USING ASSET PRICES TO MEASURE
THE PERSISTENCE OF THE MARGINAL
UTILITY OF WEALTH

BY FERNANDO ALVAREZ AND URBAN J. JERMANN!

We derive a lower bound for the volatility of the permanent component of
investors’ marginal utility of wealth, or more generally, asset pricing kernels.
The bound is based on return properties of long-term zero-coupon bonds,
risk-free bonds, and other risky securities. We find the permanent compo-
nent of the pricing kernel to be very volatile; its volatility is about at least
as large as the volatility of the stochastic discount factor. A related measure
for the transitory component suggest it to be considerably less important.
We also show that, for many cases where the pricing kernel is a function of

consumption, innovations to consumption need to have permanent effects.
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1 Introduction

The absence of arbitrage opportunities implies the existence of a pricing ker-
nel, that is, a stochastic process that assigns values to state-contingent pay-
ments. As is well known, asset pricing kernels can be thought of as investors’
marginal utility of wealth in frictionless markets. Since the properties of such
processes are important for asset pricing, they have been the subject of much
recent research.? Our focus is on the persistence properties of pricing kernels,
these are key determinants of the prices of long-lived securities.

The main result of this paper is to derive and estimate a lower bound
for the volatility of the permanent component of asset pricing kernels. The
bound is based on return properties of long-term zero-coupon bonds, risk-
free bonds, and other risky securities. We find the permanent component of
pricing kernels to be very volatile; its volatility is about at least as large as the
volatility of the stochastic discount factor. A related bound that measures
the volatility of the transitory component suggests it to be considerably less
important than the permanent component.

Our results complement the seminal work by Hansen and Jagannathan
(1991). They use no-arbitrage conditions to derive bounds on the volatility

of pricing kernels as a function of observed asset prices. They find that, to be



consistent with the high Sharpe ratios in the data, stochastic discount factors
have to be very volatile. We find that, to be consistent with the low returns
on long-term bonds relative to equity, the permanent component of pricing
kernels have to be very large. This property is important, because the low
frequency components of pricing kernels are important determinants of the
prices of long-lived securities such as stocks. Recent work on asset pricing
has highlighted the need for a better understanding of these low frequency
components, see for instance Bansal and Yaron (2003), and Hansen, Heaton
and Li (2004). Our results are also related to Hansen and Scheinkman (2003),
where they present a general framework for linking the short and long run
properties of asset prices.

Asset pricing models link pricing kernels to the underlying economic fun-
damentals. Thus, our analysis provides some insights into the long-term
properties of these fundamentals and into the functions linking pricing ker-
nels to the fundamentals. On this point, we have two sets of results.

First, under some assumptions about the function of the marginal utility
of wealth, we derive sufficient conditions on consumption so that a pricing
kernel has no permanent innovations. We present several examples of utility

functions for which the existence of an invariant distribution of consumption



implies pricing kernels with no permanent innovations. Thus, these examples
are inconsistent with our main findings. This result is useful for macroeco-
nomics because, for some issues, the persistence properties of the processes
specifying economic variables can be very important. For instance, on the
issue of the welfare costs of economic uncertainty, see Dolmas (1998) ; on
the issue of the volatility of macroeconomic variables such as consumption,
investment, and hours worked, see Hansen (1997); and on the issue of inter-
national business cycle comovements, see Baxter and Crucini (1995). The
lesson from our analysis for these cases and many related studies of dynamic
general equilibrium models is that models should be calibrated so as to gen-
erate macroeconomic time-series with important permanent components.
Following Nelson and Plosser (1982) a large body of literature has tested
macroeconomic time-series for stationarity versus unit roots.®> More recently,
a large and growing literature on structural VARs is using identifying assump-
tions based on restricting the origin of permanent fluctuations in macroeco-
nomic variables to certain types of shocks. The relationship between such
structural shocks and macroeconomic variables is then compared to the im-
plications of different classes of macroeconomic models. See for instance

Shapiro and Watson (1988), Blanchard and Quah (1989), and more recently



Gali (1999), Fisher (2002), Christiano, Eichenbaum and Vigfusson (2002).
The identification strategies used in this literature hinge critically on the
presence of unit roots in the key macroeconomic time series. The results
in our paper provide validation for this approach by presenting new evi-
dence about the importance of permanent fluctuations. We introduce new
information about persistence from the prices of long-term bonds. Prices of
long-term bonds are particularly informative about the persistence of pricing
kernels because they are the market’s forecast of the long-term changes in
the pricing kernel.

