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This paper considers the term structure of interest rates implied by a production-based
asset pricing model in which the fundamental drivers are investment in equipment and
structures as well as inflation. The model matches the average yield curve up to five-year
maturity almost perfectly. Longer term yields are roughly as volatile as in the data.
The model also generates time-varying bond risk premiums. In particular, when running
Fama-Bliss regressions of excess returns on forward premiums, the model produces slope
coefficients of roughly half the size of the empirical counterparts. Closed-form expressions
highlight the importance of the capital depreciation rates for interest rate dynamics.
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1. Introduction

Many models exist of the term structure of interest
rates, but only a few tie interest rates to macroeconomic
fundamentals. Among fundamentals-based models, most
are driven by consumption. Given the relative success of
production-based models in matching features of stock
returns at the aggregate level and in the cross section,
extending the production-based approach to the term
structure of interest rates seems promising.

Consumption-based models of the term structure face
a number of difficulties. Many of these are related to the
equity premium puzzle (Mehra and Prescott, 1985),
according to which empirically reasonable consumption
volatility and risk aversion are too small to match the
sizable historical equity premium. Backus, Gregory, and
Zin (1989) find that complete markets models cannot
All rights reserved.
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explain the sign, the magnitude, or the variability of the
term premium. In this class of models, expected consump-
tion growth and real yields are positively correlated.
Chapman (1997) reports some supportive evidence for
this property, as do Berardi and Torous (2005). Considering
richer model specifications, several more recent studies
report more positive results for explaining term pre-
miums; for instance, Wachter (2006), Bansal and
Shaliastovich (2010), Piazzesi and Schneider (2007),
Ehling, Gallmeyer, Heyerdahl-Larsen, and Illeditsch
(2013), and Rudebusch and Swansson (2008). General
equilibrium models that start from a consumption-based
model and add elements of endogenous production still
face difficulties with jointly explaining the term structure
and macroeconomic aggregates, as shown in van
Binsbergen, Fernandez-Villaverde, Koijen, and Rubio-
Ramirez (2010).

Production-based asset pricing models have linked
stock returns to fundamentals such as investment and
productivity. Cochrane (1991) establishes the link between
a firm's return to investment and its market return. He also
shows a tight empirical relation between aggregate invest-
ment and stock returns. Production-based models have
been used to explain the value premium (Zhang, 2005),
and properties of external financing behavior (Li, Livdan,
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and Zhang, 2009). Production-based models have also
shown to be useful for understanding the cross section
of stock returns more generally. See, for instance, Berk,
Green, and Naik (1999), Liu, Whited, and Zhang (2009),
Belo (2010), Tuzel (2010), and Eisfeldt and Papanikolaou
(forthcoming).1

The objective of this paper is to extend the production-
based approach to price nominal bonds of different matu-
rities. Specifically, this paper builds on Jermann (2010),
which analyzes the determinants of the equity premium
and presents a model that can quantitatively match first
and second moments of the real returns on stocks and
short-term real bonds. I start from the same two-sector
investment model based on equipment and structures. The
paper here extends the analysis to the term structure of
nominal bonds and explicitly introduces inflation. The
paper is also related to Cochrane's (1988) working paper
that presents a two-sector investment model and shows
that the real forward premium from the model can track
well its empirical counterpart over 1952–1986. In my
paper, I present a more detailed analysis of the term
structure, explicitly introduce inflation, and consider nom-
inal bonds. The real side of the model is also more general.
Importantly, I allow for general curvature in the capital
adjustment cost functions as opposed to Cochrane's quad-
ratic specification.

The main quantitative findings are that the model,
calibrated to match the equity premium and the volatility
of stock returns as well as the mean and volatility of short-
term yields, matches the average yield curve up to five-
year maturity almost perfectly. Longer-term yields are
roughly as volatile as in the data. The model also generates
time-varying bond risk premiums. In particular, when
running Fama-Bliss regressions of excess returns on for-
ward premiums, the model produces slope coefficients of
roughly half the size of the empirical counterparts.

My model is a two-sector version of a q-theory invest-
ment model. Firms’ optimal investment choices generate
the well-known equivalence between market returns and
investment returns. The short-term real risk-free rate can
be seen as a long–short portfolio of the two risky invest-
ment returns. With the help of a continuous-time version
of the model, the economic forces that drive the quanti-
tative results are revealed explicitly. In particular, the short
rate is shown to be a weighted average of the two
expected investment returns, with weights that are con-
stant and simple functions of the adjustment cost curva-
ture parameters. Expected returns and the market price of
risk are driven by the two investment-to-capital ratios that
display important low-frequency components. The volati-
lity of the short rate is also a function of the investment-
to-capital ratios. Thus, even with homoskedastic shocks,
the model endogenously produces time-varying bond risk
premiums. A key new finding is that the difference in
depreciation rates between structures and equipment
plays a crucial role for whether interest rates commove
1 For additional examples of the production-based approach applied
to stocks, see Carlson, Fisher, and Giammarino (2004), Li, Vassalou, and
Xing (2006), Warusawitharana (2010), Kogan (2004), Cooper (2006),
Pastor and Veronesi (2009), Kuehn (2009), and Eberly and Wang (2010).
positively or negatively with investment and for whether
the implied term premium for bonds with a short maturity
is positive or negative.

The paper proceeds as follows. Section 2 presents the
model; Section 3, the quantitative analysis. Section 4
analyzes a continuous-time version of the model. Section
5 concludes.

2. Model

This section starts by presenting the real side of the
model, which was first used in Jermann (2010). Inflation is
then introduced.

2.1. Real model

Assume an environment in which uncertainty is mod-
eled as the realization of s, one out of a set of two ðs1,s2Þ,
with st the current period realization and st≡ðs0,s1,…stÞ the
history up to and including t. Assume a revenue function
with two capital stocks Kjðst−1Þ for j¼ 1,2,

FðfKjðst−1Þgj∈ð1,2Þ,stÞ ¼ ∑
2

j ¼ 1
AjðstÞKjðst−1Þ: ð1Þ

As is standard, Kjðst−1Þ is chosen one period before it
becomes productive. Fð�Þ represents the resources available
after the firm has optimally chosen and paid factors of
production that are selected within the period, for
instance, labor.2 AjðstÞ is driven by productivity shocks
and other factors affecting the marginal product of capital.
It is key that there are as many capital stocks as there are
states of nature next period. Without this property, reco-
vering state prices from the firm's production choices
would not be possible.

Capital of type j accumulates through

KjðstÞ ¼ Kjðst−1Þð1−δjÞþ IjðstÞ, ð2Þ
where δj is the depreciation rate and IjðstÞ is investment.
The total cost of investing in capital of type j includes
convex adjustment costs and is given by

HjðKjðst−1Þ,IjðstÞÞ ¼
bj
νj
ðIjðstÞ=Kjðst−1ÞÞνj þcj

� �
Kjðst−1Þ, ð3Þ

with b, c > 0, ν > 1. For each capital stock, different values
for b, c, and ν are allowed. The most important parameter
is the curvature ν, as it determines the volatility of
percentage changes in the marginal adjustment cost, and
thus Tobin's q, relative to investment volatility. The other
parameters play a minor role for the main asset pricing
properties this paper focuses on.

Taking as given state prices PðstÞ, a representative firm
solves the problem

max
fI,K′g

∑
∞

t ¼ 0
∑
st
PðstÞ FðfKjðst−1Þgj∈ð1,2Þ,stÞ− ∑

2

j ¼ 1
HjðKjðst−1Þ,IjðstÞÞ

" #

ð4Þ
2 This revenue function could, for instance, be derived from a
production function ð∑jaj,tKj,t ÞαN1−α

t , where aj,t are shocks, 0 < α < 1,
and labor N is paid its marginal product.



