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Abstract

We measure the cost of consumption fluctuations using an approach that does not require
the specification of preferences and instead uses asset prices. We measure the marginal cost
of consumption fluctuations, the per unit benefit of a marginal reduction in consumption
fluctuations expressed as a percentage of lifetime consumption. We find that the gains
from eliminating all consumption uncertainty are very large. However, for consumption
fluctuations corresponding to business cycle frequencies, we estimate the marginal cost to
be between 0.08% and 0.49% of lifetime consumption.
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In a seminal contribution, Lucas (1987) proposes a measure of the welfare cost of economic

fluctuations. His measure is defined as the compensation required to make the representative

agent indifferent between consumption plans with and without business cycle fluctuations. With

this measure, Lucas finds a very small cost of business cycles. Subsequently, several studies have

proposed estimates of this cost of business cycles under alternative assumptions on preferences

and consumption processes. As a function of these assumptions, estimates vary widely across

studies.1 In our paper, we measure the welfare cost of business cycles through an approach

that does not require the specification of consumer preferences; instead, we directly use financial

market data.

We define the marginal cost of consumption fluctuations as the per unit benefit of a marginal

reduction in consumption fluctuations. Because it is marginal, we can relate this cost directly to

asset prices. In particular, we show the marginal cost to be equal to the ratio of the prices of

two long-lived securities: one representing a claim to stabilized consumption, the other, a claim

to actual consumption. Measuring the cost of economic fluctuations then becomes a task in asset

pricing.

The literature has in general focused on the potential benefits of eliminating all consumption

uncertainty, that is, replacing the actual consumption process by its expected path. We take

this as a starting point of our analysis, but we also focus specifically on the welfare gain of

eliminating business cycle fluctuations without eliminating all consumption risk. We believe that

this difference is important because a large part of consumption fluctuations may not be directly

related to business cycles and as such to policies related to business cycle stabilization. Based on

no-arbitrage principles, we derive simple expressions for the marginal benefit of eliminating all

uncertainty and for the benefit of eliminating business cycle fluctuations. These expressions are

simple functions of an interest rate, the average growth rate of consumption, a consumption risk

premium, and the moving average coefficients that define the process for stabilized consumption.

Estimating the marginal cost based on these expressions presents two challenges. First, we

need to price a nontraded security, an equity claim to consumption. To do this, we use an exten-

sion of the method proposed by Cochrane and Saa Requejo (2000) that is based on no-arbitrage

1See for instance, Obstfeld (1994); Atkeson and Phelan (1994); Campbell and Cochrane (1995); Dolmas (1998);

Hansen, Sargent, and Tallarini (1999); Krusell and Smith (1999); Otrok (2001); Tallarini (2000); Lucas (2003) for

a recent survey of this literature; for the related literature on the welfare gains from international integration, see

Lewis (1999) and Van Wincoop (1999).
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restrictions when existing assets do not completely span the payoff of the asset to be priced. A

second issue concerns the measurement of the business cycle components of consumption. We use

a frequency domain approach following the work of Baxter and King (1998, 1999). This appli-

cation is complicated because our requirement that the stabilized consumption be defined as the

dividend of a security precludes the use of the standard two-sided moving average representation.

We have two sets of quantitative results. First, our estimate of the cost of all consumption

uncertainty, while noisy, is extremely high. Essentially, offering agents a perpetual bond whose

coupons are growing at the average growth rate of the economy would be extremely valuable.

On the other hand, the cost of business cycle fluctuations is found to be small. We find that

the costs of business cycles fluctuations are between 0.08% and 0.49% of consumption. This

finding is robust to, among other things, the set of reference security returns used for pricing

consumption risk, the specifications of the stochastic processes of consumption and returns, the

possible imperfections of the frequency domain filters we use, and the introduction of durable

goods consumption.

We organize the paper as follows. In section 1 we define the marginal cost and present charac-

terizations in terms of yields and growth rates. Section 2, 3 and 4 contain the detailed empirical

analysis. Section 5, presents analytical results about the marginal cost and its relationship to

Lucas’ approach of measuring the cost of business cycles.

1 The marginal cost of consumption fluctuations

We start this section by defining the marginal cost of consumption fluctuations. We charac-

terize this cost for two definitions of consumption fluctuations. The first includes all consumption

uncertainty, the second covers business cycle fluctuations. In both cases we derive expressions

for the marginal cost as functions of three variables: an interest rate, the average growth rate of

consumption and a consumption risk premium. We then quantify the marginal costs using the

values of these variables estimated in section 2 and 3 of the paper.

A. Defining the marginal cost of consumption fluctuations

Assume that {x} is a stochastic process for payoffs, that is, a stream of random payoffs for

all dates t ≥ 1, and that V0 [{x}] is the time zero price of a security that pays {x}. Consider the
processes {c} that represent aggregate consumption, and {C} a more stable version of aggregate
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consumption, which we call trend. We define the marginal cost of consumption fluctuations ω0 as

the ratio of the values of two securities: a claim to the consumption trend, V0 [{C}], and a claim
to aggregate consumption, V0 [{c}],

ω0 ≡ V0 [{C}]
V0 [{c}] − 1. (1.1)

If an agent can trade these two securities, the difference in prices V0 [{C}]− V0 [{c}] measures
the benefit of removing the business cycle fluctuations from this agent’s consumption. This is

achieved by selling the aggregate consumption process {c} and buying the consumption trend {C}.
In equation (1.1), ω0 expresses this cost in terms of V0 [{c}], the value of aggregate consumption
{c}.
Estimating the marginal cost ω0 in (1.1) presents two challenges which occupy most of the

body of the paper. We need to develop a workable definition of {C}, and we need to measure the
prices V0 [{C}] and V0 [{c}], which may not be directly observable.
We provide here an interpretation of ω0 for the particular case of a representative agent

economy.2 Assume that in each period t, the economy experiences one of finitely many events

zt ∈ Z and denote by zt = (z0, z1, ..., zt) the history of events up through and including period t.
We index commodities by histories, so we write x : Z → R+, where Z ≡ Q

t≥1 Zt, or simply {x}
= {xt (zt) : ∀ t ≥ 1, zt ∈ Zt} . Let U (·) be a utility function, mapping consumption processes into
R. We define the total cost of consumption fluctuations function Ω(α) as the solution of

U ((1 + Ω(α)) {c} ) = U ( (1− α) {c}+ α {C} ) , (1.2)

where α ∈ [0, 1], c : Z→ R+ andC: Z→ R+. Without writing it explicitly, we assume that c0 (z
0)

enters the utility function in (1.2) in such a way as not to be multiplied by (1 +Ω(α)), and that

c0 (z
0) =C0 (z

0). The scalar α measures the fraction of consumption {c} that has been replaced
by the less risky trend consumption {C}. The total cost function gives the total benefit from
reducing consumption fluctuations as a function of the fraction of the reduction in fluctuations.

It is straightforward to see that Ω(0) = 0, since no reduction in fluctuations generates no benefit.

Thus, Ω0 (0) is the first order approximation of Ω (1) around α = 0.3 We find Ω0 (0) a useful

approximation of Ω (1) because we can estimate Ω0 (0) using asset prices, indeed Ω0 (0) = ω0. To

2We present a non-representative agent interpretation in section 5 below.
3In section (5) below, we present a more detailled analysis of Ω (.), and a comparison of ω0 with the cost used

in Lucas (1987).
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see this, assuming that U is differentiable with respect to each ct (z
t) for all t and zt, and denoting

the partial derivatives by Uzt ({c}) ≡ ∂U ({c}) /∂ct (zt), we obtain

Ω0(0) =
P∞
t=1

P
zt∈Zt Uzt ({c}) · [Ct (zt)− ct (zt)]P∞
t=1

P
zt∈Zt Uzt ({c}) · ct (zt)

. (1.3)

Furthermore, notice that the shadow price of a security with payoff {x} for the agent with
consumption {c}, must be

V0 [{x}] ≡ 1

Uz0 ({c})
∞X
t=1

X
zt∈Zt

Uzt ({c}) · xt
³
zt
´

Combining this expression with (1.3) we obtain ω0 = Ω0 (0).

