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Abstract

Proof-of-stake (PoS) blockchains reward validators who stake tokens by issuing new

tokens. While a high percentage of staked tokens strengthens blockchain security, it also

dilutes the value of tokens held by non-stakers. This paper presents a simple framework

to determine the optimal issuance policy and staking yield by evaluating the trade-o¤

between security and dilution. The analysis demonstrates that, in the long run, the

optimal policy eliminates this trade-o¤ by precisely maintaining a target staking ratio,

even if it results in some token dilution. When applied to an issuance curve analogous

to Ethereum�s, the analysis shows that staking yields respond to economic shocks in

line with the optimal policy, though the responses are less pronounced than those

implied by the optimal policy. Consistent with the model�s long-run equilibrium, the

20 largest PoS blockchains approximately equalize staking yields after accounting for

dilution.

Keywords: Staking yield, cryptocurrencies, Ethereum, issuance curve, Friedman

rule, Ramsey policy. JEL codes: E42, G11.

1 Introduction

Proof-of-stake (PoS) blockchains need to determine how to compensate validators who stake.

Typically, the compensation includes some promised yield paid with newly issued tokens.

The compensation scheme also determines the evolution of the money supply.

Ethereum, the leading PoS blockchain, has seen a signi�cant rise in staking since its

transition to proof-of-stake, with the share of ETH staked in the total supply continuing to
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grow. This trend raises concerns about a future where the majority of ETH is staked, poten-

tially leading to undesirable consequences. To address this, recent research (e.g., Dietrichs

and Schwarz-Schilling, 2024) has explored modifying the issuance curve. A key challenge

is modeling how stakers would respond to proposed issuance curves, as this determines the

supply of staked ETH. Since changing the issuance policy is costly, a model of the long-run

supply of stake is essential for designing an e¤ective and sustainable policy.

This paper presents a framework suitable for studying issuance policies and staking yields.

The model is explicitly dynamic where long-run outcomes emerge from period-by-period

optimizing behavior. The price of the token is determined in equilibrium. For transparency,

the model only includes the most essential elements.

The model highlights the trade-o¤ between security and dilution. A higher staking yield

increases the staking share and this typically contributes positively to the security of the

network. The staking yield is paid from issuance which dilutes token holders. Users com-

pensate for the lower price appreciation induced by dilution by requiring higher marginal

utility, which results in lower token holdings. Dilution is not just a transfer from users to

stakers but it has real e¤ects on the network.

Deterministic dynamics and optimal staking yields can be characterized analytically.

The model-implied relation between staking yields and staking shares at steady state is

upward sloping which is consistent with the cross-section of the 20 largest PoS blockchains.

Approximately, the staking yields of these blockchains are equalized after accounting for

dilution, which is a property of the steady state of my model.

I derive the optimal policy under commitment, also referred to as the Ramsey policy.

This policy features a transition period toward a steady state, re�ecting the intertemporal

incentive mechanisms available to a policymaker with commitment. A key �nding is that, in

the long run, the optimal policy does not involve a trade-o¤ between security and dilution.

Instead, it precisely maintains a target staking ratio while allowing for some dilution.

Sharp predictions for long-run optimal policies are common in the literature, though they

are not always immediately intuitive. For example, many monetary models predict that the

long-run cost of holding money should be zero, known as the Friedman rule. However, it is

not always immediately obvious whether this rule applies, see for instance Chari and Kehoe

(1999). I show that in the model with staking, the Friedman rule does not apply. Unlike

traditional models for monetary policy, a PoS protocol must compensate stakers, making it

optimal for there to be a cost to holding money.

I also examine the optimal responses of staking yields to shocks in a stochastic envi-

ronment and compare these responses to those implied by an issuance curve analogous to

Ethereum�s. Speci�cally, I analyze two types of shocks: those that a¤ect the attractiveness
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of staking and those that impact the required rate of return, which more broadly a¤ect

the appeal of holding the token. In both cases, the optimal policy aims to stabilize the

staking share by adjusting the staking yield. An alternative, simple issuance curve� where

staking yields depend on the staking share via an inverse square root function, analogous to

Ethereum�s� exhibits similar qualitative properties. However, this curve is less responsive

than the optimal policy and leads to greater volatility in the staking share.

Economic analyses of proof-of-stake blockchains have focused on the conditions under

which proof-of-stake generates consensus (Saleh (2021)), equilibrium staking levels (Cong,

He and Tang (2022) and Kose, Rivera and Saleh (2021)), pricing tokens (Fanti, Kogan

and Viswanath (2019)), and Ethereum�s macroeconomy (Jermann (2023)). This paper con-

tributes by studying optimal staking yield policies.

Optimal policies from economic perspectives for blockchains more generally have been

studied by Chiu and Koeppl (2022), Gryglewicz, Mayer and Morellec (2021), Goldstein,

Gupta, and Sverchkov (2024), Jermann and Xiang (2022), and Abadi and Brunnermeier

(2024).

