A Production-Based Model for the Term Structure

Urban J. Jermann

Wharton School of the University of Pennsylvania

General equilibrium with endogenous capital

Urban J. Jermann Term Structure $2 \ / \ 19$

- General equilibrium with endogenous capital
- "Pure" production-based:

- General equilibrium with endogenous capital
- "Pure" production-based:
 - ► Firm's return function of investment, productivity ... (Cochrane 1991)

Urban J. Jermann Term Structure 2/19

- General equilibrium with endogenous capital
- "Pure" production-based:
 - ► Firm's return function of investment, productivity ... (Cochrane 1991)
 - ► "Complete" production-based pricing (Cochrane 1988, 1993, Belo 2010, Jermann 2010)

What is done

Present a production-based model for pricing nominal bonds

What is done

- Present a production-based model for pricing nominal bonds
- Examine implied term structure quantitatively and analytically

3 / 19

Findings

Match average and standard deviation of longer term yields

Findings

- Match average and standard deviation of longer term yields
- Time-varying premiums, partially match Fama-Bliss

Urban J. Jermann Term Structure $4 \ / \ 19$

Findings

- Match average and standard deviation of longer term yields
- Time-varying premiums, partially match Fama-Bliss
- Depreciation rates are important for term premium

• Uncertainty: $s \in (\mathfrak{s}_1, \mathfrak{s}_2)$, current realization s_t , history s^t

- Uncertainty: $s \in (\mathfrak{s}_1, \mathfrak{s}_2)$, current realization s_t , history s^t
- Firms solve

$$\max_{\left\{I,K'\right\}} \sum_{t=0}^{\infty} \sum_{s^{t}} P\left(s^{t}\right) \begin{bmatrix} F\left(\left\{K_{j}\left(s^{t-1}\right)\right\}_{j \in \left(1,2\right)}, s^{t}\right) \\ -\sum_{j=1}^{2} H_{j}\left(K_{j}\left(s^{t-1}\right), I_{j}\left(s^{t}\right)\right) \end{bmatrix}$$

s.t.
$$K_{j}\left(s^{t}\right) = K_{j}\left(s^{t-1}\right)\left(1 - \delta_{j}\right) + I_{j}\left(s^{t}\right), \ \forall s^{t}, j,$$

Term Structure 5 / 19

- Uncertainty: $s \in (\mathfrak{s}_1, \mathfrak{s}_2)$, current realization s_t , history s^t
- Firms solve

$$\max_{\{I,K'\}} \sum_{t=0}^{\infty} \sum_{s^{t}} P\left(s^{t}\right) \begin{bmatrix} F\left(\left\{K_{j}\left(s^{t-1}\right)\right\}_{j \in \left(1,2\right)}, s^{t}\right) \\ -\sum_{j=1}^{2} H_{j}\left(K_{j}\left(s^{t-1}\right), I_{j}\left(s^{t}\right)\right) \end{bmatrix}$$

s.t.
$$K_{j}\left(s^{t}\right)=K_{j}\left(s^{t-1}\right)\left(1-\delta_{j}\right)+I_{j}\left(s^{t}\right)$$
, $\forall s^{t},j$,

•
$$F(...) = \sum_{j=1}^{2} A_{j}(s^{t}) K_{j}(s^{t-1})$$

Urban J. Jermann Term Structure 5 / 19

- Uncertainty: $s \in (\mathfrak{s}_1, \mathfrak{s}_2)$, current realization s_t , history s^t
- Firms solve

$$\max_{\left\{I,K'\right\}} \sum_{t=0}^{\infty} \sum_{s^{t}} P\left(s^{t}\right) \begin{bmatrix} F\left(\left\{K_{j}\left(s^{t-1}\right)\right\}_{j \in \left(1,2\right)}, s^{t}\right) \\ -\sum_{j=1}^{2} H_{j}\left(K_{j}\left(s^{t-1}\right), I_{j}\left(s^{t}\right)\right) \end{bmatrix}$$

s.t.
$$K_{j}\left(s^{t}\right)=K_{j}\left(s^{t-1}\right)\left(1-\delta_{j}\right)+I_{j}\left(s^{t}\right)$$
, $\forall s^{t}$, j ,

- $F(...) = \sum_{j=1}^{2} A_{j}(s^{t}) K_{j}(s^{t-1})$
- $\bullet \; \; \mathit{H}_{j}\left(...\right) = \left\{ \frac{\mathit{b}_{j}}{\mathit{v}_{j}} \left(\mathit{I}_{j}\left(\mathit{s}^{t}\right) / \mathit{K}_{j}\left(\mathit{s}^{t-1}\right)\right)^{\mathit{v}_{j}} + \mathit{c}_{j} \right\} \mathit{K}_{j}\left(\mathit{s}^{t-1}\right)$