B. Cost of all uncertainty

Consider a definition of Ct that implies the elimination of all consumption uncertainty, namely

Ct = E0ct. (D1)

Assume that the unconditional expectation of consumption growth does not depend on calendar

time,

E [ct+1/ct] = 1 + g. (A1)

Hence, using the definition in equation (1.1) we have

ω0 =
r0 − g
y0 − g − 1

where we define y0 as the yield to maturity that corresponds to the price V0 ({Ct}), and likewise
r0 for V0 ({ct}), implicitly by

V0 ({C})
c0

=
1 + g

y0 − g (D2)

and
V0 ({c})
c0

=
1 + g

r0 − g (D3)

which implies that y0 > g and r0 > g.

The yields to maturity y0 and r0 are defined by setting the expected growth rates of con-

sumption for each period equal to its unconditional expectation g. Consistent with the standard

properties of yields to maturity, if consumption growth were IID and if one-period interest rates

were constant, then y0 would be equal to the one-period interest rate. Moreover, if consump-

tion growth were IID and if dividend-price ratios were constant, then r0 would be the expected

one-period return to consumption equity.
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As shown in Table 1, for the period 1954-2001, the average per-capita growth rate of consump-

tion g is 2.3%, and the average yield after inflation for long-term government bonds is 3.0%. As

we will discuss in the next section, we estimate the consumption risk premium, r0 − y0, to have
a mean of at least 0.2%. Combining these numbers gives us an estimate of the marginal cost of

all uncertainty of at least

ω0 =
r0 − g
y0 − g − 1 =

(0.030 + 0.002)− 0.023
0.030− 0.023 − 1 = 28.6%.

As we show below, substantially larger numbers can be obtained under reasonable alternative

assumptions. This finding highlights the facts that security markets implicitly attach a very

high value to a perpetual bond whose coupons are growing at the average growth rate of per

capita consumption. Note that, as the yield y0 gets close to the growth rate g, this value tends

to infinity. It is also clear that the formula for the cost of all uncertainty is very sensitive to

potential measurement errors in r0, y0 and g.

C. Cost of Business Cycles

To consider business cycle fluctuations, we define the trend as a one sided moving average of

consumption

Ct = a0ct + a1 (1 + g) ct−1 + a2 (1 + g)
2 ct−2 + ...+ aK (1 + g)

K ct−K (D4)

for a vector of weights a = (a0, ..., aK) satisfying

KX
k=0

ak = 1 . (A2)

Note that definition D4 and assumptions A1 and A2 imply that

E
µ
Ct
c0

¶
= (1 + g)t

so that, in expectation, the trend tracks consumption. We further assume that interest rates are

constant and equal to y (A3) and that the following initial conditions hold

c0/c−1 = c−1/c−2 = ... = c−K+1/c−K = 1 + g. (A4)

The next Proposition derives an expression for the marginal cost of business cycles ω0, as a

function of r0, y, g and a.
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Proposition 1 Assume that we have discount bonds for all maturities and a consumption equity

claim, then, ruling out arbitrage opportunities, and under assumptions A1, A2, A3 and A4, we

have

ω0 =
∞X
t=1

w0,t
KX
k=0

ak

Ã
1 + r0
1 + y

!min{t,k}
− 1 (1.4)

where the weights w0,t are defined as

w0,t ≡ r0 − g
1 + g

µ
1 + g

1 + r0

¶t
. (1.5)

The essence of the proof consists of a replication argument like the ones used to price a deriv-

ative security, which in our case is the consumption trend. To this effect, we design portfolio

strategies, one for each time t, with payoffs that exactly replicate the realizations of the consump-

tion trend Ct. To exactly replicate the payoffs we use the linearity of the trend consumption and

the assumption of constant interest rates, so that portfolios of bonds can be rolled over into the

future at known interest rates. The details of the proof are in the Appendix A. Note that, in

this argument, the assumption of constant interest rate can be replaced with no loss of generality

by the requirement that interest rates are known in advance. We would also like to stress that

we use the yield to maturity for the consumption equity r0 and the unconditional growth rate

of consumption g to state the formula for the marginal cost ω0, but that we do not assume that

either the returns of the consumption equity nor the consumption growth rates are IID in this

Proposition.

Since the expression for (1.4) is complex, we introduce an approximation for the marginal cost

ω0 ∼= (r0 − y) ·
KX
k=0

akk, (1.6)

which is accurate for deviations from trend corresponding to business cycle fluctuations; see

Appendix B for a derivation and section 3 below for an illustration. Thus, the marginal cost of

business cycles is approximately equal to the consumption risk premium, a measure of the market

price of risk, times a constant that depends on the moving average coefficients, a measure of the

volatility of the deviations from trend. For instance, let’s compare the marginal costs ω0 and

ω00 for two moving average coefficient vectors a ≥ 0 and a0 ≥ 0 respectively, and assume that

a0 puts more weight on higher k0s, or formally that a0 first order stochastically dominates a. If

furthermore, r0 > y, then, ω
0
0 > ω0.

4 The intuition for this result is obvious for the extreme case

4This comparative static result holds for the exact expression (1.4)
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where a0 = 1, so that the deviations from trend will be identical zero, and hence ω0 = 0. Finally,

the following limiting case relates the marginal cost of business cycles to the marginal cost of all

uncertainty.

Proposition 2 Setting

a0 = a1 = ... = aK−1 = 0 and aK = 1

and letting K go to infinity, under the assumptions A1-A4, we obtain that

ω0 =
r0 − g
y − g − 1,

that is, the marginal cost of business cycles equals the marginal cost of all uncertainty.

Consider selecting the moving average coefficients a so that the deviations from trend corre-

spond to the conventional view that business cycles last no more than 8 years. As described later

in the paper, this results in a value of
PK
k=0 akk of 0.387. Based on the estimates presented in

the next section for the 1954-2001 period, we conclude that the mean of the consumption risk

premium r0 − y is between 0.2% and 1.3%. Thus, using equation (1.6), we estimate the mean of

the marginal cost of business cycles ω0 to be between 0.08% and 0.49%.

2 Valuing consumption equity

In this section, we present our estimates of the value of a security with payoffs equal to

aggregate consumption. We have shown that under the assumption of constant interest rates y, we

can compute the marginal cost of business cycles as a simple function of the consumption growth

rate g, and the moving-average weights defining business cycle fluctuations a, once we know the

value of consumption equity, with implicit yield to maturity r0. Valuing consumption equity is

nontrivial because this is not a traded security. We use as much as possible a preference-free

asset pricing approach to value consumption equity as a function of other asset prices under the

assumption of no-arbitrage. However, because consumption cannot be completely replicated by

existing assets, additional assumptions are needed. The first two estimates for r0−y are obtained
by adapting the method developed by Cochrane and Saa Requejo (2000) for the computation

of bounds on the price of a security whose payoffs cannot be perfectly replicated by existing

assets. The key of their method is to use the prices of observed portfolios as reference, together

with a restriction on the highest possible Sharpe ratio to infer plausible prices for the unobserved
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security. In addition to this, we also present estimates based on a parametric model for the

stochastic discount factor.

We are interested in finding the price, Vt, of a claim to an infinite sequence of payoffs {ct+k}∞k=1.
To save on notation and to focus on the main ideas, we start by assuming that the growth rates

of the payoffs are IID and that the price-dividend ratios vt ≡ Vt/ct are constant; we relax these
assumptions later. In the IID case, we focus on the (constant) price of a security with a single

payoff c0/c ≡ ct+1/ct, denoted by qt. It is immediate to see that the price-dividend ratio for the
security that has payoff {ct+k/ct}∞k=1 is given by v = q

1−q . Overall, we will present three different

estimates for q.

