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Abstract

We study capital regulation in a dynamic model for bank deposits. Capital regulation

addresses banks’ incentive for excessive leverage that dilutes depositors, but preserves

some dilution to reduce bank defaults. We show theoretically that capital regulation is

subject to a time inconsistency problem. In a model with non-maturing deposits where

optimal withdrawals make deposits endogenously long-term, we find commitment to

have important effects on the optimal level and cyclicality of capital adequacy. Our

theory is consistent with cross-country changes in capital regulation around the 2008

financial crisis and calls for a systematic framework that limits capital regulators’

discretion.
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1 Introduction

Capital requirements are the cornerstone of bank regulation. They play a crucial role in

safeguarding the stability of banking systems and protecting depositors and other creditors.

While policy makers have been focusing for a long time on designing the optimal rules

for required capital ratios, such as categorizing capital into different tiers and introducing

asset risk weights, one of the key innovations of Basel III is to grant banks the ability

to adjust capital requirements dynamically by changing capital buffers on top of required

capital ratios. The academic literature has mostly studied capital requirements that are

fixed or based on ad hoc policy rules. An important but largely overlooked fact is that

macroprudential authorities have substantial discretion regarding when, by how much, and

for how long capital buffers shall be adjusted, which is quite different from required capital

ratios formulated as rules.

As emphasized by the Committee on the Global Financial System (2016), the discretion

over capital requirements can potentially bring to capital regulators the classic time incon-

sistency problem faced by monetary authorities (Kydland and Prescott, 1977).1 Following

the advice by the Basel Committee on Banking Supervision (2010), certain regulators have

already made preliminary attempts to bound their discretion over capital requirements. For

instance, the EU Capital Requirements Directive (Article 136(7)) requires national author-

ities reducing capital buffers to communicate for how long they expect to not increase it

again, and several EU economies have already put such macroprudential “forward guidance”

to use.2 Despite the concerns and actions of regulators, whether or how a time inconsistency

problem is relevant for capital regulation is not quite understood. Discretion is not necessar-

ily value destroying. A clear understanding of these issues is important for policy making.

1Different from the discussions about bailouts or too-big-to-fail, the time inconsistency of capital re-
quirements is about whether regulators with discretionary power would ex post deviate from a strin-
gency of capital requirements that is ex ante optimal for welfare. See a panel on the rule-versus-
discretion issue of Basel III’s capital regulation framework in Atlanta Fed’s 2013 Financial Markets Con-
ference: https://www.atlantafed.org/news/conferences-and-events/conferences/2013/0408-fmc/

media/rules-vs-discretion-transcript.
2For instance, the Bank of Italy explained in its 2015 Financial Stability Report that it was unlikely to

increase the countercyclical capital buffer in 2016. Following the reduction of the countercyclical capital
buffer rate to 0% in July 2016, the Bank of England advised that absent of any changes in economic outlook,
it expected to maintain the rate for at least a year. See Kowalik (2011) for a policy work comparing rule-based
and discretionary implementations of countercyclical capital buffers.

1

https://www.atlantafed.org/news/conferences-and-events/conferences/2013/0408-fmc/media/rules-vs-discretion-transcript
https://www.atlantafed.org/news/conferences-and-events/conferences/2013/0408-fmc/media/rules-vs-discretion-transcript


For instance, if a low capital buffer remains optimal at a future date after it gets reduced

today, the above-mentioned “forward guidance” is redundant under rational expectation; if

not, a countercyclical capital buffer will not be enforced effectively unless regulators take

serious actions to bound the discretion they have.

In this paper, we provide the first analysis of the time inconsistency problem associated

with bank capital regulation. Banks create value by issuing deposits that provide liquidity

benefits. We show that time inconsistency arises if deposits are defaultable and long-term.

According to the FDIC, about half of US bank deposits are uninsured.3 Meanwhile, a large

proportion of them have a long maturity—they include not only non-maturing deposits

without an explicit maturity date that are typically not withdrawn for extended periods,

but also time deposits and wholesale deposits that have a fixed long maturity.4 Deposit

value reflects risk-adjusted future payments, and therefore, with a long maturity, future

leverage of a bank will have an effect on current deposit value as it determines the riskiness

of payments not yet received at that point. With this, we show that being able to commit

to future leverage matters for today. In contrast, banks in typical macro-finance models are

financed either with short-term defaultable deposits that fully mature before bank leverage

tomorrow gets decided, or with insured deposits. This leads to simplified dynamic structures

and implies that future bank leverage does not affect deposit value today.

Our analysis is organized into two parts. First, we present a baseline model where deposit

maturity is long but fixed, following existing studies on corporate debt maturity. This setup

allows maximal transparency to establish our theoretical results about a regulator’s time

inconsistency problem. Second, we consider an extended model with non-maturing deposits

a la Jermann and Xiang (2023) to reflect a key difference between typical corporate debt with

fixed maturity and bank deposits. In particular, a large amount of deposits have no explicit

maturity dates, and depositors’ withdrawals make deposits endogenously long-term. The

recent failure of the Silicon Valley Bank (SVB) has highlighted the importance of uninsured

deposit withdrawals for bank stability. We numerically solve the extended model and show

the long-run level (steady states) and dynamics of optimal policies of regulators with different

3Maechler and McDill (2006), Egan, Hortaçsu and Matvos (2017), and Martin, Puri and Ufier (2022) find
that uninsured deposits are indeed sensitive to bank default risks.

4There is a growing literature that emphasizes the long-term nature of bank deposits, including e.g.
Drechsler, Savov and Schnabl (2021), Jermann and Xiang (2023), and Bolton, Li, Wang and Yang (Forth-
coming).
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levels of commitment.

We start with our baseline model with fixed deposit maturity. In laissez-faire, banks

maximize equity value only and therefore do not internalize that new deposit issuance can

dilute the value of legacy deposits by exposing them to a higher default risk. Such an equity-

debt conflict implies an incentive for banks to take an leverage that is excessive from social

perspective and has been recognized by policy makers (e.g. Tucker, 2013; Yellen, 2015)

and academics (e.g. Admati and Hellwig, 2014) to be one important motivation for capital

regulation.5

A capital regulator who maximizes social welfare takes into account all stakeholders,

i.e. the total value of banks and depositors. By correcting the dilution incentive of banks,

capital requirements improve the total value that can be generated. However, banks have

the option to default when the equity value becomes too low. Therefore, optimal leverage

policy preserves some dilution. This is because the value of deposits represents banks’ debt

burden, and dilution of depositors is thus valuable for reducing dead-weight costs of bank

defaults.

We show theoretically the value of regulatory commitment to future capital requirements.

We compare the problem of a Ramsey regulator who can commit to future policies and that

of a Markov-perfect regulator who cannot. A Markov-perfect regulator understands that

preserving dilution persuades banks today to not default, but does not internalize that it

also persuades banks yesterday to not default. This is because with long maturity, deposit

value yesterday declines when depositors back then rationally expect dilution today to reduce

risk-adjusted payments. With such dynamic externality, a regulator has a tendency to adopt

an excessively low leverage. To formalize this, we allow a Markov-perfect regulator in steady

state to commit in one shot to deposit issuance tomorrow, and we prove that it has an

incentive to deviate upward from the steady-state level. By committing to an amount of

deposits that become ex-post suboptimally high after banks have decided to not default

today, banks’ debt burden and thus defaults today get reduced. Overall, committing to

future leniency in capital requirements allows a regulator to better prevent bank defaults.

We also consider regulators with two types of partial commitment, i.e. one commits to

5Jermann and Xiang (2023) show that the presence of deposit insurance can in fact worsen the agency
conflict between banks and uninsured depositors in the laissez-faire economy. In particular, the government
bears all the price impact of issuing insured deposits. Therefore, holders of uninsured deposits can be
expropriated more easily as their banks can now dilute them by issuing insured deposits.
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bank equity values only and another commits to deposit values only. Such regulators have

less (more) commitment power than Ramsey (Markov-perfect) who commits to both (none).

We allow a partial commitment regulator in steady state to commit in one shot to deposit

issuance tomorrow, and we prove that it does not have an incentive to deviate. While such

additional commitment power helps a Markov-perfect regulator to improve total value to-

day at the cost of total value tomorrow, we show that once either equity or deposit values

can be committed, maximizations of total values today and tomorrow become dynamically

consistent. In line with this, we find that the optimal steady-state policies of regulators with

partial commitment are identical to that of Ramsey. Our result indicates that while adding

one type of credible commitments can be quite effective in aligning a capital regulator’s

incentives at different points in time, adding a second one can encounter drastically dimin-

ishing returns in the long run. It also suggests that the ability to make credible commitments

is more important than to whom such commitments are made—banks or depositors.

The deviation by the Markov-perfect regulator induced by a one-shot commitment in-

dicates from a theoretical standpoint that the optimal policies of a Ramsey regulator who

has full commitment will be different from theirs. In the second part of our analysis, we

numerically solve the problems of Ramsey and Markov-perfect regulators to show precisely

these differences. We use local methods that can solve the steady states with essentially

no approximation error. We do so in an extended setup featuring non-maturing deposits,

i.e., deposits have no explicit maturity dates and are demandable. Individual depositors

decide whether to withdraw at a cost each period when liquidity shocks realize. Deposits

are endogenously long-term as depositors getting a low liquidity shock will choose to not

withdraw. We establish two sets of key results.

First, we find that optimal leverage and bank default risk in steady state critically depend

on regulatory commitment. As usual, commitment leads to better outcomes. However, this

does not necessarily imply a lower leverage and fewer bank defaults. Being able to better

prevent defaults brings a Ramsey regulator a better tradeoff between liquidity and default

costs. The regulator finds it optimal to issue a large amount of deposits for the purpose of

liquidity creation despite a slightly higher probability of default. We find that the steady

state equity ratio under a Ramsey regulator can even be lower than laissez-faire, which is

in sharp contrast to typical models of capital requirements. Overall, a regulator who can

prevent default efficiently using commitment does not worry about taking leverage. We
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compare the baseline model with a fixed deposit maturity and the extended model with

non-maturing deposits. While results are qualitatively similar across the two, we find that

endogenous withdrawals can amplify quantitatively the value of commitment because bank

leverage tomorrow has an additional effect on deposit withdrawals today.

Second, we compare Ramsey and Markov-perfect regulators’ responses to aggregate

shocks. We find that commitment leads to a stronger countercyclicality in optimal policy.

Facing a negative productivity shock, banks have a larger incentive to default. A Ramsey

regulator not only loosens capital requirements today but also commits to extend such le-

niency for a long time. This is useful for resolving bank defaults on impact. In contrast, a

Markov-perfect regulator rapidly tightens up its policy as leniency starts to imply too much

risk and becomes suboptimal fairly quickly as productivity reverts back. Our result suggests

that bounding the ability of regulators to quickly increase capital buffers once reduced, as

attempted by the EU Capital Requirements Directive, is indeed useful.

We complement our theory by examining cross-country changes in capital regulation

stringency around the 2008 global financial crisis. First, we find that a GDP contraction

during crisis led to more lenient capital requirements post crisis for countries more likely

having a welfare-maximizing government. This is consistent with our theoretical result that

regulators restrict leverage in normal times to protect depositors but allow a temporarily high

leverage to alleviate banks’ stronger default incentives caused by a negative shock, whereas

banks in laissez-faire take a leverage that has equity value always maximized and therefore

do not benefit from pushing it up further upon the shock. Second, we proxy for commit-

ment using a rule of law index that describes the constraints imposed on government power

by non-government entities, and we show that among welfare-maximizing governments, a

GDP contraction during crisis led to more lenient capital requirements post crisis for those

exhibiting more commitment.6 This is consistent with our theoretical result that a Ramsey

regulator extends leniency for longer than a Markov-perfect regulator.

Literature—There is a large literature on macro-finance banking models that evaluates

6In the post-crisis decade, governments worldwide had substantial discretion over capital stringency,
beyond what Basel III’s design of capital buffers simply brings. For instance, given the massive purchase of
bank shares during the crisis, governments had to decide on how quickly banks would have to buy them back.
Furthermore, even among Basel members, each country sets its own pace regarding the adoption of Basel
III’s more stringent standards. Gropp et al. (2024) document the forbearance of EU national regulators when
their domestic banks inflate regulatory capital to meet supranational rules, i.e. the 2011 Capital Exercise
by the European Banking Authority.
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macroprudential policies, mostly bank capital requirements. Optimal macroprudential reg-

ulation in dynamic models has been derived by Chari and Kehoe (2016), Davydiuk (2017),

Bianchi and Mendoza (2018), Malherbe (2020), Schroth (2021), and Van der Ghote (2021).

A large number of studies examine the impact of exogenous capital requirement rules, such

as Van den Heuvel (2008), Angeloni and Faia (2013), Repullo and Suarez (2013), Mendicino,

Nikolov, Suarez and Supera (2018), Begenau (2020), Gertler, Kiyotaki and Prestipino (2020),

Corbae and D’Erasmo (2021), Elenev, Landvoigt and Van Nieuwerburgh (2021), Begenau

and Landvoigt (2022), and Xiang (2022). Different from these studies which typically focus

on one-period debt and feature distortions from government subsidies, our analysis features

long-term debt and the resulting equity-debt conflict, i.e. dilution. Importantly, we also

explicitly study a capital regulator’s commitment issues.

There is a growing literature that studies the rich dynamics of firms that are financed

with long-term debt—see e.g. Gomes, Jermann and Schmid (2016), Crouzet (2017), Admati,

DeMarzo, Hellwig and Pfleiderer (2018), Gamda and Saretto (2018), DeMarzo and He (2021),

Benzoni, Garlappi, Goldstein and Ying (2022), Jungherr and Schott (2022), Jermann and

Xiang (2023), and Xiang (2024).7 While this literature has been focusing on the problem

of a borrower, we study a new problem, that is, that of a regulator who cares about the

total resources in the economy rather than just the borrowers’. Dilution can be good for

the regulator to address borrowers’ option to default.8 Quite different from the key insight

of existing studies that borrowers’ welfare increases if they could commit to dilute less, we

highlight that social welfare increases if a Markov-perfect regulator could commit to dilute

more.

An unusual property of our model is that the Ramsey allocation features non-stationary

Lagrange multipliers together with stationary real variables. This is reminiscent of charac-

terizations in the optimal taxation literature where convergence of multipliers cannot always

be established; see e.g. Straub and Werning (2020) or Chien and Wen (2022). Bassetto and

Cui (Forthcoming) solve a Ramsey tax problem and find a stationary allocation together

with non-stationary multipliers.