3 See Jermann (2010) for more details. It is also shown how to
introduce time-varying investment specific technologies to accommodate
possible differences in growth rates across capital stocks. Given the
limited effect on the main asset pricing properties of this extension, the
more simple specification is used here.
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s:t: KjðstÞ ¼ Kjðst−1Þð1−δjÞþ IjðstÞ, ∀st ,j, ð5Þ
with s0 and Kjðs−1Þ given and Pðs0Þ ¼ 1 without loss of
generality.

First-order conditions are

qjðstÞ ¼Hj,2ðKjðst−1Þ,IjðstÞÞ, ð6Þ

and

1¼ ∑
stþ 1

Pðstþ1jstÞ
FKj

ðst ,stþ1Þ−Hj,1ðst ,stþ1Þþð1−δjÞqjðst ,stþ1Þ
qjðstÞ

 !
,

ð7Þ
for each j, where the notation Pðstþ1jstÞ shows the value of
a unit of the numeraire in stþ1 conditional on st and in
units of the numeraire at st. Hj,iðKjðst−1Þ,IjðstÞÞ represents
the derivative with respect to the ith element of the
function. Eq. (7) determines the marginal q, qjðstÞ, the
marginal investment cost, and given that the production
function and adjustment cost functions are homogenous of
degree one, it also equals the average q (Tobin's q).

My objective is to recover the state prices that drive
firms' decisions from investment and capital choices. To do
this, define the investment return as

RI
jðst ,stþ1Þ≡

FKj
ðst ,stþ1Þ−Hj,1ðst ,stþ1Þþð1−δjÞqjðst ,stþ1Þ

qjðstÞ

 !
:

ð8Þ
Knowing investment returns for the two types of capital,
I can combine the first-order conditions,

RI
1ðst ,s1Þ RI

1ðst ,s2Þ
RI
2ðst ,s1Þ RI

2ðst ,s2Þ

" #
Pðs1jstÞ
Pðs2jstÞ

" #
¼ 1, ð9Þ

and recover the state prices with the matrix inversion

Pðs1jstÞ
Pðs2jstÞ

" #
¼

RI
1ðst ,s1Þ RI

1ðst ,s2Þ
RI
2ðst ,s1Þ RI

2ðst ,s2Þ

" # !−1

1: ð10Þ

With these state prices, any claim can be priced; multi-
period claims are priced by iterating forward. To efficiently
compute stock returns, I can use the equivalence between
investment returns and market returns that comes from
the homogeneity assumptions. In particular, consider the
market returns to the aggregate capital stock

RMðst ,stþ1Þ≡
Dðst ,stþ1ÞþVðst ,stþ1Þ

VðstÞ , ð11Þ

where Dðst ,stþ1Þ ¼ FðfKjðst−1Þg,stÞ−∑jHjðKjðst−1Þ,IjðstÞÞ
represents the dividends paid by the firm, and Vðst ,stþ1Þ
is the ex-dividend value of the firm. Assuming constant
returns to scale in Fð�Þ and Hjð�Þ, it can easily be shown that
this return will be equal to a weighted average of the
investment returns:

RMðst ,stþ1Þ ¼∑
j

qjðstÞKjðstÞ
∑iqiðstÞKiðstÞ

� RI
jðst ,stþ1Þ: ð12Þ

To evaluate the asset pricing implications of this model,
I can postulate a stochastic process for the firms' invest-
ment growth rates

λIjðst ,stþ1Þ≡Ijðst ,stþ1Þ=IjðstÞ, j¼ 1,2, ð13Þ
and for the marginal product terms AjðstÞ. Assuming initial
conditions for the two capital stocks and investment,
Kjðs−1Þ and Ijðs−1Þ, the investment growth process can be
used to generate histories for investment and capital
stocks. Based on these, one can generate investment
returns RI

jðst ,stþ1Þ, state prices Pðstþ1jstÞ, and the prices
and returns of any security of interest. Overall, this simple
model allows one to produce asset prices from firms'
investment behavior and technology shocks that can then
be compared with data on asset prices. As described in
detail in Jermann (2010), to ensure stationary returns for
the aggregate capital stock, investment growth rates
across the two types of capital are required not only to
be perfectly (conditionally) correlated (as is implicit in the
two-state assumption), but also to have the same realiza-
tions. That is,

λIjðst ,stþ1Þ ¼ λIðst ,stþ1Þ for j¼ 1,2: ð14Þ

Given our empirical implementation with investment in
equipment and in structures, assuming equal volatility of
investment growth rates is consistent with the data.3

2.2. Pricing nominal bonds

To price nominal bonds, I need to explicitly introduce
inflation. It is assumed that inflation is given exogenously.
In the model, the real value of firms' cash flows is not
affected by inflation. I assume that inflation is not a priced
factor, in the sense that inflation risk will only require a
risk premium to the extent that inflation is correlated with
the real side of the model. This approach seems essentially
comparable to the way nominal bonds are priced in basic
consumption-based asset pricing models.

Assume inflation can have two possible realizations,
λPðztÞ, with zt∈ðz1,z2Þ. For transparency, I present here the
most basic case. It is straightforward to extend the approach
to handle an inflation process with more than two states and
a richer dependence on history. Combined with the real side
presented before, I now have an extended state space that
has a total of four states, the product of (s1, s2) and (z1, z2).
In this extended state space, I have

Pðstþ1jst ,ztÞ ¼ Pðstþ1,z1jst ,ztÞþPðstþ1,z2jst ,ztÞ, ð15Þ
that is, for two states that differ only by next period's
inflation realization, the sum of the state prices equals the
price for delivery conditional on a real state realization but
independent of the inflation realization. To determine the
state prices in the extended state space, I make two
assumptions. First, I assume that the firms' technology and
investment decisions are not contingent on inflation, so that

Pðstþ1jst ,ztÞ ¼ Pðstþ1jstÞ: ð16Þ
With this assumption, the state prices derived from the real
model (without considering inflation) correspond to
the sums of two state prices in the extended setup here.



Table 1
VAR(1) for investment growth and inflation dynamics.

Sdðεt Þ and Corr refer to moments of the innovations, λI is investment growth, and λP is inflation. Growth rates are first differenced logarithms.