We assume that there is an observed set of J+1 reference portfolios with current price vector p

and with the payoffs to be received next period given by vector x. We assume that there is a risk-

free asset among this J +1 reference portfolios. Our first estimate of q is denoted by q∗, and it is

given by the price of the part of the consumption payoff that is spanned by the reference portfolio

x. That is, q∗ is the price of a claim to bTx, where c0/c = bTx + u and where u is orthogonal to

x, so it satisfies E [ux] = 0. Thus bTx has the interpretation of the payoff of a portfolio b of the

reference assets, and hence its value equals bTp. We assume that the component u is priced as

if it were a risk-free asset, that is, it has no risk-premium. Since x includes a risk-free asset, it

must be that E [u] = 0 and hence we have q∗ = bT · p.
Now we describe our second estimate of q, denoted by q, which we take to be a lower bound

of the price of the consumption strip. For this, we find it useful to introduce the concept of

a stochastic discount factor. As it is well known, no-arbitrage guarantees the existence of a

stochastic discount factor mt+1 ≥ 0 that satisfies

pt = Et [mt+1xt+1]

for all prices and payoffs pt, and xt+1. An example of a valid stochastic discount factor in our

set-up is

mt+1

³
zt+1

´
=
Uzt+1

Uzt
/P

³
zt+1|zt

´
where P is the probability measure on histories zt, and where Uzt are the derivatives of U with

respect to ct (z
t). Recall that the stochastic discount factor mt+1 is unique if and only if markets

are complete. We define q = E [m c0/c] where the discount factor m as been suitably restricted.

In particular, we follow Cochrane and Saa-Requejo by restricting the set of stochastic discount

factors to be consistent with the prices of the reference payoffs and impose an upper bound on
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its volatility. Specifically, q solves

q = min
m≥0

E

"
m
c0

c

#
subject to i) p = E [mx] , ii)m ≥ 0, and iii) σ (m) /E (m) ≤ h. Letting R and 1+y be any gross re-
turn and the gross risk-free rate, condition iii) limits the Sharpe ratio of any gross returnR, defined

as |E (R− (1 + y))| /σ (R), to be lower than h. To see this, notice that E [m (R− (1 + y))] = 0,
and hence

|Et (R− (1 + y))|
σt (R)

≤ σt (m)

Et (m)
,

with E (m) = 1/ (1 + y). Thus, σt (m) /Et (m) provides an upper bound to the market price of

risk, i.e. the expected excess returns that one can trade off at market prices per unit of risk,

as measured by the standard deviation of the returns. Using the language of Cochrane and

Saa-Requejo, portfolios with large Sharpe ratios are good deals, and hence restriction iii) on the

discount factors is interpreted as to mean that there should be no deals that are “too good”.

Cochrane and Saa-Requejo show how the prices q∗ and q are related. In particular, assuming

that the non-negativity constraint ii) is not binding,

q = q∗ − 1

1 + y

r³
h2 − h̃2

´ q
(1−R2) σ

Ã
c0

c

!

where R2 is the r-square from the regression of c0/c on x and where h̃ is the highest Sharpe ratio

that can be obtained with the reference assets. Clearly, q≤ q∗. The difference between q∗ and

q̄ depends on how well c0/c is fitted by the reference assets x, as measured by the R2, and on

how far the highest allowable Sharpe ratio h is from the highest Sharpe ratio that is achievable

with the reference portfolios h̃. This formula shows that Condition iii) limits the size of the risk

premium that is attributed to u, the part of the payoff c0/c not spanned by x. We estimate q and

q∗ by replacing the population moments in the expression by their sample analogs.

We relax the assumptions of IID growth rates for the payoffs and constant price-dividend

ratios by considering a setup with a Markov switching regime process. In particular, we let zt =

(st, εt) be as follows: let st be a Markov chain with s ∈ {1, 2, ..., n} = S and transition function
π (s0|s), and let εt ∈ E be independent of the history εt−1 and with a cumulative distribution

function F (ε|s) = Pr {εt ≤ ε|st = s} .We let consumption growth rates ct+1/ct = 1+g (zt+1) and
reference payoffs xt+1 = x (zt+1) be functions of zt+1, while the vector of prices of the J+1 reference

assets pt = p (st), and the price-dividend ratio Vt/ct = v (st) are functions of st. In Appendix C, we

define operators whose fixed points give the prices V ∗t /ct and Vt/ct, corresponding, respectively, to
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the parts of consumption equity spanned by the reference assets and the lower bound of the value

of consumption equity. For empirical implementation we consider two non IID specifications: a

two-state regime switching process, and a bivariate VAR, which we further describe below.

Our third estimate for q is based on a parametric model for the stochastic discount factor

mt+1.We let logmt+1 be a linear function of aggregate consumption and the market return. This

specification is motivated by the Lucas asset pricing model for a utility function with constant

relative risk aversion, where logmt is linear in consumption growth, as well as by the generalization

of Epstein and Zin (1991), that allows for a constant intertemporal elasticity of substitution

different from the reciprocal of the coefficient of relative risk aversion, where logmt+1 is linear

in consumption growth and in the gross return on consumption equity. In particular we assume

that mt+1 is given by

mt+1 = δ exp
³
λTnt+1

´
(2.1)

where nt+1 is a vector of ‘factors’ with ‘loading’ vector λ and constant δ. Using reference payouts

xt+1 with prices pt we estimate the factor loadings using GMM on 0 = E
³
exp

³
λTnt+1

´
·
³
xt+1
pt
− y

´´
.

Then, under the assumption that the factors nt+1 and the returns
xt+1
pt

are IID, we estimate q

through the sample analog to E
³
exp

³
λTnt+1

´
·
³
ct+1/ct
q
− y

´´
= 0.

Tables 1 to 3 contain our estimates of the value of consumption equity for different specifica-

tions. Following Cochrane and Saa-Requejo, we have assumed that the highest admissible Sharpe

ratio is 1 in annual terms. As they point out this is a rather large number, since the observed

Sharpe ratio of a market portfolio is about 0.5. To facilitate the use of the formulas derived in

section (1), we express the value of consumption equity in yields to maturity in excess of the

risk-free rate, which we call the consumption risk premium, that is r0 − y = (1 + g) /V0 + g − y,
for both V ∗0 and V 0. Since, V 0 ≤ V ∗0 , the yield spread attributable to V 0 determines the upper
bound of the consumption risk premium.

Table 1 contains estimates of the consumption risk premium under the assumptions of IID

consumption growth and returns. We consider three sets of reference portfolios. In addition

to a risk free rate, we use either the CRSP value-weighted portfolio return covering the NYSE

and AMEX, 10 size deciles CRSP portfolios or 17 industry portfolios constructed by French

(2002). Consumption is defined as consumption expenditure on nondurable and services. For the

postwar period we find that the consumption risk premium of the spanned part is between 0.19%

and 0.27% with upper bounds between 0.54% and 1.17%, depending on the reference portfolios
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used.5 The best replication is achieved through the 17 industry portfolios, with an R2 of 0.48.

Considering longer sample periods increases these estimates by about 2 to 3 times.

[insert Table 1]

Table 2 reports results when allowing for departures from the IID case. In the rows labelled

VAR(1), we use a Markov chain approximation of a bivariate VAR process with Normal inno-

vations consisting of the consumption growth rate and one excess return. We consider bivariate

VAR’s, and hence include only one excess return, given the cost to numerically solve for q∗ and

q. We consider three different specifications for the excess returns, which correspond to the three

cases considered in Table 1. For the two cases that cover several portfolios, that is the 10 size

decile portfolios and the 17 industry portfolios, we use the combination of these returns that

has the highest correlation with consumption. In the rows labelled “Regime switching process”,

we use a two-state Markov regime, where, conditional on the state, consumption growth and

the excess return are IID. We consider the same three specifications for the excess returns as in

the VAR(1) case. Regimes are assumed to be observable and to be determined by splitting the

sample into high and low growth rates of consumption. The cutoff is set at 0.5% below the mean

annual growth rates in the sample, with the aim to capture the difference between recessions and

expansions. We also explored alternative choices for regimes based on the NBER chronology.