As a second set of results, we measure the volatility of the permanent
component in consumption directly, and compare it to the volatility of the
permanent component of pricing kernels. This can provide guidance for the
specification of functional forms of the marginal utility of wealth.* Specifi-
cally, we find the volatility of the permanent component of consumption to be
lower than that of pricing kernels. This suggests the use of utility functions
that magnify the permanent component.

The rest of the paper is structured as follows. Section 2 contains defini-
tions and a preview of the main results. Section 3 presents theoretical results.

Section 4 presents empirical evidence. Section 5 relates pricing kernels and



aggregate consumption. Section 6 concludes. Proofs are in Appendix A. Ap-
pendix B describes the data sources. Appendix C addresses a small sample

bias.

2 Definitions and Preview of the Main Result

In this section, we start with some key definitions and assumptions. Then,
to preview the main theoretical result of the paper, we state without deriva-
tion an expression for the lower bound of the permanent component of the
stochastic discount factor. We compute this lower bound for two benchmark
cases: one with only permanent movements, and one with only transitory
movements.

Let D, be a state-contingent dividend to be paid at time ¢ + k£ and let
Vi (D41 k) be the current price of a claim to this dividend. Then, as can be
seen, for instance, in Duffie (1996), arbitrage opportunities are ruled out in
frictionless markets if and only if a strictly positive pricing kernel or state-

price process, {M;}, exists so that

Ey (Mytr, - Dyyi)

.5
M,

(1) Vi (Diyr) =

For our results, it is important to distinguish between the pricing kernel,



M1, and the stochastic discount factor, My, 1/M;.* We use Ry, for the

gross return on a generic portfolio held from ¢ to ¢+ 1; hence,(1) implies that

s )
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We define R, ;) as the gross return from holding from time ¢ to time ¢ 41

a claim to one unit of the numeraire to be delivered at time ¢ + k,

V;Jrl (1t+k:)

R = .
tHLE Vi (L)

The holding return on this discount bond is the ratio of the price at which
the bond is sold, Vi1 (144%), to the price at which it was bought, V; (1;54).
With this convention, V; (1;) = 1. Thus, for k£ > 2 the return consists solely
of capital gains; for £k = 1, the return is risk free. In this paper we focus on
the limiting long term bond, which has return R;1; o0 = limy oo Ryt k-
Throughout the paper we maintain the assumption that stochastic dis-
count factors M;,1/M; and returns R;,, are jointly stationary and ergodic.
An immediate implication of the stationarity of stochastic discount factors
is that all bond returns are stationary. The assumption of stationarity of
returns is standard in the asset pricing literature. In section 4 we review
some of the evidence on the stationarity of interest rates. Under our main-
tained assumption about stationarity we find that pricing kernels M; have a
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large permanent component. Alternatively, if we were to consider M, /M,
as non-stationary, then M; would not be stationary either. To use a time
series analogy, if log M, —log M; were to have unit root, then log M; would
be integrated at least of order 2.

Below we decompose the pricing kernel M, into two components:
M, = M} M}

where MF is a martingale, so it captures the permanent part of M;, and M
is the transitory component of M;. The main result of the paper is that the
volatility of the growth rate of the permanent component, M, /M relative
to the volatility of the stochastic discount factor, M, /M, is at least as large

as

Elog Rii1/Riy11 — Elog Reyi o0/ Riv1a
Elog Ri1/Riy1n + L (1/Rey1)

(3)

where R4 is the return of any asset. L (1/R;411) is a measure of the
volatility of the short term interest rate to be described in detail below. For
this preliminary discussion note that L = 0 if interest rates have zero variance
and otherwise L > 0. The numerator of this expression is the difference
between two (log) excess returns, or two risk premiums. As is easily seen,
if the term premium for the bond with infinitely long maturity is positive,
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Elog Rit1,00/Ri1,1 > 0, this expression is maximized by selecting the asset
with the highest expected log excess return Elog Ryt 1/Rit1.1.