Variable CPI GDP deflator Model

Equipment Structures Equipment Structures
λIt λPt λIt λPt λIt λPt λIt λPt λIt λPt

λIt−1 0.12 0.09 0.36 0.03 0.12 0.06 0.35 0.03 0.20 0.03

(t-statistics) (0.9) (3.9) (2.7) (1.0) (0.9) (3.7) (2.6) (1.5)
λPt−1 −0.81 0.84 −0.35 0.81 −0:78 0.92 −0.16 0.89 −0.57 0.77

(t-statistics) (−2.2) (12) (−0.9) (10) (−1.7) (16) (−0.4) (15)
Sd(εt) 0.0731 0.0137 0 .0738 0.0154 0.0744 0.0090 0.0743 0:0098 0.070 0.0121
Corr 0.22 0.34 0.14 0.24 0.23
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To impose that inflation is not a priced factor, the second
assumption is: If two states of nature differ only by their
inflation realization, then the ratio of their state prices is
assumed to equal the ratio of their (physical) probabilities.
Thus, for instance,

Pðstþ1,z1jst ,ztÞ ¼
Prðstþ1,z1jst ,ztÞ

Prðstþ1,z1jst ,ztÞþPrðstþ1,z2jst ,ztÞ

� �
Pðstþ1 stÞ

��
and

Pðstþ1,z2jst ,ztÞ ¼ 1−
Prðstþ1,z1jst ,ztÞ

Prðstþ1,z1jst ,ztÞþPrðstþ1,z2jst ,ztÞ

� �
Pðstþ1 stÞ,

��
ð17Þ

where Prðstþ1,ztþ1jst ,ztÞ denotes a physical probability.
Having specified an inflation process, I can derive the

price of a one-period nominal bond that pays one dollar at
time tþ1 as

V$ð1Þ
t ðst ,ztÞ ¼ Prðs1,z1jst ,ztÞ

Prðs1,z1jst ,ztÞþPrðs1,z2jst ,ztÞ

� �
Pðs1jstÞ

1
λP z1
� �

þ 1−
Prðs1,z1jst ,ztÞ

Prðs1,z1jst ,ztÞþPrðs1,z2jst ,ztÞ

� �
Pðs1jstÞ

1
λPðz2Þ

þ Prðs2,z1jst ,ztÞ
Prðs2,z1jst ,ztÞþPrðs2,z2jst ,ztÞ

� �
Pðs2jstÞ

1
λPðz1Þ

þ 1−
Prðs2,z1jst ,ztÞ

Prðs2,z1jst ,ztÞþPrðs2,z2jst ,ztÞ

� �
Pðs2jstÞ

1
λPðz2Þ

: ð18Þ

Multi-period bonds are priced recursively. For instance,

V$ð2Þ
t ðst ,ztÞ ¼ ∑

stþ 1 ,zt þ 1

Pðstþ1,ztþ1jst ,ztÞV$ð1Þ
tþ1ðstþ1,ztþ1Þ=λPðztþ1Þ:

ð19Þ
As a special case, consider inflation to be independent of
investment. In particular, assume

Prðs1,z1jst ,ztÞ
Prðs1,z2jst ,ztÞ

¼ Prðs2,z1jst ,ztÞ
Prðs2,z2jst ,ztÞ

for a given ðst ,ztÞ, ð20Þ

then, after some algebra,

V$ð1Þ
t ðst ,ztÞ ¼ fPðs1jstÞþPðs2jstÞgE

1
λP

jst ,zt
� �

: ð21Þ

That is, with inflation independent of investment, the price
of a nominal bond is simply the price of a real bond times
the expected loss due to inflation, Eðð1=λPÞjst ,ztÞ, without
any compensation for inflation risk. More generally, with
Prðs1,z1jst ,ztÞ=Prðs1,z2jst ,ztÞ≠Prðs2,z1jst ,ztÞ=Prðs2,z2jst ,ztÞ,
this is no longer the case, and a risk premium is needed in
equilibrium.

3. Quantitative analysis

This section describes the calibration procedure and
then presents quantitative results. The calibration fixes a
first set of parameter values to match some direct empiri-
cal counterparts; a second set of parameter values is
determined to match the first and second moments of
US stock and short term bond returns. The test of the
model consists of examining the implications for the term
premium and the predictability of bond excess returns.

3.1. Calibration

The joint dynamics of investment growth and inflation
are summarized by a first-order vector autoregression
(VAR). Table 1 shows four versions of the VAR estimated
for investment in equipment and in structures, and for
inflation measured by the consumer price index (CPI) and
the gross domestic product (GDP) deflator, for the period
1952–2010. A moderately positive correlation exists
between the innovations of investment growth and infla-
tion. Inflation forecasts investment typically with a nega-
tive coefficient, while investment forecasts inflation with a
positive coefficient. The calibration of the model targets
the values of these moments averaged across the four
empirical counterparts. As shown in Table 1, consistent
with our modeling assumption, the historical volatility of
equipment and structures are very similar.

In the model, the joint process for investment growth
and inflation is represented by a four-state Markov chain.
The model implied VAR reported in Table 1 is based on
a very long simulated sample. The model implied VAR
cannot perfectly match the calibration target, mainly
because with the limited number of grid points, the
Markov chain cannot perfectly match the high persistence
for inflation. The model implied VAR also does not fit
perfectly, because of the bounds imposed when the I/K
ratios of the two types of capital move far away from their
steady state values. This is needed to ensure a finite firm
value. In particular, a lower and an upper limit for I=KE at
0.0983 and 0.1745 are set, respectively. When the simu-
lated process with the original investment growth rate
realizations would go outside a bound, the realized growth



Table 3
Equity returns and short term yields.

Yields, y, are from Fama and Bliss, defined as −lnðpriceÞ=maturity; stock
returns are the logs of value-weighted returns from the Center for
Research in Security Prices; and rM,r is the stock return deflated by the
CPI. Data cover 1952–2010.

Statistic Model Data

EðrM−yð1ÞÞ (percent) 4.64 4.64
sðrM,rÞ (percent) 17.13 17.13
Eðyð1ÞÞ (percent) 5.29 5.29

sðyð1ÞÞ (percent) 2.98 2.98
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rates are limited to reach exactly the lower or the upper
bound. Asset pricing implications are not significantly
affected by the exact values of these bounds. More details,
and the values for the parameters of the Markov chain, are
given in Appendix A. The appendix also shows that none of
the conclusions of our analysis depends on the exact
specification of this process, because the model implied
term structure behavior is not very sensitive to small
changes in the investment and inflation processes.

Drift terms are included in the realizations of the
Markov chain. They correspond to the historical averages
of investment growth rates and inflation of 0.0355 and
0.0363, respectively. Several parameters describing firm
technology are set to match long term averages of plau-
sible empirical counterparts, they are reported in Table 2.
These are the depreciation rates, δE and δS, the average
relative value of the capital stocks, KE=KS , and the adjust-
ment cost parameters bE , bS, cE , cS. Except for the role of
the depreciation rates for interest rate dynamics, these
parameters impact our main quantitative results only
moderately. The sources for the values are described in
Jermann (2010).

Four parameters remain: the two adjustment cost
curvature parameters νE and νS, and the marginal product
coefficients AE and AS. These parameters are important for
asset pricing implications, and they do not have obvious
direct empirical counterparts. Following Jermann (2010),
these four parameters are set to match four moments from
the data, under the assumption that νS > νE . The target
moments are the unconditional mean and standard devia-
tions of the aggregate US stock market and the one-year
yields for the period 1952–2010. Practically, for a fixed
sample of 100,000 periods, I search over the four-
dimensional parameter space.

With the assumption that νS > νE , expected returns in
the calibrated model are larger for structures than for
equipment, which is consistent with the empirical analysis
in Tuzel (2010). More direct evidence presented in
Jermann (2010) also suggests that the adjustment cost
curvature should be larger for structures than for equip-
ment. For instance, the fact that the first-order serial
correlation of the growth rates is somewhat higher for
structures than for equipment can be interpreted as an
expression of the desire to smooth investment over time
due to the relatively higher adjustment cost. Some of the
parameter estimates in Israelsen (2010), which contains
a structural estimation of a two-sector adjustment cost
model with structures and equipment, are not consistent
Table 2
Parameter values.

Parameter Symbol Value

Depreciation rates δE , δS 0.11245,
0.031383

Relative value of capital
stocks

KE=KS 0.6

Adjustment cost
parameters

bE , bS, cE , cS so
that q

1.5

Adjustment cost curvatures νE , νS 2.4945, 3.9815
Marginal products of capital AE , AS so that RE , RS 1.04819, 1.05706
with this assumption. Several differences in the models
and the data can potentially account for the different
estimates.