These results are not reported as they resulted in little quantitative differences. We find that,

based on the spanned part, the consumption risk premium is between 0.11% and 0.28% and that

the upper bound is between 1.14 and 1.77%, depending on whether the VAR or the two-state

regime switching process is used, and depending on which excess return is used.6

[insert Table 2]

As a summary statistic of our main findings, we average the estimates in Table 1 and 2 for

the postwar period; thus obtaining a risk premium of consumption equity of 0.2% for the part of

consumption spanned by existing asset with an upper good deal bound of 1.3%. While the value

of the spanned part of consumption does not correspond to a lower bound according to the good

deal methodology, it seems reasonable to take this estimate as a lower bound because our prior

beliefs would not be to attribute a negative risk premium to the part of consumption that is not

5In computing the lower bound of the price we do not explicitly impose nonnegativity constraints on the

stochastic discount factor. Imposing such constraints would tighten the bound closer towards the price of the

spanned component.
6Table 2 does not report results for the longer sample period covering 1927-2001, as this doesn’t result in any

significant changes compared to the corresponding IID cases in Table 1.
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spanned by the returns in our sample. On the other hand, we consider the upper good deal bound

of 1.3% truly as an upper bound for the risk premium of consumption equity. Indeed, while it

might be possible to come up with return portfolios with large average excess returns that are

more strongly correlated with consumption, our choice of a largest admissible Sharpe ratio of 1

seems generous enough, given that this is about twice what is implied by historical returns of a

value weighted market portfolio. Moreover, explicitly imposing nonnegativity constraints would

also tighten the bounds for annual data frequencies.

Table 3 contains estimates of the consumption equity premium under the parametric speci-

fication of the stochastic discount factor in (2.1). We present results for two specifications. In

the first row, we use the consumption growth rate as the only factor in (2.1), following the Lucas

asset pricing model, and we choose λ to fit the excess return of the market portfolio. In the

second row, we consider a specification with two factors, the consumption growth rate and the

gross market return and we choose the vector λ to fit the market return and the difference in

return between the smallest and largest CRSP size decile portfolios. The third column shows that

the consumption risk premium is estimated to be 1.11% for the one factor case and 0.21% for

the two-factor case. Notice that these values are in between the ones estimated by the methods

reported in Tables 1 and 2.

[insert Table 3]

We have further explored the sensitivity of our results to five sets of auxiliary assumptions

without reporting them here in detail. First, the exact value of the risk free rate used to estimate

the consumption equity premium r0− y turns out not to be important. To a first approximation,
our methods just estimates covariance risk. Second, we have considered an alternative timing

convention for combining consumption growth rates and returns. For the benchmark case reported

here we have paired consumption growth from year t to t+1 with returns from the first to the last

day of year t. Alternatively, we have considered returns from the last day of June in t until the

last day of June in t+1. The findings are barely distinguishable across the two cases. Third, we

have considered quarterly data for the postwar period 1954-2001. In general, consumption risk

premia are somewhat smaller (after annualization) than for the annual results reported here. The

robustness of our estimates across specifications and return sets that we have reported for annual

data also holds for the quarterly period. Fourth, we have included the return spread between

long term corporate bonds and government bonds from Ibbotson Associates and found that the

results were not sensitive to the addition of these portfolios. Fifth, in the NBER working paper
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version of this paper we have considered richer specifications of the stochastic discount factor

(2.1), allowing for non-IID returns–including variable interest rates–and consumption growth

rates in a multivariate VAR context; results where similar.

3 Measuring business cycles

In this section, we describe the choice of the moving average coefficients {ak} that determine
the consumption trend {C}, as defined in equations D4 and A2. We define the trend {C} , so that
the deviations of consumption from trend, ct−Ct are fluctuations that last 8 years or less. Thus,
the trend {C} contains fluctuations that last more than 8 years. Our definition of business cycles
as fluctuations that last up to 8 years is consistent with the definition of Burns and Mitchell

(1946) and also corresponds approximately to the definition of business cycles implied by the

widely used Hodrick-Prescott filter for quarterly data with a smoothing parameter of 1600.

We choose the moving-average coefficients {ak} so as to represent a low-pass filter that lets
pass frequencies that correspond to cycles of 8 years and more. Low-pass filters are represented

in the time domain by infinite-order two-sided moving averages. However, a requirement of our

analysis is to have trend consumption in time t be function of information available at time t,

thus, our choice of a one-sided moving average. To do this, we follow the approach presented

by Baxter and King (1998, 1999). Let β (υ) be the frequency response function of the desired

low-pass filter, which in our case is equal to one for frequencies lower than 8 years and zero

otherwise. Let αK (υ) be the frequency response function associated with a set of moving-average

coefficients {ak}Kk=0. We select the moving-average coefficients {ak}Kk=0 so that αK approximates
β. In particular, our choice of {ak} minimizesZ π

−π
|β (υ)− αK (υ)|2 f (υ) dυ, (3.1)

where f (υ) is a weighting function representing (an approximation to) the spectral density of

the series to be filtered. In this minimization, we impose the condition αK (0) = 1, which implies

that
PK
k=0 ak = 1.

We use the spectral density of an AR(1) with an autoregressive coefficient of 1 as the weighting

function f , because this matches approximately the spectral density of consumption. See also

Alvarez and Jermann (2002) for another view about how consumption fluctuations are largely

permanent. We set the number of lags K = 20. In our case, using more coefficients does not
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significantly affect quantitative results; with less coefficients, results are slightly different. The

coefficients are given in Appendix D.

Cost of business cycles corresponding to the estimates of consumption risk premiums that we

discussed above are presented in Tables 1 to 3. Take, for instance, Table 2, the regime switching

case, labelled “R(17ind)”. In this case, the cost of business cycles is 0.07% based on the spanned

part of consumption as displayed in the fifth column, with 0.43% as an upper bound estimate, as

displayed in the sixth column.

All results reported in the tables are based on the exact formula derived in Proposition (1).

We illustrate here the accuracy of the approximation given by equation (1.6). For instance, for

the same case just discussed, Table 2 shows the consumption risk premium based on the spanned

part at 0.18%, and based on the good deal upper bound at 1.14%. For K = 20, with the optimal

filter weights,
PK
k=0 akk equals 0.387, so that the approximate cost of business cycles is 0.07%

based on the spanned part with an approximate upper bound of 0.44%.

Following our discussion in the previous section, we summarize the main quantitative results

by averaging the estimates of ω0 based on post-war data presented in Tables 1 and 2. We find cost

of business cycles to be between 0.08%, based on the spanned part of consumption, and 0.49%,

based on the upper good deal bound. As we further discuss below, these conclusions are quite

robust to alternative filters and the introduction of durable goods consumption.

A. Discussion of one-sided filters

We provide here some discussion about the extent to which our results are robust to the

particular filter choice. As a specific requirement of our analysis we need a one-sided filter.

However, being one-sided, this filter cannot avoid introducing a phase shift. This results in

the trend lagging the original series. In particular, the objective function displayed in equation

(3.1) can be written as the integral of the square of the differences of the gains of the filters,

(|β (υ)|− |αK (υ)|)2, plus a term that depends on the phase shift. This second term is zero, if

the filter has no phase shift. Figure 1 illustrates this issue by plotting the transfer function (the

squared gain) of this filter in the left panel. The transfer function should be one in-between the

desired frequencies and zero for higher frequencies. Instead, it tends to let pass up to 30% of the

variance at higher frequencies, so that the computed trend contains a nonnegligible amount of

cyclical variability. As shown in the right panel of Figure 1, and as is well known, two-sided band-

pass filters fit the ideal filter’s step function much closer–remember that a symmetric two-sided
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filter does not introduce a phase shift. The corresponding time-domain representation is in Figure

2.7 Specifically, deviations from trend scaled by a growth factor (ct −Ct) /c0 (1 + g)t are shown
for one-sided and two-sided filters. Clearly, the one-sided filter generates cyclical movements that

are less volatile than those from the corresponding two-sided filter.