The next section presents a deterministic model for PoS and analyzes its equilibrium and

optimal policies. This requires relatively few assumptions and analytical characterizations

are possible. The following section studies a stochastic version of the model and also considers

an issuance curve of the type used by Ethereum.

2 Deterministic model

This section starts with the basic model that only includes the most essential features.

Tokens can be either used or staked. Used tokens provide utility. Staked tokens provide

rewards. The token price is determined in equilibrium. After characterizing the equilibrium,

two types of optimal policies are derived: the optimal constant staking yield and the optimal

staking yield policy under commitment (Ramsey).

Time is discrete, indexed by t = 0; 1; 2; :, with an in�nite horizon. The period utility

function for users v (:) depends positively on the token amount used MU
t evaluated in terms

of its price in the (dollar) numeraire pt and on the network�s security/productivity St. Agents

maximize lifetime utility de�ned as the sum of the expected period utilities

max
MU
t+1+j ;Dt+1+j ;Ct+j

1X
j=0

�j
�
Ct+j + v

�
St+j; pt+jM

U
t+j

��
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subject to budget constraints

Ct + ptDt+1 + ptM
U
t+1 = ptDt (1 + yt) + ptM

U
t + Yt; (1)

with the discount factor � 2 (0; 1). Ct is consumption of the numeraire good (the US

consumption basket) and Yt represents income unrelated to the network economy. Beyond

providing a numeraire, consumption plays no role. Dt (for deposits) represents the amount

of staked tokens and yt the staking yield. MU
t+1 and Dt+1 represent token amounts purchased

in period t that provide services and rewards in period t+ 1.

This is a pared down version of the model in Jermann (2023). One extension is to

explicitly incorporate into the model the bene�ts of staking. It is assumed that the network

security/productivity increases with the aggregate staking share dt � Dt=
�
MU
t +Dt

�
;

St = S (dt) ; (2)

for a function S (:) to be speci�ed below. Note, agents are atomistic and take the aggregate

staking share as given.

Why not have S (:) depend on the value of stake, ptDt? The cost of an attacker controlling

a large share of the stake depends on the dollar value, but the incentives to attack also

increase with the expected gains which are related to the value of the network. Equivalently,

attackers are attracted by the expected after-cost gains. Having security depend on the

staking share can approximate for this.

With prices pt and staking yields yt taken as given, agents��rst-order conditions for

optimal token holdings for using and staking, respectively, are

pt = �

"
1 +

@v
�
St+1; pt+1M

U
t+1

�
@pt+1MU

t+1

#
pt+1; (3)

and

pt = � [1 + yt+1] pt+1: (4)

These equations show how agents need to be compensated for holding tokens with price

appreciation as well as either the marginal utility from the token,
@v(St+1;pt+1MU

t+1)
@pt+1MU

t+1
, or the

staking yield, yt+1.

The staking yield is paid with newly issued tokens so that the money supply, Mr+1 =

MU
t+1 +Dt+1, evolves as

MU
t+1 +Dt+1 =M

U
t +Dt + ytDt: (5)
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Equilibrium is de�ned for given initial values ofMU
0 and D0, and an exogenous processes

for yt, as the processes for MU
t+1; Dt+1; pt and St satisfying equations, (3), (4) ; and (5).

2.1 Equilibrium

To characterize the equilibrium, I initially restrict the marginal utility for used tokens to be

a positive and decreasing function which only depends on real balances ptMU
t

@v
�
St+1; pt+1M

U
t+1

�
@pt+1MU

t+1

= v0
�
pt+1M

U
t+1

�
:

Assuming separability with respect to St+1 allows a full characterization without directly

assuming speci�c functional forms. For quantitative analyses this restriction can be relaxed

and, for speci�cations that are reasonably close, should not fundamentally alter the qualita-

tive properties derived here.

With these assumptions, the three equilibrium equations become

pt = � (1 + yt+1) pt+1 (6)

pt = �
�
1 + v0

�
pt+1M

U
t+1

��
pt+1 (7)

MU
t+1 +Dt+1 = MU

t +Dt + ytDt: (8)

The �rst equation pins down the growth rate of the price as

pt+1
pt

=
1

� (1 + yt+1)
:

A higher staking yield results in lower price growth because investors have a �xed required

(gross) return given by 1=�. Combining the �rst two equations determines the market value

of used tokens

v0
�
pt+1M

U
t+1

�
= yt+1, (9)

conditional on the functional form. In equilibrium, returns to using and staking are equalized

and this requires that the staking yield determines the marginal utility of used tokens (the

yield from using tokens).

Consider the case with a constant staking yield determined by the network. The following

proposition characterizes the equilibrium.

