
Aggregate Asset Pricing

• Explaining basic asset pricing facts with models that are consistent
with basic macroeconomic facts

— Models with quantitative implications

• Starting point: Mehra and Precott (1985), “Equity premium puzzle”

— Asset prices in macroeconomic model: representative agent and

time-separable utility

— Main result: tiny premium because consumption too smooth



Incomplete markets

• Trade bonds and stocks (Heaton and Lucas 1996)

— Need very persistent income shocks

— Need countercyclical consumption variance (Mankiw 1986, Con-

stantinides and Duffie 1996)

• Refinements: OLG models (Storesletten, Telmer and Yaron, Constan-
tinides, Donaldson and Mehra 2002)



Preferences

• Nonexpected utility (Epstein and Zin 1989, Weil 1989)

— Separate risk aversion and intertemporal elasticity of substitution

• Habit formation (Constantinides 1990, Abel 1990)

— High equity premium but volatile interest rates

• Refinement: Campbell and Cochrane (1999) “Nonlinear habit”

— Constant interest rates and time varying risk aversion



Diagnostic tool

• Volatility bound for stochastic discount factor (Hansen and Jagan-
nathan, 1991)

— Sharpe ratio is a lower bound for volatility of stochastic discount

factor

• Refinement: Luttmer (1996) volatility bound with frictions



Recent developments

• Stocks and bonds, unconditional and conditional moments, cross-
section

• Housing (Piazzesi, Schneider and Tuzel, Lustig and VanNieuwerburgh,
Yogo)

— Asset

— Consumption good

— Collateral



• Long run (Bansal and Yaron, Hansen, Heaton and Li)

— Long run properties of consumption and dividend process

• Corporate finance (Dow, Gorton and Krishnamurthy)

• Default

— early models: default risk (Alvarez and Jermann, 2000)

— more recent: default with incomplete markets (Chatterjee,Corbae,

Nakajima and Rios-Rull, Arellano)



Session:

• Abel, Equity premia with benchmark levels of consumption and dis-
torted beliefs: Closed-form results

• Routledge and Zin, Generalized disappointment aversion and asset
prices

• Alvarez and Jermann, Using asset prices to measure the persistence of
the marginal utility of wealth



Properties of asset pricing kernels
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Uses of bound

• Diagnostic for asset pricing models

• Provides information for persistence of macro shocks

— In many casesM (Ct, ...) :→ Ct needs large permanent component

∗ Cost of consumption uncertainty; Dolmas (1998), Alvarez and
Jermann (2000)

∗ Volatility of Ct, It and Nt; Hansen (1997)

∗ International comovements; Baxter and Crucini (1995)

∗ Unit roots; Long and Plosser (1982), Cochrane (1988)



• Price of security paying D at time t+ k

Vt
¡
Dt+k

¢
= Et

Ã
Mt+k

Mt
·Dt+k

!

• Holding return for discount bond, paying 1 at time t+ k
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• Return of Long Term discount bond: limk→∞Rt+1,k ≡ Rt+1,∞



Multiplicative decomposition

Given a set of assumptions on Mt, we have a decomposition
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Assumptions for Existence of Multiplicative Decomposition

1. There is an asymptotic discount factor β:
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Volatility/Size of Permanent Component of Pricing Kernel

Under assumptions (1-2) we have
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for any return Rt+1 and where L (·) is Theil’s 2nd entropy measure

L (xt+1) ≡ logE [xt+1]−E [log xt+1]



L (x) ≡ logEx−E log x

• Consider the general measure: f (E [x])−E [f (x)] for f concave
(f (x) = log (x) , f (x) = −x2)

— L (x), indexes risk in the Rothshild and Stiglitz sense

• If x is log-normal, then L (x) = 1/2 var (log x)

• Has nice homogeneity properties (used to analyze inequality)

• Conditional vs unconditional: L (x) = E [Lt (x)] + L [Et (x)], just as

variance: V ar (x) = E [V art (x)] + V ar [Et (x)].



