2}(x_{w2}^e)$$

• Comparison:

o Type-1 integration is good for w_1 , while for w_2 the effect is ambiguous.

- o For w_1 , the productivity of investment is determined only by coalitions with a_1 , which is controlled by m_1 . When m_1 also controls a_2 , w_1 is getting a boost to productivity when matched with m_1 .
 - This effect represents better **coordination**.
- o For w_2 , the better coordination is also present under integration, since whenever he is matched with a_2 he gets a boost to productivity from the presence of a_1 .
- o But, w_2 is losing some connection to m_2 , which might be costly.

Internal Capital Markets

- A different angle on the question of the boundaries of the firm comes from analyzing the optimality of **internal capital markets**.
- Internal capital markets develop when a firm has multiple divisions, potentially in different industries, and transfers resources across divisions. This is what happens in conglomerates.
- The question is what is the benefit from putting various (potentially unrelated) divisions under the same ownership.

Stein (1997)

- Stein (1997) develops a model, where divisions are constrained in their ability to raise external financing for their projects due to an agency problem.
- Having an internal capital market can help mitigating the problem, as the headquarters can raise the financing and allocate them more efficiently across divisions.
- Stein analyzes when this is optimal and sheds light on the trade offs in choosing the size and scope of the internal capital market.

Basic Setup

- A project started by a *founder* requires a *manager* and a *financier*.
- The amount of investment in the project can be 1 or 2.
- There are two states of the world B and G.
- In state B, investment of 1 yields y_1 , and investment of 2 yields y_2 , where:

$$1 < y_1 < y_2 < 2$$
.

Hence, in this state, the optimal investment is 1.

• In state G, investment of 1 yields θy_1 , and investment of 2 yields θy_2 , where $\theta > 1$, and:

$$\theta(y_2 - y_1) > 1.$$

Hence, in this state, the optimal investment is 2.

- The ex-ante probability of state G(B) is p(1-p).
- The realization is known only to managers, but there is a problem with their incentive to tell the truth as they also receive a non-verifiable private benefit, which is a proportion *s* of gross return.

Credit Rationing

- Eliciting information from managers will be costly when *s* is sufficiently large. Then, financiers and founders will have to make decisions without knowing the realization.
- If the amount financed is 1, the expected return is

$$(p\theta + (1-p))y_1 - 1.$$

• If the amount financed is 2, the expected return is

$$(p\theta + (1-p))y_2 - 2.$$

- Then, when *p* is sufficiently small, investing 1 is more desirable, and this creates **credit rationing**:
 - o Credit is rationed in good states of the world because of the lack of ability to convey information.
- As a side, note that compensation contracts could be designed to elicit information.
- However, the cost of eliciting information is $(1-p)s(y_2-y_1)$, while the benefit is $p(\theta(y_2-y_1)-1)$, and hence this is not desirable when s is sufficiently large.

Corporate Headquarters and the Internal Capital Market

- Suppose that a few projects are grouped together and headquarters raises financing. A few assumptions about corporate headquarters:
 - o It can acquire information about projects' prospects.
 - o It has no financial resources of its own.
 - o It can capture a fraction ϕ of private benefits at the cost of diluting incentives, so that cash flows fall by a fraction k < 1.
 - o It has the authority to redistribute resources across projects.

The Role of Headquarters in a Two-Project Example

- There is no role for headquarters with only one project.
 - o There will be reduction in cash flows due to reduced incentives, and no better information revelation since headquarters have the incentives of managers to misreport.
- Suppose there are two uncorrelated projects as described above.
- Suppose that headquarters can perfectly tell their states.
- Suppose that the overall credit constraint is not eased, so that headquarters can raise only 2 for the two projects.

• The potential benefit from the headquarters is its ability to reallocate resources from a project in a bad state to a project in a good state. This is beneficial as long as:

$$\theta(y_2 - y_1) > y_1$$

- Headquarters will have an incentive to do this to maximize private benefits.
- Additional efficiency comes from the headquarters' broader span of control which allows it to derive private benefits from several projects simultenously.