Proposition 1 Assuming a constant staking yield yt = y for t � 1, if � (1 + y) > 1, for

arbitrary initial values MU
0 , D0 and y0, the staking share d1 = D1=

�
D1 +M

U
1

�
jumps to its
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steady state value so that for t � 1

dt =
� (1 + y)� 1

y
; (10)

with
@dt
@y

=
1� �
y2

> 0

and
Dt+1

Dt

=
MU
t+1

MU
t

= � (1 + y) > 1:

It is easy to see that once a value for p0 is determined, the paths for all equilibrium

variables pt, MU
t+1 and Dt+1 are determined by the three equilibrium equations (6), (7) and

(8). Therefore, we can index candidate equilibrium paths by p0. The proof (see the appendix)

�rst computes an equilibrium steady state for dt and the value for p0 that corresponds to

this equilibrium. It is then shown that alternative values for p0 and their associated paths

cannot be equilibrium outcomes because they violate a transversality condition and can

imply negative values for Dt. For � (1 + y) < 1, even the path associated with the stable p0
is not an equilibrium. Note that this restriction on y could be relaxed in richer models, for

instance, if fee income is distributed to stakers.

While this equilibrium features a constant staking ratio dt, the quantity of money and

MU
t+1 and Dt+1 are increasing over time, and their rate of growth is an increasing function of

the staking yield. In line with basic intuition, the equilibrium staking share is increasing in

the staking yield. Note, the equilibrium does not depend on the security function because

the utility function is separable and agents take the security level as given.

Figure 1 plots staking yields against staking shares for the 20 largest PoS blockchains by

staked capitalization alongside the corresponding relationship implied by Equation (10). The

discount parameter � is selected to minimize the sum of squared deviations between model

and data for the 20 observations. The scatterplot is consistent with the upward-sloping

relation between staking yields and staking share implied by the model. Interestingly, the

larger blockchains in terms of market capitalization (Ethereum, Solana, BNB, Tron and

Toncoin) are relatively close to the model-implied line while the biggest outliers are some

of the relatively smaller blockchains. It should be noted that there are many di¤erences

between these blockchains and the model is extremely stylized so that one should not expect

a very tight �t of the model to this cross-section.

To provide more intuition for Equation (10) that links the staking share to the staking

yield, consider that the required rate of return in terms of the numeraire is given by 1=�,

the inverse of the discount factor. The return to staking in terms of the numeraire is given
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by (1 + y) pt+1=ptwith pt the price of the token. In the long run, the price change in this

model is just the inverse of the dilution induced by the growth rate of the money supply,

that is pt+1=pt = Mt=Mt+1. And, from the money supply, Equation (8), the money growth

rate is given by Mt+t=Mt = 1 + dtyt. Putting this together,

1=� = (1 + y)
pt+1
pt

=
1 + y

1 + dy

which implies

d =
� (1 + y)� 1

y
:

E¤ectively, this equation says that, in the long run, returns across blockchains are equalized

and that the return represents the staking yield adjusted for dilution. As shown in Figure

1, current staking yields and staking shares of the 20 largest PoS blockchain approximately

satisfy this relation. A more general model would also consider adjustments for risk and

for the price appreciation induced by increasing adoption or usefulness of the blockchain,

and this would have the potential to better capture the di¤erences across blockchains. See

Jermann (2023) for a more general pricing model with these features.

2.2 Optimal policy

An optimal policy is a process for yt that maximizes the objective function of the network.

As the objective function, I consider the lifetime utility to users from the network

Ut =
1X
j=0

�jv
�
S (dt+j) ; pt+jM

U
t+j

�
:

This represents the welfare produced by the network.1

The objective function is increasing in real balances used pMU and the staking share d.

A priori we would expect a higher staking yield y to increase d and to raise utility through

higher security S. A higher staking yield is also likely to imply higher money growth and

lower price growth. Everything else equal, users will require a higher marginal utility (see

equation (3)) and reduce real balances used pMU . This reduction in real balances lowers

utility. This is the way the model captures the security/dilution trade-o¤.

To derive an optimal policy, a utility function needs to be speci�ed. I use an isoelastic

1Users have to forego consumption of goods and services representing the value of their token holdings, so
one could subtract these costs from the utility. In this simple model, at the aggregate level, no net resources
�ow between the token network and the �at economy, as can be seen by combining the budget constraint
and the resource constraint, Equations (1) and (5), respectively. So, the net costs are zero. More general
models could imply such net �ows, for instance, if capital investments were modelled.

