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Abstract

A dynamic equilibrium model embedding a staking decision with �xed and variable

costs admits a closed-form cuto¤ for solo participation. Comparative statics in the

staking yield show that solo staking may increase or decrease: the result depends on

the elasticity of marginal utility of tokens. When this elasticity is su¢ ciently low,

lowering the yield can raise the share of solo validators.

1 Introduction

Proof-of-stake (PoS) blockchains rely on a set of independently operated validators. When

a large share of stake is concentrated in a single exchange or liquid-staking token, that

intermediary can manipulate the chain� or be coerced into doing so. Thus, every PoS chain

must address how to maintain a su¢ ciently diverse validator set.

With permissionless staking, policies targeting validator characteristics such as size are

not straightforward. Given that solo stakers face �xed costs, reducing this cost can help.

In this note, I explore the role of the staking yield in in�uencing the choice between solo

staking and intermediated staking.

A priori, a higher staking yield increases all types of staking and helps solo stakers

overcome their �xed costs, which should raise the number of solo validators. However, a

higher staking yield also increases dilution, potentially lowering the token�s value and thus

diminishing solo stakers�ability to cover their �xed costs.

�Contact: jermann@wharton.upenn.edu; http://�nance.wharton.upenn.edu/~jermann/
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In this note, I embed a choice between solo and intermediated staking into the basic

proof-of-stake model of Jermann (2024). This dynamic equilibrium model is simple enough

to admit a closed-form solution. As the analysis shows, whether solo staking increases or

decreases when the staking yield is lowered depends crucially on the elasticity of the marginal

utility of tokens with respect to the value of tokens used, equivalently the elasticity of the

demand for money. If the marginal utility is su¢ ciently unresponsive or the money demand

su¢ ciently elastic, a lower staking yield can lead to an increase in solo staking.

2 Model

The model embeds a static choice between two types of staking into the dynamic model

presented in Jermann (2024).

2.1 Staking choice

Assume a given amount of stake Dt+1 in units of tokens to be allocated at time t between

intermediated staking : Di
t+1, and

solo staking : Ds
t+1:

Solo staking incurs a �xed cost W USD per period (e.g., monthly), covering hardware

outlays and the time and e¤ort required to learn and operate a validator. The variable cost

is proportional to the stake: � for intermediated staking and w for solo staking. We assume

� > w, because intermediated staking includes additional overhead� custodial hardware,

customer support, and administrative operations� that solo staking�s variable cost excludes.

Possibly, w is very low, which would not change the conclusions derived below.

Marginal returns, (1 + yt+1 � �) and (1 + yt+1 � w) are linear, in the amount staked
which implies that the optimal policy is to either allocate the entire stake to intermediated

staking, or, if the �xed cost can be amortized, to solo staking. This can be summarized in

a participation constraint for solo staking

�pt+1Dt+1 (1 + yt+1 � w)�W � ptDt+1 > �pt+1Dt+1 (1 + yt+1 � �)� ptDt+1:

The left side is the expected pro�t from solo staking including the �xed cost, pt is the USD

price of the token and � is the discount factor (with 1=� the required rate of return). The
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right side is the expected pro�t from intermediated staking. This simpli�es to

W < (� � w) �pt+1Dt+1: (1)

Intuitively, solo staking is the choice if the �xed cost can be overcome by the variable cost

di¤erence. This holds for low enough �xed cost, high enough variable cost di¤erence, and

high enough value staked.

2.2 Staking choice embedded in dynamic model

To maintain the tractability of the basic model in Jermann (2024), I impose the following

structure. I assume that solo staking requires some skill; only one member of each represen-

tative household is an expert who has this skill. The representative household is resigned

to using intermediated staking, but delegates staking to the expert. The expert decides

between intermediated and solo staking and can keep any pro�ts from staking solo. This

two-stage setup is needed because of the linearity of the staking decision. Without it, there

is no interior equilibrium. Moving to a concave individual staking choice would be straight-

forward but would require the introduction of another utility function and result in a loss of

tractability.

Under the made assumptions, the dynamic part of the model is unchanged except for the

variable staking cost for intermediated staking. The household problem is given by

max
fMU

t+1+j ;Dt+1+j ;Ct+jg

1X
j=0

�j
�
Ct+j + v

�
pt+jM

U
t+j

��
subject to

Ct + ptDt+1 + ptM
U
t+1 = ptDt (1 + yt � �) + ptMU

t + Yt;

with the aggregate money supply equation

MU
t+1 +Dt =M

U
t +Dt (1 + yt) :

Equilibrium optimality conditions are unchanged except for the staking �rst-order condition

which includes �

pt = � (1 + yt+1 � �) pt+1;

pt = �
�
1 + v0

�
pt+1M

U
t+1

��
pt+1:

Assuming a constant staking yield, yt+1 = y for t > 0, the solution for the staking ratio
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becomes

dt =
� (1 + y � �)� 1

y
: (2)

With this solution, we can evaluate the participation constraint for solo staking

W < (� � w) �pt+1Dt+1 � W �

where W � is the cuto¤ level for the �xed cost below which solo staking is chosen.

3 Comparative statics

We are interested in how solo staking responds to a change in the staking yield y. In the

model described so far, all stake is either intermediated or solo, depending on the parameter

values. By computing the derivative of the cuto¤ with respect to y, we can predict whether

the equilibrium shifts toward� or away from� solo staking. A richer analysis, shown below,

introduces a distribution of �xed costs to trace how each staking mode adjusts.