We now compute the lower bound for two examples for which it is obvious
what the volatility of the permanent component of the pricing kernel is.
Consider an investor with time separable expected utility, and consider two
consumption processes: iid consumption growth and iid consumption level.

The pricing kernel is

1\’ 1\’
= _ / = _ -
My (1 n p) U (ct) <1 n p) C

where U has CRRA #.
Example 1. Assume that ¢;1/¢; is iid. Clearly M, has only permanent
shocks. In this case, it is easy to verify that interest rates R;;;; are constant,

which implies that L (1/R;411) = 0, and that

log (Rey16/Rig1,1) = 0,

so that all term premiums are zero. With these values, expression (3) is equal
to 1, so that the volatility of the permanent component of the stochastic
discount factor is, indeed, at least as large as the volatility of the stochastic
discount factor.

Example 2. Assume that ¢;;4 is iid. Clearly M; has no permanent com-
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ponent. In this case, neither short term interest rates nor returns on long

term bonds are constant in general. Indeed,

U/
Rin = (1+/))E[ (c) and

U’ (cr)]”

U'e) _ M; /My for k > 2,

Riip = (1+ﬂ)m

that is, for £ > 2, the holding return equals the inverse of the stochastic dis-
count factor. It is now easy to show that the highest lower bound computed
from expression (3) is attained by choosing the return R;; = Ryyqy for
k > 2, and that this lower bound equals 0. Indeed, ruling out arbitrage

implies that for any return R,

Using Jensen’s inequality

M M,
0= IOgEt < ]\;t_lRH_l) Z Ethg ( _Z\Z;lRH_l)

which implies

M,

Eylog Ryy1 < Eylog YA
t1

with equality if Ry, and M, /M, are proportional. Thus, because Ry 1 =

M, /M, 1, for k > 2 no log return is higher than the log return of long term
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bonds. Setting Riy1 = Rit1x for k& > 2 gives the highest lower bound (3),
and its value will be zero. Hence we have verified that the bound shows that,
for the case where the level of consumption is iid, there is no permanent

component.

3 Theoretical Results

In this section, we first show an existence result for the multiplicative decom-
position of M; into a transitory and permanent component, and we derive a
lower bound for the volatility of the permanent component. We then present
a related bound for the volatility of the transitory component. We also
present a proposition that guarantees the applicability of our bound for the
permanent component to any appropriate multiplicative decomposition un-
der some regularity assumptions. Finally, we compare our bound to a result
by Cochrane and Hansen (1992) about the conditional and unconditional
volatility of stochastic discount factors.

We start with two conditions under which we can decompose the ker-

nel into permanent and transitory components properly defined. First, (1)
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assume there is a number [ such that
0< klim Vi (1i4) /8% < o0,

for all . In the language of Hansen and Scheinkman (2003), the number
B is the dominant eigenvalue of the pricing operator. Assumption (1) can
be violated if either the limit does not exists or if it takes the values 0 or
00. The existence of the limit imposes a regularity condition on the shape
of the term structure for large k. Specifically, it requires that the yield
—(1/k)log V; (1441) converges fast enough as k& — oo. The limit can take
the value 0 or oo if bond prices are non-stationary. For instance, consider the
case where after date s there are only two possible outcomes: either the yields
of bonds of all maturities are equal to —log 3 or they are equal to — log3.
In this case there is no  for which the limit in assumption (1) is strictly
positive and finite. Since we have assumed throughout that bond prices are
stationary, this possibility is ruled out.

Second, (2) assume that for each ¢ 4+ 1 there is a random variable x;;;

such that

(Mi1/B87") Vit (Lisia) /8 € @41 s,

with Eyx;.1 finite for all k. Assumption (2) strengthens assumption (1).
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Instead of requiring that V; (1,,%) /3% has a finite limit, assumption (2) re-
quires that for each k its product with the marginal valuation be bounded

by a variable that has a finite conditional expectation.