Complementing result

Definition. We say that Xt has no permanent innovations if
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Example: Lognormal random walk — All innovations are permanent

Assume that
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Example: IID Pricing kernel — No permanent innovations

Assume that
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• Bonds have highest log returns:
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• Measure volatility of permanent component of kernels vs total volatility
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• We assume enough regularity so that
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In this case, we show that can use alternative measures for term spread,
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Table 1
Size of Permanent Component Based on Aggregate Equity and Zero-Coupon Bonds

(1) (2) (3) (4) (5) (6)
Maturity Equity Term L(1/R1) Size of    (1)-(2) P[(5) < 0]

Premium Premium Adjustment Permanent
for volatility Component  E[log(R/R1)]

E[log(R/R1)] E[log(Rk/R1)] of short rate L(P)/L -E[log(Rk/R1)]

A. Forward Rates   E[f(k)] Holding Period is 1 Year

25 years 0.0664 -0.0004 0.0005 0.9996 0.0669 0.0003
(0.0169) (0.0049) (0.0002) (0.0700) (0.0193)

29 years -0.0040 1.0520 0.0704 0.0030
(0.0070) (0.1041) (0.0256)

B. Holding Returns   E[h(k)] Holding Period is 1 Year

25 years 0.0664 -0.0083 0.0005 1.1164 0.0747 0.0145
(0.0169) (0.0340) (0.0002) (0.5186) (0.0342)

29 years -0.0199 1.2899 0.0863 0.0266
(0.0469) (0.7417) (0.0446)

C. Yields   E[y(k)] Holding Period is 1 Year

25 years 0.0664 0.0082 0.0005 0.8701 0.0582 0.0015
(0.0169) (0.0033) (0.0002) (0.0534) (0.0196)

29 years 0.0082 0.8706 0.0582 0.0050
(0.0035) (0.0602) (0.0226)

D. Yields   E[y(k)] Holding Period is 1 Month

25 years 0.0763 0.0174 0.0004 0.7673 0.0588  0.0028
(0.0180) (0.0031) (0.0002) (0.0717) (0.0213)

29 years 0.0168 0.7755 0.0595   0.0067
(0.0033) (0.0795) (0.0241)

For A., term premia (2) are given by one-year forward rates for each maturity minus one-year yields for each 
month. For B., term premia (2) are given by overlapping holding returns minus one-year yields for each month. 
For C., term premia (2) are given by yields for each maturity minus one-year yields for each month. For A., B., 
and C., equity excess returns are overlapping total returns on NYSE, Amex, and Nasdaq minus one year yields 
for each month. For D., short rates are monthly rates. Newey-West asymptotic standard errors using 36 lags are
shown in parentheses. P values in (6) are based on asymptotic distributions. The data are monthly from 
1946:12 to 1999:12. See Appendix B for more details.                                                                                            
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Table 2
Size of Permanent Component Based on Growth-Optimal Portfolios and 25-Year Zero-Coupon Bonds

(1) (2) (3) (4) (5) (6)
Growth Term L(1/R1) Size of    (1)-(2) P[(5) < 0]
Optimal Premium Adjustment Permanent

for volatility Component  E[log(R/R1)]
E[log(R/R1)] E[log(Rk/R1)] of short rate L(P)/L -E[log(Rk/R1)]

A. Growth-Optimal Leveraged Market Portfolio, (Portfolio weight: 3.46 for monthly holding period, 2.14 for yearly)

One-year holding period
Forward rates 0.1095 -0.0004 0.0005 0.9998 0.11 0.0093

(0.0402) (0.0049) (0.0002) (0.0426) (0.0467)

Holding return -0.0083 1.0708 0.1178 0.0092
(0.0340) (0.3203) (0.050)

Yields 0.0082 0.9210 0.1013 0.0159
(0.0033) (0.0381) (0.0472)

One-month holding period
Yields 0.1689 0.0174 0.0004 0.8946 0.1515 0.0317

(0.0686) (0.0031) (0.0002) (0.0519) (0.0816)

B. Growth-Optimal Portfolio Based on the 10 CRSP Size-Decile Portfolios

One-year holding period
Forward rates 0.1692 -0.0004 0.0005 0.9999 0.1697 0.0005

(0.0437) (0.0049) (0.0002) (0.0276) (0.0519)

Holding return -0.0083 1.0459 0.1775 0.0004
(0.0340) (0.2053) (0.0628)

Yields 0.0082 0.9488 0.161 0.0008
(0.0033) (0.0199) (0.0512)

One-month holding period
Yields 0.2251 0.0174 0.0004 0.9209 0.2076 0.0089

(0.0737) (0.0031) (0.0002) (0.0320) (0.0872)



Table 3
Size of Permanent Component Based on Aggregate Equity and Coupon Bonds

(1) (3) (4) (5)
E[logR/R1] E[y] E[h] L(1/R1) L(P)/L (1)-(2) P[(5) < 0]
Equity Adjustment Size of Permanent
Premium Component

US 1872-1999 0.0494 0.0034 0.0003 0.9265 0.0461 0.0003
(0.0142) (0.0028) (0.0001) (0.054) (0.0136)

0.0043 0.9077 0.0452 0.0006
(0.0064) (0.1235) (0.0139)

