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Abstract

We study the asset pricing implications of an economy where solvency
constraints are endogenously determined to deter agents from defaulting
while allowing as much risk sharing as possible. To highlight the differ-
ences with standard models we solve analytically for efficient allocations
and for the corresponding asset prices, portfolios holdings, and solvency
constraints for a simple example. Then we calibrate a more general model
to US aggregate as well as idiosyncratic income processes. We find equity
premia, risk premia for long term bonds, and Sharpe ratios of magnitudes
similar to the US data for low risk aversion and a low time-discount factor.
The equilibrium in the calibrated economy displays little risk sharing; when-
ever solvency constraints bind, they allow for small amounts of borrowing.
To explain the intuition behind the results for the calibrated economy we
characterize the deviations from independence of aggregate and individual
income uncertainty that produce equity and term premia.

*We would like to thank for the comments and suggestions from O. Attanazio, D. Backus,
V. Chari, H. Cole, B. Dumas, T. Kehoe, N. Kocherlakota, D. Levine, E. Prescott, F. Perri, N.
Stokey, A. Yaron and two referees. Alvarez thanks the NSF for financial support.



1. Introduction

It is difficult to make a debtor pay: debt collection, litigation, and wage gar-
nishment are costly, and the end result is uncertain because of the possibility of
declaring bankruptcy. Motivated by these difficulties, we study a model where
individuals with large financial obligations cannot contract further debts that
would make them choose to default. In the model, individual income risks are
only incompletely shared and become one of the determinants of asset prices.

In a companion paper, Alvarez and Jermann (2000), we present a framework
for studying the asset pricing implications when agents can default on their debts,
built on earlier work by Kehoe and Levine (1993). In the model, agents default on
their debts if this makes them better off. We assume that if agents default, their
labor earnings cannot be seized, but they are excluded from asset markets forever.
In our equilibrium concept, this lack of commitment results in state-specific and
agent-specific borrowing constraints. These constraints ensure that agents will
not default, since they will never owe so much as to make them choose to default.
At the same time, the constraints ensure that there is as much risk-sharing as
possible. In this paper, we focus on the quantitative effects of these endogenous
solvency constraints for asset returns.

Our work is related to the asset pricing literature that studies the effects of
portfolio restrictions, such as He and Modest (1995) and Luttmer (1996) among
others. He and Modest (1995) conclude that “none of the market frictions alone—
with the possible exception of solvency constraints—can explain the apparent re-
jection of the first-order equilibrium condition between consumption and asset
returns.” In this paper we use a fully specified theory that endogenously deter-
mines both asset prices and solvency constraints.

We start by presenting a set of results about general properties of equilibrium
allocations. Since the welfare theorems hold, we characterize equilibria by solving
a planning problem. We prove that incomplete risk-sharing is possible only for
low risk aversion, low time preference parameter, and for persistent but not too
volatile individual shocks.

We characterize analytically the efficient allocations and the corresponding
asset prices, portfolio holdings, and solvency constraints for a simple case. We
characterize the type of parameters that deliver different levels of risk-sharing,
show that the interest rate is lower than in economies without solvency constraints,
and illustrate that poor agents face binding solvency constraints. We calibrate
it to a simple individual income process and show that for low risk aversion the



pricing kernel can be volatile enough to pass the Hansen-Jagannathan test.

For a detailed quantitative analysis we specify an endowment process that
allows varying degrees of dependence between aggregate and individual income
uncertainty. Using moderate values for risk aversion and low time-discount factors,
and calibrating the income processes to aggregate and household U.S.-data, the
model generates risk premia for equity and for long term bonds similar to the one
in the US data. The equilibrium allocations for the calibrated economy exhibit
limited risk sharing, which is attained by solvency constraints that, when they
bind, allow for small amounts of debt. In this case there is no “risk-free rate
puzzle,” as interest rates are lower than in the corresponding representative agent
economy. In fact, to explain risk-free rates in the order of 1% per annum, the
model requires a time-discount factor that is lower than the ones typically used
in other studies. Finally, we characterize the deviations from independence of
aggregate and individual risks that generate equity and term premia. The equity
premium depends on the comovement between individual income risk and the
contemporaneous aggregate income growth. This result is driven by solvency
constraints that bind frequently, as opposed to the well known results by Mankiw
(1986), Weil (1992), and Constantinides and Duffie (1996) that require convexity
of the marginal utility. The term premium depends on the comovement between
the forecast of future individual income risk and aggregate income growth.