Proposition 1 Under assumptions (1) and (2), there is a unique decompo-

sition
M, = M} MF
with E,M}, = M} and

M = lim BM, /5

MF = lim BV, (1) -

k—00

Due to assumption (1) M/} is well defined, strictly positive and finite.
Assumption (2) is used to establish that M} as defined above is a martin-
gale. The decomposition obtained through Proposition 1 is unique given its
constructive nature.

The value of the permanent component is the expected value of the pro-
cess M in the long run, relative to its long-term drift 3. We call M} the
permanent component because it is unaffected by information at ¢ that does
not lead to revisions of the expected value of M in the long run. The decom-
position in Proposition 1 is analogous to the one by Beveridge and Nelson
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(1981). Beveridge and Nelson’s decomposition is additive instead of mul-
tiplicative and their permanent component is a random walk while in our
decomposition the permanent component is a martingale.

The component M is a scaled long term interest rate. Given our sta-
tionarity assumption for the stochastic discount factor, interest rates inherit
this property, and interpreting M/ as containing only transitory components
follows naturally. This stationarity property for M7 is again linked to a re-
lated property in the Beveridge and Nelson decomposition. Interest rates
are a function of the expected growth rate of the pricing kernel. Thus, as-
suming stationarity for interest rates is similar to the assumption behind the
Beveridge and Nelson decomposition that growth rates are stationary while
levels are not.

Nothing in Proposition 1 rules out the possibility that there exist other
decompositions of M into two parts with one being a martingale and the
other containing transitory components. Such alternative decompositions
could exist independently of whether assumption (1) and (2) apply. With
assumptions (1) and (2) holding, it might still be possible to construct a
decomposition in another way. Alternatively, Proposition 1 has nothing to

say for the case where assumptions (1) and (2) would not hold. However, as
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we will show later in this section, our volatility bounds also apply to such
decompositions more generally.

In order to characterize the importance of permanent and transitory com-
ponents we use L; (x41) = log Eyxy1— Eylog xy, 1, and L (z441) = log Exyy1—
FElogx;,1 as measures of conditional and unconditional volatility of ;1.
Throughout the rest of the paper we refer to the expected values of differ-
ent random variables without stating explicitly the assumption that these

random variables are integrable. The following result can then be shown.

Proposition 2 Assume that assumptions (1) and (2) hold, then (i) the con-

ditional volatility of the permanent component satisfies

M/,
(4) Ly ( M+ ) > Eilog Ry — Eylog Ryt 1 oo,

t
for any positive return Ry, 1. Furthermore, (ii) the unconditional volatility of

the permanent component satisfies,

L) [ B () - B (k)

Riyi

> min < 1,
E (10g Rt“ ) +L(1/Rii11)

for any positive Ry, 1 such that E (10g Rt“ ) + L (1/Ri411) > 0.

Inequality (4) bounds the conditional volatility of the permanent com-
ponent in the same units as L by the difference of any expected log excess
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return relative to the return of the asymptotic discount bond. Inequality (5)
bounds the unconditional volatility of the permanent component relative to
the one of the stochastic discount factor. As we further discuss below, equa-
tion (5) describes a property of the data that is closely related to Cochrane’s
(1988) size of the random walk component.

To better understand the measure of volatility L (), note that if var (x) =
0, then L (z) = 0; the reverse is not true, as higher-order moments than the
variance also affect L (x). More specifically, the variance and L (z) are special
cases of the general measure of volatility f (Ez) — Ef (z), where f(-) is a
concave function. The statistic L (x) is obtained by making f (z) = logz,
while for the variance, f (z) = —2%. It follows that if a random variable x;
is more risky than xsin the sense of Rothschild-Stiglitz, then L (x;) > L (x2)
and, of course, var (z1) > var (z3).” As a special case, if x is lognormal, then
L (z) =1/2var(logx). L (x) has been used to measure income inequality and
it is also known as Theil’s second entropy measure (Theil 1967). Based on
Proposition 2, Luttmer (2003) has worked out a continuous-time version of
our volatility bound and shown its relationship to Hansen and Jagannathan’s
volatility bound for stochastic discount factors.