1946-99 0.0715 0.0122 0.0004 0.8245 0.0593 0.0007
(0.0193) (0.0025) (0.0001) (0.0462) (0.0185)

0.006 0.9113 0.0656 0.0004
(0.0129) (0.1728) (0.0196)

(1) (3) (4) (5)
E[logR/R1] E[y] E[h] J(1/R1) J(P)/J (1)-(2) P[(5) < 0]
Equity Adjustment Size of Permanent
Premium Component

UK 1801-1998 0.0239 0.0002 0.0003 0.9781 0.0237 0.0014
(0.0083) (0.0020) (0.0001) (0.0808) (0.0079)

0.0036 0.8361 0.0202 0.0053
(0.0058) (0.2228) (0.0079)

1946-98 0.0604 0.0092 0.0007 0.8370 0.0511 0.0074
(0.0198) (0.0038) (0.0002) (0.0904) (0.0210)

0.0018 0.9583 0.0585 0.0006
(0.0143) (0.2289) (0.0181)

(1) Average annual log return on equity minus average short rate for the year.
(2) Average yield on long-term government coupon bond minus average short rate for the year.
(3) Average annual holding period return on long-term government coupon bond minus average short rate for the year.
Newey-West asymptotic standard errors with 5 lags are shown in parentheses.  See Appendix B for more details.

(2)

(2)

Term
Premium

Term 
Premium
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Volatility/Size of Transitory Component

Under assumptions (1-2) with MT
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Bonds with finite maturities

• Example. Assume that

logMt+1 = log δ
t+1 + logXt+1

logXt+1 = ρ logXt + εt+1,

with εt+1 ∼ N(0,σε)

— Then

h (k) =
σ2ε
2

³
1− ρ2(k−1)

´



Table 4
Required Persistence for Bonds with Finite Maturities

Maturity
(years) 0 0.50% 1% 1.50%

10 1.0000 0.9986 0.9972 0.9957
20 1.0000 0.9993 0.9987 0.9980
30 1.0000 0.9996 0.9991 0.9987

Table 5
The Size of the Permanent Component due to Inflation

1947-99 AR(1) AR(2) σ2 Size of permanent component

AR1 0.66 0.0005 0.0021 (0.0009)
AR2 0.87 -0.24 0.0004 0.0015 (0.0006)
(1/2k) var(log Pt+k/Pt) k=20 0.0043 (0.0031)

k=30 0.0030 (0.0027)

 L( Pt/Pt+k) / var(log Pt+k/Pt) (k=20) 0.51
(k=30) 0.51

1870-1999 AR(1) AR(2) σ2 Size of permanent component

AR1 0.28 0.0052 0.0049 (0.0013)
AR2 0.27 0.00 0.0052 0.0050 (0.0006)
(1/2k) var(log Pt+k/Pt) k=20 0.0077 (0.0035)

k=30 0.0067 (0.0038)

 L( Pt/Pt+k) / var(log Pt+k/Pt) (k=20) 0.51
(k=30) 0.49

For the AR(1) and AR(2) cases, the size of the permanent component is computed as one-half of the 
spectral density at frequency zero. The numbers in parentheses are standard errors obtained through 
Monte Carlo simulations. For (1/2k) var(log Pt+k/Pt ), we have used the methods proposed by Cochrane 
(1988) for small sample corrections and standard errors. See our discussion in the text for more details.

Term spread



Nominal versus real pricing kernels

• Assume that all permanent volatility is due to the aggregate price level,
so that the (nominal) kernel is:

Mt =
1
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t ,

and MT
t is the real kernel and has no permanent innovations.

• Let R$t+1 be the nominal return, and the real return R̄t+1 ≡ R
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• Compare permanent component of 1/Pt with lower bound:
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logRt+1 − logRt+1,∞

i ∼= 20%

• To measure the size of the permanent component of 1/Pt use:
Proposition: (summarized). Assume that Xt has a permanent and
a transitory component:

Xt = XPt X
T
t ,

Et
h
XPt+1

i
= XPt and XT has no permanent innovations

then, under regularity conditions,

L

⎛⎝XPt+1
XPt

⎞⎠ = lim
k→∞

1

k
L

Ã
Xt+k
Xt

!
.