7



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Staking share

0

0.05

0.1

0.15

0.2

0.25

St
ak

in
g 

yie
ld

Staking Shares and Staking Yields: Model vs Data

Ethereum

Solana

BNB

Sui

Aptos

Cardano

Tron

Avalanche

Celestia
Polkadot

Toncoin

Bittensor

NEAR

SEI Network

Saga
Injective

Polygon

Hedera

Cosmos Hub

Dimension

Model implied
Data (www.stakingrewards.com)

Figure 1: Model vs Data. Staking yields and staking shares are for the 20 largest PoS
blockchains by staked capitalization on 10/28/2024 from https://www.stakingrewards.com/.
The single model parameter is selected for the best least squares �t at � = 0:9772.
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money-in-utility function with a security function that is separable and quadratic:

v
�
ptM

U
t ; dt

�
=

1

1� �
�
ptM

U
t

�1�� � �
2

�
�dt � d�

�2
: (11)

The isoelastic speci�cation with � > 0 is parsimonious, and for the limiting case � ! 1

specializes to ln
�
ptM

U
t

�
which admits some closed form solutions. Security from staking is

highest at d� which can be viewed as the target level abstracting from the costs of dilution,

and � > 0 measures the cost of deviating from the target. The implied boundedness of

this function is useful as it allows for a solution to the unrestricted optimal policy. The

fact that security can decrease beyond a given level is consistent, for instance, with the

idea that slashing could become less credible if it would a¤ect a larger share of the overall

money supply (see Dietrichs and Schwarz-Schilling (2024)). Overbars are used to indicate

aggregate (per capita) quantities that individual agents take as given but a protocol designer

internalizes.

2.2.1 Optimal constant staking yield

I �rst consider the case of the utility-maximizing staking yield for a policy that maintains

a constant yield after the predetermined initial value y0. In this case, the optimal policy

equalizes the marginal utility of security from staking to the marginal utility of money

balances. The optimal level of security is below the target level to limit the distortion from

dilution.

Proposition 2 For a given initial value y0, assuming a constant staking yield yt = y for

t � 1, the staking yield that maximizes lifetime utility with period utility (11) specialized to
ln
�
ptM

U
t

�
� �

2

�
�dt � d�

�2
is

y =
� (1� �)

2

"
� (� � d�) +

�
(� � d�)2 + 4

�

�0:5#

and the corresponding staking share

d = d� � 1
2
(� � d�)

"�
1 +

4

� (� � d�)2
�0:5

� 1
#
< d�;

where the last inequality requires � � d� > 0.
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As shown by the proposition, the optimal staking level is below the target level d�. It is

intuitive that the optimal policy which produces a �nite level for the money used, ptMU
t , for

which the marginal utility is positive does not fully close the gap between the staking ratio

and its target level, which would drive the marginal utility of security to zero. The role of �

is also as expected. Namely, a larger value for � implies a higher cost for deviating from the

target and implies an optimal staking share that gets closer to the target level. The more

general case with � 6= 1 is qualitatively similar for values � close to 1, but it does not admit
a closed form expression and needs to be solved numerically.

2.2.2 Optimal policy with commitment (Ramsey)

The Ramsey policy is de�ned as the optimal sequence of staking yields fytg1t=1 that imple-
ments the utility maximizing allocation as of period t = 0. Speci�cally, it is the solution

to

max
fyt+1;Dt+1;MU

t+1;ptg

1X
t=0

�t
�

1

1� �
�
ptM

U
t

�1�� � �
2

�
�dt � d�

�2�
subject to the sequence of the three equilibrium equations (6), (7) and (8). The solution is

found by taking �rst-order conditions of the Lagrangian that includes the equilibrium con-

ditions as constraints with respect to all the arguments of the maximization. The following

proposition, shown in the appendix, characterizes the steady state.

Proposition 3 For parameter values for which the Ramsey policy admits a steady state,
0 < d� < � < 1, 0 < � and � 6= 1, the steady state features

dt = d
�

and

yt =
1� �
� � d� :

The proposition implies that in the long run the Ramsey policy fully closes the gap of the

staking share from its target level d�. Therefore, in the long run, there is no trade-o¤between

the security-based staking target and dilution from issuance. This is in sharp contrast to a

policy that is constrained to a constant staking yield characterized in Proposition 2.

Figure 2 displays the Ramsey policy and equilibrium allocation alongside the optimal

constant staking yield policy for a numerical example with parameter values � = 0; 95,

d� = 0:2, � = 10, and � = 1:5. Clearly, a constant staking yield is not an optimal policy.

In general, a Ramsey policy is nonstationary in the sense that in the initial period the

policy is not restricted by past commitment. After that, the optimal policy is a¤ected by
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past commitment. As shown in the �gure, the Ramsey staking yield is increasing over its

transition to the steady state and so is the staking share. Correspondingly, price growth is

declining over time and so are real money balances used.

Some of the properties of the Ramsey steady state are a priori surprising. Speci�cally,

as noted, the staking level is equalized to the security target at steady state. Formally, to

see why this is the case, consider the �rst-order condition of the Ramsey allocation for Dt+1

which can be written as

��� (dt+1 � d�) (1� dt+1) +Mt+1�3;t � � (1 + yt+1)
Mt+1

Mt+2

Mt+2�3;t+1 = 0;

with �3;t the Lagrange multiplier of the money supply equation. For the Ramsey plan,

Mt+1�3;t converges to a constant and � (1 + yt+1)
Mt+1

Mt+2
= 1, so that only the �rst term

on the left-hand side remains. This term is set to zero with dt+1 = d�. The alternative,

(1� dt+1) = 0, is not a steady state equilibrium if � < 1.