The paper proceeds as follows. Section 2 presents our baseline model of capital regulators

7Aguiar, Amador, Hopenhayn and Werning (2019) and Hatchondo, Martinez and Roch (2020) derive
optimal debt paths for a sovereign borrower.

8Donaldson, Gromb and Piacentino (Forthcoming) show that dilution can be good for borrowers to loosen
borrowing constraints when there is an asset pledgeability issue.
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with different levels of commitment. Section 3 shows theoretically the value of commitment.

Section 4 presents an extended model with non-maturing deposits and numerically solves

optimal policies. Section 5 provides empirical evidence. Section 6 concludes.

2 Model

In this section, we present our baseline model with fixed deposit maturity. Section 2.1

describes the laissez-faire economy. Section 2.2 describes the problem of capital regulators.

We use lowercase for variables of individual banks and uppercase for aggregate variables.

2.1 Laissez-faire

2.1.1 Banks and depositors

Time is discrete. All agents are risk-neutral. The economy is populated with a continuum

of banks, each of which faces a continuum of depositors and creates value by providing

liquidity services. Individual i holding bi unit of deposits earns a liquidity benefit of µbi, e.g.

for using the bank account for day-to-day transactions. We assume that µ is decreasing in

the aggregate amount of deposits in the economy B =
∫
i∈[0,1]2 bidi, that is,

∂µ(B)
∂B

< 0. This

assures that a Ramsey regulator in our infinite-horizon setup cannot create an infinitely large

liquidity value by issuing an infinite amount of deposits and is typical for macro models with

deposits in utility (e.g. Van den Heuvel, 2008).9 Deposit maturity is 1/λ, that is, each period

λ ∈ (0, 1] fraction of deposits get matured. Both liquidity value and debt maturity will be

determined by the endogenous withdrawals of depositors in our model with non-maturing

deposits.

The assets of a bank generate a per-period profit of R+ z. We fix aggregate productivity

R in our baseline analysis. z is a zero-mean bank-specific i.i.d. productivity shock with

c.d.f. (p.d.f.) Φ(z) (ϕ(z)) over support [−z̄, z̄]. Taking as given the law of motion for

aggregate deposits B, i.e. B′ = Ω(B), an individual bank’s equity value and optimal policy

9These models typically feature a concave utility function over consumption goods and deposits. We
directly account for the marginal value of holding deposits in the form of consumption goods, i.e. µ(B).
Together with the assumption that all agents are risk neutral with respect to consumption goods, this implies
that social welfare can be represented by discounted total resources. Regulators’ tradeoff exhibits maximal
transparency.
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in laissez-faire are given by:

z + ve(B, b) = z +max
b′

{
R− λb+ q(B, b′)[b′ − (1− λ)b]

+
1

r

{∫ z̄

−ve(B′,b′)

[ve(B′, b′) + z′]dΦ(z′)

}}
, (1)

where legacy deposits for the bank is b =
∫
i∈[0,1] bidi and interest rate is r. Banks take

the deposit pricing schedule q(B, b′) as given when choosing b′. Bank equity value consists

of profits R + z, repayment to matured deposits λb, proceeds from issuing new deposits

q[b′ − (1 − λ)b], and the continuation value which incorporates the bank’s default option

tomorrow. A bank defaults if its equity value tomorrow goes below zero, i.e. z′+ve(B′, b′) <

0.

Deposit pricing function q(B, b′) is pinned down by the zero-profit condition of new

depositors. For a non-defaulting bank, the payoff to depositors in the current period consists

of liquidity value µb, repayment to matured deposits λb, and the value of unmatured deposits

q(1− λ)b. That is, depositors’ value is given by:

vb(B, b, q) = [µ(B) + λ+ q(1− λ)]b.

For defaulting banks, our formulation follows Gomes, Jermann and Schmid (2016). Upon

default, depositors take over the bank and initiate a restructuring. They first sell off the

equity portion to new owners while continuing to hold their deposits. This means that

depositors have a claim over the total bank franchise value z + ve + vb in defaulting states.

However, they incur a dead-weight restructuring loss of ξb. Under this formulation, we do

not need to track the cross-sectional distribution of deposits when considering the aggregate

economy from the perspective of a regulator. We have, given B′ = Ω(B),

q(B, b′)b′ =
1

r

{∫ z̄

−ve(B′,b′)

vb(B′, b′, q(B′, hb(B
′, b′)))dΦ(z′)

+

∫ −ve(B′,b′)

−z̄

[z′ + ve(B′, b′) + vb(B′, b′, q(B′, hb(B
′, b′)))− ξb′]dΦ(z′)

}
, (2)

where optimal policy b′ = hb(B, b) solves (1). If deposit maturity is long, i.e. λ < 1, deposit
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price tomorrow q(B′, hb(B
′, b′)) enters the equation, through which deposit price today will

depend on the issuance decision of the bank’s tomorrow self.

2.1.2 Equilibrium

Given deposits {b}[0,1], asset profits {z}[0,1], law of motion for aggregate deposits B′ = Ω(B),

and a deposit pricing schedule, banks choose whether to default and, if not, the amount of

new deposits to issue.

An equilibrium of the laissez-faire economy is defined as a set of functions for (i) banks’

deposit issuance policy hb(B, b) and equity value z+ve(B, b) given by (1); (ii) deposit pricing

schedule q(B, b′) given by (2); (iii) banks’ optimal default set {z|z + ve(B, b) < 0}; (iv) bank’s
deposit issuance policy is consistent with law of motion for B, i.e. Ω(B) = hb(B,B).

2.2 Capital regulators

The notation of the laissez-faire economy presented in the previous section mostly carries

through. As we consider aggregates, we shift to uppercase letters B,Q,L, V e and V b. Section

2.2.1 lays out the planning problem of a Ramsey regulator. Section 2.2.2 describes the

corresponding problem of a Markov-perfect regulator without commitment. Section 2.2.3

present two regulators with partial commitment as intermediate cases in between.

2.2.1 Ramsey regulator

By construction, we can measure social welfare in our model using total resources of the

economy. A Ramsey regulator chooses allocations at t = 0 to maximize the present value of

total resources, taking as given banks’ default rule, depositors’ zero-profit condition, and an

initial B0. Aggregate resources each period consist of three parts. First, bank assets provide

constant profits R with i.i.d. z shocks averaged out. Second, bank deposits provide liquidity

value µ(Bt)Bt. Third, a certain fraction of banks default, which produces a total default

cost of ξBtΦ(−V e
t ). A Ramsey regulator’s problem is thus given by

max
{V e

t ,Qt,Bt+1}∞t=0

∞∑
t=0

1

rt

[
R + µ(Bt)Bt − ξBtΦ(−V e

t )

]
.
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Optimal choices have to satisfy a series of constraints on equity values

V e
t = R− λBt +Qt[Bt+1 − (1− λ)Bt] +

1

r

[ ∫ z̄

−V e
t+1

(z + V e
t+1)dΦ(z)

]
,

and on deposit prices

QtBt+1 =
1

r

[ ∫ z̄

−V e
t+1

V b
t+1dΦ(z) +

∫ −V e
t+1

−z̄

(z + V e
t+1 + V b

t+1 − ξBt+1)dΦ(z)

]
,

for all t ≥ 0, where depositors’ value is V b
t = [µ(Bt) + λ + (1 − λ)Qt]Bt. In addition, there

are two no-Ponzi conditions, i.e. lim
t→∞

Bt

rt
= 0 and lim

t→∞
V e
t

rt
= 0, and one no-bubble condition,

i.e. lim
t→∞

Qt

rt
= 0.

The following proposition characterizes the solution to this sequential problem by splitting

it into a continuation problem and an initial problem. The continuation problem can be

represented recursively and leads to definitions of problems with no and partial commitment

later.

Proposition 1 An interior allocation of the Ramsey problem in Section 2.2.1 is identical

to that of the following problem. A regulator chooses deposits B′, promised equity value V e′

and promised deposit price Q′ at t ≥ 0 following:

H(B, V e, Q) = max
B′,V e′,Q′

R+µ(B)B − ξBΦ(−V e) +
1

r
H(B′, V e′, Q′),

subject to two promise keeping constraints:

V e = R− λB +Q[B′−(1− λ)B] +
1

r

[ ∫ z̄

−V e′
(z′ + V e′)dΦ(z′)

]
, (3)

and

QB′ =
1

r

{∫ z̄

−V e′
V b(B′, Q′)dΦ(z′) +

∫ −V e′

−z̄

[z′ + V e′ + V b (B′, Q′)− ξB′]dΦ(z′)

}
, (4)

where depositors’ value is V b(B,Q) = [µ(B) + λ+Q(1− λ)]B.
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Initially, given B0, the regulator chooses:

max
V e
0 ,Q0

H(B0, V
e
0 , Q0).

Choice sets of the regulator are consistent with no-Ponzi and no-bubble conditions.

Proof. See Appendix A.1.

In the continuation problem, in addition to the natural state variables B, the Ramsey

regulator is bound by two auxiliary state variables—promises made about bank equity value

V e and deposit price Q. Past promises constrain the regulator’s behavior and can support

choices that might not be optimal ex post conditional on B only (Kydland and Prescott,

1980). Every period, the Ramsey regulator chooses next period’s deposit level B′ and makes

promises for next period’s equity value V e′ and deposit price Q′.10 Initially, V e
0 and Q0 are

chosen without being constrained by past promises.

2.2.2 Markov-perfect regulator

Based on the recursive characterization of the Ramsey problem, we define the problem of a

Markov-perfect regulator as having neither of the two auxiliary state variables in the contin-

uation problem. The Markov-perfect regulator shares the objective function with Ramsey

but faces only the natural state variables B. Therefore, it has full discretion regarding what

to choose at each point in time. There is no need to split the problem into two given the

initial problem and the continuation problem follow the same structure.

Given deposits B, a Markov-perfect regulator solves:

H(B) = max
B′

R + µ(B)B − ξBΦ (−V e(B,B′)) +
1

r
H(B′), (5)

10When we allow shocks to R, e.g. for our model with non-maturing deposits later, these promises will be
state-contingent, i.e., the Ramsey regulator picks a separate pair of {V e′, Q′} for each R′ tomorrow in the
continuation problem.
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where bank equity value is given by:

V e(B,B′) = R− λB +Q(B′)[B′ − (1− λ)B]

+
1

r

{∫ z̄

−V e(B′,hB(B′))

[z′ + V e(B′, hB(B
′))]dΦ(z′)

}
, (6)

and deposit price is given by:

Q(B′)B′ =
1

r

{∫ z̄

−V e(B′,hB(B′))

V b(B′, Q(hB(B
′)))dΦ(z′)

+

∫ −V e(B′,hB(B′))

−z̄

[z′ + V e(B′, hB(B
′)) + V b(B′, Q(hB(B

′)))− ξB′]dΦ(z′)

}
, (7)

where depositors’ value is V b(B,Q) = [µ(B) + λ + Q(1 − λ)]B; B′ = hB(B) is the optimal

policy that solves (5), which the current regulator takes as given.

2.2.3 Partial-commitment regulators

Following the two polar cases, i.e. Ramsey with full commitment and Markov-perfect with

no commitment, we now present two intermediate cases. The difference between Ramsey

and Markov-perfect is that the former faces two auxiliary state variables—prior promises

about bank equity value and deposit price—after the initial period while the latter faces

none. Each of our two regulators with partial commitment has only one of the two auxiliary

state variables in the continuation problem. In the first economy, the regulator commits to

bank equity values only while deposit prices are set in a time-consistent way. In the second

economy, the regulator commits to deposit prices only while bank equity values are set in

a time-consistent way. Presumably, committing to either equity values or deposit prices

would be less involved in practice than committing to both. Therefore, how these partial

commitment cases are different from the Ramsey case is of interest for policy making.

The problem of a regulator committing to bank equity values can be split into a contin-

uation problem and an initial problem. The continuation problem is given recursively:

H(B, V e) = max
B′,V e′

R + µ(B)B − ξBΦ(−V e) +
1

r
H(B′, V e′), (8)
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subject to promise keeping to equity value V e:

V e = R− λB +Q(B′, V e′)[B′ − (1− λ)B] +
1

r

[ ∫ z̄

−V e′
(V e′ + z′)dΦ(z′)

]
, (9)

given a deposit pricing schedule:

Q(B′, V e′)B′ =
1

r

{∫ z̄

−V e′
V b(B′, Q(hB(B

′, V e′), hV e(B′, V e′)))dΦ(z′)

+

∫ −V e′

−z̄

[z′ + V e′ + V b(B′, Q(hB(B
′, V e′), hV e(B′, V e′)))− ξB′]dΦ(z′)

}
, (10)

where depositors’ value is V b(B,Q) = [µ(B)+λ+(1−λ)Q]B; optimal policies B′ = hB(B, V e)

and V e′ = hV e(B, V e) together solve (8).

Initially, given B0, the regulator chooses:

max
V e
0

H(B0, V
e
0 ).

The problem of a regulator committing to deposit prices can be formulated in a similar

way. In the continuation problem, taking as given B,Q and an equity valuation schedule

V e(B′, Q′;B,Q), the regulator chooses deposits B′ and promised deposit price Q′ subject

to promise keeping to deposit price Q. Initially, the regulator picks Q0 given B0. To save

space, this problem is presented in Appendix B.

3 Capital regulation and commitment

We now demonstrate the value of commitment to a capital regulator. Section 3.1 explains

how long-term defaultable deposits create a role for capital regulation. Section 3.2 explains

why they also imply a time inconsistency problem for a regulator. Section 3.3 contrasts the

time inconsistency problem of a regulator against that of banks, the latter of which has been

the focus of existing literature. Section 3.4 analyzes the effect of partial commitment.
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3.1 Banks’ dilution and capital regulation

In laissez-faire, banks maximize their equity value. In typical models of one-period default-

able debt, the equity-value-maximizing objective does not impair social welfare. This is

because all legacy debt have to be repaid before banks can issue new debt, who therefore

internalize all benefits and costs that result from their issuance decisions. With long-term

debt, banks make decisions with the presence of legacy debt, and they do not internalize

that issuing new debt will dilute the value of legacy debt by exposing them to additional

default risks. This classic equity-debt conflict creates a static externality that impairs social

welfare.

More specifically, let’s consider the steady state of the laissez-faire economy in which

aggregate B and thus µ are constant. An individual bank’s problem is

z + ve(b) = z +max
b′

{
R−λb+ q(b′)[b′ − (1− λ)b] +

1

r

∫ z̄

−ve(b′)

[z′ + ve(b′)]dΦ(z′)

}
, (11)

where deposit price satisfies

q(b′)b′ =
1

r

{
[µ+ λ+(1− λ)q(hb(b

′))]b′ +

∫ −ve(b′)

−z̄

[z′ + ve(b′)− ξb′]dΦ(z′)

}
, (12)

and optimal policy hb(b) solves (11).