As shown in Table 3, the model can perfectly match the
four targeted moments. Each of the four parameters affect
all four moments, but with different degrees of sensitiv-
ities. In particular, for the short-term yield, the levels of
the marginal product coefficients AE and AS are important.
To see this, consider the deterministic model version with
constant investment growth rates, where the constant
return and interest rate, R, is given by

R¼ A−c
bðλI−ð1−δÞÞν−1

þ 1−
1
ν

� �
λIþ 1

ν
ð1−δÞ, ð22Þ

which is increasing in the marginal product term A.4

The implied magnitudes of the adjustment costs are low,
amounting to 5% and 6% of investment on average, for
equipment and structures, respectively. Marginal costs are
1.4 and 1.2 on average.

To ensure that state prices are always non-negative,
I make the marginal product term for structures stochastic
such that ASð17xðstÞÞ. The size of the shock xð�Þ is deter-
mined so that the state prices that would go negative
without the shock are equal to zero. In the benchmark
simulation, x is nonzero less than 7% of the time.
3.2. Results

I consider the model's implication for nominal bonds of
different maturities and compare these with the Fama and
Bliss data series of US Treasury bonds' implied discount
bonds. Table 4 shows the means and standard deviations
for yields of different maturities. The model matches the
slope of the empirical term structure very well. The term
premium (yield differential) for a five-year bond over a
one-year bond is about half a percent as in the data.
At least as far back as Shiller (1979), it has been recognized
that models that satisfy the expectations hypothesis have
difficulties matching the volatility of yields with longer
maturities. The model here does a good job with yield
volatilities; the standard deviations for longer term
yields are only moderately lower than their empirical
counterparts.
4 Returns in the model could be compared with an unlevered return
to capital. For simplicity and comparability with the literature, this is not
done here.



Table 4
Term structure.

Yields are from Fama and Bliss, for 1952–2010, defined as
−lnðpriceÞ=maturity.

Statistic Maturity (years)

1 2 3 4 5

Nominal yields (percent)
Mean—model 5.29 5.45 5.60 5.74 5.88
Mean—data 5.29 5.49 5.67 5.81 5.90

Standard deviation—model 2.98 2.73 2.52 2.34 2.17
Standard deviation—data 2.98 2.93 2.85 2.80 2.75

Real yields
Mean—model 1.75 1.98 2.20 2.41 2.60
Standard deviation—model 2.81 2.57 2.37 2.21 2.06

Table 5
Fama-Bliss excess return regressions:

rxðnÞtþ1 ¼ αþβðf ðnÞt −yð1Þt ÞþεðnÞtþ1 :

Yields are from Fama and Bliss, for 1952–2010; rxðnÞtþ1 is the excess return of

an n-period discount bond; f ðnÞt is the forward rate, ðpðn−1Þt −pðnÞt Þ, with pðnÞt the

log of the price discount bond; and yð1Þt is the one-period yield.

Coefficient Maturity (years)

2 3 4 5

Model—β 0.3007 0.3501 0.4564 0.5499
Data—β 0.7606 1.0007 1.2723 0.9952
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What determines the term premium in this model? As
can be seen in Table 4, the model produces a positive real
term premium and a smaller negative risk premium for
inflation risk. In particular, the five-year term premium
equals 5:88−5:29¼ 0:59, and the term premium for real
yields equals 2:60−1:75¼ 0:85. This implies a negative
premium for inflation risk of 59−85¼−26 basis points.

Bond excess returns are in general negatively correlated
with the stochastic discount factor, so that high returns are
realized in lowly valued states (relative to their probabil-
ities). High investment implies lower real interest rates
(and thus higher real bond returns) at the same time as
lower state prices (and stochastic discount factors). Section
4 illustrates the mechanisms that drive these results with a
continuous-time version of the model.

The negative inflation risk premium is due to the
implied negative correlation between inflation and the
stochastic discount factor. This property is brought about
by the positive correlation between innovations in invest-
ment and inflation, as well as the positive coefficient on
investment in the VAR's equation for inflation. When
investment is high, inflation and expected inflation have
a tendency to be high, too. Therefore, inflation makes a
negative contribution to the returns of nominal bonds at
times when investment and, thus, stock returns are high.
The fact that inflation enters the VAR's equation for
investment with a negative coefficient has a minor quan-
titative effect.5

Having shown that the model's term premium matches
its empirical counterpart reasonably well in some dimen-
sions, I now consider return predictability. In particular, I
consider the popular Fama-Bliss excess return regressions
that seek to forecast excess return for n-period bonds with
the forward premium of n-period bonds. These regressions
provide a direct test of the expectations hypothesis,
according to which excess returns should not be foreca-
stable. As shown in Table 5, empirically, as is well known,
excess returns are, in fact, forecastable with the forward
5 The direct historical evidence on the real term structure from
inflation-indexed bonds is short and inconclusive. As shown in Piazzesi
and Schneider (2007), the term structure of inflation-indexed bonds has
been on average upward-sloping for the US and downward-sloping for
the UK.
premium. For every one point increase in the forward
premium, excess returns increase by roughly the same
amount. Typically, most fundamentals-based asset pricing
models have a hard time producing the extent of return
predictability observed in the data. As shown in Table 5,
the model does not perfectly match the data, but it can
produce coefficients that are roughly half the size of the
empirical counterparts.

The model's ability to produce strong return forecast-
ability stems from the implied time-variation in the
market price of risk and in risk premiums. In the model,
expected returns and the market price of risk are a
function of the state variables, in particular, the invest-
ment to capital ratios of the two types of capital.

As for average yields, inflation risk plays a relatively
minor role for the Fama-Bliss regressions. To illustrate the
effect of inflation, I run two alternative versions of the
Fama-Bliss regression. First, inflation risk is eliminated
from the model by setting the standard deviation of
inflation to zero. Second, the nominal forward premium
is replaced as a regressor by the forward premium for real
bonds. In both cases, as seen in Table 6, the slope
coefficients increase moderately.

To conclude this section, I consider the importance of
realizations at the borders of the state space. In particular,
to guarantee positive state prices throughout, shocks to
the marginal product of structures are introduced such
that the marginal product term becomes ASð17xðstÞÞ, with
the value for xðstÞ set so that a particular state price is
equal to zero, if it were to drop below zero without the
shock. For the benchmark calibration, this shock kicks in
somewhat less than 7% of the time, when I/K for structures
becomes very small. It turns out that the model implied
regression coefficients are partially driven by realizations
with low I/K ratios for structures.

Fig. 1 shows expected excess returns and the forward
premium as a function of the I/K ratio for structures. Both
display the negative (conditional) relation that contributes
to the positive regression coefficient in the Fama-Bliss
regression. The figure also shows plots for the market price
of risk and the conditional equity premium. In line with
the expected excess returns for the two-period bond, both
are downward sloping. However, the two top panels dis-
play some nonlinearity for lower values of the I/K ratio,
which suggests that regression coefficients are partially
determined by this region. For instance, I can run the



Table 6
Role of inflation risk for Fama-Bliss excess return regression:

rxðnÞtþ1 ¼ αþβðf ðnÞt −yð1Þt ÞþεðnÞtþ1 :

Yields are from Fama and Bliss, for 1952–2010; rxðnÞtþ1 is the excess return of an n-period discount bond; f ðnÞt is the forward rate, ðpðn−1Þt −pðnÞt Þ, with pðnÞt the

log of the price discount bond; and yð1Þt is the one-period yield.