Sharp predictions for long-run optimal policies are common in the literature, though they

are not always immediately intuitive. See for instance Chari and Kehoe (1999) for a review

of optimal policies in a large class of models. Many monetary models imply that for the

optimal policy, in the long run, the return to money should equal the real interest rate, or

equivalently, that the cost of holding money should be zero. This is known as the Friedman

rule. In these models, the social cost of producing money is zero at the margin and it seems

therefore reasonable that the long-run marginal utility of money should also be zero.

In the staking economy studied here, the Friedman rule is not optimal. The real return

to money is below the real interest rate and the marginal utility of money is positive. This is

implied by Equation (9) for yt+1 > 0. Instead of the marginal utility of money being driven

to zero, in the staking economy, it is the marginal cost of deviating from the staking target

that is driven to zero. This seems intuitive considering that a PoS protocol must compensate

stakers, making it optimal for there to be a cost to holding money. In this model, staking

is useful in providing security, and stakers need to be paid through a positive staking yield.

There would be no staking unless yt+1 > 0, and with this inequality satis�ed, real money

balances used, ptMU
t , are �nite. In other words, stakers make money more useful and their

services are paid for by diluting users.2

2Note that setting yt+1 = 0 forever is not an equilibrium with an interior choice of staking as the
transversality condition for staking is not satis�ed. Equilibria with Dt+1 � 0 are ruled out.
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Figure 2: Ramsey policy and optimal constant staking yield: Transition to steady state
starting from initial period.
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3 Stochastic model

In the stochastic model, shocks to discount factors and staking convenience are introduced.

I consider two policies for the staking yield: the Ramsey policy and an issuance curve

analogous to the one used by Ethereum.

Agents�utility is given by

max
MU
t+1+j ;Dt+1+j ;Ct+j

Et

 1X
j=0

�j�t+j

�
1

1� �
�
pt+jM

U
t+j

�1�� � �
2

�
�dt+j � d�

�2
+ � t+jpt+jDt+j + Ct+j

�!

with the stochastic component of the discount factor speci�ed as

�t+1
�t

= exp (�rz;t)
rz;t = �rrz;t�1 + �r"r;t;

and the staking convenience shock speci�ed as

� t = ��� t�1 + ��"�;t;

with "j;t IID standard normal variables and �j and �j persistence and volatility parame-

ters, respectively. The discount factor shocks can be thought of as representing interest rate

movements in the �at economy which determine agents�required rate of return. This shock

a¤ects the attractiveness of holding the token, whether staked or used. The staking conve-

nience shock can be thought of as capturing various changes that a¤ect the attractiveness of

staking. For instance, Ethereum�s EIP-7002 allowed for withdrawals which greatly reduced

risk and increased liquidity of staked tokens. Alternatively, the development of restaking

options (e.g. Eigenlayer) also made staking more attractive.

Consider an issuance curve given as

yt =
kp
�dt
;

with k a constant and where �dt refers to the aggregate staking share which individual agents

take as given. This issuance curve is similar to the one currently used by Ethereum, with

the di¤erence being that Ethereum�s staking yield depends on the amount of ETH staked

as opposed to the staking share here.3 For the analysis here, I set the parameter k so as

3The Ethereum issuance curve, which depends on the level of staked deposits, is consistent with a sta-
tionary money supply but typically not with a money supply that grows at a stationary (but non-zero) rate.
Monetary economists broadly agree that in the long run, real economic outcomes are not a¤ected by the level
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to maximize the unconditional expectation of users�utility. The model is closed with the

budget constraint given by Equation (1) and the money supply, Equation (5). Equilibrium

conditions and Ramsey policies are straightforward extensions from the deterministic model

as shown in Appendix 5.3.

For a numerical example, I set the parameters of the discount factor so as to approxi-

mately match the volatility and persistence of US real interest rates at an annual frequency.

Speci�cally, I set �r = 0:95 and �r = 0:008. It is less clear what a reasonable speci�cation

of the staking convenience shock should be, for this numerical example I set �r = 0:9 and

�r = 0:005. The model is solved through third-order perturbations around the steady state.

Figure 3 plots impulse responses for the two staking yield speci�cations.

3.1 Staking convenience shock

Ethereum�s issuance curve�s negative slope and convex shape was chosen to stabilize staking

(Buterin (2020)). Given its simplicity, one would not expect this curve to respond in a fully

optimal way in an environment with multiple shocks. Yet, given its shape, it should a priori

be well suited to deal with a shock that speci�cally a¤ects the attractiveness of staking

relative to other uses of ETH.