マート イプト イラト イラト オート オーター マックへ Urban J. Jermann Term Structure 5 / 19

First-order conditions

$$1 = \sum_{s_{t+1}} P\left(s_{t+1} | s^t \right) R_j^I\left(s^t, s_{t+1} \right) ext{ for } j = 1, 2$$

with

$$R_{j}^{I}(s^{t}, s_{t+1}) \equiv \left(\frac{F_{K_{j}}(s^{t}, s_{t+1}) - H_{j,1}(s^{t}, s_{t+1}) + (1 - \delta_{j})q_{j}(s^{t}, s_{t+1})}{q_{j}(s^{t})}\right)$$

and

$$q_{j}\left(s^{t}
ight)=H_{j,2}\left(...
ight)=b_{j}\left(rac{I_{j}\left(s^{t}
ight)}{K_{i}\left(s^{t-1}
ight)}
ight)^{
u_{j}-1}$$

6 / 19

Recovering state prices

$$\left[egin{array}{ccc} R_1^I\left(s^t,\mathfrak{s}_1
ight) & R_1^I\left(s^t,\mathfrak{s}_2
ight) \ R_2^I\left(s^t,\mathfrak{s}_1
ight) & R_2^I\left(s^t,\mathfrak{s}_2
ight) \end{array}
ight] \left[egin{array}{c} P\left(\mathfrak{s}_1|s^t
ight) \ P\left(\mathfrak{s}_2|s^t
ight) \end{array}
ight] = \mathbf{1}$$

Urban J. Jermann Term Structure 7 / 19

Recovering state prices

$$\left[\begin{array}{cc} R_{1}^{I}\left(s^{t},\mathfrak{s}_{1}\right) & R_{1}^{I}\left(s^{t},\mathfrak{s}_{2}\right) \\ R_{2}^{I}\left(s^{t},\mathfrak{s}_{1}\right) & R_{2}^{I}\left(s^{t},\mathfrak{s}_{2}\right) \end{array}\right] \left[\begin{array}{c} P\left(\mathfrak{s}_{1}|s^{t}\right) \\ P\left(\mathfrak{s}_{2}|s^{t}\right) \end{array}\right] = \mathbf{1}$$

so that state prices depend on

$$\left(\frac{\mathit{I}_{1}\left(s^{t}\right)}{\mathit{K}_{1}\left(s^{t-1}\right)},\frac{\mathit{I}_{2}\left(s^{t}\right)}{\mathit{K}_{2}\left(s^{t-1}\right)},\lambda_{1}^{\mathit{I}}\left(s^{t+1}\right),\lambda_{2}^{\mathit{I}}\left(s^{t+1}\right),\mathit{A}_{j}\left(s^{t+1}\right)\right)$$

Urban J. Jermann Term Structure 7 / 19

• Assume $\lambda^{P}(z_{t})$, with $z_{t} \in (\mathfrak{z}_{1}, \mathfrak{z}_{2})$

Urban J. Jermann

- Assume $\lambda^P(z_t)$, with $z_t \in (\mathfrak{z}_1, \mathfrak{z}_2)$
- Assume investment and technology not contingent on inflation. For instance,

$$P\left(\mathfrak{s}_{1}|s^{t}\right) = P\left(\mathfrak{s}_{1}|s^{t},z_{t}\right) = P\left(\mathfrak{s}_{1},\mathfrak{z}_{1}|s^{t},z_{t}\right) + P\left(\mathfrak{s}_{1},\mathfrak{z}_{2}|s^{t},z_{t}\right)$$

Urban J. Jermann Term Structure 8 / 19

- Assume $\lambda^P(z_t)$, with $z_t \in (\mathfrak{z}_1, \mathfrak{z}_2)$
- Assume investment and technology not contingent on inflation. For instance,

$$P\left(\mathfrak{s}_{1}|s^{t}\right) = P\left(\mathfrak{s}_{1}|s^{t},z_{t}\right) = P\left(\mathfrak{s}_{1},\mathfrak{z}_{1}|s^{t},z_{t}\right) + P\left(\mathfrak{s}_{1},\mathfrak{z}_{2}|s^{t},z_{t}\right)$$