Compared with several studies on incomplete markets economies, our study
differs along some of the following dimensions.! First, we have complete markets
where every claim can be traded and priced; most incomplete markets models
consider only a very limited set of assets. Second, in our model the extent of
risk-sharing depends on the costs and benefits of defaulting. In most incomplete
market models, the extent of risk-sharing depends primarily on the assumptions
about available assets. Third, in our model agent-specific and state-specific sol-
vency constraints bind frequently; in most incomplete markets models portfolio
constraints rarely bind. Finally, our model is very tractable since we solve a plan-
ner’s problem and then compute the prices for the corresponding equilibrium—
incomplete markets models are solved directly as a complicated fixed point over
market prices. Given the tractability and the presence of complete markets we are
able to study equity, one-period bonds, and the entire term structure of interest
rates.

In section 2 we present the environment. Section 3 presents the equilibrium

'For instance, Constantinides and Duffie (1996), Krusell and Smith (1997) Mankiw (1986),
Heaton and Lucas (1996), Marcet and Singleton (1999), Telmer (1993), and Zhang (1997).



with solvency constraints. In section 4 we characterize the optimal allocations.
In section 5 we solve and analyze a simple two state case. Section 6 contains
the calibration and the quantitative findings of a more general case. Section 7
concludes. An appendix contains the proofs.

2. Environment

We consider a pure exchange economy with two (types of) agents. Agents’ en-
dowments follow a finite state Markov process; agents’ preferences are identical
and given by time-separable expected discounted utility. We add to this sim-
ple environment participation constraints of the following form: the continuation
utility implied by any allocation should be at least as high as the one implied by
autarchy at any time and for any history.

We use a Markov chain with generic elements z € Z, a set with N elements.
We refer to elements of Z as Z = {31,32,....,3n}, and to the time ¢ realization
of the process as z;. We use 2! = (29, 21, 22, ..., ;) for the length ¢ history of z.
We use II for the matrix containing the transition probabilities, and 7(2*|zq = 2)
for the corresponding conditional probabilities. We use the notation {¢;} and
{e;} for the stochastic process of consumption and endowment of each agent,
hence {¢;} = {ci(2") : ¥Vt >0, 2* € Z'}. We assume that aggregate endowment
er (2%) = ery (2%) + eas (2%) is constant and equal to e.?

Individual endowments are given by a function ¢; that depends only on z;, so
that e;; (2') = €; (2:). We assume that ¢; (z) > 0 for all ¢ and z. The utility for an
agent corresponding to the consumption process {c} starting at time ¢ at history
2! is denoted by U(c)(z") and is given by:

o0

Ue)(2) = Z Z Ottts (ZHS_l) u (Crps (277°)) w(2"°2) (2.1)

s=0 2tts eZt+s

where u is the period utility and 644, is a time-discount factor. We assume that
u: R, — Ris strictly increasing, strictly concave, and C'. The multi-period time-
discount factor ;44541 is defined recursively using the one-period state-contingent
discount factor 3 : Z — (0,1). Specifically, &;, (2*~!) = 1 and for all 2**

Otarst1 (271°) = bpaps (2"°71) - B (204s) -

2We will show below how to introduce aggregate uncertainty into this notational framework.




Note that the standard case with constant discount factor 3 (z) = /3 corresponds
t0 Oppps (217571 = B°. As we will show below, letting the time-discount factor be
state contingent allows us to introduce aggregate stochastic growth.

We assume that the shocks are symmetric across agents in the following sense.
Let us denote by € and € two vectors of arbitrary values for the agents’ endow-
ments, and let us denote by 3 and B/ two arbitrary values for the time-discount

factor; then II,¢; () and 3 (-) are assumed to satisfy
Pr((e1 (), (+) =€, B () = Bl (1 (2) 2 (2)) =€, B (2) = B)

= Pr((e@).a @) =2 8E) = Fl@)a@)=e8(:) = 5).

w

An allocation {¢;},_, , is resource feasible if:
C1u (zt) + coy (zt) = ¢ (zt) Vit>0, 2t e 7, (2.2)
and it satisfies the participation constraints if:
U(e)(2Y) > Uley) (") = U" () Vt>0, 2t e 72 (2.3)

where we use the notation U’ (z;) to refer to U(e;)(z") to emphasize that it only
depends on z;.