The following proposition characterizes the transitory component, an up-
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per bound to its relative volatility can then be easily obtained along the lines

of Proposition 2.

Proposition 3 Under assumptions (1) and (2), Ryi1,00 = M /ML, and

L (M£1/M£F) < L(1/Ri1,00)
L (M1 /My) — Elog(Rip1/Risa11) + L(1/Riga)

for any positive Ry 1 such that E [log %] + L(1/Ris11) > 0.

Our decomposition does not require the permanent and transitory compo-
nents to be independent. Thus, knowing the amount of transitory volatility
relative to the overall volatility of the stochastic discount factors adds inde-
pendent information in addition to knowing the volatility of the permanent
component relative to the volatility of the stochastic discount factor. As we
will see below, given data availability reasons, we will be able to learn more
about the volatility of the permanent component than about the volatility
of the transitory one. Kazemi (1992), in a related result, has shown that
in a Markov economy with a limiting stationary distribution, R; ;.. equals
M /M.

As we mentioned above, the decomposition derived in Proposition 1 is not
necessarily the only one yielding a martingale and a transitory component,
and thus the bounds derived above might not necessarily apply to other cases.
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To strengthen our results, we show here that the volatility bounds derived
in Proposition 2 are valid for any decomposition of the pricing kernel into a
martingale and a transitory component under some regularity assumptions.
In order to do this, we need a definition for the transitory component, which
we describe as having no permanent innovations.

Definition. We say that a random variable indexed by time, X;, has no

permanent innovations if

Et+1 (Xt+k:)
6 lim ———~
( ) k—oo Et (Xt+k)

=1, a.s. for all ¢.

We say that there are no permanent innovations because, as the forecast-
ing horizon k becomes longer, information arriving at ¢ + 1 will not lead to
revisions of the forecasts made with current period ¢ information. Alterna-
tively, condition (6) says that innovations in the forecasts of X4 have limited

persistence, since their effect vanishes for large k. As can easily be seen, a

linear process that is covariance-stationary, has no permanent innovations.

Proposition 4 Assume that the kernel has a component with transitory in-
novations MY, that is one for which (6) holds, and a component with per-

manent innovations M} that is a martingale, so that
M, = MF M},
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Let vy 141 be defined as

covy (Mt:frk, Mik)

By (M) B (M)

Utttk =

assume that

lim (1 + veg164k)

=1 a.s..
k—oo (1 + vy eqk)

Then the bounds in equations (4) and (5) apply.

For an example illustrating this result see the supplementary material to
this article.

Following Cochrane and Hansen (1992, pp 134-137) one can derive the fol-
lowing lower bound for the fraction of the variance of the stochastic discount

factor accounted for by its innovations:

My
E [van (—Mf )} - 1 var [V; (1441)]
var <Mt+l> - E|Rt11—Riy1.1] 2 (E [V;f (11t+1)])27
M, o(Ri+1)

where R;.; stands for any return. This lower bound takes a value of about
0.99 when R, is an asset with a Sharpe ratio of 0.5 and one-period interest
volatility is low, such as var [V; (1441)] = 0.05%. A natural interpretation
of this result is in terms of a persistent and transitory components, and
the conclusion would be in line with our main result. However, such an
interpretation is not necessarily correct. Indeed, one can easily construct
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examples of pricing kernels with one period interest rates that are arbitrarily
smooth and that have no permanent innovations. The example we use in
section 4.3 below is of this type. Nevertheless, our results confirm such a
natural interpretation of the findings of Cochrane and Hansen. We learn from
our analysis that the reason the two results can have a similar interpretation

is because the term premiums for long term bonds are very small.

3.1 Yields and forward rates: Alternative measures of
term spreads

For empirical implementation, we want to be able to extract as much infor-
mation from long-term bond data as possible. For this purpose, we show
in this section that for asymptotic zero-coupon bonds, the unconditional ex-
pectations of the yields and the forward rates are equal to the unconditional
expectations of the holding returns.