Differentiate bank’s objective in (11) with respect to deposit choice b′:

q(b′) + [b′ − (1− λ)b]
∂q(b′)

∂b′
+ [1− Φ(−ve(b′))]

1

r

∂ve(b′)

∂b′
= 0. (13)

The first two terms together capture the marginal benefit from new issuance proceeds today.

The third term is the marginal cost reflecting a larger repayment tomorrow.11 With q(b′)

being typically decreasing in well-behaved models, the second term corresponds to a negative

price impact of issuance—that is, a larger repayment pressure leads to a higher default risk

tomorrow and thus a lower price q(b′) today at which new deposits b′−(1−λ)b can be issued.

Importantly, this means that banks do not internalize that legacy deposits (1−λ)b also bear

part of the default risk and encounter a value decline, which is reflected by the dilution term

11By envelope theorem, we know: ∂ve(b)
∂b = −λ− (1− λ)q(hb(b)) < 0.
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−(1− λ)b∂q(b
′)

∂b′
in (13). Due to this externality, banks have the tendency to issue an amount

of deposits that is excessive from the perspective of maximizing social welfare. By doing so,

the increased default risk reduces the present value of future payments to legacy deposits,

i.e. the debt burden for banks, and benefits equity value.12

Proposition 2 connects the problem of a capital regulator with that of laissez-faire banks.

While laissez-faire banks maximize equity value ve (or its monotone transformation ve −
ξBΦ (−ve)), a regulator also takes into account the value of legacy deposits V b. Capital

regulation improves social welfare by correcting the equity-value-maximizing objective of

banks.13 Moreover, all regulators share a total-value-maximizing objective after the initial

period, and therefore, any potential difference between their steady-state policies reflects

only their different degrees of commitment power.

Proposition 2 In equilibrium, total value created by a Ramsey capital regulator in the con-

tinuation problem is

H(B, V e, Q) = V e + V b(B,Q)− ξBΦ(−V e). (14)

Total value created by a Markov-perfect capital regulator is

H(B) = V e (B, hB(B)) + V b(B,Q(hB(B)))− ξBΦ (−V e (B, hB(B))) , (15)

with hB(B) being its policy function.

Total value created by a capital regulator with partial commitment to equity values in the

continuation problem is

H(B, V e) = V e + V b(B,Q(hB(B, V e), hV e(B, V e)))− ξBΦ(−V e) (16)

12Formally, bank’s objective in (11) can be rewritten into R− [λ+(1−λ)q(b′)]b+S(b′) where S(b′) is the
discounted value of banks and all depositors in laissez-faire. Starting from the choice for b′ that maximizes
S(b′), a marginal increase in b′ will affect S(b′) only in a second-order way according to the envelope theorem.
However, the value accrued to legacy depositors (1− λ)q(b′)b declines in a first-order way if q(b′) is strictly
decreasing. On net, this implies an increase in equity value.

13In addition, since we have assumed that liquidity value µ(B) decreases in B in order to bound the
problem of a Ramsey regulator, regulators improve welfare also by internalizing that adopting a smaller B
improves µ(B). In Section 4.3, we solve our model and find this channel to play a relatively minor role as
regulated economies admit a much larger B than laissez-faire.
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with hB(B, V e) and hV e(B, V e) being its policy functions.

Proof. For the Ramsey regulator, plug (4) into (3) and we get V e + [λ + (1 − λ)Q]B =

R+ 1
r
[V e′+V b(B′, Q′)− ξB′Φ(−V e′)]. Conjecture (14) to hold, and we can then rewrite the

objective into V e + V b(B,Q)− ξBΦ(−V e). We have verified our conjecture.

For the Markov-perfect regulator, plug (7) into (6) and we get V e(B,B′) + [λ + (1 −
λ)Q(B′)]B = R + 1

r

[
V e(B′, hB(B

′)) + V b(B′, Q(hB(B
′)))− ξB′Φ(−V e(B′, hB(B

′)))
]
. Con-

jecture (15) to hold, and we can then rewrite the objective into V e(B,B′) + V b(B,Q(B′))−
ξBΦ (−V e (B,B′)). At optimum B′ = hB(B), and we have verified our conjecture.

For the partial-commitment regulator, plug (10) into (9), and we get V e + [λ + (1 −
λ)Q(B′, V e′)]B = R+ 1

r
[V e′+V b(B′, Q(hB(B

′, V e′), hV e(B′, V e′)))−ξB′Φ(−V e′)]. Conjecture

(16) to hold, and we can then rewrite the objective into V e+V b(B,Q(B′, V e′))−ξBΦ(−V e).

At optimum B′ = hB(B, V e) and V e′ = hV e(B, V e), and we have verified our conjecture.

3.2 Regulator’s time inconsistency problem

Now we describe the tradeoff faced by a regulator and show that optimal capital regulation

suffers a time inconsistency problem. Sharing the same objective, a regulator can create a

larger total value by committing to deposit issuance that no longer remains optimal as time

evolves.

Consider the problem of a Markov-perfect regulator without any commitment:

H(B) = max
B′

R + µ(B)B − ξBΦ (−V e (B,B′)) +
1

r
H(B′), (17)

where bank equity value (after plugging (7) into (6) and then simplifying using (15)) is:

V e(B,B′) = R− λB −Q(B′)(1− λ)B +
1

r
H(B′), (18)
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and deposit price is given by:

Q(B′)B′ =
1

r

{
[µ(B′) + λ+ (1− λ)Q(hB(B

′))]B′ (19)

+

∫ −V e(B′,hB(B′))

−z̄

[z′ + V e(B′, hB(B
′))− ξB′]dΦ(z′)

}
,

where optimal policy hB(B) solves (17).

Differentiate the Markov-perfect regulator’s objective in (17) with respect to deposit

choice B′: [
− (1− λ)B

∂Q(B′)

∂B′ +
1

r

∂H(B′)

∂B′

]
ξBϕ(−V e(B,B′)) +

1

r

∂H(B′)

∂B′ = 0. (20)

The first term describes how B′ reduces default costs today through elevating bank equity

value V (B,B′). The second term describes how it affects total value tomorrow. The presence

of the dilution term −(1 − λ)B ∂Q(B′)
∂B′ reflects that the regulator does not want to fully

eliminate dilution. This is because banks have the option to default, and thus diluting banks’

debt burden can still be valuable. With Q(B′) being typically decreasing in well-behaved

models, this term is positive.

Capital regulation eliminates the static externality caused by banks’ equity-value-maximizing

objective, i.e. dilution is allowed only when it improves total value today. However, there

is still a dynamic externality, because allowing dilution can also improve total value yes-

terday. In particular, the value of legacy deposits yesterday declines when depositors back

then rationally expect today’s dilution to reduce the expected payment to them, i.e. Q’s

are intertemporally connected in (19) when λ < 1. The Markov-perfect regulator does not

internalize such a positive impact of current dilution on its past self and therefore has the

tendency to under-issue relative to social optimum.

Formally, the Markov-perfect regulator’s objective described by (17) increases in total

value tomorrow H(B′) but decreases in deposit price today Q(B′). Both terms are forward-

looking and take into account the issuance decision of the regulator tomorrow, i.e. B′′ =

hB(B
′). Let’s consider an experiment where we give the Markov-perfect regulator a one-shot

opportunity today to choose B′′. This essentially gives the Markov-perfect regulator some

commitment power. According to the envelope theorem, a small deviation to B′′ > hB(B
′)
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will affect total value tomorrow only in a second-order way because at B′′ = hB(B
′) total

value tomorrow is already maximized. However, this deviation can reduce deposit price

tomorrow when Q(.) is decreasing, which in turn, with λ < 1, reduces deposit price today

in a first-order way. On net, total value today increases. Proposition 3 formalizes the above

reasoning and establishes the time inconsistency problem of a capital regulator.

Proposition 3 In an interior steady state, a Markov-perfect regulator improves total value

today by committing to a small one-shot deviation to a larger issuance tomorrow if (i) deposit

pricing function is locally downward sloping, i.e. ∂Q(B′)
∂B′ |B′=Bss < 0 where subscript ss denotes

steady state values and (ii) deposit maturity is long, i.e. λ < 1.

Proof. See Appendix A.2.

To sum up, committing to a large deposit issuance in the future serves as a useful tool for

a regulator to prevent bank defaults today. A regulator with such an ability, e.g. Ramsey,

can create liquidity benefits by incurring smaller default costs. This implies a more efficient

tradeoff.

3.3 Comparing regulator’s and banks’ time inconsistencies

It is worth comparing the time inconsistency problem of a capital regulator that we have

established in the previous section and the time inconsistency problem of a borrower that has

been examined by the existing literature. The latter is sometimes called a “dilution problem”

or a “leverage ratchet effect”, and it describes how a borrower’s lack of commitment impairs

its own welfare (e.g. Gomes, Jermann and Schmid, 2016; Admati, DeMarzo, Hellwig and

Pfleiderer, 2018). Some studies have further derived optimal policies for a borrower with

commitment, i.e. allocations that maximize a borrower’s welfare (e.g. Aguiar, Amador,

Hopenhayn and Werning, 2019; Hatchondo, Martinez and Roch, 2020). The objective of

capital regulation is not to help borrowers only. Therefore, our investigation of optimal

regulation is different from the existing literature.

To recap the time inconsistency of borrowers, banks in our case, let’s consider a one-shot

commitment opportunity for banks similar to that in Section 3.2 for the Markov-perfect

regulator. In steady state, banks issue new deposits every period, i.e. b′ − (1 − λ)b > 0.
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A bank’s objective described by (11) today increases in equity value tomorrow ve(b′) and

deposit price today q(b′). Both terms are forward-looking and take into expectation the

issuance decision of bank tomorrow, i.e. b′′ = hb(b
′). Let’s give an individual bank a one-

shot opportunity today to choose b′′. According to the envelope theorem, a small deviating to

b′′ < hb(b
′) will affect equity value tomorrow only in a second-order way because at b′′ = hb(b

′)

equity value tomorrow is already maximized. However, this deviation can increase deposit

price tomorrow when q(.) is decreasing, which in turn, with λ < 1, increases deposit price

today in a first-order way. On net, equity value today increases. Proposition 4 echoes

Proposition 3 and establishes the time inconsistency problem of banks.

Proposition 4 In an interior steady state, a laissez-faire bank improves equity value today

by committing to a small one-shot deviation to a lower issuance tomorrow if (i) deposit

pricing function is locally downward sloping, i.e. ∂q(b′)
∂b′

|b′=bss < 0 where subscript ss denotes

steady state values and (ii) deposit maturity is long, i.e. λ < 1.

Proof. See Appendix A.3.

Why is an increase in deposit issuance tomorrow good for enhancing equity value today

under a Markov-perfect regulator but bad under laissez-faire banks? The difference is driven

by the fact that equity value decreases in deposit price conditioning on total value tomorrow

(Equation (18)), but increases in deposit price conditioning on equity value tomorrow (Equa-

tion (11) when b′− (1−λ)b > 0). An increase in issuance tomorrow always reduces the price

of long-term deposits today, however, it improves equity value today at the point where total

value tomorrow is maximized but reduces equity value today at the point where equity value

tomorrow is maximized. Intuitively, to elevate equity value at time t, one should enhance

the value of newly issued deposits Bt+1 − (1 − λ)Bt > 0. The Markov-perfect regulator

at time t + 1 protects the value of all deposits Bt+1—for the purpose of enhancing equity

value at time t, it should instead dilute the value of legacy deposits (1− λ)Bt by choosing a

higher Bt+2. In contrast, a bank at time t + 1 takes into account none of the deposits then

existing—for the purpose of enhancing equity value at time t, it should instead protect the

value of newly issued deposits Bt+1 − (1− λ)Bt by choosing a lower Bt+2.
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3.4 Partial commitment

In the two partial commitment cases, regulators have less power than Ramsey to control

future deposit issuance because they can put one fewer promise keeping constraint on their

future selves. Interestingly, however, we numerically solve the steady states of the three

models and find them to be identical. This result implies that, in steady state, one type

of commitment is sufficient to align regulators’ incentives across time, moving aggregate

quantities from the Markov-perfect to the Ramsey level.

The intuition is as follows. Our result in Section 3.2 implies that for the Markov-perfect

regulator, issuance decisions that maximize future total value are not consistent with maxi-

mizing current total value. To see why such a dynamic inconsistency is absent for the partial

commitment regulator, one shall first recognize the fact that total value combines equity

and deposit values—Proposition 2 shows that total value H = V e + V b(B,Q)− ξBΦ(−V e)

and is increasing in both V e and Q. In the continuation problem of a regulator committing

partially to equity values, with V e committed previously together with B, it can maximize

total value only by maximizing deposit price Q. Moreover, based on the deposit pricing

equation, i.e.

QB′ =
1

r

[
V b(B′, Q′) +

∫ −V e′

−z̄

(z′ + V e′ − ξB′)dΦ(z′)

]
,

fixing choice variables B′ and V e′, decisions by the future regulator that achieve maximal Q′

imply maximal Q, and there is no other forward-looking term that can potentially create a

misalignment between objectives today and tomorrow. Similarly, in the continuation problem

of a regulator committing partially to deposit prices, with Q committed previously together

with B, it can maximize total value only by maximizing equity value V e. Based on the

equity value equation, i.e.

V e = R− λB +Q[B′ − (1− λ)B] +
1

r

[ ∫ z̄

−V e′
(V e′ + z′)dΦ(z′)

]
,

fixing state variables B,Q and choice variables B′, decisions by the future regulator that

achieve maximal V e′ imply maximal V e, and there is no other forward-looking term that can

potentially create a misalignment between objectives today and tomorrow.
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Formally, Proposition 5 allows the regulator with partial commitment to equity values to

commit today to a small one-shot deviation in B′′ away from its steady state level Bss while

fixing B′ = Bss. It shows that such additional commitment power does not improve total

value today.14 This is consistent with our findings that steady states of this partial commit-

ment regulator is identical to that of Ramsey, even though Ramsey has more commitment

power.

Proposition 5 In an interior steady state with λ < 1, a regulator with partial commitment

to equity values cannot improve total value today by committing to a small one-shot deviation

in issuance tomorrow if ∂Q(B′,V e
ss)

∂B′ |B′=Bss ̸= − Qss[1−Φss+(ξBssϕss+Φss)λ]
Bss[1−Φss+1−λ+(ξBssϕss+Φss)λ]λ

where subscript ss

denotes steady state values.

Proof. See Appendix A.4.