Coefficient Maturity (years)

2 3 4 5

Model—β (no inflation risk) 0.3596 0.4307 0.5685 0.6898
Model—β (real forward premium) 0.3082 0.3634 0.4770 0.5773

Model—β (benchmark) 0.3007 0.3501 0.4564 0.5499
Data—β 0.7606 1.0007 1.2723 0.9952
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Fama-Bliss regression with only those observations for
which none of the next periods’ state prices is zero, which
roughly eliminates the 7% of observations with the lowest
realization for the I/K ratio. In this case, for the two-period
bond, the slope coefficient drops to 0.19 (from 0.30
reported in Table 5) and for the five-year bond it drops
to 0.33 (from 0.55 in Table 5). One could consider alter-
native ways to ensure positive state prices. However, given
the lack of theoretical guidance and the fact that empiri-
cally this essentially concerns relatively rare outcomes,
some arbitrariness is unavoidable. Overall, while the
regression coefficients appear somewhat sensitive to aux-
iliary assumptions, endogenously time-varying risk pre-
miums are a robust feature of this model. See Appendix B
for additional evidence about the robustness of the results
with respect to these assumptions.
3.3. Additional results

Given the extensive empirical literature on term struc-
ture behavior, this subsection examines additional model
implications and compares these with their empirical
counterparts. In particular, the autocorrelation of yields
and the forecasting ability of term spreads for inflation and
excess stock returns are considered. One would not expect
this parsimoniously parameterized small scale model to
perfectly match all moments in the data. Nevertheless, the
model does a very good job with the autocorrelations, and
it can reproduce at least qualitatively the considered
evidence on the forecasting ability of term spreads.

As is well known, yields are highly autocorrelated.
Table 7, Panel A, displays autocorrelations for the various
maturities over a one-year period. These are between 0.85
and 0.9, with higher autocorrelations for the longer
maturities. The yields in the model almost match these
values.

A long tradition exists in examining the information
content of the term structure for future economic vari-
ables. For instance, Miskhin (1990) and Fama (1990) study
the information in the term structure for future inflation.
Following Mishkin, I regress the change in the n-year
inflation rate from the one-year inflation rate,
ln λPt,tþn−ln λPt,tþ1, on the term spread between the n-year
and the one-year yield,

ln λPt,tþn−ln λPt,tþ1 ¼ αnþβnðn � yðnÞt −yð1Þt Þþεtþn: ð23Þ

As shown in Table 7, Panel B, the empirical slope coeffi-
cients βn are between 0.28 and 0.37, with R2's between 0.11
and 0.14, depending on the maturities. In the model, the
slope coefficients are somewhat lower, between 0.10 and
0.14, and the term spread's forecasting ability is also lower,
with R2's between 0.01 and 0.03. The model can generate
declining slope coefficients and declining R2's as a function
of maturity, as observed in the data.

Empirical studies have also examined the term spread's
ability to predict stock returns. Examples are Fama and
French (1989) and, more recently, Cochrane and Piazzesi
(2005). I consider here a simple univariate regression that
can capture some of the term spread's forecasting ability
for stocks:

rxet,tþm ¼ αmþβmðyð5Þt −yð1Þt Þþεtþm: ð24Þ

Stock market returns (value-weighted returns from the
Center for Research in Security Prices) in excess of the one-
year yield for different horizons, rxet,tþm, are regressed on
the five-year term spread. As shown in Table 7, Panel C,
empirical slope coefficients are between 4 and 11 with
R2 's between 0.04 and 0.10. That is, a high term spread
forecasts high excess returns for stocks (as seen earlier, a
high term spread also forecasts high excess returns for
bonds). The model can produce positive slope coefficients.
However, these are somewhat smaller that in the data. The
R2's are also smaller in the model. Overall, the model
reproduces qualitatively how in the data the term spread
is linked to future inflation and future stock returns, but
the relations in the model are somewhat weaker than in
the data.
4. Continuous-time analysis

The continuous-time version of the model without
inflation provides additional insights into the behavior of
the short rate, the market price of risk, and the term
premium. In particular, the capital depreciation rates play
a key role for interest dynamics, while not impacting much
other asset pricing implications.



Fig. 1. Risk premiums as a function of the investment-to-capital ratios for structures.
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Assume a discount factor process

dΛ
Λ

¼−rð�Þ dt−sð�Þ dz ð25Þ

where dz is a univariate Brownian motion and rð�Þ and sð�Þ
are functions of state variables driven by dz. This environ-
ment can be taken as the continuous-time counterpart of
the two-state discrete-time setup. Solving for the firm's
optimal investment policies yields the returns to the two
types of capital

dRj

Rj
¼ μjð�Þ dtþsjð�Þ dz for j¼ 1,2: ð26Þ

The absence of arbitrage implies that

0¼ Et
dΛt

Λt

� �
þEt

dRjt

Rjt

� �
þEt

dΛt

Λt
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� �
, ð27Þ



Table 7
Autocorrelations and forecasting with term spreads.

λPt,tþn is the rate of inflation, yðnÞt is the yield of an n-period discount
bond, and rxet,tþm is the market return in excess of the one-period yield;
t-statistics use the Hansen-Hodrick correction.

Maturity (years)

1 2 3 4 5

Panel A
Autocorrelations

Data 0.848 0.871 0.886 0.894 0.903
Model 0.868 0.872 0.872 0.877 0.879

Panel B

ln λPt,tþn−ln λPt,tþ1 ¼ αnþβnðn � yðnÞt −yð1Þt Þþεtþn

Data βn 0.37 0.32 0.29 0.28
(t-statistics) (2.4) (1.9) (1.6) (1.5)
R2 0.14 0.12 0.11 0.11

Model βn 0.14 0.12 0.11 0.10

R2 0.03 0.02 0.02 0.01

Panel C

rxet,tþm ¼ αmþβmðyð5Þt −yð1Þt Þþεtþm

Data βm 4.3 6.7 9.7 10.9 11.2
(t-statistics) (1.9) (3.2) (3.7) (3.5) (2.0)
R2 0.04 0.05 0.09 0.10 0.09

Model βm 2.6 3.7 4.3 4.7 4.9
R2 0.03 0.02 0.02 0.02 0.01

6 In particular, consider a path where dz¼0 for a very long time such
that λI and sI have converged, and It=Kt has converged to λI−1þδ.
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so that (where I no longer explicitly acknowledge the state
dependence of drift and diffusion terms)

0¼−r dtþμj dt−sjs dt for j¼ 1,2: ð28Þ

Finally, the two coefficients of the discount factor process
can be recovered by solving the system of these two
equations as

r¼ s2
s2−s1

μ1−
s1

s2−s1
μ2, ð29Þ

and

s¼ μ2−μ1
s2−s1

: ð30Þ

Clearly, to be able to recover the discount factor process
from the two returns, the two diffusion terms need to be
different, that is, s2−s1≠0. As in the discrete-time analysis,
once I specify processes for investment in the two types of
capital, I have a fully specified discount factor process.