Inflation not directly priced. For instance,

$$\begin{split} P\left(\mathfrak{s}_{1},\mathfrak{z}_{1}\big|s^{t},z_{t}\right) &= \left(\frac{\Pr\left(\mathfrak{s}_{1},\mathfrak{z}_{1}\big|s^{t},z_{t}\right)}{\Pr\left(\mathfrak{s}_{1},\mathfrak{z}_{1}\big|s^{t},z_{t}\right) + \Pr\left(\mathfrak{s}_{1},\mathfrak{z}_{2}\big|s^{t},z_{t}\right)}\right)P\left(\mathfrak{s}_{1}\big|s^{t}\right), \text{ and } \\ P\left(\mathfrak{s}_{1},\mathfrak{z}_{2}\big|s^{t},z_{t}\right) &= \left(1 - \frac{\Pr\left(\mathfrak{s}_{1},\mathfrak{z}_{1}\big|s^{t},z_{t}\right)}{\Pr\left(\mathfrak{s}_{1},\mathfrak{z}_{1}\big|s^{t},z_{t}\right) + \Pr\left(\mathfrak{s}_{1},\mathfrak{z}_{2}\big|s^{t},z_{t}\right)}\right)P\left(\mathfrak{s}_{1}\big|s^{t}\right) \end{split}$$

Urban J. Jermann Term Structure 8 / 19

- Assume $\lambda^{P}(z_t)$, with $z_t \in (\mathfrak{z}_1, \mathfrak{z}_2)$
- Assume investment and technology not contingent on inflation.
 For instance,

$$P\left(\mathfrak{s}_{1}|s^{t}\right) = P\left(\mathfrak{s}_{1}|s^{t},z_{t}\right) = P\left(\mathfrak{s}_{1},\mathfrak{z}_{1}|s^{t},z_{t}\right) + P\left(\mathfrak{s}_{1},\mathfrak{z}_{2}|s^{t},z_{t}\right)$$

Inflation not directly priced. For instance,

$$P\left(\mathfrak{s}_{1},\mathfrak{z}_{1}|s^{t},z_{t}\right)=\left(\frac{\Pr\left(\mathfrak{s}_{1},\mathfrak{z}_{1}|s^{t},z_{t}\right)}{\Pr\left(\mathfrak{s}_{1},\mathfrak{z}_{1}|s^{t},z_{t}\right)+\Pr\left(\mathfrak{s}_{1},\mathfrak{z}_{2}|s^{t},z_{t}\right)}\right)P\left(\mathfrak{s}_{1}|s^{t}\right),\text{ and }P\left(\mathfrak{s}_{1},\mathfrak{z}_{2}|s^{t},z_{t}\right)=\left(1-\frac{\Pr\left(\mathfrak{s}_{1},\mathfrak{z}_{1}|s^{t},z_{t}\right)+\Pr\left(\mathfrak{s}_{1},\mathfrak{z}_{2}|s^{t},z_{t}\right)}{\Pr\left(\mathfrak{s}_{1},\mathfrak{z}_{1}|s^{t},z_{t}\right)+\Pr\left(\mathfrak{s}_{1},\mathfrak{z}_{2}|s^{t},z_{t}\right)}\right)P\left(\mathfrak{s}_{1}|s^{t}\right)$$

• If inflation and investment independent

$$V_t^{\$(1)}\left(s^t,z_t
ight) = \left\{P\left(\mathfrak{s}_1'|s^t
ight) + P\left(\mathfrak{s}_2'|s^t
ight)
ight\}E\left(rac{1}{\lambda^P}|s^t,z_t
ight)$$

◆ロ ト 4 意 ト も ま ト ま タ へ へ Urban J. Jermann Term Structure 8 / 19

	(01) (11)	,
Serial correlation		0.8
Relative freq. of low		1.9
Depreciation rates	δ_{E},δ_{S}	0.112, 0.031
Relative value of cap.	$\overline{K_E/K_S}$	0.6
Adjustment cost par.	b_E , b_S , c_E , c_S so that \overline{q}	1.5
Adjustment cost curv.	v_E, v_S	2.2385, 4.1080

 A_F, A_S so that \bar{R}_F, \bar{R}_S

Symbol

 $\lambda'(\mathfrak{s}_1)$, $\lambda'(\mathfrak{s}_2)$

 $\lambda^{P}(\mathbf{3}_{1}), \lambda^{P}(\mathbf{3}_{2})$

Value

0.2

8.0

0.9497, 1.1109

1.0169.1.0763

1.04515. 1.05773

Table 1: Parameter values

Relative freq. of low

Marginal prod. of cap.