Based on this comparison, we can consider an ad hoc adjustment to the one-sided filter so as

to replicate the amount of business cycle volatility obtained from the more accurate two-sided

filter. As shown in Figure 2, the series generated by the one-sided filter is strongly correlated

with the series from the two-sided filter, but the series generated by the one-sided filter is less

volatile. In particular, for the postwar period 1954-2001, the plotted deviations from trend,

(ct −Ct) /c0 (1 + g)t, have standard deviation of 0.55 and 0.65 for the one, respectively, two-sided
filter. We can scale up the volatility of business cycles by multiplying the cyclical deviations by

a constant θ > 1, so that the cyclical component is adjusted to become θ (ct −Ct).8 Specifically,
with θ = 1.2, the standard deviation of the scaled one-sided filter is about equal to the one from

the two-sided filter. A little algebra shows that with this adjustment the approximate cost of

business cycles defined in equation (1.6) is just multiplied by θ, becoming θ (r0 − y)×PK
k=0 akk.

Thus, to the extent that adjusting business cycles obtained from a one-sided filter requires an

increase in standard deviation of 20%, the cost of business cycles is also increased by a factor of

0.2.

An alternative one-sided filter can be obtained from the two-sided filter by forecasting future

values based on available information at the time of the payout. Assuming that consumption

follows a random walk, this would imply that the sum of all the leading coefficients would be

added to a0, without changing the coefficients corresponding to lagged values of consumption. As

can be shown, for our case with f (ω) the pseudo spectrum of a random walk, this one-sided filter

equals the one used in this paper.

Overall, we conclude that possible adjustments to the one-sided filter used in this paper are

not likely to result in considerable changes in the cost of business cycles, as long as the definition

of business cycles is based on the idea of cyclical movements lasting no more than 8 year.

7Note, for this figure and the corresponding calculations we use filters with K = 5, so as not to lose too many

observations. For the period of overlap, the case with K = 20 (not shown) results in very similar time series

realizations.

8Note, in this case, the trend is given by (1− θ) ct + θCt.
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4 Durable goods

In this section we examine the impact of expanding the definition of consumption to include

durables in addition to nondurables and services. We find that stabilizing durable goods con-

sumption creates a sizable gain when measured in percentage terms of this type of consumption

goods. However, because the value of the lifetime consumption of durables is so much smaller

than for nondurables and services, the overall effect on the marginal cost of business cycles is

small.

We derive an expression for the marginal cost of fluctuations that includes both durable

consumption goods, and nondurable consumption goods and services. We assume that the utility

function has nondurables and services, cns, and durables cd, and define the cost of fluctuations Ω

as before

U
³
(1 + Ω(α)) {cns} , (1 + Ω(α))

n
cd
o´

(4.1)

= U
³
(1− α) {cns}+ α {Cns} , (1− α)

n
cd
o
+ α

n
Cd
o´
,

where Cns and Cd are the trends in nondurable and services’ consumption and durables consump-

tion respectively. As in the previously discussed case with one type of goods, the marginal cost

is obtained by differentiating (4.1) with respect to α,

Ω0 (0) ≡ ω0 =

P
t≥1

P
zt∈Zt

·
∂U

∂cnst (z
t)
Cnst (z

t) + ∂U
∂cdt (z

t)
Cdt (z

t)
¸

P
t≥1

P
zt∈Zt

·
∂U

∂cnst (z
t)
cnst (zt) +

∂U
∂cdt (z

t)
cdt (zt)

¸ − 1.
This can be written here as

ω0 =
V ns0 ({Cns}) + P0V d0

³n
Cd
o´

V ns0 ({cns}) + P0V d0 ({cd})
− 1

where P0 is the time zero spot price of durables in terms of nondurables, and where V
ns
0 and V d0

are the prices to streams of nondurables and services and to durables consumption goods, each

in terms of their own time zero goods’ units, respectively, defined as

V i0
³n
xi
o´

=
1

∂U/∂ci0

X
t≥1

X
zt∈Zt

∂U

∂cit (zt)
xit
³
zt
´
, for i ∈ (ns, d) , x ∈ (c,C) and

P0 =
∂U/∂cd0
∂U/∂cns0

where the utility function U is evaluated at {cns} ,
n
cd
o
. The expression for the aggregate marginal

cost of fluctuations can be written more compactly as

ω0 = (1− s0)ωns0 + s0ωd0 , (4.2)
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where ωi0 ≡ V i0 ({Ci}) /V i0 ({ci})− 1 for i ∈ (ns, d) and where s0 denotes the share of the value of
the durable consumption equity in aggregate consumption equity, that is,

s0 =
P0V

d
0

³n
cd
o´

V ns0 ({cns}) + P0V d0 ({cd})
In our previous sections we have estimated ωns0 . Thus, our remaining tasks in order to estimate

ω̄0 are to obtain empirical counterparts of ω
d
0 and s0.

We start describing our estimation of the cost of fluctuations of durables consumption ωd0 .

We distinguish between expenditure on durables and durables’ consumption. Specifically, we

assume that consumption services are provided by the stock of durables, which is assumed to

depreciate at a constant rate and to increase by current period durable expenditures. Then,

durable consumption, cdt , can be represented as a one-sided moving average of current and past

expenditure, et−j, on consumer durables cdt =
P
j=0 djet−j.9 The value of a claim to lifetime

durable consumption is computed in two steps. First, we estimate the value of lifetime durable

expenditure the way we did this in section 2 for the consumption of nondurables and services.

Second, following the derivations in Proposition 1, we can write the value of lifetime durable

consumption as a linear function of the value of lifetime durable expenditure, with the linear

coefficients functions of {dj}, y and g. Indeed, this is possible because durable consumption is
specified as a one-sided moving average of expenditure, just as the consumption trend has been

specified as a one-sided moving average of consumption.

Table 4 reports the estimated price of a claim to durable consumption in terms of durable

consumption by using the corresponding yields, rd0 − y, as in Tables 1 and 2. The estimated risk
premium for durables consumption goods is between 0.45% and 1.48% based on the spanned part,

with upper good deal bounds between 5.77% and 6.49%. These values are more than 3 and 7 times

higher than the risk premiums estimated for consumption of nondurables and services. The main

reason for the increase is the higher volatility of the growth rates of durable expenditure, which

have an annual standard deviation of 6.7% compared to only 1.16% for nondurables and services,

for the sample covering 1954-2001. The fifth and sixth column of Table 4 display estimates of the

business cycle cost ωd0 using the same weights {ak} as in Tables 1 and 2.
[Insert Table 4]

We estimate the average of the value share of durable consumption equity in total consump-

9We end up truncating the lags at 10 years for the computations. We found that the truncation lag was not

quantitatively important.
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tion equity s0 to be 6% and 4.3% corresponding, respectively, to the spanned part and the upper

bound estimates from the IID cases in Table 1 and 4. These shares are smaller than the av-

erage expenditure share for durable consumption, which for the post-war period is about 13%

of total consumption expenditure. This is because the price/consumption ratios for durables

V0
³n
cd
o´
/cd0 are smaller than V0 ({cns}) /cns0 , the counterparts for nondurables and services. See

appendix D for more details about the calculation of s0.

Finally, combining the estimates of ωns0 , ω
d
0 and s0 as in equation 4.2, we can compute an esti-

mate for the aggregate cost of fluctuations including both durables and nondurable consumption

goods. For the IID case, we estimate the aggregate cost ω0 to be 0.10% based on the prices for

the spanned parts; this is higher than the corresponding estimate of ωns0 = 0.07% for nondurables

and services in Table 1. Using the estimates based on the upper bound of r0 − y, the aggregate
cost is ω̄0 = 0.51%, compared to the corresponding ωns0 = 0.44% for nondurable and services in

Table 1. We conclude that adding durable consumption goods does not significantly change our

estimates.