Consider forward rates. The k-period forward rate differential is defined
as the rate for a one-period deposit maturing k periods from now relative to

a one-period deposit now:

fo (k) = ~log (M) 1

— log —.
Vi (Leret) &V

)
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Forward rates and expected holding returns are also closely related. They
both compare prices of bonds with a one-period maturity difference, the for-
ward rate does it for a given ¢, while the holding return considers two periods
in a row. Assuming that bond prices have means that are independent of
calendar time, so that EV, (1;44) = EV, (1,4%) for every t and k, then, it is
immediate that E [f; (k)] = E[h: (k)]; with hy (k) = log (Rey1%/Ret11), the
log excess holding return.

We define the continuously compounded yield differential between a k-

period discount bond and a one-period risk-free bond as

v (k) = log <%) )

Concerning holding returns, for empirical implementation, we assume enough

regularity so that
Elog kh_{]glo (Ri1h/Res11) = ]}1_%10 Eilog (Ri1k/Rig1,1) = hi (00)

The next proposition shows that under regularity conditions, these three

measures of the term spreads are equal for the limiting zero-coupon bonds.

Proposition 5 If the limits of hy (k), fi (k), and y, (k) exist, the uncondi-

tional expectations of holding returns are independent of calendar time; that
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18,
E(log Rit1x) = E(log Rri1) forallt, T, k,

and if holding returns and yields are dominated by an integrable function,

then

E | lim hy (k)] = B | lim f, ()] = B [ lim y, (k)|

k—o0 k—o0

In practice, these three measures may not be equally convenient to esti-
mate for two reasons. One is that the term premium is defined in terms of
the conditional expectation of the holding returns. But this will have to be
estimated from ex post realized holding returns, which are very volatile. For-
ward rates and yields are, according to the theory, conditional expectations
of bond prices. While forward rates and yields are more serially correlated
than realized holding returns, they are substantially less volatile. Overall,
they should be more precisely estimated. The other reason is that, while
results are derived for the limiting maturity, data is available only for finite
maturities. To the extent that a term spread measure converge more rapidly
to the asymptotic value, it will be preferred. In the cases considered here,
yields are equal to averages of forward rates (or holding returns), and the
average only equals the last element in the limit. For this reason, yield differ-
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entials, y, might be slightly less informative for £ finite than the term spreads

estimated from forward rates and holding returns.

4 Empirical Evidence

The main objective of this section is to estimate a lower bound for the volatil-
ity of the permanent component of pricing kernels, as well as the related
upper bound for the transitory component. We address these two points in
subsection 4.1 and 4.2 below. We also present two sets of additional results
that help interpret these estimates. First, we consider a simple process for the
pricing kernel that corresponds to the specification implied by many studies
of dynamic general equilibrium models. We show how our main findings can
provide guidance for the degree of persistence that such models should rea-
sonably display. Second, we measure the part of the permanent component
that is due to inflation. As is well known, price levels are typically nonsta-
tionary. We document to what extent our findings provide information about
the permanent components of real variables over and above the permanent

components in price levels.
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4.1 The volatility of the permanent component

Tables 1, 2, and 3 present estimates of the lower bound to the volatility
of the permanent component of pricing kernels derived in Proposition 2.

Specifically, we report estimates of

E <log it ) - F <log —Rt“"x’)

Rit11 Riy11

B (log 4 ) + L (1/Rysa,)

(7)

obtained by replacing each expected value with its sample analog for different
data sets.

In Table 1, we report estimates of the lower bound given in equation (7)
and of each of the three quantities entering into it, as well as the asymptotic
normal probability that the numerator is negative. We present estimates us-
ing zero-coupon bonds for maturities 25 and 29 years, for various measures
of the term spread (based on yields, forward rates and holding returns), and
for holding periods of one year and one month. As return R;,; we use the
CRSP value-weighted index covering the NYSE, Amex and NASDAQ. The
data is monthly, from 1946:12 to 1999:12. Standard errors of the estimated
quantities are presented in parentheses; for the size of the permanent compo-
nent, we use the delta method. The variance-covariance of the estimates is

computed by using a Newey and West (1987) window with 36 lags to account
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for the overlap in returns and the persistence of the different measures of the
spreads.®

Based on the asymptotic (normal) distribution, the probability that the
term spread is larger than the log equity premium is very small, in most
cases well below 1%. Hence, the hypothesis that the pricing kernel has no
permanent innovation is clearly rejected. Not only is there a permanent
component, it is very volatile. We find that the lower bound of the volatility
of the permanent component is about 100%; none of our estimates are below
75%. The estimates are precise, standard errors are below 10%, except for
holding returns.