Parameter

Investment rates
Serial correlation

Inflation rates

Table 2: Equity returns and short term yields				
	Model	Data		
$E\left(r_{M}-y^{(1)}\right)\%$ $\sigma\left(r_{M,r}\right)\%$	4.64	4.64		
$\sigma(r_{M,r})$ %	17.13	17.13		
$E\left(y^{(1)}\right)\%$ $\sigma\left(y^{(1)}\right)\%$	5.29	5.29		
$\sigma\left(y^{(1)}\right)$ %	2.98	2.98		

Yields, y, are from Fama and Bliss, defined as $-\ln{(\text{price})}/\text{maturity}$, stock returns are the logs of value-weighted returns from CRSP, $r_{M,r}$ is the stock return deflated by the CPI-U. All data is 1952-2010.

Table 3: Term structure					
	Maturity (years)				
	1	2	3	4	5
Nominal yields					
Mean - Model %	5.29	5.44	5.58	5.72	5.86
Mean - Data %	5.29	5.49	5.67	5.81	5.90
Std - Model %	2.98	2.73	2.51	2.33	2.17
Std - Data %	2.98	2.93	2.85	2.80	2.75
Real yields					
Mean - Model %	1.68	1.84	2.00	2.15	2.31
Std - Model %	2.06	1.92	1.81	1.71	1.62

Urban J. Jermann Term Structure 11 / 19

Table 4: Fama-Bliss excess return regressions				
$rx_{t+1}^{(n)} = \alpha + \beta \left(f_t^{(n)} - y_t^{(1)} \right) + \varepsilon_{t+1}^{(n)}$				
Maturity (years)				
	2	3	4	5
Model - eta Data - eta	.3050 .7606	.3906 1.0007	.5144 1.2723	.6135 .9952

Yields are from Fama and Bliss 1952-2010, $rx_{t+1}^{(n)}$ is the excess return of a n-period discount bond, $f_t^{(n)}$ is the forward rate, $(p_t^{(n-1)}-p_t^{(n)})$, $p_t^{(n)}$ the log of the price discount bond, and $y_t^{(1)}$ is the 1 period yield.

《ロト《部ト《書》《書》 書 ぐの(C Urban J. Jermann Term Structure 12 / 19

Table 5: Fama-Bliss excess return regressions
No inflation risk
$rx_{t+1}^{(n)} = \alpha + \beta \left(f_t^{(n)} - y_t^{(1)} \right) + \varepsilon_{t+1}^{(n)}$

Term Structure

Maturity (years)

.4656

.4667

.3050

.7606

.6101

.6039

.3906

1.0007

5

.7881

.7866

.5144

1.2723

.9465

.9473

.6135

.9952

13 / 19

 $rx_{t+1}^{(n)} = \alpha + \beta \left(f_t^{(n)} - y_t^{(1)} \right) + \varepsilon_{t+1}^{(n)}$

no inflation risk

benchmark

real forward premium

Model - β

Model - β

Model - β

Data - β

Urban J. Jermann

Continuous-time

• Assume univariate dz with discount factor process

$$\frac{d\Lambda}{\Lambda} = -r(.) dt - \sigma(.) dz$$

with given returns for the two types of capital

$$\frac{dR_{j}}{R_{j}}=\mu_{j}\left(.\right)dt+\sigma_{j}\left(.\right)dz$$
, for $j=1,2$

Urban J. Jermann Term Structure $14 \ / \ 19$

Continuous-time

• Assume univariate dz with discount factor process

$$\frac{d\Lambda}{\Lambda} = -r(.) dt - \sigma(.) dz$$

with given returns for the two types of capital

$$\frac{dR_{j}}{R_{j}}=\mu_{j}\left(.\right)dt+\sigma_{j}\left(.\right)dz$$
, for $j=1,2$

The absence of arbitrage implies that

$$0 = -r + \mu_j - \sigma_j \sigma$$
, for $j = 1, 2$

so that

$$r = \frac{\sigma_2}{\sigma_2 - \sigma_1} \mu_1 - \frac{\sigma_1}{\sigma_2 - \sigma_1} \mu_2$$

$$\sigma = \frac{\mu_2 - \mu_1}{\sigma_2 - \sigma_1}$$

Urban J. Jermann

Capital return

The return to a given capital stock equals

$$\underbrace{\left\{\begin{array}{l} \frac{A_{j}-c_{j}}{b_{j}\left(\frac{I_{j,t}}{K_{j,t}}\right)^{\nu_{j}-1}}-\left(\nu_{j}-1\right)\left(1-\frac{1}{\nu_{j}}\right)I_{j,t}/K_{j,t}-\delta_{j} \\ +\left(\nu_{j}-1\right)\left[\left(\lambda^{I,j}-1\right)+\delta_{j}+\frac{1}{2}\left(\nu_{j}-2\right)\sigma_{I,j}^{2}\right] \end{array}\right\}}_{\mu_{j}\left(.\right)}dt$$