5 Comparing marginal cost and total cost of consumption fluctuations

In this section, we present some results about the properties of the marginal cost function that

allow us to link our approach more closely to the large literature that has focused on computing

total costs in the line of Lucas (1987). Our main result is a set of conditions under which the

marginal cost is an upper bound for the total cost. We also present an example for the cost of all

uncertainty with expected, time-separable utility. In this case, we show that the marginal cost

equals twice the total cost up to a second-order approximation.10

We start this section by comparing our approach to Lucas (1987). For that purpose, we

define the total cost of consumption fluctuations as Ω(1), that is U ((1 + Ω(1)) {c}) = U ({C}).
Defining the trend consumption to be {C} = {E0 (c)}, that is where C(zt) = E0 (ct) for all t and
zt, we obtain

U ( (1 + Ω(1)) {c} ) = U ( {E0 (c)} ) , (5.1)

which is Lucas’ definition of the cost of business cycles. Thus, Lucas’ definition can be seen as

the total benefit associated with eliminating all the consumption fluctuations, that is, α = 1, and

10Additional results, for instance about consumption externalities, are available in the working paper version

Alvarez and Jermann (2000).
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where consumption fluctuations are defined as consumption uncertainty, that is, resulting in the

exchange of consumption for its expected path.

Note that the specification in equation (5.1) differs slightly from Lucas’ and the literature’s

standard specification because we have chosen to begin compensation as of t = 1; the standard

has been to start compensation at t = 0. We choose this departure because our definition is more

consistent with the idea of ex-dividend security prices, and some of our qualitative results present

themselves more tractably with our definition. In any case, the quantitative difference between

Lucas’ definition and ours should be insignificant.

We provide here also an alternative interpretation of our marginal cost ω0, that is valid with in-

complete markets. For that purpose, assume that for individual agents indexed by i, consumption

is given as

ci = c+ εi,

where εi is the idiosyncratic component and where c = C+ d, so that d stands for the deviation

from the (aggregate) trend. To save on notation, we omit time subscripts. If we then define Ω as

compensating only the aggregate component {c}, so that

U i
³n
(1 + Ωi (α)) c+ εi

o´
= U i

³
(1− α)

n
ci
o
+ α

n
C+ εi

o´
,

and if we assume all agents i have access to claims paying {c} and {C}, we have that

Ω0i (0) =
V [{C}]
V [{c}] − 1 = ω0.

Indeed, under the stated assumptions, even with agents subject to possibly uninsurable idiosyn-

cratic risk, they would end up equalizing their valuations for {c} and {C}.

A. Homothetic preferences and scale-free cost functions

To analyze the marginal cost function, we make the following initial assumptions: U ({c}) is
increasing and concave in {c}. We also assume that the process {C} is preferred to {c}, that is,
U ({C}) > U ({c}). If we require that the cost of fluctuations Ω(α) be the same for the processes
{c} and {C} as for the processes {λc} and {λC}, where λ is any positive scalar, then we must
impose some additional restrictions on the utility function U . This requirement implies that

the cost of consumption fluctuations will not differ merely because economies are rich and poor.

Specifically, we require U to be homothetic; that is, U is homogeneous of degree 1 − γ, i.e., for
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any positive scalar λ > 0, and for any process {c} we have

U (λ {c}) = λ1−γU ({c}) .

Under these assumptions, we obtain that the marginal cost is higher than the total cost.

Proposition 3 Assume that U is increasing, concave, and homothetic. Also assume that {C} is
preferred to {c} , that is, U ({C}) > U ({c}). Then Ω(α) is concave, and thus,

ω ≡ Ω0(0) ≥ Ω(1).

Examples from the literature that satisfy this homogeneity property are the preferences used

in Abel (1999), Epstein and Zin (1991), Mehra and Prescott (1985), and Tallarini (2000).

B. Example: Cost of all uncertainty with expected utility

Now we present some implications for the total and marginal cost Ω and Ω0 with time-

separable, expected utility. We also assume that the trend {C} is given by the expected value
of consumption; that is, we evaluate the elimination of all uncertainty. We assume that con-

sumption fluctuations are small. We show that for an approximation up to the order of the

variance of consumption, the total cost of uncertainty equals half of the marginal cost; that is,

Ω (1) = 1
2
Ω0 (0). In this case, the marginal cost is given by a weighted average of the product

of risk aversion and the variance of consumption for different periods. We also consider a higher

order approximation to examine the role of skewness in consumption fluctuations. We show that

if the period utility function u displays prudence, that is u000 > 0, and if consumption fluctuations

have negative skewness, then we obtain a stronger inequality, that is Ω (1) < 1
2
Ω0 (0).11

Consider the one-period case, where consumption is given by

c = c̄ (1 + σε)

for a zero-mean random variable ε. The parameter σ indexes the amount of risk. The trend is

given by the expected value, that is, C= c̄ ≡ E [c]. Notice that the variance of c is proportional
to σ2–that is, var (c/c̄) = σ2Eε2–and that its third moment is proportional to σ3. We include

σ as an argument of the total and the marginal costs, which are given by

E [u (c (1 + Ω (1,σ)))] ≡ E [u (c̄ (1 + σε) (1 + Ω (1,σ)))] = u (c) , (5.2)

11Rietz (1988) assumes that there is a small probability of a large drop in consumption, motivated by the Great

Depression, and he shows that this leads to a substantial increase in the equity premium.
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Ω0
³
0,σ2

´
=
E [u0 (c) (c̄− c)]
E [u0 (c) c]

≡ −E [u0 (c̄+ c̄σε) (cσε)]
E [u0 (c̄+ c̄σε) (c̄+ cσε)]

. (5.3)

Proposition 4 If E [u0000 (c̄ (1 + ε)) ε4] is finite, then

Ω0 (0,σ) = 2Ω (1,σ)− σ3

6

c̄2u000 (c̄)
u0 (c̄)

Eε3 + o
³
σ3
´
.

where h (σ) = f (σ) + o (σp) means that limσ→0 [h (σ)− f (σ)] /σp = 0.

The proof is standard, and together with additional examples and the multiperiod case can

be found in the working paper version Alvarez and Jermann (2000).

6 Conclusion

The approach developed in this paper allows us to estimate the cost of consumption fluctu-

ations directly from asset prices. Instead of specifying and calibrating a utility function, we use

the idea of no-arbitrage to compare the value of a claim to lifetime consumption and a claim

to stabilized lifetime consumption. Our two main quantitative findings are that the elimina-

tion of all consumption uncertainty would be very valuable while the elimination of consumption

fluctuations at business cycle frequencies is not.
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7 Appendix A: Proofs

Proposition 1. Start by collecting all the terms in {C}∞t=1 that involve a ct for some arbitrary
t ≥ 1. To do this consider the dividend paid by the consumption-trend asset at times t, t + 1,
..., t +K :Ct : a0ct + ...,Ct+1 = ... + a1 (1 + g) ct + ..., and Ct+K = ... + aK (1 + g)

K ct. Due to

the constant interest rates, we can assign a value to each of the terms that include a ct through

simple replication, so that

V0 [Ct] = a0V0 [ct] + ....

V0 [Ct+1] = a1 (1 + g)V [ct] / (1 + y) + ...

...

V0 [Ct+K ] = ...+ aK (1 + g)
K V0 [ct] / (1 + y)

K .

where V0 [ct] is the price at time zero of a claim to ct at time t. Clearly, V0 [{ct}∞t=1] =
P∞
t=1 V0 [ct].