As shown in the second row, in response to a shock making staking more attractive,

both policies, Ramsey and the issuance curve, reduce the staking yield, and this contributes

to o¤setting the impact of the shock on the staking share. For Ramsey, the staking yield

responds more and keeps the staking signi�cantly closer to its steady state level compared to

the issuance curve. The token price responds less for Ramsey and the money supply moves in

the opposite direction from the price level. This stabilizes the money balances in numeraire

terms, contrary to the outcome produced by the issuance curve, where both money supply

and price increase.

Overall, while qualitatively similar, the outcome with the issuance curve diverges from

the optimal policy. To be fair, implementing the Ramsey policy would put a very high

demand on protocol designers and would also be subject to model misspeci�cation.

3.2 Interest rate shock

The right column of Figure 3 displays the responses to an increase in the �at interest rate

which translates into an increase in the required rate of return for holding tokens. This shock

produces a large decline in the token price (see lowest panel), which for unchanged money

of the money supply but potentially by its growth rate. Therefore, studying long-run economic outcomes
without allowing for a non-zero long-run money growth rate seems too restrictive.
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Figure 3: Impulse responses to staking convenience and interest rate shocks: Optimal (Ram-
sey) policy vs issuance curve.
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holdings would produce a large decline in the real money balances used, ptMU
t+1. If the

staking yield were unchanged, this would increase the incentive to use tokens at the expense

of staking them (in other words, users would want to restore real balances). The optimal

Ramsey policy counteracts this e¤ect by raising the staking yield by enough to maintain the

staking share at its steady state level. For the issuance curve, as the staking share decreases,

the staking yield is raised as well. However, the change in the staking yield only mitigates

the movement in the staking share but does not fully stabilize it.

As for the staking convenience shock, the token price moves less for the Ramsey policy

in response to an interest rate shock. The value of total real balances is further stabilized by

the Ramsey policy because it produces o¤setting changes in the money supply and the price,

contrary to the issuance curve. Overall, the issuance curve responds to these two shocks in

a way that mimics the optimal responses qualitatively. However, the staking share as well

as the token price are more volatile than under the optimal staking yield policy.

Quantitatively, the impulse responses depend on the parameters that determine the costs

of deviating from the staking target, �, and the curvature of the utility function, �. The

parameter values used are on the low side so that �uctuations are not very costly. Increasing

these parameters leads the Ramsey policy to more aggressively stabilize the staking share

relative to the issuance curve and exacerbates the di¤erences between the two policies.

4 Conclusion

This paper has presented a framework for evaluating issuance policies and staking yields in

PoS blockchains. The model only includes the most essential elements to isolate the key

trade-o¤ between security and dilution. One implication of the analysis is that, in the long

run, targets for staking shares should be fully met even if that implies diluting token holders.

Another �nding is that the compensation for staking should be designed so as to create the

incentives to maintain a relatively stable staking share. An issuance curve that mimics the

inverse square root form of Ethereum is qualitatively consistent with the optimal policy but

does not stabilize the staking share enough.

The model presented here can be extended to include additional features that are rele-

vant for speci�c blockchains. For instance, for Ethereum, the gas market and fee burn can

explicitly be represented as in Jermann (2023); alternatively, the di¤erent forms of staking

(solo staking vs intermediated staking) can be explicitly modelled and studied.
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5 Appendix

5.1 Equilibrium in deterministic model (proof of Proposition 1)

It is easy to see that once a value for p0 is determined, the paths for all equilibrium variables

pt, MU
t+1 and Dt+1 are determined by the three equilibrium equations (6), (7) and (8).

Therefore we can index candidate equilibrium paths by p0. The proof �rst computes the

steady state for dt and the value for p0 that corresponds to this equilibrium. It is then shown

that alternative values for p0 and their associated paths cannot be equilibrium outcomes.

We focus on y > 0, otherwise staking is not rational.

In order to have a steady state with a constant staking share

Dt

Dt +MU
t

Dt and MU
t need to eventually grow at the same rate. For constant y, we know that

MU
t+1

MU
t

= � [1 + y]

which is also constant. Indeed,

v0
�
pt+1M

U
t+1

�
= yt+1

MU
t+1 =

(v0)�1 (yt+1)

pt+1
;

with (v0)�1 (yt+1) the inverse function, and

MU
t+1

MU
t

=
pt
pt+1

(v0)�1 (yt+1)

(v0)�1 (yt)
=

pt
pt+1

= � (1 + y) :

For Dt to grow at the same rate asMU
t , the money supply equation, equation (8)) implies�

MU
t +Dt

�
� [1 + y] =MU

t +Dt (1 + y)

so that

� [1 + y] =
MU
t

(MU
t +Dt)

+
Dt

(MU
t +Dt)

(1 + y)

= 1� dt + dt (1 + y)

dt =
� (1 + y)� 1

y
:
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For steady state dt to be positive requires

� (1 + y) > 1:

Going forward, I assume � (1 + y) > 1, the case � (1 + y) < 1 is discussed in the last

paragraph of the proof.