Except for the state-contingent time discount factor our environment is a spe-
cial case of the one studied by Kehoe and Levine (1993). In particular, we consider
the case with one good, two agents, and where the participation constraints have
autarchy as the outside option. It is identical to the one studied by Kocherlakota
(1996), except that we allow for a stochastic discount factor and non-i.i.d. process
for the income shocks.

2.1. Aggregate uncertainty

Our specification of the time discount factor accommodates in a very convenient
way stochastic aggregate income growth of the type used in Mehra-Prescott (1985)
and in much of the asset pricing literature. In particular, an economy with sto-
chastic growth, constant time discount factor, and constant relative risk aversion
can be expressed as an economy with constant aggregate endowment and state-
contingent discount factor such as the one presented in the previous section. Let

€141 (zt, th) = ¢ (zt) M ze41) and €t (zt) =€i(z) - e (zt) fori=1,2



and define é;; (2') = ;4 (2") /e (2') = €;(2;) for all iso that é, (2") =1 all 2.

Assuming a constant time-discount factor § and a period utility function of
the form u(c) = 611:; for some positive « (for simplicity, v # 1); defining ¢;; (2%) =
cit (2%) Jer (2%), then U (-) satisfies

Gl e Y2 0 () ),

Zt+1€Z

U (él) (Zt) =

with probabilities and discount factor
T (#]2)- AT
> (2]z) - A )

Clearly, the resource and participation constraints are satisfied for an allocation
{ci};,_; o in an economy with aggregate growth A (-) and constant discount factor
B if and only if they are satisfied for the corresponding {¢;},_, , allocation in the

7 (Z2) =

and 3(z) = (- Zw(2'|z) A ()T

economy with constant aggregate endowment, discount factor B (+), and probabil-
ities 7. Moreover, the preference orderings are identical in the two corresponding
economies.

3. Equilibrium with endogenous solvency constraints

In this section, we define a competitive equilibrium with complete markets in Ar-
row securities and with endogenous solvency constraints. The solvency constraints
prohibit agents from holding large amounts of contingent debt, hence preventing
default. In general, these solvency constraints will be state-contingent, since the
costs and benefits of default vary with the state.

Let ¢ (2%, 2’) denote the period t, state z*, price of one unit of the consumption
good delivered at t + 1, contingent on the realization of z;,; = 2/, in terms of
period t consumption goods. The holdings of agent ¢ at ¢ of this security are
denoted by a;;11(2", 2’), and the lower limit on the holdings of agent i is denoted
by Bii+1(z% 2'). Following our notational convention, we use {q},{a;} and {B;}
for the corresponding stochastic processes. For given {¢q} and {B;} the problem
for household i is defined as

it (a,2") = max {U (c) + B(z) Z Jipr1 (ax, (2,2)) ™ (z'|zt)} (3.1)

{QZI}ZIGZ
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i (2) +a = Z ayq (2',2') + ¢ (3.2)

ZeZ

ay > Biin (zt,z/) all 2/ € Z. (3.3)

Definition 3.1. An equilibrium with Solvency Constraints {B;} for initial con-
ditions a; o has quantities {a;} and prices {q} such that for i = 1,2,

a. {aiu41(2',2')},c, achieves the right hand side of (3.1) at 2* given a =
a;¢ (24).

b. market clearing, a1, (') + az, (2') =0, all ¢, all 2.

From the first order condition of the agent problem, one concludes that if
an agent’s marginal rate of substitution is strictly lower than the correspond-
ing Arrow price, this agent’s solvency constraint must bind. Additionally, if an
agent’s solvency constraint does not bind, this agent’s marginal rate of substitu-
tion must equal the corresponding Arrow price. Consequently, in an equilibrium
with solvency constraints, Arrow prices are equal to the highest marginal rate of
substitution, i.e.

u (Ci,t+1 (Zt, Zt+1))

u' (ci (24))

Furthermore, if the solvency constraints do not bind for either agent, the Ar-
row price (3.4) is equal to the one from the corresponding representative agent
economy.