Thus, collecting the terms that have common factor V0 [ct] :

V0 [ct]

a0 + a1 (1 + g)1 + y
+ a2

Ã
1 + g

1 + y

!2
+ ...+ aK

Ã
1 + g

1 + y

!K ,
There is an expression like this one for each t ≥ 1. The remaining payoffs at time t = 1, 2, ..,K that

correspond to consumption values c0, c−1, ..., c−K are grouped in a similar fashion. Rearranging

terms and using the assumption that 1 + g = c0/c−1 = c2−K/c1−K,

V0

"½
Ct
c0

¾∞
t=1

#
=

a11 + g
1 + y

+ a2

Ã
1 + g

1 + y

!2
+ ...+ aK

Ã
1 + g

1 + y

!K
+

a21 + g
1 + y

+ a3

Ã
1 + g

1 + y

!2
+ ...+ aK

Ã
1 + g

1 + y

!K−1
+...+ aK

1 + g

1 + y

+V0

"½
ct
c0

¾∞
t=1

#a0 + a1 (1 + g)1 + y
+ a2

Ã
1 + g

1 + y

!2
+ ...+ aK

Ã
1 + g

1 + y

!K .
equation (1.4) is derived through the following steps. Using the definition of ω0, rearranging terms

and using the definition for r0,
r0−g
1+g

= c0
V0[{ct}∞t=1]

, gives

1 + ω0 = a0

+a1

(
r0 − g
1 + g

"
1 + g

1 + y

#
+
1 + g

1 + y

)
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+a2

r0 − g1 + g

1 + g
1 + y

+

Ã
1 + g

1 + y

!2+ Ã
1 + g

1 + y

!2
+...

+aK

r0 − g1 + g

1 + g
1 + y

+ ...+

Ã
1 + g

1 + y

!K+ Ã
1 + g

1 + y

!K .
Defining w0,t =

³
r0−g
1+g

´ ³
1+g
1+r0

´t
, and replacing in the last expression gives (1.4) after some arrangements.

Proposition 2. Assuming that a0 = a1 = ... = aK−1 = 0 and aK = 1, the last equation in the

proof of Proposition (1) can be written as

1 + ω0 =
KX
t=1

w0,t

Ã
1 + r0
1 + y

!t
+

Ã
1 + r0
1 + y

!K ∞X
t=K+1

w0,t

Take the limit as K →∞

1 + lim
K→∞

ω0 = lim
K→∞

KX
t=1

w0,t

Ã
1 + r0
1 + y

!t
= lim

K→∞

KX
t=1

Ã
r0 − g
1 + g

!µ
1 + g

1 + r0

¶t Ã1 + r0
1 + y

!t

=

Ã
r0 − g
1 + g

!
lim
K→∞

KX
t=1

Ã
1 + g

1 + y

!t
=

Ã
r0 − g
1 + g

!Ã
1 + g

1 + y

!
1

1− 1+g
1+y

=
r0 − g
y − g

where we have used that

lim
K→∞

Ã
1 + r0
1 + y

!K ∞X
t=K+1

w0,t = lim
K→∞

Ã
1 + r0
1 + y

!K µ
1 + g

1 + r0

¶K
= lim

K→∞

Ã
1 + g

1 + y

!K
= 0.

Proposition 3. If U is increasing and concave in {c}, there must exist a utility function v that
is homogeneous of degree one, positive, and quasiconcave, and satisfies

U ({c}) = [v ({c})]1−γ
1− γ

.

To start, we show that Ω(α) is concave in α. By homogeneity of U ,

(1 + Ω(α))1−γ
[v ({c})]1−γ
1− γ

=
[v ((1− α) {c}+ α {C})]1−γ

1− γ
.

Thus, after multiplying by (1− γ) , taking the 1/(1− γ) power, and dividing by v ({c}) on both
sides, we obtain that

1 + Ω(α) =
v ((1− α) {c}+ α {C})

v ({c}) .
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Since v (·) is positive, quasiconcave and homogeneous of degree one, it is concave. With (1 −
α) {c} + α {C} linear in α, v(·) is also concave in α; thus, Ω(α) is concave. Now we use the

concavity to obtain the desired relationships,

Ω(1) = Ω(0) +
Z 1

0
Ω0(α)dα ≤ Ω0(0),

where the inequality uses Ω (0) = 0, the concavity of Ω, and that α ≤ 1.

8 Appendix B.

Approximation for the marginal cost of business cycles. Starting with equation 1.4, and

assuming a > 0, we obtain the following inequality

ω0 =
∞X
t=1

w0,t
KX
k=0

ak

Ã
1 + r0
1 + y

!min{t,k}
− 1 (8.1)

=
KX
t=1

w0,t
KX
k=0

ak

Ã
1 + r0
1 + y

!min{t,k}
+

∞X
t=K+1

w0,t
KX
k=0

ak

Ã
1 + r0
1 + y

!k
− 1

≤
"
KX
t=1

w0,t

#
KX
k=0

ak

Ã
1 + r0
1 + y

!k
+

"
1−

KX
t=1

w0,t

#
KX
k=0

ak

Ã
1 + r0
1 + y

!k
− 1

=
KX
k=0

ak

Ã
1 + r0
1 + y

!k
− 1

with equality if a0 = 1, and a1 = ... = aK = 0. Thus, to the extent that not too much weight is

given to the a0s corresponding to long lags, the inequality is close to an equality. Moreover, using

a first order approximation around r0 = y = 0,

KX
k=0

ak

Ã
1 + r0
1 + y

!k
− 1 ∼=

KX
k=0

ak (1 + k (r0 − y))− 1 = (r0 − y) ·
KX
k=0

akk

9 Appendix C: Recursive pricing approaches

We present here our recursive approaches to deriving price-dividend ratios v∗ and v. To obtain

the price-dividend ratio v∗ we define the operator T ∗ : Rn+ → Rn+ given by

T ∗ (v) (s) = b (s)T · p (s)

for each s ∈ S, where b (s)T ·x (z0) is the linear projection of [1 + g (z0)] [1 + v (s0)] into x (z0), that
is, it solves

[1 + g (z0)] [1 + v (s0)] = b (s)T · x (z0) + u (z0)
0 =

X
s0∈S

Z
x (s0, ε0)u (s0, ε0) dF (ε0|s0)π (s0|s)
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for each s ∈ S, with u orthogonal to x. The price-dividend ratio v∗ of the spanned part of the
consumption equity is given by the fixed point of T ∗:

T ∗ (v∗) (s) = v∗ (s) .

More explicitly, substitute out b (s)

b (s) = Es
³
x (z0)x (z0)T

´−1
Es (x (z

0) ([1 + g (z0)] [1 + v (s0)]))

=

X
s0∈S

Z
x (s0, ε0)x (s0, ε0)T dF (ε0|s0)π (s0|s)

−1 ×
X
s0∈S

Z
(x (s0, ε0) ([1 + g (z0)] [1 + v (s0)])) dF (ε0|s0)π (s0|s) .

We now describe a recursion whose fixed point is the price-dividend ratio vt =V t/ct in the

Markov regime switching setting described above. For this, we let the stochastic discount factor

mt+1 = m (εt+1, st+1) be a function of εt+1 and st+1, and the price-dividend ratio vt = v (st) be a

function of st.We define the operator T : R
n
+ → Rn+ as

T (v) (s) = min
m∈Rn+

X
s0∈S

Z
m (ε0, s0) [1 + g (ε0, s0)] [1 + v (s0)] dF (ε0|s0) · π (s0|s)

subject to

p (s) =
X
s0∈S

Z
[ m (ε0, s0) x (ε0, s0) ] dF (ε0|s0) · π (s0|s)

X
s0∈S

Z
m (ε0, s0)2 dF (ε0|s0) · π (s0|s) ≤ h (s)2 + 1

(1 + y)2

where h (s) is the bound on the conditional Sharpe ratio. The lower good deal bound for the

price dividend ratio of the consumption equity is the fixed point of this operator, that is,

T (v) (s) = v (s)

for all s ∈ S.