4.1. Market price of risk

As shown in Appendix C, the realized return to a given
capital stock equals

Aj−cj

bj
Ij,t
Kj,t

� �νj−1
−ðνj−1Þ 1−1

νj

	 

Ij,t=Kj,t−δj

þðνj−1Þ ðλI,j−1Þþδjþ
1
2
ðνj−2Þs2I,j

� �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
dtþðνj−1ÞsI,j dz,

ð31Þ
where ðλI,j−1Þ and sI,j are drift and diffusion terms
of investment. Consider first the steady state level, as this
is informative about average (unconditional) moments.
In this case, I=K ¼ λI−1þδ.6 To further simplify the expres-
sions, assume equal investment volatility across the two
capital stocks, sI,j ¼ sI , as in the benchmark calibration.
The market price of risk at the steady state can then be
written as

sjss ¼
μ2−μ1
s2−s1

¼ R2−R1

ðν2−ν1ÞsI
þ ν1þν2−3

2
sI , ð32Þ

with

R ¼ A−c
bðλI−ð1−δÞÞν−1

þ 1−
1
ν

� �
λIþ 1

ν
ð1−δÞ, ð33Þ

the latter representing the return of a given capital stock at
steady state in a deterministic environment with a con-
stant growth rate λI . The deterministic return R is a useful
quantity to summarize the effects of the technology
parameters on the implied discount rate process. If we
were to consider a deterministic environment, R would
have to be the same for the two capital stocks. But, as seen
in Eq. (32), in this stochastic setup, the difference between
R across types of capital is an important contributor to the
market price of risk. Starting from ν2 > ν1 and sI > 0, my
calibration selects R2−R1 > 0 and ν1þν2−3 > 0 to produce
a large enough (positive) equity premium and to generate
enough volatility for the market return. That is, sjss > 0,
and in this case the discount factor is lower when invest-
ment and the market return are high.

Away from steady state, the market price of risk
changes as a function of the state variables. Movements
in the model's endogenous state variables, the investment-
to-capital ratios I/K in the two sectors, are the main
drivers. In particular, as is clear from Eq. (31), with
A−c > 0, an increase in I/K reduces the expected return
for this type of capital. Intuitively, with high I/K the value
of capital, q, is high, and thus expected returns are low.
If I/K gets very small (close to zero) the expected return
can become very large. For my quantitative experiments,
this effect is particularly strong when I2=K2 is low, so that
μ2 increases, driving up the market price of risk. As shown
in Jermann (2010), the time-variation in s, and hence the
variation in the equity premium, is substantial enough to
have implied at some occasions a negative conditional
equity premium for the model calibrated to the US
economy.

4.2. Dynamics of the short rate

Reproducing the solution for the short rate from above

r¼ s2
s2−s1

μ1−
s1

s2−s1
μ2,

the short rate can be seen as a weighted average of the two
expected returns μ1 and μ2. With positively correlated
returns, and assuming (without loss of generality)
s2 > s1 > 0, the weight on the less volatile return,
s2=ðs2−s1Þ, is then larger than one, and the other weight
is negative. The economic intuition is the following. The
two risky investment returns are perfectly (conditionally)



7 The benchmark calibration also implies R2−R1 > 0, but this differ-
ence is substantially smaller than δ1−δ2.
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correlated, so that the risk-free rate is created with a
portfolio of the two risky returns for which the two return
innovations exactly offset each other. This portfolio puts a
positive weight on the less volatile return and a negative
weight (that is smaller in absolute value) on the more
volatile return.

Specializing to the case sIj ¼ sI as in the benchmark
calibration, the equation for the short rate becomes

r¼ ν2−1
ν2−ν1

μ1−
ν1−1
ν2−ν1

μ2, ð34Þ

which implies that the weights attached to the expected
returns are simple functions of the constant adjustment
cost curvature parameters νj. Thus, the short rate is driven
only by movements in expected returns.

In the simulations, expected returns are positively
correlated, but not perfectly so. The expectation of the
less volatile return, μ1, has a relatively bigger weight, but it
is also less volatile than μ2. In the benchmark calibration,
the impact of μ1 dominates. To see why this is the case, and
to illustrate this mechanism further, assume that drift and
diffusion of investment, λI and sI , are constant, so that the
only state variables are I1,t=K1,t , and I2,t=K2,t , and consider
the differential equation for the short rate

dr¼ μrð�Þ dtþsrð�Þ dz: ð35Þ
Under the made assumptions, the diffusion term equals

sr ¼ ν2−1
ν2−ν1

dμ1
d I1,t
K1,t

I1,t
K1,t

−
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ν2−ν1

dμ2
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After rearranging terms,

sr ¼ ðν2−1Þðν1−1Þ
ν2−ν1
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Some properties of the interest rate are now obvious. If any
of the curvature parameters ν is close to one, then the
short rate can be arbitrarily smooth. In addition, interest
volatility moves with the state variables, that is, interest
rates are heteroskedastic even with homoskedastic
investment.

At the steady state,

srjss ¼
ðν2−1Þðν1−1Þ

ν2−ν1
sI ½R2þδ2−R1−δ1�: ð39Þ

As shown in Eq. (39), in addition to the terms that are also
included in the market price of risk, νj, Rj, and sI , the
depreciation rates appear explicitly. The equation implies
that for the case with R1 ¼ R2, if the sector with the higher
curvature, ν, has the higher depreciation rate, δ, then the
short rate commoves positively with investment shocks
(sr jss > 0), and if the sector with the higher curvature has a
lower depreciation rate, the short rate commoves nega-
tively with investment (sr jss < 0). Essentially, with a higher
depreciation rate, the investment-to-capital ratio is higher
and, thus, a given percentage change in investment pro-
duces a larger change in the investment-to-capital ratio
and, everything else equal, in the expected return. The
benchmark calibration implies that structures are harder
to adjust than equipment, ν2−ν1 > 0, also structures
depreciate less than equipment, δ2−δ1 < 0.7 With this
particular parameter configuration, at steady state, inno-
vations in the short rate are negatively related to innova-
tions in investment (sr jss < 0). Appendix D considers the
more general case when sI1≠sI2 , as well as the case for
quadratic adjustment costs, the difference in capital depre-
ciation rates remain a key determinants of interest rate
dynamics.

This mechanism also plays a crucial role for the term
premium. While the setup does not allow for closed form
solutions for the term premium, the solution for the short
rate offers some insights. To illustrate this, consider the
holding period return of a discount bond with a maturity
of N,

dPðN,tÞ
P

−
1
P
∂dPðN,tÞ

∂N
dt, ð40Þ

and a corresponding yield to maturity for which

dyðNÞ ¼ μYN dtþsYN dz: ð41Þ

Then, the holding period return satisfies

dPðN,tÞ
P

−
1
P
∂dPðN,tÞ

∂N
dt ¼ ½�� dt−NsYN dz: ð42Þ

That is, stochastic changes in the yield drive the stochastic
return movements. As is clear from Eq. (28), the instanta-
neous risk premium for this bond equals

−NsYNs: ð43Þ

Returns in my model are driven by a single Brownian
motion, so that, conditionally, all returns are perfectly
correlated (positively or negatively). However, from the
perspective of asset prices, the model has two endogenous
state variables, the investment to capital ratios in the two
sectors. For the reported simulations, the yields of differ-
ent maturities move positively together and their volati-
lities are not too different. Thus, the expression for sr can
be a useful approximation for sYN for shorter maturities,
and −Nsrs can be a useful approximation for the term
premium.

To get a sense of how informative such an approxima-
tion is, compare −srs to the conditional log excess return
of a discount bond that has a one period maturity when it
is sold; that is, the conditional log excess return of a two-
period bond, Etðrð2Þtþ1−y

ð1Þ
t Þ, in the discrete time model at

steady state.
As shown in Table 8, −srs is clearly very informative

about the size of the term premium in the discrete-time



Table 8
Term premium: continuous-time versus discrete-time model.