In general, we find the allocations of the Ramsey regulator and two regulators with partial

commitment to be different. This is because in the initial period there are no prior promises.

Consider the regulator with partial commitment to equity values. Equity value V e
0 is not

previously committed, and this means that a maximal Q0 does not necessarily correspond to

a maximal H0. Future regulator’s decisions that achieve maximal Q1 might not be optimal

for today.

Overall, our analysis shows that while it is fairly valuable to have one type of credible

promises that a regulator can make, adding a second one can encounter strongly diminishing

returns in the long run. Interpreting a commitment to equity values as a commitment

to bank shareholders and a commitment to deposit prices as a commitment to depositors

or other debt holders of banks, our result suggests that a regulator can be very effective

without cultivating close relations with both groups. For instance, a close relation to banks’

shareholders or managers would be sufficient in the long run from this perspective. The

ability to make credible commitments is more important than to whom such commitments

are made.

14Once B′ and B′′ gets decided, promise-keeping constraints today and tomorrow pin down V e′ and V e′′.
The inequality condition imposed on the steady-state pricing derivative, which can be verified numerically,
rules out a knife-edge scenario where two promise keeping constraints are linearly dependent locally. Oth-
erwise, there are multiple combinations of {V e′, V e′′} that can satisfy promise keeping for a given choice of
{B′, B′′}, making the one-shot deviation problem not well-identified.
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4 Model with non-maturing deposits

In the previous section, we have proven that a one-shot commitment induces a Markov-

perfect regulator to deviate from its optimal decisions. This indicates that the optimal

policy of a Ramsey regulator who has even more commitment power will be different from

that of a Markov-perfect regulator and is thus not time consistent. In this section, we

numerically solve these optimal policies and show precisely how they are different.

We solve for an extended model with non-maturing deposits. This captures a key fea-

ture of bank deposits that distinguishes them from corporate debt with fixed maturity. In

particular, a major portion of US bank deposits have no explicit maturity dates and depos-

itors withdraw on demand. This implies that the effective deposit maturity is endogenously

changing. Nonetheless, we find our results to be qualitatively similar when solving for our

baseline model with fixed deposit maturity. While we are able to analytically show the value

of commitment in this extended setup, analogous to Propositions 3, 4, and 5 for our baseline

model, we delegate these results to Appendix C in order to focus on the new set of results

coming out of model solutions.

Section 4.1 describes laissez-faire, Ramsey- and Markov-perfect-regulated economies.15

Section 4.2 describes our numerical methods and parameter choices. Section 4.3 compares

steady states. Section 4.4 compares impulse responses to a negative aggregate shock.

4.1 Setup

The extended model differs from our baseline in Section 2 in two aspects. First, we allow

shocks to aggregate productivity, i.e. R′ = (1− ρR)R
∗ + ρRR+ σRũ where R∗ is the average

productivity and ũ ∼ N (0, 1). Second, we relax the assumption that deposit maturity is fixed

but instead model the optimal withdrawals of bank depositors following Jermann and Xiang

(2023). Deposits have no explicit maturity dates, and depositors withdraw on demand to

satisfy liquidity needs. In this setting, deposit maturity 1/λ and liquidity benefits of deposits

are endogenous.

15Appendix C.2 confirms for this extended setup that a regulator committing partially to equity values in
steady state does not deviate when granted a one-short commitment to deposit issuance tomorrow, similar to
our baseline in Section 3.4. Steady states of partial-commitment regulators are the same as that of Ramsey.
These cases are thus omitted in this section to save space.
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4.1.1 Laissez-faire

The liquidity benefit derived by depositor i with deposits bi consists of two components.

First, as in the baseline model, there is a benefit µ(B) of holding deposits within the period

for day-to-day transactions with µ(.) being decreasing. Second, at the end of each period a

liquidity shock hits, and upon withdrawal a depositor receives benefit ν with c.d.f. (p.d.f.)

F (ν) (f(ν)) over support [ν, ν̄]. This reflects various opportunities and needs that require

cash. Withdrawal incurs a marginal cost of κ. Therefore, depositor i finds it optimal to

withdraw the entire bi if ν is large enough such that

1 + ν − κ ≥ q,

where the deposit price q equals the risk-adjusted present value of future payments and is

thus exactly the opportunity cost of withdrawing.

In this setup, the mass of withdrawing depositors is given by:

λ(q) = 1− F (q + κ− 1), (21)

and the liquidity value per unit of deposits combines holding and expected withdrawing

benefits, i.e.

L (B, q) = µ(B) +

∫ ν̄

q+κ−1

(ν − κ)dF (ν). (22)

Given law of motion for B, i.e. B′ = Ω(R,B), and that for R, an individual bank solves

z + ve(R,B, b) = z +max
b′

{
R−λ(q(R,B, b′))b+ q(R,B, b′){b′ − [1− λ(q(R,B, b′))]b}

+
1

r
E

{∫ z̄

−ve(R′,B′,b′)

[ve(R′, B′, b′) + z′]dΦ(z′)

}}
, (23)
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given

q(R,B, b′)b′ =
1

r
E

{
vb(B′, b′, q(R′,B′, hb(R

′, B′, b′)))

+

∫ −ve(R′,B′,b′)

−z̄

[z′ + ve(R′, B′, b′)− ξb′]dΦ(z′)

}
,

where vb(B, b, q) = {L(B, q) + λ(q) + [1− λ(q)]q}b; hb(R,B, b) solves (23); λ(.) and L(.) are

given by (21) and (22).

An equilibrium of the laissez-faire economy requires that individual banks’ optimal de-

posit issuance policy is consistent with law of motion for aggregate deposits B, i.e. Ω(R,B) =

hb(R,B,B).

4.1.2 Ramsey regulator

A Ramsey regulator solves

max
{V e

t (Rt),Qt(Rt),Bt+1(Rt)}∞t=0

E0

∞∑
t=0

1

rt

[
Rt + L(Bt, Qt)− ξBtΦ(−V e

t )

]
,

subject to for all t ≥ 0

V e
t = Rt − λ(Qt)Bt +Qt{Bt+1 − [1− λ(Qt)]Bt}+

1

r
Et

[ ∫ z̄

−V e
t+1

(z + V e
t+1)dΦ(z)

]
,

QtBt+1 =
1

r
Et

[
V b
t+1 +

∫ −V e
t+1

−z̄

(z + V e
t+1 − ξBt+1)dΦ(z)

]
,

and no-Ponzi and no-bubble conditions, where V b
t = {L(Bt, Qt) + λ(Qt) + [1− λ(Qt)]Qt}Bt;

λ(.) and L(.) are given by (21) and (22); Rt is the history of aggregate productivities up to

period t.

4.1.3 Markov-perfect regulator

Given B and law of motion for R, a Markov-perfect regulator solves:

H(R,B) = max
B′

R + L (B,Q (R,B′))B − ξBΦ (−V e(R,B,B′)) +
1

r
EH(R′, B′), (24)
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given

V e(R,B,B′) = R− λ(Q(R,B′))B +Q(R,B′){B′ − [1− λ(Q(R,B′))]B}

+
1

r
E

{∫ z̄

−V e(R′,B′,hB(R′,B′))

[z′ + V e(R′, B′, hB(R
′, B′))]dΦ(z′)

}
, (25)

Q(R,B′)B′ =
1

r
E

{
V b(B′, Q(R′, hB(R

′, B′)))

+

∫ −V e(R′,B′,hB(R′,B′))

−z̄

[z′ + V e(R′, B′, hB(R
′, B′))− ξB′]dΦ(z′)

}
,

where V b(B,Q) = {L(B,Q) + λ(Q) + Q[1 − λ(Q)]}B; hB (R,B) solves (24); λ(.) and L(.)

are given by (21) and (22).

4.2 Solution

For the Ramsey problem, we show the existence of a pseudo steady state in some aggregate

quantities. Specifically, Bt, Qt and V e
t converge to a stationary point. However, Lagrange

multipliers associated with equity and pricing constraints, even when multiplied by rt to

adjust for time discounting, keep growing at a speed under which the no-Ponzi and no-bubble

conditions are satisfied. This is different from common models, i.e. consumption-saving

models, where Lagrange multipliers becomes stationary after adjusted for time discounting,

and is reminiscent of characterizations in the optimal taxation literature where convergence

of multipliers cannot always be established (e.g. Straub and Werning, 2020; Chien and Wen,

2022; Bassetto and Cui, Forthcoming). While we prove Proposition 6 for our model with

non-maturing deposits, our baseline model with fixed maturity exhibits the same property.

To solve the Ramsey problem requires us to first substitute out all multipliers by hand.

Proposition 6 The existence of a Ramsey steady state in which real variables Bt, Vt and Qt

stay constant does not imply constant Lagrange multipliers.

Proof. See Appendix A.5.

The problems of the Markov-perfect regulator and laissez-faire banks (also the partial

commitment regulators) are nontrivial to solve. Local approximations of such equations
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are challenging because generalized Euler equations include derivatives of policy functions

which are not determined by the system of first-order conditions (Klein, Krusell and Rios-

Rull, 2008). We build on Gomes, Jermann and Schmid (2016) and Dennis (2022) for a fully

local method that is scalable and can solve the steady state with essentially no approximation

error. Our approach can also handle the distinction between aggregate and individual state

variables. To illustrate the main idea of the approach, consider the steady-state first-order

condition for a laissez-faire bank in our baseline model with fixed maturity and aggregate

productivity, i.e. Equation (13), which involves a pricing derivative given by:16

∂q(b′)

∂b′
b′ + q(b′) =

1

r

{
µ+ [λ+ (1− λ)q(hb(b

′))][1− ξb′ϕ(−ve(b′))− Φ(−ve(b′))]

− ξΦ(−ve(b′)) + (1− λ)b′
∂q(h)

∂h
|h=hb(b′)

∂hb (b
′)

∂b′

}
.

For local solutions, policy function cannot be pinned down before solving for the steady

state. Therefore, with the presence of ∂hb(b
′)

∂b′
, the system of first-order conditions used for

local solutions is short one equation. To fill the gap, we iterate over the steady state and local

dynamics jointly. In particular, for a conjectured linear process for ∂hb(b
′)

∂b′
, we solve for the

model’s steady state and then perturb it to the second order (for instance with Dynare). The

computed dynamics allow us to update the conjecture for ∂hb(b
′)

∂b′
. This process is repeated

until convergence.

Our parametrization is as follows. A period is a year. The average profitability of bank

assets is R∗ = 0.02. The default loss is ξ = 0.2. The withdrawal cost is κ = 0.1. We

assume that ν follows an exponential distribution, i.e. f(ν) = a exp(−aν), with a = 20.

These choices follow Jermann and Xiang (2023) who aim to approximately match simulated

moments of the laissez-faire economy and obvious empirical counterparts. We differ in four

parameters to produce a higher default risk, without which Ramsey solutions can feature

steady states with zero default and less interesting local dynamics. For the zero-mean i.i.d.

shocks to profitability, we set ϕ(z) = ι0 − ι1z
2. By imposing ϕ(z̄) = 0 and Φ(z̄) = 1, we

can use z̄ to pin down ι0 and ι1. We set z̄ = 0.26. We set the benefit of holding deposits as

µ(B) = 0.1245− 0.012×B. Finally, we set the discount rate to 1/r = 0.9.

16This is obtained by differentiating the left- and right-hand sides of (12) at the same time.
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4.3 Steady states

Table 1 shows the deterministic steady states for laissez-faire, Ramsey- and Markov-perfect-

regulated (MP) economies. We highlight two main findings. First, by comparing laissez-faire

and two regulated economies on the left panel, one can see that with regulation the default

rate is a lot lower while the amount of deposits is a lot higher. By addressing dilution,

capital regulation can actually increase the steady-state amount of deposits Bss that banks

absorb. This is despite the fact that regulators internalize that a large amount of deposits

leads to a low marginal value of holding them, i.e. ∂µ(B)/∂B < 0. In laissez-faire, banks’

strong incentive to dilute ex post is punished heavily by a large credit spread at the issuance

stage, making deposits very costly for banks. Capital regulation assures depositors that

their money is safe to some extent and therefore facilitates borrowing. Even though steady

states of regulated economies admit more deposits, default risks Φ(−V e
ss) are much lower.

This result highlights how the borrowing constraint is endogenously tightened up by banks’

dilution incentive, which is in sharp contrast to models where bank deposits are insured and

capital requirements reduce equilibrium debt.17

Table 1: Steady states of laissez-faire and regulated economies

Parameters: r = 1/0.9, ξ = 0.2, κ = 0.1, a = 20, µ = 0.1245− 0.012×B,R∗ = 0.02, ρR = 0, σR = 0, z̄ = 0.26.
For the fixed-maturity model with λ = 0.3439, we adjust z̄ = 0.121 and µ = 0.098−0.012×B for comparability
between laissez-faire economies.

Endogenous maturity Fixed maturity
Moments Laissez-faire Ramsey MP Laissez-faire Ramsey MP

Bss 0.5165 1.1269 0.8166 0.5160 0.5633 0.5622

V e
ss 0.1534 0.2112 0.2207 0.0897 0.1119 0.1127

Φ(−V e
ss) 0.1089 0.0248 0.0163 0.0457 0.0041 0.0034

λss 0.3439 0.1213 0.0707 0.3439 0.3439 0.3439

Lss 0.1195 0.1177 0.1205 0.0918 0.0912 0.0913

Hss 0.7046 1.4706 1.1577 0.6266 0.7093 0.7092

1−Bss/Hss 0.2669 0.2337 0.2946 0.1764 0.2058 0.2073

17That the amount of deposits in the laissez-faire is smaller than in the regulated economies does not imply
non-binding capital requirements. For instance, in the steady states of Markov-perfect regulated economies,
both under endogenous- and fixed-maturity, we have verified that bank equity value function V e(R,B,B′)
is locally increasing in B′ when evaluated at the point (R,B,B′) = (R∗, Bss, Bss). This means that banks
themselves would like to absorb more deposits than the Bss chosen by a Markov-perfect regulator.
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Second, by comparing between two regulated economies on the left panel, we find that

regulatory commitment can lead to a larger amount of deposits and a higher default risk.

Naturally, commitment implies better outcomes—for instance, the total value in steady

state Hss is higher in the Ramsey-regulated economy. However, we do not find bank leverage

Bss/Hss or default risk to be lower. The Ramsey regulator’s ability to commit brings a better

tradeoff between liquidity benefits and default costs, who ends up issuing more deposits to

create liquidity while admitting more defaults. In contrast, to issue more deposits forces the

Markov-perfect regulator to bear a much larger amount of default risk and is not optimal.