Two points about the result in Table 1 are noteworthy. First, the choice
of the holding period, and hence the level of the risk-free rate, has some
effects on our estimates. For instance, using yields with a yearly holding
period the size of the permanent component is estimated to be about 87%.
Instead, using yields and a monthly holding period we estimate it to be
77%. This difference is due to the fact that monthly yields are about 1%
below annual yields, affecting the estimate of the denominator of the lower
bound.? Second, by estimating the right-hand side of equation (7) as the ratio

of sample means, our estimates are consistent but biased in small samples
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because the denominator has nonzero variance. In Appendix C, we present
estimates of this bias. They are quantitatively negligible for forward rates
and yields, on the order of about 1% in absolute value terms. Estimates of
the bias are somewhat larger for holding returns.

Since (7) holds for any return Ry, we select portfolios with high £ <log RRti)
in Table 2 to sharpen the bounds based on the equity premium in Table 1.
Table 2 contains the same information as Table 1, except that Table 2 covers
only bonds with 25 years of maturity. We find estimates of £ (log b]; :JTI)
of up to 22.5% compared to 7.6% in Table 1. The smallest estimate of the
lower bound in Table 2 is 89% as opposed to 77% in Table 1.

In panel A we let R;;; be a fixed weight portfolio of aggregate equity
and the risk-free rate that maximizes £ <log Bep ) that is, we are deriving
the so-called “growth optimal” portfolio (see Bansal and Lehmann, 1997).
Depending on the choice of the holding period, F <log Ser1 ) is up to 9%
larger than the premium presented in Table 1, with a share of equity of 2.14
or 3.46. In panel B of Table 2, we choose a fixed-weight portfolio from the
menu of the 10 CRSP size decile portfolios. This leads to an average log

excess return of up to 22.5%.

Table 3 extends the sample period to over 100 years and adds an addi-
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tional country, the U.K. For the U.S., given data availability, we use coupon
bonds with about 20 years of maturity. For the U.K., we use consols. For
the U.S., we estimate the size of the permanent component between 78%
and 93%, depending on the time period and whether we consider the term
premium or the yield differential. Estimated values for the U.K. are similar
to those for the U.S.

A natural concern is whether 25- or 29-year bonds allow for good ap-
proximations of the limiting term spread. From Figure 1, which plots term
structures for three definitions of term spreads, we take that the long end of
the term structure is either flat or decreasing. Extrapolating from these pic-
tures, suggests, if anything, that our estimates of the size of the permanent
component presented in Tables 1 and 2 are on the low side. In this figure,
the standard error bands are wider for longer maturities, which is due to two
effects. One is that spreads on long-term bonds are more volatile, especially
for holding returns. The other is that for longer maturities, as discussed
before, our data set is smaller.

Note that for the bound in Equation (7) to be well defined, specifically for
L (1/R¢y1.1) to be finite, we have assumed that interest rates are stationary.'®

While the assumption of stationary interest rates is confirmed by many stud-
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ies (for instance, Ait-Sahalia (1996)), others report the inability to reject unit
roots (for instance, Hall, Anderson, and Granger (1992)). Cochrane (2005,
page 199) sums up the issue eloquently: “the level of nominal interest rates
is surely a stationary variable in a fundamental sense: we have observa-
tions near 6% as far back as ancient Babylon, and it is about 6% again
today.” Also, consistent with the idea that interest rates are stationary and
therefore L (1/R;+11) finite, Table 3 shows lower estimates for the very long

samples than for the postwar period.

4.2 The volatility of t