For the discrete-time model, the term premium is computed at the
steady state levels of I=Kj . In the benchmark case ½R1 ,R2 ,δ1 ,δ2� are equal to

½1:048,1:057; :112; :0313�. When Rj or δj are equalized across sectors, they
take the average value.

Continuous-time Discrete-time
Calibration −srs Et ðrð2Þtþ1−y

ð1Þ
t Þ

Benchmark 0.0036 0.0033
δ1 ¼ δ2, R1 ¼ R2 0 0.000016
δ1 ¼ δ2 −0.00044 −0.00036
R1 ¼ R2, δ1 ¼ 0:112 > δ2 ¼ 0:0313 0.0026 0.0023

R1 ¼ R2, δ1 ¼ 0:0313 < δ2 ¼ 0:112 −0.0026 −0.0027
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model.8 Substantively, this confirms the importance of
different capital depreciation rates for the term premium
at short maturities, as shown in Eq. (39).

5. Conclusion

This paper extends the q-theory of investment to price the
term structure of nominal bonds. The quantitative model does
a reasonable job matching averages and volatilities of the
nominal term structure for the US. The model also displays
time-varying risk premiums for bonds, providing a possible
explanation for observed departures from the expectations
hypothesis. In the model, real and nominal risks affect returns
on nominal bonds. Quantitatively, real interest risk plays a
more important role for risk premiums than inflation risk. In
the paper, the modeling of the production technology and the
role of inflation for firms' profits are kept simple for transpar-
ency and tractability. Further enriching the model with
features used in corporate finance or in macroeconomics
would appear to offer fruitful avenues for future research.

Appendix A. Sensitivity to the investment and inflation
process

This appendix presents additional details about the
calibration of the investment and inflation process and
shows that model implications for the term structure are
not very sensitive to changes in this process.

The benchmark calibration uses a constrained minimi-
zation routine to match the population moments of the
target VAR with a four-state Markov chain. This cannot be
perfectly achieved. In particular, the two slope coefficients
of the inflation equation cannot be matched simulta-
neously. The calibration that is retained produces a reason-
ably close fit for both of these two coefficients, while
matching the remaining moments of the target VAR. In the
simulations, this Markov chain is modified because upper
and lower bounds on investment-to-capital ratios are
imposed, as described in the main text. This affects some-
what the investment growth process.

Table A1 reports alternative specifications. Specification
A uses the Tauchen (1986) method to fit the VAR with a
8 For comparability, the discrete-time model here has identically and
independently distributed investment growth and no inflation.
four-state Markov chain. As is well known, this procedure
has difficulties matching processes with high persistence
with a small number of grid points. As shown in Table A1,
while there are some differences in the investment and
inflation process relative to the benchmark case, this has
only moderate effects on the model implied term struc-
ture. In particular, mean and standard deviations of the
long term yields, Eðyð5ÞÞ and sðyð5ÞÞ, and the slope coeffi-
cients from the Fama-Bliss regressions, βð2Þ and βð5Þ, are
only moderately affected. The mean and standard devia-
tion of the short rate, Eðyð1ÞÞ and sðyð1ÞÞ in Table A1 are
exactly the same as in the benchmark case, because the
two adjustment cost curvature parameters, νE and νS, and
the marginal product coefficients AE and AS are recali-
brated to match first and second moments of the short rate
and the market return.

Specification B entirely removes the dependence
between investment and inflation. This specification also
only produces moderately different outcomes for interest
rate behavior.

The matrix of transition probabilities and the vectors of
the realizations for the benchmark case are given below.
The probability matrix with Prðxtþ1 ¼ xjjxt ¼ xiÞ in column j
and row i is

0:5404 0:0000 0:4596 0:0000
0:1286 0:5468 0:0829 0:2417
0:2417 0:0829 0:5468 0:1286
0:0000 0:4596 0:0000 0:5404

2
6664

3
7775,

and the corresponding realizations for investment growth
and inflation (in logarithm)

−0:0411
−0:0411
0:1121
0:1121

2
6664

3
7775,

0:0131
0:0522
0:0205
0:0595

2
6664

3
7775,

respectively.

Appendix B. On negative state prices

This appendix presents a result that shows that my
approach for preventing state prices from becoming nega-
tive is quite general and, thus, that the quantitative results
appear quite robust. In particular, it is shown that when
setting one of the two real state prices to zero, for instance,
by assuming a particular value for one of the two produc-
tivity realizations, the value of the productivity realization
in the other state is irrelevant for state prices and, thus for
bond prices.

To prevent Pðs2jstÞ from turning negative in some states
st, I adjust the marginal productivity term A2ð1þxðs1jstÞÞ,
by having xðs1jstÞ be negative, so that Pðs2jstÞ ¼ 0. The
following proposition shows that in this case, the value
given to xðs2jstÞ does not matter at all for the other real
state price Pðs1jstÞ, and thus for bond prices.

Proposition B.1. If

Pðs2jstÞ ¼
RI
1ðst ,s1Þ−RI

2ðst ,s1Þ
jRj ¼ 0 ð44Þ



Table A1
Sensitivity to the investment and inflation process.

A is based on the method from Tauchen (1986), specification B assumes independence between investment and inflation. yðjÞ is the yield for a j-period
bond, and βðjÞ is the slope coefficient from a Fama-Bliss regression with j-period bonds.

Variable/Statistic Benchmark A B Data Target

λIt λPt λIt λPt λIt λPt λIt λPt

λIt−1 0.20 0.03 0.15 −0.004 0.15 0 0.24 0.05

λPt−1 −0.57 0.77 −0.40 0.89 0 0.80 −0.53 0.86

Std(εt) 0.070 0.0121 0.071 0.011 0.073 0.016 0.0739 0.0120
Corr 0.23 0.25 0 0.24

Eðyð1ÞÞ (percent) 0.0529 0.0529 0.0529

Eðyð5ÞÞ (percent) 0.0588 0.0575 0.0589

sðyð1ÞÞ (percent) 0.0298 0.0298 0.0298

sðyð5ÞÞ (percent) 0.0217 0.0244 0.0218

βð2Þ 0.301 0.328 0.251

βð5Þ 0.550 0.652 0.532

U.J. Jermann / Journal of Financial Economics 109 (2013) 293–306304
then

Pðs1jstÞ ¼
1

RI
1ðst ,s1Þ

¼ 1

RI
2ðst ,s1Þ

, ð45Þ

and thus, the values of the two remaining investment returns
RI
2ðst ,s2Þ and RI

1ðst ,s2Þ do not matter for state prices and thus
bond prices.

Proof. Pðs2jstÞ ¼ 0 implies RI
1ðst ,s1Þ ¼ RI

2ðst ,s1Þ. Thus,
jRj ¼ RI

1ðst ,s1ÞRI
2ðst ,s2Þ−RI

2ðst ,s1ÞRI
1ðst ,s2Þ

¼ RI
1ðst ,s1Þ � ½RI

2ðst ,s2Þ−RI
1ðst ,s2Þ�

¼ RI
2ðst ,s1Þ � ½RI

2ðst ,s2Þ−RI
1ðst ,s2Þ� ð46Þ

so that

Pðs1jstÞ ¼
RI
2ðst ,s2Þ−RI

1ðst ,s2Þ
jRj ¼ 1

RI
1ðst ,s1Þ

¼ 1

RI
2ðst ,s1Þ

: □

ð47Þ

Proposition B.1 implies that when Pðs2jstÞ is increased
to zero, by lowering RI

2ðst ,s1Þ through adjusting xðs1jstÞ, the
value xðs2jstÞ takes and, thus, RI

2ðst ,s2Þ and RI
1ðst ,s2Þ, do not

affect Pðs1jstÞ. An obvious alternative way to set Pðs2jstÞ ¼ 0
would be to raise RI

1ðst ,s1Þ. However, this would imply—
counterfactually—that a negative productivity shock is
associated with a positive innovation in investment
growth. In simulations, I also find that, in this case, the
productivity shocks would need to be larger and that risk
premiums vary even more.