Interestingly, we find that the steady state leverage chosen by the Ramsey regulator can be

even higher than that in laissez-faire. This highlights the importance of properly accounting

for regulatory commitment before making model-based policy recommendations regarding

the appropriate level of capital requirements.

In addition to these two main results, it is worth noting that the endogeneity of deposit

withdrawals can significantly amplify the value of regulatory commitment. We solve on the

right panel our baseline model in Section 2 with fixed maturity and no net benefit of with-

drawing. We in this case fix λ = 0.3439, and then re-adjust µ(B) = 0.098− 0.012× B and

z̄ = 0.121 so that laissez-faire economies with and without endogenous withdrawals have

a similar amount of deposits in steady states. We find that with endogenous withdrawals,

commitment can produce large differences in steady state levels of deposits Bss and total

value Hss.
18 This is because endogenous withdrawals imply that future bank leverage will

affect not only the current value of unmatured deposits as in our baseline setup, but also the

amount that ends up getting matured today, i.e. how many depositors end up withdrawing.

This additional channel can amplify the negative effect of inefficient leverage taking result-

ing from lack of commitment. In particular, withdrawals affect banks’ default incentive and

depositors’ liquidity benefits by (24), and being able to commit to future leverage allows

the Ramsey regulator to better manage the impact of today’s withdrawals. Our result sug-

gests that this further widens the difference between Ramsey and Markov-perfect regulators

regarding their optimal policies and how much value can be created.

18In an alternative recalibration with µ(B) = 0.07 − 0.012 × B and z̄ = 0.15, laissez-faire economies
with and without endogenous withdrawals have similar steady-state leverage ratios Bss/Hss and default
probabilities Φ(−V e

ss). Our results are similar.
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4.4 Responses to aggregate shocks

This section shows the dynamics of regulated and laissez-faire economies in response to shocks

to aggregate productivity R. This experiment is informative about the optimal setting of a

countercyclical capital buffer (CCyB). It also connects to our empirical tests in Section 5.

Figure 1 reports the impulse responses to a negative i.i.d. R shock at t = 10, which

represents a recession caused by, for example, a housing crisis or a pandemic that lasts for

one year. Upon the shock, bank equity values fall and therefore banks default more. By

allowing banks to issue more deposits, both Ramsey and Markov-perfect regulators inflate

the equity value and incentivize banks to default less.

Importantly, there is a clear difference in terms of policy persistence between the two reg-

ulators. Right upon the shock, the Markov-perfect regulator aggressively increases deposits

for t = 11. Even though an immediate deleveraging at t = 12 is costly because this requires

banks to inject a large amount of equity to retire these deposits who are therefore very likely

to default, the deleveraging still unfolds relatively rapidly. In comparison, the Ramsey reg-

ulator increases deposits for t = 11 in a milder way, but importantly commits to extend the

increase for a longer time even though it becomes value destroying after productivity has

reverted back to its long-run level. This allows Ramsey to better resolve defaults at t = 10.

Panels (1c) and (1d) display the equity ratios 1 − B/H in two regulated economies and

the difference between them (Ramsey-MP, i.e. Ramsey minus Markov-perfect). Relative to

the Markov-perfect regulator, the Ramsey regulator keeps the equity ratio low for a longer

period of time post the shock.

Figure 2 considers a typical business cycle shock, i.e. a small but persistent drop in asset

productivity R, specifically with ρR = 0.9 and σR = 0.01. For both regulators, aggregate

bank deposits shrink drastically to reduce the exposure of banks to the long-lasting increase

in default risk. By (2c) and (2d), the impact of commitment echoes that in the i.i.d. shock

case—that is, relative to the Markov-perfect regulator, the Ramsey regulator adopts a low

equity ratio for quite a period of time. Overall, our result lends support to policy designs

that bound the ability of a regulator to quickly revert capital buffers back to a stringent

level after they get reduced, with the EU Capital Requirements Directive as a prominent

example.

Figure 3 plots the responses of the laissez-faire economy to negative productivity shocks

and compares them with those of the Markov-perfect regulated economy (MP-LF represents
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(a) R (b) Debt B

(c) Equity ratio 1−B/H (d) Equity ratio: Ramsey-MP

Figure 1: Regulator’s commitment and impulse responses to i.i.d. R shocks. Notes: ρR =

0, σR = 0.04, and the other parameters follow Table 1. Ramsey-MP represents Ramsey minus Markov-

perfect.

Markov-perfect minus laissez-faire). Panels (3a)-(3c) show the i.i.d. shock case. When

shocks are i.i.d., banks themselves do not adjust the amount of deposits, which implies that

post-shock periods do not observe a lower equity ratio. This is because equity value is already

maximized under banks’ own choice for b′, and therefore pushing it up further does not help

reduce default probability. In contrast, the regulator restricts deposit issuance in steady

state to address dilution, and has the room to allow more deposits to temporarily increase

equity value when a negative shock hits. Panel (3c) shows that capital regulation stringency,

the difference between the required capital ratio and banks’ own optimal choice, falls right

following the shock. Panels (3d)-(3f) show the persistent shock case. Similar to the i.i.d.
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(a) R (b) Debt B

(c) Equity ratio 1−B/H (d) Equity ratio: Ramsey-MP

Figure 2: Regulator’s commitment and impulse responses to persistent R shocks. Notes:

ρR = 0.9, σR = 0.01, and the other parameters follow Table 1. Ramsey-MP represents Ramsey minus

Markov-perfect.

case, capital regulation stringency reduces post the shock.

5 Empirical analysis

Our theory suggests that regulatory commitment plays an important role for bank capital

regulation. Cross-country data on the evolution of capital regulation stringency around the

2008 global financial crisis allow us to test our model implications, particularly the dynamic

responses to a negative shock studied in Section 4.4. We present two novel facts that are
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(a) ρR = 0: R (b) ρR = 0: Debt B (c) ρR = 0: Equity ratio: MP-LF

(d) ρR = 0.9: R (e) ρR = 0.9: Debt B (f) ρR = 0.9: Equity ratio: MP-LF

Figure 3: Laissez-faire impulse responses to R shocks. Notes: ρR = 0, σR = 0.04 in the upper

panel and ρR = 0.9, σR = 0.01 in the lower panel. The other parameters follow Table 1. MP-LF represents

Markov-perfect minus laissez-faire.

consistent with our results. First, a GDP contraction during crisis implies a lower post-crisis

stringency for governments that more likely have a welfare-maximizing objective. Second,

among governments who are highly likely maximizing welfare, a GDP contraction during

crisis implies a lower post-crisis stringency for those exhibiting more commitment. The first

fact corresponds to our result that regulated economies loosen capital requirements post a

negative shock (Panels (3c) and (3f)), and the second fact corresponds to our result that a

Ramsey regulator extends such leniency for longer compared to a Markov-perfect regulator

(Panels (1d) and (2d)).
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5.1 Data and variables

Our data are from several sources. Country-level economic variables that we use as controls

are from the Penn World Table and the IMF Global Debt Database. Capital stringency

index is from Barth, Caprio and Levine (2013), who collaborated with the World Bank and

conducted surveys about bank regulation in 180 countries in 4 waves, i.e. 1999, 2002, 2006

and 2011. We use their scaled Initial Stringency Index that captures the minimum capital

adequacy ratio and their scaled Overall Stringency Index that describes the risk weighting

of bank assets. A higher value indicates greater stringency.

We use two key political economy measures that describe the functioning of governments.

The first has to do with the total-value-maximizing objective of the government and the

second has to do with its commitment power. For the first, we use the Regulatory Quality

Index from the World Bank’s World Governance Indicators (WGI) project, which describes

“the ability of the government to formulate and implement sound policies and regulations

that permit and promote private sector development” based on questions about whether

the government has created an efficient business environment.19 For robustness, we also

exploit the Government Effectiveness Index from the WGI, which describes whether the

government has provided high quality public goods. For the second, we use the Factor

1.5 Rule of Law Index from the widely popular World Justice Project (WJP). It describes

how government powers are subject to non-governmental checks based on questions about

whether independent media, civil society organizations, political parties, and individuals

are free to act. We consider a government with a higher Rule of Law Index to have more

commitment, for whom breaking past promises is not easy.20

5.2 Empirical evidence

Section 5.2.1 presents fact one that pertains to the regulatory objective and corresponds

to our comparison between laissez-faire and regulated economies. Section 5.2.2 presents

19The underlying questions cover a wide range of topics beyond just financial regulation, which alleviates
to some extent the reverse causality issue.

20While our post-crisis capital regulation stringency index is available only in 2011, the WJP dataset starts
at 2012. As the regulatory environment of a country is recognized to be quite stable over a short window,
we use Rule of Law in either 2012 or the closest later-reported value. In Appendix D.1, we use other rule of
law measures from the WJP dataset as well as the one from the WGI dataset, for the latter of which we do
have observations for the year 2011. Our results are similar.
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fact two that relates to regulatory commitment and corresponds to our comparison within

regulated economies. Section 5.2.3 connects these results with anecdotal evidence.

5.2.1 Regulatory objective and post-crisis capital requirements

Our model suggests that both Ramsey and Markov-perfect regulators would reduce capital

regulation stringency after a negative shock. We therefore hypothesize that given pre-crisis

regulation stringency, a GDP contraction during crisis leads to less stringent post-crisis cap-

ital requirements in countries that are more likely to have a welfare-maximizing government.

We run the following regression:

Capi,2011 = β0 + β1Capi,2006 + β2GDPdropi + β3Obji,2011

+ β4GDPdropi ×Obji,2011 +
∑
k

βkControlski,2011 + ϵi. (26)

Our dependent variable Capi,t is the Capital Regulation Index of country i in year t, which is

defined as the sum of Initial Stringency Index and Overall Stringency Index following Barth,

Caprio and Levine (2013).21 Our main independent variable Obji,2011 is either the Regulation

Quality Index (Quality) or the Government Effectiveness Index (Effectvns). Our measure

of GDP contraction is GDPdropi = 100×
(
1− mint∈[2008,2010] GDPi,t

GDPi,2007

)
, i.e. the extent to which

country i’s real GDP between 2008 and 2010 had ever dropped below its 2007 value.22 We

control for the pre-crisis stringency Capi,2006 and the following variables in 2011: logarithm of

real GDP, logarithm of population, central government debt to GDP ratio, and a dummy for

membership in Basel committee. It is important to notice that some countries were still in

crisis in 2011, such as Greece and Jamaica. Our theory suggests that their regulatory policy

making in 2011 shall be in nature different from those who had fully recovered. Therefore,

we restrict our sample to countries whose real GDP in 2011 exceeded its 2007 level.

Table 2 shows our results. In columns (1) and (2), we use the Regulation Quality Index

21Since capital regulation paradigm prior to 2008 was quite stable, for countries with missing overall or
initial stringency indices in 2006, we use their most recent reported values. In the raw data, average Capital
Regulation Index in 1999, 2002, and 2006 was respectively 5.8, 6.0, and 5.8, whereas that in 2011 was 7.3.

22This is similar to the peak-to-trough crisis severity measure of Reinhart and Rogoff (2009). In Appendix
D.2, we consider a dummy variable that is equal to 1 for country i if mint∈[2008,2010] GDPi,t < GDPi,2007

and to 0 otherwise. Our results are robust. In D.2, we also conduct a placebo test using the behavior of
GDP prior to the 2008 crisis.
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Table 2: Regulatory objective and post-crisis capital requirements

Dependent variable is Cap2011. For independent variable Obj, columns (1) and (2) use the Regulation

Quality Index and columns (3) and (4) use the Government Effectiveness Index. Control variables include

log real GDP, log population, central government debt to GDP ratio, and a dummy for membership in Basel

committee, all at 2011. Standard errors are in parentheses. ***/**/* denotes 99%/95%/90% significance.

Obj=Quality Obj=Effectvns
(1) (2) (3) (4)

Obj × GDPdrop -0.085* -0.107** -0.088* -0.092*
(0.047) (0.054) (0.048) (0.054)

GDPdrop 0.000 -0.015 0.001 -0.014
(0.040) (0.044) (0.040) (0.044)

Obj -0.273 -0.529* -0.257 -0.568*
(0.206) (0.310) (0.199) (0.324)

Cap2006 0.199** 0.228** 0.198** 0.216**
(0.092) (0.101) (0.092) (0.100)

Controls No Yes No Yes
R2 0.083 0.126 0.083 0.120
Obs 103 92 103 92

as our independent variable. Our key interest is in β4, which is estimated to be negative

and statistically significant. This implies that for a given magnitude of GDP contraction

during crisis, a government that is more likely welfare-maximizing decided on post-crisis

capital requirements by showing more leniency. This is consistent with our theoretical result

that regulators loosen capital requirements upon a negative shock. Adding control variables

does not alter our point estimates in a significant way. In columns (3) and (4), we use

the Government Effectiveness Index as our measure of government’s objective of welfare

maximization, and our results are robust.

5.2.2 Regulatory commitment and post-crisis capital requirements

Now we consider the role of regulatory commitment. Our model suggests that the Ramsey

regulator would like to loosen capital requirements for longer post crisis than a Markov-
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perfect regulator. We sort countries based on regulatory objective Obji,2011 into three equal

subsamples, and then run the following regression in different subsamples:

Capi,2011 = β0 + β1Capi,2006 + β2GDPdropi + β3Commi

+ β4GDPdropi × Commi +
∑
k

βkControlski,2011 + ϵi, (27)

where Commi is the Rule of Law Index that proxies for regulatory commitment. Our key

interest is in β4 for the high-Obj sample, which includes countries that are very likely to

have a welfare-maximizing regulator. Since the size of each subsample drops to be around

30, we include only logarithm of real GDP and Obji,2011 itself as our controls.

Table 3 reports our results. Panel A sorts countries based on the Regulation Quality

Index while Panel B sorts based on the Government Effectiveness Index. In columns (1) and

(2), we estimate β4 to be negative and statistically significant. This suggests that, for a given

magnitude of GDP contraction during crisis, a welfare-maximizing government with more

commitment decided on post-crisis capital requirements by showing more leniency. This

is consistent with our comparison between Ramsey and Markov-perfect regulators in the

model. Whether to add controls or not does not vary point estimates much. From columns

(3) to (6), as we expand our sample to also include countries with medium- and low-Obj, the

effect of commitment vanishes. In other words, commitment is less relevant for governments

that are likely not maximizing social welfare at all.

5.2.3 Interpreting the empirical results

The dataset on capital regulation stringency ends at 2011, before Basel III’s new rules got

widely implemented. Therefore, changes in regulation stringency did not correspond to how

governments vary capital buffers across time under the Basel III framework. Instead, in the

examined period around the crisis, governments made a series of decisions, regarding for

instance how to better getting out of the crisis or how quickly to embrace the Basel III, that

could affect capital stringency, and they had quite a lot of discretion over these decisions.