If the staking share jumps to the steady state level in the �rst period,

d1 =
D1

D1 +MU
1

;

and with the sum if the two moneys D1 +M
U
1 predetermined, this implies

� [1 + y]� 1
y

=
D1

MU
0 +D0 (1 + y)

D1 =
� [1 + y]� 1

y

�
MU
0 +D0 (1 + y)

�
;

MU
1 =

�
MU
0 +D0 (1 + y)

�
�D1

=

�
1� � [1 + y]� 1

y

� �
MU
0 +D0 (1 + y)

�
;

p1 =
(v0)�1 (y)

MU
1

=
(v0)�1 (y)

y
h
1� �[1+y]�1

y

i
(MU

0 +D0 (1 + y)) ;

and

p0 = p1� (1 + y) =
(v0)�1 (y)

(MU
0 +D0 (1 + y))

y�

(1� �) : (12)

Let�s label the initial price associated with this equilibrium path �p0. The proof shows

that starting from a smaller p0, Dt+1 will eventually go negative, and starting from a higher

p0 a transversality condition is violated.

Consider the dynamics of Dt+1. From the money supply equation and the known growth

rate of MU
t for t � 1, MU

t+1=M
U
t = � (1 + y).

Dt+1

MU
t

= 1 +
Dt

MU
t

(1 + y)�
MU
t+1

MU
t

= 1� � (1 + y)
�
1� Dt

MU
t

�
(13)
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and
Dt+1

Dt

Dt

MU
t

= 1 +
Dt

MU
t

(1 + y)� � (1 + y)

Dt+1

Dt

= (1 + y)� � (1 + y)� 1
Dt
MU
t

: (14)

Focusing on t = 1,
D2

D1

= (1 + y)� � (1 + y)� 1
D1
MU
1

;

it is easy to check that if D1=M
U
1 is below its steady state level

D

MU
=

d

1� d =
� (1 + y)� 1
(1 + y) (1� �)

then
D2

D1

< � (1 + y) =
MU
2

MU
1

;

which implies that D2=M
U
2 < D1=M

U
1 , and therefore Dt+1=M

U
t+1 is monotonically declining.

Vice versa, if D1=M
U
1 is above it steady state level, Dt+1=M

U
t+1 is monotonically increasing.

From the money supply equation we have that

D1

MU
1

=

�
MU
0 +D0 (1 + y)

�
MU
1

� 1

and from equalizing convenience yields

y = v0
�
pt+1M

U
t+1

�
:

The FOC for staking implies that if p0 is below the path leading to the steady state so

is p1 and the yield equalization implies MU
1 is above the path leading to the steady state.

Therefore D1
MU
1
is below the steady state level and Dt=M

U
t will continue to decline. As shown

in Equation (13), for � (1 + y) > 1, this implies Dt+1 will eventually be negative, which we

rule out as an equilibrium outcome.

If p0 is above �p0, by the same argument, D1
MU
1
is above the steady state level and Dt grows

at a rate higher than � (1 + y), further increasing D2
MU
2
> D1

MU
1
. Asymptotically,

lim
t!1

Dt+1

Dt

= (1 + y) .
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With Dt+1 growing at the asymptotic rate and given the growth rate of pt

lim
t!1

pt+1Dt+1

ptDt

=
1

� [1 + y]
(1 + y) =

1

�
:

This implies that pt+1Dt+1 grows at 1=�, the rate of return, forever. The agent would never

receive any consumption utility from this position, which is clearly not an optimal investment

strategy. This also implies that �tpt+1Dt+1 will not converge to zero and that therefore the

transversality condition does not hold.

I have shown that if � (1 + y) > 0 there is no admissible equilibrium other than that where

the staking share jumps to its steady state value in the �rst period. What if � (1 + y) < 0?

In this case, the path starting from �p0 eventually implies a negative staking share, which is

ruled out as an equilibrium. As seen in Equation (14), for nonnegative paths, Dt is growing

at a rate of at least (1 + y) > 1 (MU
t is shrinking) which violates the transversality condition.

5.2 Optimal constant staking yield (proof of Proposition 2)

Given the known equilibrium dynamics shown in Proposition 1, lifetime utility is

U0 =
h
��
2
(d0 � d�)2 + ln

�
MU
0

�
+ ln (p0)

i
+

�

1� �

h
��
2
(d� d�)2 + ln

�
pMU

�i
:

The equilibrium values for d and pMU as a function of y are given by

pMU =
1

y

d =
� [1 + y]� 1

y
:

Using Proposition 1, we have that

p0 =
�

(1� �)
1

(MU
0 +D0 (1 + y0))

:

Therefore, we can ignore p0, because it is predetermined.