Appendix C. Continuous-time model

The capital stock evolves as dKj,t ¼ ðIj,t−δjKj,tÞ dt, and
the investment cost is given by

HjðIj,t ,Kj,tÞ ¼
bj
νj
ðIj,t=Kj,tÞνj þcj

� �
Kj,t , ð48Þ

which is homogenous of degree one in Ij and Kj. The gross
profit is given as AjKj,t . The firm uses two capital stocks
that enter production separably, so that j¼ 1,2.
Assume that the state-price process is given as

dΛt ¼ −ΛtrðxtÞ dtþΛtsðxtÞ dzt , ð49Þ
where dzt is a one-dimensional Brownian motion and

dxi,t ¼ μxiðxtÞ dtþsxiðxtÞ dzt for i¼ 1,‥,N; ð50Þ
that is, there are N state variables all driven by the same
univariate Brownian motion. Assume that the functions
μxiðxtÞ, sxiðxtÞ, rðxtÞ, and sðxtÞ satisfy the regular conditions
such that there are solutions for these stochastic differ-
ential equations.

The firm maximizes its value

V ¼ max
fI1t þ s ,I2t þ sg

Et
Z ∞

t
∑

j ¼ 1,2
AjKj,tþ s−HjðIj,tþ s,Kj,tþ sÞ

" #
Λtþ s

Λt
ds

( )
:

ð51Þ
Given the dynamics of Λt , it is obvious that the firm's value
function V is independent of Λt . Following from the
Markov property of the state variables xt, the firm's value
function would be a function of ðK1t ,K2t ,xtÞ. The Hamilton-
Jacobi-Bellman equation is

rV ¼ max
fI1t ,I2t g

½A1K1t−H1ðI1t ,K1tÞþA2K2t−H2ðI2t ,K2tÞ�
þðI1t−δ1K1tÞVK1þðI2t−δ2K2tÞVK2

þ∑μxiVxiþ 1
2∑∑sxisxjVxi,xjþ∑ssxiVxi

8><
>:

9>=
>;:

ð52Þ
The first-order conditions are

HIj ðIj,t ,Kj,tÞ ¼ VKj≡qj,t ð53Þ

That is,

VKj
¼ bjðIj,t=Kj,tÞνj−1 ð54Þ

and

Ij,t ¼
VKj

bj

� �1=ðνj−1Þ
Kj,t for j¼ 1,2: ð55Þ

Because of constant returns to scale in Kt, following
Hayashi, it is easy to see that VðK1t ,K2t ,xtÞ ¼ V1ðK1t ,xtÞþ
V2ðK2t ,xtÞ ¼ K1tVK1ðxtÞþK2tVK2ðxtÞ. Thus, it is clear that
optimal investment follows an Ito process, dIj,t=Ij,t ¼
μIj ðKj,t ,xtÞ dtþsIj ðKj,t ,xtÞ dzt .
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Define realized returns to each of the firm's capital
stocks as

dRj

Rj
¼ AjKj,t−HjðIj,t ,Kj,tÞ

Vj,t
dtþ dVj,t

V j,t
for j¼ 1,2: ð56Þ

Dropping the index j, given Hayashi's result and the first-
order conditions,

AKt−HðIt ,K ,tÞ
Vt

dtþ dVt

Vt
¼ AKt−HðIt ,K ,tÞ

qtKt
dtþ dKt

Kt
þ dqt

qt
:

ð57Þ
Using the first-order condition qt ¼HIðIt ,KtÞ together with
Ito's lemma, the last term of this equation can be written
as

dqt
qt

¼ dHIðIt ,K ,tÞ
HIðIt ,K ,tÞ

¼ HIIðIt ,K ,tÞ dIþHIK ðIt ,K ,tÞ dKþ 1
2HIIIðIt ,K ,tÞðdIÞ2

HIðIt ,K ,tÞ
,

ð58Þ
and given the functional form for Hð�Þ, some algebra yields

dqt
qt

¼ ðν−1Þ μI−ðIt=Kt−δÞþ
1
2
ðν−2Þs2I

� �
dtþðν−1ÞsI dz: ð59Þ

Using this result, the return equation (31) given in the
main text can then be derived.

Appendix D. Different investment volatilities and
quadratic adjustment cost

I start with the more general case for which sI1≠sI2 ,
with sI1 , sI2 > 0. To obtain relatively simple expressions for
the diffusion term of the short rate, srð�Þ,
dr¼ μrð�Þ dtþsrð�Þ dz, ð60Þ
assume, as in the main text, that λI and sI are constant, so
that the only state variables are I1,t=K1,t , and I2,t=K2,t .
Following the same procedure as in the main text

sr ¼
ðν2−1ÞsI2 ν1−1ð ÞsI1
ðν2−1ÞsI2−ðν1−1ÞsI1

A2−c2

b2
I2t
K2t

� �ν2−1
þ 1−

1
ν2

� �
I2,t
K2,t

0
BBB@

1
CCCA

2
6664

−
A1−c1

b1
I1,t
K1t

� �ν−1 þ 1−
1
ν1

� �
I1,t
K1,t

0
BBB@

1
CCCA
3
7775, ð61Þ

and at steady state

srjss ¼
ðν2−1ÞsI2 ðν1−1ÞsI1
ðν2−1ÞsI2−ðν1−1ÞsI1

½R2þδ2−R1−δ1�: ð62Þ

Thus, the substantive conclusions from the analysis in the
main text go through. In particular, with
½R2þδ2−R1−δ1� > 0, srjss > 0 and with ½R2þδ2−R1−δ1� < 0,
srjss < 0.

For the quadratic case, ν1 ¼ ν2 ¼ 2, this simplifies to

srjss ¼
sI2sI1
sI2−sI1

½R2þδ2−R1−δ1�: ð63Þ

In this case, the market price of risk at steady state equals

sjss ¼
μ2−μ1
s2−s1

¼ R2−R1

sI,2−sI,1
: ð64Þ
Clearly, in this case, for the normalization sI,2−sI,1 > 0, a
positive equity premium requires R2−R1 > 0. Thus, with
equal depreciation rates, δ1 ¼ δ2, the short rate commoves
positively with investment and, given the analysis in the
main text, short-term bonds then have a negative term
premium. A positive term premium requires R2−R1 < δ1−δ2.

More generally, away from steady state,

s¼ μ2−μ1
s2−s1

¼

A2−c2

b2
I2t
Kt

−
1
2
I2t=KtþλI2−

A1−c1

b1
I1t
Kt

þ1
2
I1t=Kt−λI1

sI,2−sI,1

¼
A2−c2
b2

I2t
Kt

−1
2I2t=Kt

 !
− A1−c1

b1
I1t
Kt

−1
2I1t=Kt

 !
þðλI2−λI1Þ

sI,2−sI,1
: ð65Þ

As in the model considered in the text, I/K, ratios, expected
growth rates, and volatility terms all matter.
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