This allows us to test our theory.

During the 2008 crisis, to avoid massive bank defaults, many governments purchased

preferred bank stocks at a cheap price, including for example the US Troubled Asset Relief
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Table 3: Regulatory commitment and post-crisis capital requirements

Dependent variable is Cap2011. Independent variable Comm is the Factor 1.5 WJP Rule of Law Index.

Panel A sorts countries into three subsamples (High, Medium, Low) based on Quality i,2011 and panel B

sorts countries based on Effectvnsi,2011. Control variables include log real GDP in 2011 and the regulatory

objective measure in 2011, i.e. Quality i,2011 in panel A and Effectvnsi,2011 in panel B. Standard errors are

in parentheses. ***/**/* denotes 99%/95%/90% significance.

High High+Medium High+Medium+Low
(1) (2) (3) (4) (5) (6)

Panel A. Sort by Quality

Comm × GDPdrop -2.001** -1.982** -0.001 -0.021 -0.185 -0.184
(0.788) (0.785) (0.381) (0.398) (0.219) (0.228)

GDPdrop 1.406** 1.440** -0.054 -0.047 0.079 0.073
(0.576) (0.572) (0.262) (0.266) (0.134) (0.135)

Comm -1.896 -1.696 -1.944 -1.703 -1.654 -1.351
(2.649) (2.692) (1.824) (2.136) (1.186) ( 1.622)

Cap2006 0.544*** 0.537** 0.261* 0.281* 0.220** 0.222**
(0.165) (0.166) (0.141) (0.147) (0.103) (0.104)

Controls No Yes No Yes No Yes
R2 0.409 0.470 0.106 0.122 0.088 0.110
Obs 28 28 58 58 86 86

Panel B. Sort by Effectvns

Comm × GDPdrop -2.219*** -1.802** 0.022 0.037 -0.185 -0.206
(0.707) (0.815) (0.396) (0.411) (0.219) (0.230)

GDPdrop 1.548*** 1.270** -0.081 -0.087 0.079 0.078
(0.507) (0.577) (0.277) (0.280) (0.134) (0.135)

Comm 0.921 1.178 -2.020 -1.727 -1.654 -1.792
(1.946) (2.016) ( 1.823) ( 1.965) (1.186) (1.472)

Cap2006 0.536*** 0.537*** 0.316** 0.324** 0.220** 0.228**
(0.173) (0.177) (0.140) (0.141) (0.103) (0.104)

Controls No Yes No Yes No Yes
R2 0.465 0.497 0.137 0.163 0.088 0.108
Obs 26 26 55 55 86 86
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Program (TARP) and the UK bank rescue package. This type of regulatory actions resembles

a temporary relaxation of capital requirements in our model as they boost equity value at

the cost of other parties. This cost can be viewed as a too-big-to-fail cost from exacerbating

the moral hazard problem of bankers or simply a fiscal cost. As share buybacks typically

involve frictions23, one interpretation of our first finding is that well-functioning governments

are more likely to adopt this type of policies.

The planning of share buybacks involves government commitment power. For instance,

in exchange for the TARP investment, banks have to give the US Treasury a 5% annual

dividend before 2013 and 9% thereafter. Such a design was to incentivize banks to buyback

shares in 5 years. Clearly, a government without any commitment could have reneged and

pushed banks to buy back more quickly. This was clearly of interest for some at the end of

2009 given a strong US economy together with a heated Wall-Street-vs-Main-Street tension

at that point.24 The UK government also designed a long window to sell back the stocks

it purchased through the bank rescue package. For instance, the UK government has self-

imposed a 2026 deadline to fully privatize the NatWest, formerly known as the Royal Bank

of Scotland, which clearly involves commitment.

Besides deciding on how to deal with bank shares bought in crisis, countries, even in-

cluding Basel members, have the discretion whether to accelerate the adoption of Basel III’s

stringent standards (Basel Committee on Banking Supervision, 2020). Relatedly, Gropp

et al. (2024) provide evidence that European countries allowed their domestic banks to in-

flate “on paper” their level of regulatory capital to accommodate the 2011 Capital Exercise

conducted by the European Banking Authority.25 Countries might have the incentive to

slow down the transition process and lend continuous support to banks if they have made

promises, private or public, during the crisis to prevent defaults. Overall, while the empirical

evidence we present in this section is non-causal and suggestive, it is consistent with our key

theoretical insight that regulators with commitment would like to extend the help they lend

to banks for longer, as a more effective way to resolve a crisis.

23According S&P Global, two banks and two credit unions were still participating in TARP as of August,
2020: https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/

only-4-financial-institutions-still-left-under-tarp-after-carver-exit-60078068.
24See the debate about whether to renew TARP at the end of 2009 during a congressional hearing:

https://www.govinfo.gov/content/pkg/CHRG-111shrg53177/html/CHRG-111shrg53177.htm.
25Maddaloni and Scopelliti (2019) show that prior to the crisis, prudential regulation in the EU was

implemented non-uniformly across countries.
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6 Conclusions

In this paper, we provide the first analysis of the time inconsistency problem of bank cap-

ital regulation. When financed with long-term defaultable deposits, banks in laissez-faire

have an incentive to take an excessive leverage that dilutes the value of legacy depositors.

Capital regulators correct the strong dilution incentive of banks but preserve some dilution

as such leniency is valuable for reducing bank defaults. A regulator with commitment can

use promises to future leniency—allowing an excessive leverage that implies a suboptimally

high level of dilution tomorrow—to persuade banks to not default today. We show that

commitment has long-run effects that are significant. Additionally, upon a negative shock,

we show that regulators find a temporary relaxation of capital requirements beneficial, and

one with commitment uses promises to extend such leniency into a longer period of time.

Our theory is consistent with cross-country changes in capital regulation stringency around

the 2008 global financial crisis and echoes policy makers’ preliminary attempts to develop a

systematic framework that limits the discretion of capital regulators.

We have intentionally kept our model simple so that we can illustrate the time inconsis-

tency problem of capital regulation with transparency. Even though we have incorporated

non-maturing deposits to reflect a salient feature of bank debt relative to typical non-financial

corporate debt, there are other features worth incorporating from a quantitative standpoint.

For instance, while we have been focusing on the standard agency conflict between equity

holders and depositors of a bank, i.e. a dilution problem, the model can be easily extended

to allow distortions from deposit insurance. The existence of insured deposits will not change

the key insights of the paper but can be valuable for making precise quantitative prescrip-

tions. Furthermore, it is interesting to consider a full-blown general equilibrium model with

firm production, capital accumulation, and household preferences. We leave these to future

research.
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Appendix

A Proofs

A.1 Proposition 1

The Lagrangian for our sequential Ramsey regulator in Section 2.2.1 is:

max
{V e

t ,Qt,Bt+1,γt,ζt}∞t=0

∞∑
t=0

1

rt

{
R + µ(Bt)Bt − ξBtΦ(−V e

t )

+ γt

{
R− λBt +Qt[Bt+1 − (1− λ)Bt]

+
1

r

[ ∫ z̄

−V e
t+1

(z + V e
t+1)dΦ(z)

]
− V e

t

}
+ ζt

{
1

r

[
[µ(Bt+1) + λ+ (1− λ)Qt+1]Bt+1

+

∫ −V e
t+1

−z̄

(z + V e
t+1 − ξBt+1)dΦ(z)

]
−QtBt+1

}}
,

where γt and ζt are two Lagrange multipliers; B0 is predetermined.

An interior equilibrium allocation can be solved through three sets of first-order conditions

(with respect to Bt+1, V
e
t , Qt) and two sets of constraints. First-order conditions at time t > 0

are given by:

1

r
{µt+1 +Bt+1µ

B
t+1 − ξΦ(−V e

t+1)− γt+1[λ+Qt+1(1− λ)]}+ γtQt

+ ζt

{
1

r
[λ+ µt+1 +Bt+1µ

B
t+1 + (1− λ)Qt+1 − ξΦ(−V e

t )]−Qt

}
= 0,

γt[Bt+1 − (1− λ)Bt]− ζtBt+1 + ζt−1(1− λ)Bt = 0,

ξϕ(−V e
t )Bt − γt + γt−1[1− Φ(−V e

t )] + ζt−1[Φ(−V e
t ) + ξϕ(−V e

t )Bt] = 0,

where µB represents the derivative of µ(Bt) with respect to Bt.
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Meanwhile, first-order conditions at t = 0 are:

1

r
{µt+1 +Bt+1µ

B
t+1 − ξΦ(−V e

t+1)− γt+1[λ+Qt+1(1− λ)]}+ γtQt

+ ζt

{
1

r
[λ+ µt+1 +Bt+1µ

B
t+1 + (1− λ)Qt+1 − ξΦ(−V e

t )]−Qt

}
= 0,

γt[Bt+1 − (1− λ)Bt]− ζtBt+1 = 0,

ξϕ(−V e
t )Bt − γt = 0.

Now consider the first-order conditions for the continuation problem in Proposition 1.

They are given by:

1

r

{
µ′ + µB′B′ − ξΦ(−V e′)− γ′[λ+Q′(1− λ)]

}
+ γQ

+ ζ

{
1

r

[
λ+ µ′ + µB′B′ + (1− λ)Q′ − ξΦ(−V e′)

]
−Q

}
= 0,

γ′[B′′ − (1− λ)B′]− ζ ′B′′ + ζ (1− λ)B′ = 0,

ξB′ϕ(−V e′)− γ′ + γ[1− Φ(−V e′)] + ζ [Φ(−V e′) + ξB′ϕ(−V e′)] = 0,

where γ and ζ are multipliers associated with promise keeping constraints on equity value

and deposit price, respectively.

Two additional conditions that pin down Q0 and V e
0 in the initial problem are:

γ [B′ − (1− λ)B]− ζB′ = 0,

ξϕ(−V e)B − γ = 0.

One can see that these two sets of first-order conditions are identical. Together with

identical constraints on bank equity values and deposit prices, they imply identical interior

allocations.
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A.2 Proposition 3

Define the objective of a Markov-perfect regulator as H̃(B,B′) ≡ R+µ(B)B−ξBΦ(−V e(B,B′))+
1
r
H(B′) where value and pricing functions are given by

V e(B,B′) = R− λB +Q(B′)[B′ − (1− λ)B]

+
1

r

{∫ z̄

−V e(B′,hB(B′))

[z′ + V e(B′, hB (B′))]dΦ(z′)

}
, (28)

and

Q(B′)B′ =
1

r

{
[µ(B′) + λ+Q (hB (B′)) (1− λ)]B′

+

∫ −V e(B′,hB(B′))

z̄

[z′ + V e (B′, hB (B′))− ξB′] dΦ(z′)

}
. (29)

Denote steady-state values under a Markov-perfect regulator with subscript ss. The

first-order condition in steady state implies:

∂H̃(B,B′)

∂B′ |B=B′=Bss = 0.

Interior solution implies that deposits Bss > 0 and default probability Φss ∈ (0, 1).

We consider a regulator who chooses B′ and B′′ today at time t and follows the optimal

policy of a Markov-perfect regulator beyond t + 2. Our goal is to show that if conditions

(i) and (ii) are satisfied, the objective of this regulator is strictly increasing in B′′ when

evaluated at the point where B = B′ = B′′ = Bss. This makes a one-shot deviation to

B′′ > Bss profitable. This regulator’s problem is given by:

max
B′,B′′

R + µ(B)B − ξBΦ(−Ṽ e(B,B′, B′′)) +
1

r
H̃(B′, B′′) (30)

where

Ṽ e (B,B′, B′′) = R− λB + Q̃ (B′, B′′)[B′ − (1− λ)B] (31)

+
1

r

{∫ z̄

−V e(B′,B′′)

[z′ + V e (B′, B′′)] dΦ(z′)

}
,
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and

Q̃ (B′, B′′)B′ =
1

r

{
[µ (B′)+λ+Q (B′′) (1− λ)]B′ (32)

+

∫ −V e(B′,B′′)

z̄

[z′ + V e (B′, B′′)− ξB′] dΦ(z′)

}
.

Combine (28) and (29), and then utilize (15). We can show:

V e(B′, B′′)− ξB′Φ(−V e(B′, B′′))+V b(B′, Q(B′′)) = H̃(B′, B′′). (33)

where V b(B,Q) = [µ(B) + λ + Q(1 − λ)]B. After plugging (32) into (31) and then using

(33), we have:

Ṽ e (B,B′, B′′) = R− λB − (1− λ)BQ̃ (B′, B′′) +
1

r
H̃(B′, B′′).

Differentiate the objective in (30) with respect to B′′. Since ∂H̃(B′,B′′)
∂B′′ |B′=B′′=Bss = 0, the

derivative at B = B′ = B′′ = Bss is given by:

−ξBssϕss(1− λ)Bss
∂Q̃(B′, B′′)

∂B′′ |B′=B′′=Bss . (34)

Given condition (ii), i.e. λ < 1, to show that (34) is strictly positive, it is sufficient to show

that ∂Q̃(B′,B′′)
∂B′′ |B′=B′′=Bss < 0.

Using (33), we can rewrite (32) into:

Q̃ (B′, B′′)B′ =
1

r

{
H̃(B′, B′′)−

∫ z̄

−V e(B′,B′′)

[z′ + V e (B′, B′′)] dΦ(z′)

}
.

Differentiate it with respect to B′′ and then evaluate at steady state:

∂Q̃(B′, B′′)

∂B′′ |B′=B′′=Bss = −1

r
(1− Φss)

1

Bss

∂V e(B′, B′′)

∂B′′ |B′=B′′=Bss .

Here we again have utilized that ∂H̃(B′,B′′)
∂B′′ |B′=B′′=Bss = 0. To sign this expression, differen-
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tiate (33) with respect to B′′ and then evaluate at steady state:

∂V e(B′, B′′)

∂B′′ |B′=B′′=Bss(1 + ξBssϕss) + (1− λ)Bss
∂Q(B′′)

∂B′′ |B′′=Bss =
∂H̃(B′, B′′)

∂B′′ |B′=B′′=Bss = 0.

Condition (i), i.e. ∂Q(B′)
∂B′ |B′=Bss < 0, and (ii), i.e. λ < 1, together imply that ∂V e(B′,B′′)

∂B′′ |B′=B′′=Bss >

0. This implies ∂Q̃(B′,B′′)
∂B′′ |B′=B′′=Bss < 0.

A.3 Proposition 4

Define the objective of a laissez-faire bank as ṽe(b, b′) ≡ R − λb + q(b′)[b′ − (1 − λ)b] +
1
r

∫ z̄

−ve(b′)
[z′ + ve(b′)]dΦ(z′) where pricing function is given by

q(b′)b′ =
1

r

{
[µ(B) + λ+(1− λ)q(hb(b

′))]b′ +

∫ −ve(b′)

−z̄

[z′ + ve(b′)− ξb′]dΦ(z′)

}
, (35)

recognizing the fact that aggregate B is constant.