$$+\underbrace{\left(\nu_{j}-1\right)\sigma_{I,j}}_{\sigma_{i}(.)}dz$$

◆ロ ト ◆ 個 ト ◆ 差 ト ◆ 差 ト り へ で

Urban J. Jermann Term Structure $15 \ / \ 19$

Sharpe ratio

At steady state, $I/K = \lambda^I - 1 + \delta$, and with $\sigma_{I,j} = \sigma_I$, the Sharpe ratio is given by

$$\sigma|_{ss} = \frac{\mu_{j} - r}{\sigma_{j}} = \frac{\mu_{2} - \mu_{1}}{\sigma_{2} - \sigma_{1}} = \frac{\bar{R}_{2} - \bar{R}_{1}}{(\nu_{2} - \nu_{1})\,\sigma_{I}} + \frac{\nu_{1} + \nu_{2} - 3}{2}\sigma_{I}$$

with

$$\bar{R} = \frac{A - c}{b\left(\lambda^{\prime} - (1 - \delta)\right)^{\nu - 1}} + \left(1 - \frac{1}{\nu}\right)\lambda^{\prime} + \frac{1}{\nu}\left(1 - \delta\right)$$

4 D > 4 D > 4 E > 4 E > E 9 Q C

16 / 19

Dynamics of the short rate

The short rate equals

$$r = \frac{\sigma_2}{\sigma_2 - \sigma_1} \mu_1 - \frac{\sigma_1}{\sigma_2 - \sigma_1} \mu_2$$

Dynamics of the short rate

The short rate equals

$$r = \frac{\sigma_2}{\sigma_2 - \sigma_1} \mu_1 - \frac{\sigma_1}{\sigma_2 - \sigma_1} \mu_2$$

ullet Specializing to the case $\sigma_{\emph{I}_{j}}=\sigma_{\emph{I}}$

$$r = \frac{\nu_2 - 1}{\nu_2 - \nu_1} \mu_1 - \frac{\nu_1 - 1}{\nu_2 - \nu_1} \mu_2$$

Dynamics of the short rate

The short rate equals

$$r = \frac{\sigma_2}{\sigma_2 - \sigma_1} \mu_1 - \frac{\sigma_1}{\sigma_2 - \sigma_1} \mu_2$$

ullet Specializing to the case $\sigma_{I_j}=\sigma_{I}$

$$r = \frac{\nu_2 - 1}{\nu_2 - \nu_1} \mu_1 - \frac{\nu_1 - 1}{\nu_2 - \nu_1} \mu_2$$

• $dr=\mu_{r}\left(.\right)dt+\sigma_{r}\left(.\right)dz$: at steady state, for $\sigma_{I,j}=\sigma_{I}$, and $\lambda^{I,j}$ and σ_{I} constant,

$$\sigma_r|_{ss} = \frac{(\nu_2 - 1)(\nu_1 - 1)}{\nu_2 - \nu_1} \left[\bar{R}_2 - \bar{R}_1 + \delta_2 - \delta_1 \right] \sigma_I$$

《ロトペラトベミトベミト ラーグへで Urban J. Jermann Term Structure 17 / 19

Table 6:	Term	premium:	continuous-time	versus discrete-time model	
----------	------	----------	-----------------	----------------------------	--

	Conttime	Discrete-time
	$-\sigma_r\sigma$	$E_t \left(r_{t+1}^{(2)} - y_t^{(1)} \right)$
Benchmark	.0024	.0022
$\delta_1=\delta_2$, $ar{ extit{R}}_1=ar{ extit{R}}_2$,	0	0.00001
$\delta_1=\delta_2$	-0.00044	00036
$ar{R}_1=ar{R}_2$, $\delta_1=.112>\delta_2=.0313$.0017	.0015
$ar{R}_1 = ar{R}_2$, $\delta_1 = .0313 < \delta_2 = .112$	0017	0018

□ → ◆ □ → ◆ □ → ◆ □ → ○ ○
 18 / 19

Conclusion

 Two-sector q-theoretical model can do a good job replicating averages and volatilities of longer term US yields

Conclusion

- Two-sector q-theoretical model can do a good job replicating averages and volatilities of longer term US yields
- Time-varying term premiums are evidenced through Fama-Bliss regressions

Conclusion

- Two-sector q-theoretical model can do a good job replicating averages and volatilities of longer term US yields
- Time-varying term premiums are evidenced through Fama-Bliss regressions
- Even with homoscedastic investment and inflation, the market price of risk and the volatility of the short rate are naturally time-varying, driven by time-varying investment to capital ratios