( Related to Cochrane (1988) )



Table 4
Required Persistence for Bonds with Finite Maturities

Maturity
(years) 0 0.50% 1% 1.50%

10 1.0000 0.9986 0.9972 0.9957
20 1.0000 0.9993 0.9987 0.9980
30 1.0000 0.9996 0.9991 0.9987

Table 5
The Size of the Permanent Component due to Inflation

1947-99 AR(1) AR(2) σ2 Size of permanent component

AR1 0.66 0.0005 0.0021 (0.0009)
AR2 0.87 -0.24 0.0004 0.0015 (0.0006)
(1/2k) var(log Pt+k/Pt) k=20 0.0043 (0.0031)

k=30 0.0030 (0.0027)

 L( Pt/Pt+k) / var(log Pt+k/Pt) (k=20) 0.51
(k=30) 0.51

1870-1999 AR(1) AR(2) σ2 Size of permanent component

AR1 0.28 0.0052 0.0049 (0.0013)
AR2 0.27 0.00 0.0052 0.0050 (0.0006)
(1/2k) var(log Pt+k/Pt) k=20 0.0077 (0.0035)

k=30 0.0067 (0.0038)

 L( Pt/Pt+k) / var(log Pt+k/Pt) (k=20) 0.51
(k=30) 0.49

For the AR(1) and AR(2) cases, the size of the permanent component is computed as one-half of the 
spectral density at frequency zero. The numbers in parentheses are standard errors obtained through 
Monte Carlo simulations. For (1/2k) var(log Pt+k/Pt ), we have used the methods proposed by Cochrane 
(1988) for small sample corrections and standard errors. See our discussion in the text for more details.

Term spread



Direct Evidence about Real Kernel: U.K. Inflation-Indexed Bonds

• No short rate because of indexation lag, focus on absolute volatility of
permanent component

L
³
MP
t+1/M

P
t

´
≥ E

h
logRt+1 − logRt+1,∞

i

• Nominal kernel: Rt+1 ≡ nominal stock return,

Rt+1,∞ ≡ nominal forward/yield nominal bond

• Real kernel: Rt+1 ≡ nominal stock return minus inflation,

Rt+1,∞ ≡ forward/yield of indexed bond



Table 6
Inflation-Indexed Bonds and the Size of the Permanent Component of Pricing Kernels, U.K. 1982-99

(1) (3) (4) (6)
(1)-(2) (1)-(4)-(5)

Size of Size of
Maturity Equity Forward Yield Permanent Inflation Forward Yield Permanent
years Component Rate Component

E[log(R)] E[log(F)] E[log(Y)] L(P) E[log(π)] E[log(F)] E[log(Y)] L(P)

25 0.1706 0.0762 0.0944 0.0422 0.0342 0.0943
(0.0197) (0.0040) (0.0212) (0.0063) (0.0023) (0.0230)

0.0815 0.089 0.0347 0.0937
(0.0046) (0.0200) (0.0018) (0.0224)

Real and nominal forward rates and yields are from the Bank of England. Stock returns and inflation rates are from 
Global Financial Data. Asymptotic standard errors, given in parenthesis, are computed with the Newey-West method 
with 3 years of lags and leads.

(2)

Nominal Kernel Real Kernel

(5)



Consumption

• Assume Mt = β (t) f
³
ct,xt

´

• Result: For most utility functions, ct needs to have permanent inno-
vations for Mt to have permanent innovations

• Example. CRRA, Mt = β (t) c−γt , with log ct+1 = ρ log ct + εt+1,

ε ∼ N
³
0,σ2

´
Et+1

£
Mt+k

¤
Et
£
Mt+k

¤ = exp

Ã
γρ(k−1)εt+1 −

γ2

2
ρ2(k−1)σ2

!



Epstein-Zin-Weil preferences: Proposition does not apply

Mt+1

Mt
=

⎡⎣β ÃCt+1
Ct

!−ρ⎤⎦θ " 1

Rct+1

#1−θ
,

with θ = 1−γ
1−ρ, Rct+1 =

V ct+1+Ct+1
V ct

and V ct = Vt
h©
Ct+k

ª∞
k=1

i
thus

Mt = βtθ · Y θ−1
t · C−ρθt , with Yt+1 = Yt ·Rct+1; (Y0 = 1)

Proposition: Assume Epstein-Zin-Weil preferences and Ct = τ tct, with ct
iid, then the pricing kernel has permanent innovations.



Permanent Component of Consumption

• Using consumption data we measure

L

⎛⎝CPt+1
CPt

⎞⎠ /LÃCt+1
Ct

!
,

• Note that,

L
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Ct

!
= L

⎛⎝βU 0Pt+1
U 0Pt

⎞⎠ /LÃβU 0t+1
U 0t

!

if U 0 (Ct) = C
−γ
t and Ct log-normal.
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Conclusion

• We derive a lower bound for the permanent component of asset pricing
kernels

• We estimate the volatility of the permanent component to be about
as large as the volatility of the discount factor itself

• For simple preferences ( Mt = βtU (Ct) ) this implies that consump-

tion has permanent innovations