Denote steady state values in laissez-faire with subscript ss. The first-order condition in

steady state implies:

∂ṽe(b, b′)

∂b′
|b=b′=bss = 0.

Interior solution implies that deposits bss > 0 and default probability Φss ∈ (0, 1).

We consider a bank who chooses b′ and b′′ today at time t and follows the optimal policy of

a laissez-faire bank without commitment beyond t+2. Our goal is to show that if conditions

(i) and (ii) are satisfied, the objective of this bank is strictly decreasing in b′′ when evaluated

at the point where b = b′ = b′′ = bss. This makes a one-shot deviation to b′′ < bss profitable.

This bank’s problem is given by:

max
b′,b′′

R− λb+ q̃(b′, b′′)[b′ − (1− λ)b] +
1

r

{∫ z̄

−ṽe(b′,b′′)

[z′ + ṽe(b′, b′′)]dΦ(z′)

}
(36)

where

q̃(b′, b′′)b′ =
1

r

{
[µ(B) + λ+ (1− λ)q(b′′)]b′ +

∫ −ṽe(b′,b′′)

−z̄

[z′ + ṽe(b′, b′′)− ξb′]dΦ(z′)

}
. (37)
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Differentiate the objective in (36) with respect to b′′. Since ∂ṽe(b′,b′′)
∂b′′

|b′=b′′=bss = 0, the

derivative at b = b′ = b′′ = bss is given by:

λbss
∂q̃(b′, b′′)

∂b′′
|b′=b′′=bss . (38)

To show that (38) is strictly negative, it is sufficient to show that ∂q̃(b′,b′′)
∂b′′

|b′=b′′=bss < 0.

Differentiate (37) with respect to b′′ and then evaluate at steady state:

∂q̃(b′, b′′)

∂b′′
|b′=b′′=bss =

1

r
(1− λ)

∂q(b′′)

∂b′′
|b′′=bss .

Here we again utilize that ∂ṽe(b′,b′′)
∂b′′

|b′=b′′=bss = 0. Condition (i), i.e. ∂q(b′)
∂b′

|b′=bss < 0, and (ii),

i.e. λ < 1, together imply that ∂q̃(b′,b′′)
∂b′′

|b′=b′′=bss < 0.

A.4 Proposition 5

Plug (10) into (9) and then use (16). We can rewrite the objective of the regulator with

partial commitment to equity values into:

R + µ(B)B − ξBΦ(−V e) +
1

r
H(B′, V e′) = V e − ξBΦ(−V e) + V b(B,Q(B′, V e′))B.

Rewrite the problem of a regulator with partial commitment to equity values into

H(B, V e) = max
B′

V e − ξBΦ(−V e) + V b(B,Q(B′, U(B′, B, V e)))B (39)

where U(B′, B, V e) is given implicitly by:

V e = R− λB +Q(B′, U(B′, B, V e))[B′ − (1− λ)B] (40)

+
1

r

{∫ z̄

−U(B′,B,V e)

[U(B′, B, V e) + z′]dΦ(z′)

}
,

given pricing schedule

Q(B′, V e′)B′ =
1

r

{
V b(B′, Q (′)) +

∫ −V e′

−z̄

[z′ + V e′ − ξB′]dΦ(z′)

}
. (41)
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with Q (′) ≡ Q (hB (B′, V e′) , U (hB (B′, V e′) , B′, V e′)) and hB(.) solving (39). In other words,

given the pricing schedule, U(B′, B, V e) denotes the choice for V e′ that can satisfy prior

promise V e given the choice for B′ and policy of the future regulator.

Denote steady state values under the partial commitment regulator with subscript ss.

We know from first-order condition that

∂QB
ss + ∂QV

ss∂Uss = 0.

where we define ∂QB ≡ ∂Q(B′,V e′)
∂B′ , ∂QV ≡ ∂Q(B′,V e′)

∂V e′ , and ∂U ≡ ∂U(B′,B,V e)
∂B′ . By differentiating

(40), we have

λBss∂Q
B
ss +Qss +

[
λBss∂Q

V
ss +

1

r
(1− Φss)

]
∂Uss = 0.

Substitute out ∂Uss and we have in steady state:

∂QB
ss − ∂QV

ss

λBss∂Q
B
ss +Qss

λBss∂QV
ss +

1
r
(1− Φss)

= 0. (42)

We consider a regulator who chooses B′ and B′′ today at time t and follows the optimal

policy of a partial commitment regulator beyond t + 2. Our goal is to show the condition

under which the derivative of its objective with respect to B′′ is 0 when evaluated at the

point implied by (42).

This regulator’s problem is given by:

max
B′,B′′

R + µ(B)B − ξBΦ (−V e)

+
1

r

{
R + µ(B′)B′ − ξB′Φ(−Ũ (B′, B′′, B, V e))

}
+

1

r2
H(B′′, Û(B′, B′′, B, V e)), (43)

where today’s promise Ũ(B′, B′′, B, V e) is given by

V e = R− λB + Q̃(B′, B′′,B, V e)[B′ − (1− λ)B]

+
1

r

{∫ z̄

−Ũ(B′,B′′,B,V e)

[Ũ(B′, B′′, B, V e) + z′]dΦ(z′)

}
(44)
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and tomorrow’s promise Û(B′, B′′, B, V e) ≡ U(B′′, B′, Ũ(B′, B′′, B, V e)) is given by

Ũ(B′, B′′, B, V e) = R− λB′ +Q(B′′, Û(B′, B′′, B, V e))[B′′ − (1− λ)B′]

+
1

r

{∫ z̄

−Û(B′,B′′,B,V e)

[Û(B′, B′′, B, V e) + z′]dΦ(z′)

}
, (45)

given

Q̃(B′, B′′, B, V e)B′ =
1

r

{
V b(B′, Q(B′′, Û(B′, B′′, B, V e)))

+

∫ −Ũ(B′,B′′,B,V e)

−z̄

[z′ + Ũ (B′, B′′, B, V e)− ξB′]dΦ(z′)

}
. (46)

Plug (46) into (44):

V e − ξBΦ (−V e) + V b(B, Q̃(B′, B′′, B, V e))

= R− ξBΦ (−V e) + µ(B)B

+
1

r

[
V b(B′, Q(B′′, Û(B′, B′′, B, V e))) + Ũ (B′, B′′, B, V e)− ξB′Φ(−Ũ (B′, B′′, B, V e))

]
.

Manipulate (45) using (41) and (16):

Ũ(B′, B′′, B, V e) + V b(B′, Q(B′′, Û(B′, B′′, B, V e)))− ξB′Φ(−Ũ (B′, B′′, B, V e))

= R + L(B′)B′ − ξB′Φ(−Ũ (B′, B′′, B, V e)) +
1

r
H(B′′, Û(B′, B′′, B, V e)).

Based on the above two equations, we can rewrite the objective of this regulator with a

one-shot deviation opportunity as:

max
B′,B′′

V e − ξBΦ(−V e) + V b(B, Q̃(B′, B′′, B, V e)). (47)

Now we are ready to show the condition under which the derivative of (47) with respect to

B′′ is 0 when evaluated at the point implied by (42), that is,

(1− λ)Bss
∂Q̃(B′, B′′, B, V e)

∂B′′ ss
= 0. (48)
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Differentiate (44), (45), and (46) with respect to B′′. We end up with three equations that

allow us to solve for ∂Q̃(B′,B′′,B,V e)
∂B′′ ss

, ∂Ũ(B′,B′′,B,V e)
∂B′′ ss

, and ∂Û(B′,B′′,B,V e)
∂B′′ ss

. Tedious algebra

yield:

∂Q̃(B′, B′′, B, V e)

∂B′′ ss

[
1 +

1− λ

1− Φss

λ
1−Φss

Bss∂Q
V
ss

λ
1−Φss

Bss∂QV
ss +

1
r

+ (ξBssϕss + Φss)
λ

1− Φss

]

=
1

r
(1− λ)

[
∂QB

ss − ∂QV
ss

λBss∂Q
B
ss +Qss

λBss∂QV
ss +

1
r
(1− Φss)

]
, (49)

of which the right-hand side is 0 by (42). It is easy to verify using (42) that if

∂QB
ss ̸= − Qss[1− Φss + (ξBssϕss + Φss)λ]

Bss [1− Φss + 1− λ+ (ξBssϕss + Φss)λ]λ
,

the second term on the left-hand side of (49) is not 0. This implies that ∂Q̃(B′,B′′,B,V e)
∂B′′ ss

= 0.

A.5 Proposition 6

The Lagrangian for our sequential Ramsey regulator with non-maturing deposits is

max{
V e
t (Rt),Qt(Rt)

Bt+1(Rt),γt(Rt),ζt(Rt)

}∞

t=0

E0

∞∑
t=0

1

rt

{
Rt + L(Bt, Qt)Bt − ξBtΦ(−V e

t )

+ γt

{
Rt − λ(Qt)Bt +Qt[Bt+1 − (1− λ(Qt))Bt]

+
1

r
Et

[ ∫ z̄

−V e
t+1

(z + V e
t+1)dΦ(z)

]
− V e

t

}

+ ζt

{
1

r
Et

[
[L(Bt+1, Qt+1) + λ(Qt+1) + (1− λ(Qt+1))Qt+1]Bt+1

+

∫ −V e
t+1

−z̄

(z + V e
t+1 − ξBt+1)dΦ(z)

]
−QtBt+1

}}
,

where L(Bt, Qt) = µ(Bt) +
∫ ν̄

Qt+κ−1
(ν − κ)dF (ν) and λ(Qt) = 1 − F (Qt + κ − 1); γt and ζt

are two Lagrange multipliers; Rt is the history of shocks up till time t; B0 is predetermined.
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First-order conditions in state Rt at time t are given by:

1

r
Et{Lt+1 +Bt+1L

B
t+1 − ξΦ(−V e

t+1)− γt+1[λt+1 +Qt+1(1− λt+1)]}+ γtQt

+ ζt

{
1

r
Et[λt+1 + Lt+1 +Bt+1L

B
t+1 + (1− λt+1)Qt+1 − ξΦ(−V e

t )]−Qt

}
= 0, (50)

LQ
t Bt + γt[−λQ

t Bt +Bt+1 − (1− λt)Bt + λQ
t QtBt]

− ζtBt+1 + ζt−1(λ
Q
t + LQ

t + 1− λt − λQ
t Qt)Bt = 0, (51)

ξϕ(−V e
t )Bt − γt + γt−1[1− Φ(−V e

t )] + ζt−1[Φ(−V e
t ) + ξϕ(−V e

t )Bt] = 0, (52)

where LB and LQ represent derivatives of L(Bt, Qt) with respect to Bt and Qt respectively;

λQ represents the derivative of λ(Qt) with respect to Qt.

Define γ∗
t = γt + 1 and ζ∗t = ζt + 1. Set deposits, equity value and deposit price to their

steady-state levels, i.e. Bss, V
e
ss and Qss. Equations (50), (52) and (51) evolve into:

γ∗
t+1 = A0γ∗

t + A1ζ∗t , (53)

γ∗
t = B0γ∗

t−1 +B1ζ∗t−1, (54)

ζ∗t = ΩssB
0γ∗

t−1 + [ΩssB
1 + (1 + LQ

ss − Ωss)]ζ
∗
t−1, (55)

where Ωss = λss + (Qss − 1)λQ
ss and

A0 =
rQss

λss + (1− λss)Qss

,

A1 =
λss + Lss +BssL

B
ss + (1− λss)Qss − ξΦ(−V e

ss)− rQss

λss + (1− λss)Qss

,

B0 = 1− Φ(−V e
ss),

B1 = Φ(−V e
ss) + ξϕ(−V e

ss)Bss.

Some manipulations yield:

ζ∗t =

{
[ΩssB

1 + (1 + LQ
ss − Ωss)]− ΩssB

0A
1 −B1

A0 −B0

}
ζ∗t−1.
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We know that (A0 −B0)γ∗
t + (A1 −B1)ζ∗t = 0, which means that{

[ΩssB
1 + (1 + LQ

ss − Ωss)]− ΩssB
0A

1 −B1

A0 −B0
+ A1A

0 −B0

A1 −B1
− A0

}
ζ∗t−1 = 0.

Setting the term in the bracket to zero gives us the condition we need in addition to two

constraints to solve for Bss, Qss and V e
ss. We verify numerically that under our calibration

there exists a {Bss, Qss, V
e
ss} that solves these three equations. However, 1 < [ΩssB

1 + (1 +

LQ
ss − Ωss)] − ΩssB

0A1−B1

A0−B0 < r. This serves a counter-example against constant Lagrange

multipliers.

B Partial commitment to deposit prices

The problem of the regulator with partial commitment to deposit prices can be split into a

continuation problem and an initial problem. The continuation problem is given by:

H(B,Q) = max
B′,Q′

R + µ(B)B − ξBΦ(−V e(B′, Q′;B,Q)) +
1

r
H(B′, Q′), (56)

subject to a promise keeping constraint on deposit price:

QB′ =
1

r

{∫ z̄

−V e(′)

V b(B′, Q′)dΦ(z′) +

∫ −V e(′)

−z̄

[z′ + V e(′) + V b(B′, Q′)− ξB′]dΦ(z′)

}
,

given an equity value schedule:

V e(B′, Q′;B,Q) = R− λB +Q[B′ − (1− λ)B] +
1

r

{∫ z̄

−V e(′)

[V e(′) + z′]dΦ(z′)

}
,

where V e(′) ≡ V e(hB(B
′, Q′), hQ(B

′, Q′);B′, Q′) with hB(B,Q) and hQ(B,Q) being opti-

mal policies for deposits B′ and promised deposit price Q′ from (56); depositors’ value is

V b(B,Q) = [µ(B) + λ+ (1− λ)Q]B.