• Summarizing the trade off:

o The expected net output under external market is:

$$EM = 2(y_1(p\theta + (1-p)) - 1)$$

o The expected net output under internal market is:

$$IM = 2(1-p)^2ky_1 + 2p^2k\theta y_1 + 2p(1-p)k\theta y_2 - 2$$

o By moving to an internal capital market, we sacrifice efficiency at a factor of k, but in situations where the projects are in different states, we get better allocation of resources.

Noisy Information and Scope

- A question that often comes up is what is the optimal scope of an internal capital market: How correlated the different divisions should be.
- Stein provides an argument for focus:
 - o When information is noisy, headquarters might make mistakes in allocating resources.
 - o When the projects are close to each other, noise tends to be correlated, and then relative rankings are not harmed.

Adjusting the Assumptions

- For each project, headquarters observes information that is either *H* (high) or *L* (low).
- The informativeness of the signal is captured by q:

$$prob(H^{i}/G^{i}) = prob(L^{i}/B^{i}) = q$$
, where $1/2 < q < 1$.

• A false low (high) signal in one project makes a false low (high) signal in the other project more likely. This is captured by the parameter α which summarizes the degree of correlation:

$$prob(L^{i}/G^{i}, G^{j}, L^{j}) = (1 - q)(1 + \alpha) > prob(L^{i}/G^{i}) = (1 - q)$$

 $prob(H^{i}/B^{i}, B^{j}, H^{j}) = (1 - q)(1 + \alpha) > prob(H^{i}/B^{i}) = (1 - q)$

- Note that the probability of observing a false (low) signal in what project does not change the probability of observing a false (high) signal in the other project.
- Now, there are 16 possible realizations (2 signals and 2 states for each project).
- Payoffs and probabilities are shown in the following table:

	Outcome/Signal Configuration	Probability	Payoff: External Market	Payoff: Internal Market
1.	GGHH	$p^2(q^2 + \alpha(1-q)^2)$	$2\theta y_1$	$2\theta y_1$
2.	$\mathbf{G}\mathbf{B}\mathbf{H}\mathbf{H}$	p(1-p)q(1-q)	$y_1(1 + \theta)$	$y_1(1 + \theta)$
3.	BGHH	(1-p)p(1-q)q	$y_1(1+\theta)$	$y_1(1+\theta)$
4.	BBHH	$(1-p)^2(1-q)^2(1+\alpha)$	$2y_1$	$2y_1$
5.	GGHL	$p^2(q(1-q)-\alpha(1-q)^2)$	$2\theta y_1$	$ heta {f y_2}$
6.	GBHL	$p(1-p)q^2$	$y_1(1 + \theta)$	$ heta y_2$
7.	\mathbf{BGHL}	$(1-p)p(1-q)^2$	$y_1(1 + \theta)$	${oldsymbol y_2}$
8.	BBHL	$(1-p)^2(q(1-q)-\alpha(1-q)^2)$	$2y_1$	${oldsymbol y_2}$
9.	GGLH	$p^2(q(1-q)-\alpha(1-q)^2)$	$2\theta y_1$	θy_2
10 .	GBLH	$p(1-p)(1-q)^2$	$y_1(1 + \theta)$	${oldsymbol y_2}$
11.	BGLH	$(1-p)pq^2$	$y_1(1 + \theta)$	$ heta {f y_2}$
12 .	BBLH	$(1-p)^2(q(1-q)-\alpha(1-q)^2)$	$2y_1$	${oldsymbol y_2}$
13.	GGLL	$p^2(1-q)^2(1+\alpha)$	$2\theta y_1$	$2\theta y_1$
14.	GBLL	p(1-p)(1-q)q	$y_1(1+\theta)$	$y_1(1+\theta)$
15 .	BGLL	(1-p)pq(1-q)	$y_1(1 + \theta)$	$y_1(1+\theta)$
16.	BBLL	$(1-p)^2(q^2+\alpha(1-q)^2)$	$2y_1$	$2y_1$

- The result is that the benefit from an internal capital market increases in the degree of focus α and that this effect strengthens when q is smaller.
- The intuition comes from the fact that increasing focus increases the likelihood of configurations like GGHH and BBHH, and lowers the likelihood of configurations like GGHL and BBHL.
- This is good because there is no harm in a configuration like BBHH, as it causes no adverse implications for resource allocation. On the other hand, there is harm in configurations like GGHL and BBHL.