Rewrite the de�nition of the cuto¤ as

W � = (� � w) �pt+1MU
t+1

Dt+1

MU
t+1

= � (� � w) v0�1 (y � �) d

1� d:

The inverse marginal utility, v0�1 (y � �), is decreasing in y while the equilibrium staking

share ratio, d= (1� d), is increasing in y. Intuitively, the key is in the slope of the marginal
utility which determines the price impact of the change in y. If the marginal utility is

relatively unresponsive, then the equilibrium price will change by more. For instance, a

decline in y with an unresponsive marginal utility will produce a large price increase so that

the cuto¤ level increases which makes solo staking more likely. That is, a negative derivative
@W �

@y
< 0 leads to more solo staking following a decline in y.

To formalize this mechanism, assume the marginal utility is represented by v0
�
pt+1M

U
t+1

�
=�

pt+1M
U
t+1

���
, with � > 0 the elasticity of the marginal utility with respect to the value of

used tokens. After some algebra (see the Appendix), the following is derived.

Proposition 1

@W �

@y
=

� (� � w)
(1� d) (y � �)1=�

�
1� � (1� �)
(1� d) y2 � 1

�

d

(y � �)

�
(3)
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which implies that for small enough �; we have @W �

@y
< 0, and for large enough �, we have

@W �

@y
> 0, assuming that � (1 + y � �)� 1 > 0 which is required for d > 0.

3.1 Numerical example

Assume d = 0:3, y = 0:03, and � = 0:005, values that approximately re�ect Ethereum�s

staking environment in 2025. Based on Equation (2), this implies a discount factor of

� = 0:9844. With these parameter values, the term in brackets becomes�
1� � (1� �)
(1� d) y2 � 1

�

d

(y � �)

�
=

�
32:6� 12

�

�
:

For � < 12=32:6 = 0:37, the derivative @W �

@y
< 0, and a decline in y would increase the

proportion of solo staking in total staking.

To clarify the role of the parameter �, combine the two �rst-order conditions of the model

as

pt+1M
U
t+1 = (yt+1 � �)

�1=� : (4)

This can be interpreted as money demand function of the foregone opportunity cost from

staking. Take logs and di¤erentiate

@ ln pt+1M
U
t+1

@ ln (yt+1 � �)
= �1

�
:

That is, 1=� is the elasticity of money demand with respect to the foregone staking yield.

This can be compared, for instance, to the log-log speci�cation of the money demand in

Lucas (2000)

m (rt) = Ar
��
t ;

where m stands for real money balances and rt the nominal interest rate. In Lucas (2000),

the best-�tting value is about � = 0:5, which would correspond to � = 2. This estimate is

based on the dollar economy, it is not clear how relevant it is for a blockchain economy say

like Ethereum. Jermann (2021) estimates money demand in a related but also not directly

comparable model to be more elastic for BTC and ETH than for �at currencies during

hyperin�ations.

The simple estimation approach used by Lucas is not easily extended to the crypto con-

text. The deterministic model considered here is an approximation for a stochastic setting.

In the stochastic model, Equation (4) holds in expectation and includes additional variables

such as a stochastic discount factor and adoption shocks. Given the extreme volatility in
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crypto prices, using Equation (4) to estimate � based on realizations of the two variables

� pt+1MU
t+1 and yt+1 �alone, would be challenging due to sampling uncertainty and the

absence of the other variables in the stochastic counterpart. A serious quantitative assess-

ment would explicitly need to take into account uncertainty, possibly by estimating a fully

speci�ed stochastic model.

4 Extension

Assuming heterogenous �xed costs distributed according to a density function f (W ) would

give us the aggregate amounts for solo staking and intermediated staking as

Ds
t+1 =

Z W �
t+1

0

Dt+1f (W ) dW and Di
t+1 =

Z 1

W �
t+1

Dt+1f (W ) dW:

In this more general case, changing y changes the cuto¤W �
t+1, which directly maps into the

proportion of stake that is solo staked vs intermediated. The absolute amounts also depend

on the change in Dt+1.

6



References

Jermann, Urban, 2021, Cryptocurrencies and Cagan�s Model of Hyperin�ation, Journal of

Macroeconomics 69, 103340

Jermann, Urban, 2024, Optimal Issuance for Proof-of-Stake Blockchains,

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4971255

Lucas, Jr., R.E, 2000, In�ation and Welfare, Econometrica, 68: 247-274.

https://doi.org/10.1111/1468-0262.00109

7



5 Appendix

5.1 Proposition 1

Algebra for the derivative of

W � = � (� � w) v0�1 (y � �) d

1� d

with respect to y.

Preliminary calculations,

@d

@y
=
1� � (1� �)

y2

@d= (1� d)
@y

=

@d
@y
(1� d)� @(1�d)

@y
d

(1� d)2
=

@d
@y
(1� d) + @d

@y
d

(1� d)2

=

@d
@y

(1� d)2
=
1� � (1� �)
(1� d)2 y2

:

With the assumed functional form for utility we have

v0
�
pMU

�
=

�
pMU

���
= y;

v0�1 (y) = y�1=� ; and
@v0�1

@y
= �1

�
y�1=��1:

Bringing this together starting from

W � = � (� � w) v0�1 (y � �) d

1� d;

@W �

@y
=

� (� � w)
(y � �)1=�

�
�1
�

1

(y � �)
d

1� d +
@d= (1� d)

@y

�
=

� (� � w)
(1� d) (y � �)1=�

�
1� � (1� �)
(1� d) y2 � 1

�

d

(y � �)

�
:
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