Initially, given B0, the regulator chooses:

max
Q0

H(B0, Q0).
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C One-shot commitments with non-maturing deposits

It is straightforward to show that Propositions 1 and 2 carry through into our extended

model with non-maturing deposits. First, the sequential problem of a Ramsey regulator

can be reformulated into a continuation problem and an initial problem, with the former

being recursive. In the case with shocks, promised equity values and deposit prices in the

continuation problem are contingent on states next period R′, that is, given current state

{R,B, V e, Q}, a Ramsey regulator chooses {B′, V e′(R′), Q′(R′)}; in the initial problem the

regulator picks a pair of {V e
0 , Q0} for each R0. Second, the regulators’ objective H =

V e + V b(B,Q)− ξBΦ(−V e) where V b(B,Q) = {L(B,Q) + λ(Q) + [1− λ(Q)]Q}B with λ(.)

and L(.) given by (21) and (22). While we do not provide a detailed proof here to save space,

they are available upon request.

C.1 Regulator’s time inconsistency problem

We now show the value of commitment via a one-shot deviation exercise similar to Section

3. Proposition 7 generalizes Proposition 3 into this extended setup. In particular, a Markov-

perfect regulator can improve total value today by deviating in one shot to a higher deposit

issuance tomorrow when deposit maturity is long enough, if granted with such an ability to

commit. In the fixed-maturity case, by committing to a higher deposit issuance tomorrow,

risk-adjusted payments to legacy deposits decline and equity value today increases. With en-

dogenous maturity, as expected payments to unwithdrawn deposits decline, more depositors

will end up withdrawing today. This additional channel of withdrawals can either amplify

or dampen the increase in equity value depending on whether deposits are valued above or

below par—the former case implies a rollover gain and the latter a rollover loss. Overall,

equity value today improves as long as the former channel is dominant—that is, when the

equilibrium mass of non-withdrawing depositors 1− λss is large.

Proposition 7 In an interior steady state, a Markov-perfect regulator improves total value

today by committing to a small one-shot deviation to a larger issuance tomorrow if (i) deposit

pricing function Q(.) decreases in B′ at B′ = Bss and (ii) deposit maturity λss < min{1 +
1+ξBssϕss

ξBssϕss
(Qss − 1) fss, 1} where subscript ss denotes steady state values.

Proof. The proof follows the same structure as Appendix A.2, and to save space, we here
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highlight only the differences. Fix productivity R to be constant so that it is no longer an

argument of any functions. We consider a regulator who chooses B′ and B′′ today at time t

and follows the optimal policy of a Markov-perfect regulator beyond t + 2. The first-order

condition with respect to B′′ (generalizing (34)) is:

{ξBssϕss [fss(1−Qss)− (1− λss)] + fss(1−Qss)}Bss
∂Q̃(B′, B′′)

∂B′′ |B′=B′′=Bss , (57)

where subscript ss denotes steady state values; Q̃(B′, B′′) is the deposit price at time t given

the choice {B′, B′′}.
Condition (ii), i.e. λss < 1+ 1+ξBssϕss

ξBssϕss
(Qss − 1) fss, guarantees that the first term of (57)

is negative. Conditions (i) and (ii), i.e. λss < 1, together imply that ∂Q̃(B′,B′′)
∂B′′ |B′=B′′=Bss < 0.

Proposition 8 generalizes Proposition 4 into this extended setup. In particular, a bank

in laissez-faire has an incentive to deviate to a low deposit issuance tomorrow when deposit

maturity is long, if granted with such an ability to commit. This commitment increases the

price at which new deposits can be issued today and in turn benefits equity value. With

endogenous maturity, fewer depositors will end up withdrawing expecting a smaller default

risk tomorrow. Overall, equity value improves as long as new issuance λss every period is

nontrivial.

Proposition 8 In an interior steady state, a laissez-faire bank improves equity value today

by committing to a small one-shot deviation to a lower issuance tomorrow if (i) deposit

pricing function q(.) decreases in b′ at b′ = bss and (ii) deposit maturity λss < 1 and λss >

(qss − 1)fss where subscript ss denotes steady state values.

Proof. The proof follows the same structure as Appendix A.3, and to save space, we here

highlight only the differences. Fix productivity R to be constant so that it is no longer an

argument of any functions. We consider a bank who chooses b′ and b′′ today at time t and

follows the optimal policy of a laissez-faire bank without commitment beyond t + 2. The

first-order condition with respect to B′′ (generalizing (38)) is:

[λss − (qss − 1)fss] bss
∂q̃(b′, b′′)

∂b′′
|b′=b′′=bss , (58)
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where subscript ss denotes steady state values; q̃(b′, b′′) is the deposit price at time t given

the choice {b′, b′′}.
Condition (ii), i.e. λss > (qss − 1)fss, guarantees that the first term of (58) is positive.

Conditions (i) and (ii), i.e. λss < 1, together imply that ∂q̃(b′,b′′)
∂b′′

|b′=b′′=bss < 0.

C.2 Partial commitment

Now we present the problem of a regulator with partial commitment to equity values in our

extended model with non-maturing deposits. We then show that there is no profitable one-

shot deviation in steady state, again echoing our baseline results in Section 3. Numerically we

solve the model and confirm that the steady states of two regulators with partial commitment

are identical to that of Ramsey. We do not present our numerical solutions for the partial

commitment regulators in the main text.

As we mentioned earlier, with shocks, promised values in the continuation problem of a

recursively-formulated Ramsey regulator are state-contingent. The problem of a regulator

committing to equity values can also be split into a continuation problem and an initial

problem. The continuation problem is given recursively:

H(R,B, V e) = max
B′,V e′(R′)

R + L(B,Q(B′, V e′(R′);R))B − ξBΦ(−V e) +
1

r
EH(R′, B′, V e′(R′)),

(59)

subject to promise keeping to equity value V e:

V e = R− λ(Q(B′, V e′(R′);R))B

+Q(B′, V e′(R′);R){B′ − [1− λ(Q(B′, V e′(R′);R))]B}+ 1

r
E

{∫ z̄

−V e′(R′)

[V e′(R′) + z′]dΦ(z′)

}
,

given a deposit pricing schedule:

Q(B′, V e′(R′);R)B′ =
1

r
E

{
V b(B′, Q(hB(R

′, B′, V e′(R′)), hV e(R′′;R′, B′, V e′(R′));R′))

+

∫ −V e′(R′)

−z̄

[z′ + V e′(R′)− ξB′]dΦ(z′)

}
,
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where V b(B,Q) = {λ(Q) + L(B,Q) + [1 − λ(Q)]Q}B; λ(.) and L(.) are given by (21) and

(22); hB(R,B, V e) and hV e(R′;R,B, V e) together solve (59).

Initially, given B0 and R0, the regulator chooses:

max
V e
0

H(R0, B0, V
e
0 ).

Proposition 9 generalizes Proposition 5 into this extended setup. In particular, the

partial-commitment regulator in steady state, if granted with the ability to commit in one

shot to deposit issuance tomorrow, has no incentive to deviate. The intuition is similar to

that for Proposition 5. In short, one type of commitment is sufficient to align regulator’s

incentives across time in the continuation problem.

Proposition 9 In an interior steady state with λss < 1, a regulator with partial commitment

to equity values cannot improve total value today by committing to a small one-shot deviation

in issuance tomorrow if the derivative of deposit pricing function Q(.) with respect to B′ at

{B′ = Bss, V
e′ = V e

ss} does not equal −
Qss{1−Φss+(ξBssϕss+Φss)[fss(1−Qss)+λss]}

Bss{1−Φss+1−λss+(ξBssϕss+Φss)[fss(1−Qss)+λss]}[fss(1−Qss)+λss]

where subscript ss denotes steady state values.

Proof. The proof follows the same structure as Appendix A.4, and to save space, we here

highlight only the differences. Fix productivity R to be constant so that it is no longer an

argument of any functions.

The first-order condition for the partial-commitment regulator (generalizing (42)) implies:

∂QB
ss − ∂QV

ss

[fss(1−Qss) + λss]Bss∂Q
B
ss +Qss

[fss(1−Qss) + λss]Bss∂QV
ss +

1
r
(1− Φss)

= 0. (60)

where subscript ss denotes steady state values; ∂QB ≡ ∂Q(B′,V e′)
∂B′ and ∂QV ≡ ∂Q(B′,V e′)

∂V e′ .

We consider a regulator who chooses B′ and B′′ today at time t and follows the optimal

policy of a partial commitment regulator beyond t+2. We would like to show the condition

under which the first-order derivative of its objective with respect to B′′ is 0 when evaluated

at the point implied by (60), that is (generalizing (48)),

(1− λss)Bss
∂Q̃(B′, B′′, B, V e)

∂B′′ ss
= 0,
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where Q̃(B′, B′′, B, V e) is the deposit price at time t given the choice {B′, B′′} and state

variables B and V e. Differentiating two promise keeping constraints and deposit pricing

function, we get (generalizing (49)):

∂Q̃(B′, B′′, B, V e)

∂B′′ ss

×

[
1 +

1− λss

1− Φss

fss(1−Qss)+λss

1−Φss
Bss∂Q

V
ss

fss(1−Qss)+λss

1−Φss
Bss∂QV

ss +
1
r

+ (ξBssϕss + Φss)
fss(1−Qss) + λss

1− Φss

]

=
1

r
(1− λss)

{
∂QB

ss − ∂QV
ss

[fss(1−Qss) + λss]Bss∂Q
B
ss +Qss

[fss(1−Qss) + λss]Bss∂QV
ss +

1
r
(1− Φss)

}
. (61)

The right-hand side of (61) is 0 by (60). It is easy to verify using (60) that if

∂QB
ss ̸= − Qss {1− Φss + (ξBssϕss + Φss) [fss(1−Qss) + λss]}

Bss {1− Φss + 1− λss + (ξBssϕss + Φss) [fss(1−Qss) + λss]} [fss(1−Qss) + λss]
,

the second term on the left-hand side of (61) is not 0. This implies that ∂Q̃(B′,B′′,B,V e)
∂B′′ ss

= 0.

D Empirical analyses: robustness

D.1 Alternative proxies for regulatory commitment

While our preferred proxy for government commitment is the Factor 1.5 WJP Rule of Law

Index, we experiment with alternative rule of law measures here. Table 4 replicates columns

(1) and (2) of Table 3 in the main text with these measures. In columns (1) and (2), we use

Factor 1 WJP Rule of Law Index. In columns (3) and (4), we use the overall WJP Rule of

Law Index. In columns (5) and (6), we use the rule of law measure from the WGI dataset,

and in this case we can directly use the index values 2011 without having to backward fill

them. Our main results in Table 3 hold under these measures. For some specifications,

the estimated β4 falls slightly below the 10% significance level with a correct negative sign.

Nonetheless, readers shall be cautious in interpreting these results since these rule of law

measures are based on questions that are less closely related to our concept of regulatory

commitment—e.g., the Factor 1 WJP Rule of Law Index contains responses to questions
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about whether government officials are sanctioned for misconduct; the WGI Rule of Law

Index contains responses to questions about whether respondents have experienced business

crimes or violence.

D.2 Alternative measure of crisis severity

We now transform our measure of crisis severity in the main text GDPdrop into a dummy

variable d GDPdrop to alleviate concerns about outliers. In particular, the dummy variable

is equal to 1 for country i if its GDP between 2008, 2009 and 2010 had ever dropped below

the 2007 level and to 0 otherwise, i.e. d GDPdropi = 1mint∈[2008,2010] GDPi,t<GDPi,2007
. Panel A

of Table 5 repeats our regressions in the main text by replacing GDPdrop with the dummy

variable d GDPdrop. Columns (1) and (2) replicate (1) and (2) of Table 2, and columns (3)

and (4) replicate columns (1) and (2) in Panel A of Table 3. Columns (5) and (6) replicate

(3) and (4) of Table 2, and columns (7) and (8) replicate columns (1) and (2) in Panel B of

Table 3. Overall, our two key results reported in the main text are robust.

Panel B of Table 5 conducts a placebo test. In particular, we replace GDPdrop in

the main text with GDPdrop05−07
i = 100 ×

(
1− mint∈[2005,2007] GDPi,t

GDPi,2004

)
, which describes how

GDP of a country behaves prior to the 2008 crisis. We expect post-crisis capital regulation

stringency to not depend on this measure. Indeed, we find that none of our estimated

coefficients for the interaction term remains statistically significant. Without tabulating

an additional panel here to save space, we have also experimented with GDPdrop02−04
i =

100×
(
1− mint∈[2002,2004] GDPi,t

GDPi,2001

)
and ended up getting similar results.
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Table 4: Regulatory commitment: alternative measures

Panels A and B first sort countries into three portfolios (High, Medium, Low) based on Quality i,2011 and

Effectvnsi,2011 respectively, and then estimate (27) for the High portfolio. Dependent variable is Cap2011.

Independent variable Comm is Factor 1 WJP Rule of Law Index in (1) and (2); overall WJP Rule of Law

Index in (3) and (4); WGI Rule of Law Index in (5) and (6). Control variables include log real GDP in 2011

and the regulation objective measure in 2011, i.e. Quality i,2011 in panel A and Effectvnsi,2011 in panel B.

Standard errors are in parentheses. ***/**/* denotes 99%/95%/90% significance.

Factor 1 (WJP) Rule of Law (WJP) Rule of Law (WGI )
(1) (2) (3) (4) (5) (6)

Panel A. High Quality

Comm × GDPdrop -1.117 -1.019 -1.645* -1.527* -0.206 -0.219
(0.661) (0.700) (0.831) (0.868) (0.130) (0.130)

GDPdrop 0.785 0.725 1.142* 1.062* 0.126 0.138
(0.473) (0.493) (0.575) (0.598) (0.126) (0.130)

Comm -3.957 -2.462 -4.346 -1.556 -0.585 -0.436
(3.531) (4.746) (3.820) ( 6.905) (0.465) ( 1.001)

Cap2006 0.493*** 0.498** 0.477*** 0.498*** 0.483*** 0.486***
(0.175) (0.179) (0.170) (0.176) (0.154) (0.158)

Controls No Yes No Yes No Yes
R2 0.333 0.369 0.369 0.395 0.336 0.384
Obs 28 28 28 28 34 34

Panel B. High Effectvns

Comm × GDPdrop -2.636** -2.205* -3.376** -3.251** -0.292* -0.314**
(1.018) (1.101) (1.218) ( 1.263) (0.155) (0.153)

GDPdrop 1.858** 1.568* 2.375** 2.300** 0.215 0.242*
(0.721) (0.783) (0.855) (0.894) (0.139) (0.140)

Comm -0.371 1.962 -0.880 6.023 -0.569 0.253
(3.168) (3.859) ( 3.722) ( 5.885) (0.476) (1.043)

Cap2006 0.528*** 0.536*** 0.522*** 0.537*** 0.454*** 0.445***
(0.178) (0.180) (0.171) (0.170) (0.157) (0.153)

Controls No Yes No Yes No Yes
R2 0.432 0.477 0.470 0.532 0.344 0.425
Obs 26 26 26 26 34 34
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