Replace the equilibrium solutions and maximize lifetime utility with respect to y

max
y
U = max

y

�

1� �

"
��
2

�
� [1 + y]� 1

y
� d�

�2
+ ln

�
1

y

�#
:
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The �rst-order condition is given by

@U

@y
= ��

�
� [1 + y]� 1

y
� d�

�
1� �
y2

�
�
1

1=y

�
1

y2
= 0;

which implies �
� [1 + y]� 1

y
� d�

�
= � y

� (1� �) < 0

and

(d� d�) < 0:

Solving for the optimal y,

y2

� (1� �) + (� � d
�) y � (1� �) = 0;

a quadratic equation with one positive root

y =
� (1� �)

2

"
� (� � d�) +

�
(� � d�)2 + 4

�

�0:5#
:

Substitute the optimal y in the equation for d, so that

d = d� � y

� (1� �)

= d� � 1
2
(� � d�)

"�
1 +

4

� (� � d�)2
�0:5

� 1
#
< d�

where the last inequality requires � � d� > 0.

5.3 Ramsey policy (proof of Proposition 3)

The optimal allocation with commitment, the Ramsey allocation, is the solution to maxi-

mizing agents� lifetime utility with respect to yt+1; MU
t+1; Dt+1; pt for t � 0. The optimal

Ramsey policy corresponds to the implied sequence of staking yields, yt+1. Lifetime utility
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for the general case with uncertainty is given by

�0

24 1

1� �
�
p0M

U
0

�1�� � �
2

 
D0

MU
0 +D0

� d�
!2
+ � 0p0D0

35
+E0��1

24 1

1� �
�
p1M

U
1

�1�� � �
2

 
D1

MU
1 +D1

� d�
!2
+ � 1p1D1

35+ E0�2�2 [:] :::
with the equilibrium conditions as constraints�

Et�
�t+1
�t

[yt+1 + � t+1 + 1] pt+1 � pt
�
: �1;t

(
�Et

�t+1
�t

"
1�

pt+1MU
t+1

�� + 1
#
pt+1 � pt

)
: �2;t

�
MU
t+1 +Dt+1 �MU

t �Dt � ytDt

	
: �3;t;

with �j;t the Lagrange multipliers. Lagrange multipliers are scaled by �
t�t (z

t) prob (zt), with

zt representing the stochastic process driving the shocks, �t (zt) and � (zt), and prob (zt) the

corresponding probabilities.

First-order necessary conditions for yt+1; Dt+1;M
U
t+1; and pt+1, respectively, are given by

�1;tEt�
�t+1
�t

pt+1 � Et�
�t+1
�t

Dt+1�3;t+1 = 0; (15)

�E0�
�t+1
�t

264� Dt+1

MU
t+1 +Dt+1

� d�
!0B@ MU

t+1�
MU
t+1 +Dt+1

�2
1CA+ � t+1pt+1

375 (16)

+�3;t � Et�
�t+1
�t

�3;t+1 (1 + yt+1)

= 0;
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Et�
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264�pt+1MU
t+1

�1��
MU
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+ �

 
Dt+1

MU
t+1 +Dt+1

� d�
!

DU
t+1�

MU
t+1 +Dt+1

�2
375 (17)

��2;t�Et
�t+1
�t

 
�

�
pt+1M

U
t+1

�1���
MU
t+1

�2
!
+ �3;t � �Et

�t+1
�t

�3;t+1

= 0;�
ptM

U
t

�1��
pt

+� tDt+�1;t�1 [yt + � t + 1]��1;t+�2;t�1

 
(1� �)
(ptMU

t )
�
+ 1

!
�2;t�1��2;t = 0; (18)

and for p0 with t = 0 �
ptM

U
t

�1��
pt

+ � tDt � �1;t � �2;t = 0:

To solve for the steady state, consider the deterministic model (without shocks), and

conjecture a steady state with a constant yt = y. The equilibrium conditions imply that

pt
pt+1

= � [1 + y] =
MU
t+1

MU
t

; (19)

dt = d =
� [1 + y]� 1

y
; (20)

and

pt+1M
U
t+1 =

�
1

y

�1=�
: (21)

The set of �rst-order conditions for yt+1; Dt+1;M
U
t+1; and pt+1, Equations (15), (16), (17), and

(18), are then solved for a constant y and for the multipliers �j;t for j = 1; 2; 3. Multipliers

are nonstationary but become stationary (and constant in steady state) if scaled byMt+1, for

�1;t and �2;t by dividing byMt+1, and for �3;t by multiplying byMt+1. Speci�cally, Equation

(16), using the solution for the state money growth rate, can be written as

��� (dt+1 � d�) (1� dt+1) +Mt+1�3;t �Mt+2�3;t+1 = 0:

In steady state, for constant scaled multipliers, Mt+1�3;t =Mt+2�3;t+1, so that

dt = d
�:

The alternative way of setting this equation to zero, (1� dt+1) = 0, cannot be a steady
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state equilibrium for � < 1 (as implied by Equation (20)). The combination of Equations

(15), (17), and (18), at steady state, can then be solved for the constant scaled multipliers

through straightforward algebra. The stability of the steady state is veri�ed numerically by

third-order perturbations around the steady state using Dynare.
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