10 Appendix D: Filter coefficients

a = [ 0.6250 0.2251 0.1592 0.0750 -0.0000 -0.0450 -0.0531

-0.0322 0.0000 0.0250 0.0319 0.0205 -0.0000 -0.0173

-0.0228 -0.0150 0.0000 0.0133 0.0177 0.0119 -0.0191 ].
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11 Appendix E: Durable consumption shares

Rearranging the expression in the text gives

s0 =


∂U/∂cd0
∂U/∂cns0

cd0

cns0


V d0

³n
cd
o´

cd0
/

V ns0 ({cns})
cns0

+


∂U/∂cd0
∂U/∂cns0

cd0

cns0


V d0

³n
cd
o´

cd0


for the share of value of durable consumption equity to aggregate consumption equity. The

following steps explain how we find an empirical counterpart to s0. Tables 1 and 2 provides

estimates for V ns0 ({cns}) /cns0 . In the text we describe how to estimate V d0
³n
cd
o´
/cd0, which is

implemented in Table 4. Thus, the remaining task is to estimate
∂U/∂cd0
∂U/∂cns0

cd0 /c
ns
0 , which is the ratio

of the value of durables consumption to the value of consumption of nondurables and services.

To do this, we use assume that the stock of durables evolves as

cdt = c
d
t−1 (1− δ) + et, (11.1)

where δ is the depreciation rate. Rearranging the equation we get

cdt = et

 1

1− (1− δ) /
³
1 + gdt

´
 ,

with 1 + gdt ≡ cdt /cdt−1.
In this setting, the per period user cost of the stock of durables, that is, the cost of having one

more unit of durables for one period, measured in units of the stock of durables goods, is yd+δ
1+yd

,

where yd is the durable goods interest rate. A consumer’s first-order condition for the choice of

durables versus non-durables is

∂U/∂cdt (z
t)

∂U/∂cnst (zt)
= P det

³
zt
´ yd + δ

1 + yd
, (11.2)

where P det (z
t) is the price of durable expenditure goods relative to non-durable goods. The

quantity P det (z
t) (δ + r) /

³
1 + yd

´
is the relative price of one durable in period t in terms of period

t non-durable goods. Multiplying (11.2) by cdt (z
t) /cnst (z

t) and substituting cdt (z
t) in terms of

expenditures et (z
t), depreciation rate δ, and growth rate of durables’ consumption gdt , we obtain

∂U/∂cdt (z
t)

∂U/∂cnst (zt)

cdt (z
t)

cnst (zt)
=
P det (z

t) et (z
t)

cnst (zt)

³
yd + δ

´
/
³
1 + yd

´
³
1− (1− δ) /

³
1 + gdt

´´ .
We generate a series for gdt using NIPA durable goods expenditure starting from a level that gives

us the same average growth rate over the sample as for expenditure. For the ratio of the expendi-

ture of durables to the expenditure share of non-durables and services, P det (z
t) et (z

t) /cnst (z
t), we
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generate a series from the NIPA counterpart covering the whole period. The average of this series

is 0.15, corresponding to a durable expenditure share of 0.13=.15/(1+.15). Based on depreciation

rates published by the BEA we choose a constant annual depreciation rate of 17.5%. Note, the

BEA’s reported durable goods expenditure main components are, based on the first quarter of

2001, motor vehicles and parts, about 43%, and furniture and household equipment, about 37%.

Combining the series for
∂U/∂cdt (zt)
∂U/∂cnst (z

t)

cdt (zt)
cnst (z

t)
with the price/dividend ratios in Table 1 and Table 4 for

the IID cases, we report the sample average for s0. Note, the interest rate in durables y
d = 5.08%,

is estimated as the sample average of the nominal interest rate minus the durable goods prices

inflation; and the growth rate of durable stock g = 4.34%, is taken to be the average growth rate

of durable expenditure.
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R2

upper bound upper bound upper bound

1954-2001
  R(Market) 0.0019 0.0117 0.17 0.0007 0.0044 0.28 1.70
  R(10dec) 0.0027 0.0100 0.38 0.0010 0.0038 0.39 1.45
  R(17ind) 0.0020 0.0054 0.48 0.0007 0.0019 0.29 0.78

1889-2001
  R(Market) 0.0056 0.0330 0.24 0.0021 0.0125 2.19 17.22
1927-2001
  R(10dec) 0.0056 0.0222 0.44 0.0021 0.0084 2.44 9.59
  R(17ind) 0.0044 0.0167 0.47 0.0017 0.0064 1.91 7.24

r-y stands for the consumption risk premium; R2 is from the regression of returns on 
consumption growth. R(Market) stands for the CRSP value-weighted return covering NYSE 
and AMEX. R(10dec) stands for the returns of the 10 CRSP size-decile portfolios; R(17ind) 
stands for the returns of the 17 industry portfolios from French. Average interest rates and 
growth rates are at y=0.0296 and g=0.0227 for 1954-2001, y=0.0215 and g=0.0196 for 1889-
2001, and y=0.0216 and g=0.0193 for 1927-2001. 

TABLE 1

Marginal cost of consumption fluctuations, IID case, for selected reference portfolios

business cycles all uncertainty
r-y ω ω



R2

upper bound upper bound upper bound

1954-2001
VAR(1) for consumption growth and returns
  R(Market) 0.0011 0.0177 0.02 0.0004 0.0067 0.16 2.57
  R(10dec) 0.0014 0.0172 0.06 0.0005 0.0065 0.21 2.50
  R(17ind) 0.0028 0.0147 0.48 0.0011 0.0056 0.40 2.14

Regime switching process for consumption growth and returns
  R(Market) 0.0021 0.0164 0.16 0.0008 0.0062 0.31 2.38
  R(10dec) 0.0027 0.0135 0.38 0.0010 0.0051 0.39 1.95
  R(17ind) 0.0018 0.0114 0.47 0.0007 0.0043 0.27 1.66

r-y is the unconditional mean of the consumption risk premium obtained from the model; 
R(Market) stands for the CRSP value weighted return covering NYSE and AMEX. R(10dec) 
stands for the return of the combination of the 10 CRSP size-decile portfolios that best replicate 
consumption in a least square sense; R(17ind)  stands for the return of the combination of 17 
industry portfolios from French that best replicate consumption in a least square sense. R2 is the 
unconditional mean of the one step-ahead R-square obtained from the model. Average interest 
rates and growth rates are at y=0.0296 and g=0.0227 for 1954-2001.

TABLE 2

Marginal cost of consumption fluctuations, non IID case, with portfolio best fitting consumption

business cycles all uncertainty
r-y ω ω



Factors Returns r-y
business cycles all uncertainty

1954-2001 ∆c Market 0.0111 0.0042 1.61
∆c, R(Market) Market, R(10)-R(1) 0.0021 0.0008 0.31

1927-2001 ∆c Market 0.0160 0.0061 7.02
∆c, R(Market) Market, R(10)-R(1) 0.0349 0.0133 15.36

ω

TABLE 3

Marginal cost of consumption fluctuations with consumption as a factor

r-y is the consumption risk premium. R(Market) stands for the CRSP value-weighted return 
covering NYSE and AMEX. R(10) and R(1) are the largest and smallest of the ten CRSP size-
decile portfolios. Average interest rates and growth rates are at y=0.0296 and g=0.0227 for 1954-
2001, respectively, y=0.0216 and g=0.0193 for 1927-2001.



R2

upper bound upper bound upper bound

IID case 0.0143 0.0577 0.31 0.0053 0.0213 1.95 7.85
VAR(1) 0.0045 0.0658 0.03 0.0017 0.0243 0.62 8.96
Regime switching 0.0148 0.0649 0.31 0.0055 0.0240 2.01 8.84

TABLE 4

Marginal cost of flucations in durable goods consumption (1954-2001)

r-y is the consumption risk premium, for the non-IID cases it is the unconditional mean obtained 
from the model. The return used is the CRSP value-weighted return covering NYSE and AMEX. 
R2 is from the regression of returns on growth rates of durable consumption expenditure for the 
IID case; otherwise, it is the unconditional mean of the one step ahead R2 obtained from the 
model. Average interest rates and consumption growth rates y = 0.0508 and g = 0.0434.

business cycles all uncertainty
r-y ω ω
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