In problem (3.1) agents never contemplate the option of default. Now we move
to the analysis of the decision of default; this consideration describes our theory
of the solvency constraints presented in Alvarez and Jermann (2000). The next
condition makes the solvency constraints endogenous.

qt (Zt: Zt+1) =1 16 (Zt) 7 (Zt+1|zt) . (3.4)

X
=1,2

Definition 3.2. An equilibrium with solvency constraints that are not too tight
is such that the solvency constraints satisfy

Jiz1 (Bigs1 (271) 271 = U (&) (211), (3.5)
for allt = 0,1, ... and for all z** € Z**! and fori =1, 2.

The left hand side of (3.5) is the utility of an agent that participates in the
market, starting with financial wealth B; . (2'™). The right hand side of (3.5)
is the agent’s utility if he defaults, given our assumption that default is punished
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by permanent exclusion from asset markets. This condition ensures that solvency
constraints prevent default by prohibiting agents from accumulating more contin-
gent debt than they will be willing to pay back. At the same time, it allows as
much insurance as possible: if the solvency constraint binds and the continuation
utility is strictly higher than the value of autarchy, the constraint could be re-
laxed, without inducing the agent to accumulate so much debt that he will prefer
to default.

To simplify the notation, we state our equilibrium using Arrow prices. The
budget set and the incentives to default are the same with any other dynamically
complete sets of securities, provided that the solvency constraints are stated in
terms of the value of the portfolio at the beginning of the period.® Thus, the
value of any security—mnot just Arrow securities—is equal to the value of the sum
(weighted by the payoffs) of the corresponding Arrow securities given by (3.4). In
fact, the pricing kernel is the highest marginal rate of substitution, so that for the
one period return R; ;. of any asset, the following must hold

' (¢
1=FE, {Rt,ﬂrl : (?Hlix 515M)} .

We think equilibria with solvency constraints that are not too tight are inter-
esting, since they restrict endogenously the amount of risk-sharing and make a
direct connection between asset prices and constraints on borrowing. In Alvarez
and Jermann (2000) we show that the first and second welfare theorems hold for
our equilibrium definition. The reason that equilibria with solvency constraints
that are not too tight and constrained efficient allocations are equivalent is that
the condition on the solvency constraints (3.5) serves the same purpose as the
participation constraints (2.3).

Our interest is in asset prices, but analyzing equilibria directly is difficult.
Given the equivalence between efficient allocations and equilibria with solvency
constraints that are not too tight, we analyze efficient allocations as a way to
characterize equilibrium prices.

4. Characterizing constrained efficient allocations

In this section we provide a recursive formulation of efficient allocations, which
we use to establish the following properties of efficient allocations. First, we

3In this sense, our use of the term ‘solvency constraint’ is consistent with other studies, for
instance He and Modest (1995).



characterize the parameters that determine the extent of risk-sharing, which allows
us to concentrate on the cases in which individual risk is important for asset prices.
Second, we characterize the decision rules.

Constrained efficient allocations are defined as the processes {¢;} that maxi-
mize period zero expected lifetime utility for Agent 1, subject to resource balance
and the participation constraints for both agents, given some initial (time zero)
expected lifetime utility for Agent 2. Optimal allocations solve the following max-
imization problem:

V*(w,z) = max {U(c1)(2)}

subject to (2.2), (2.3), U (c2) (20) > w, and 2y = z.

A pair (w, z)is in the domain of V*if and only if (V* (w, z),w)is in the util-
ity possibility set for zyp = z. Indeed the function V*(w, z) describes the utility
possibility frontier at time zero when zg = z.

Now we restate the previous problem recursively. We introduce a functional
equation and relate its fixed points to the function V*. The functional equation is
not completely standard. The operator, T, maps a function V' defined in a given
domain into another function T'V. Using TV, a new domain, denoted by D (z),
is defined as specified below. Specifically, V (-, z) : D (z) — R for each z, where
D (z) C [U%(z),00),and the operator T' generates T'V as

TV(w,z) = max { u(cr) + B (z ZV (’]z)} (4.1)

w'(c;':)l,j’ez ZeZ
citecx<e (4.2)
u(es) +8(5) W) 7(#)2) > w (13)
ez
w'(2) > U) all2e” (4.4)
V(w(),) >U' () all2 e Z. (4.5)

For this operator to be well defined, V' has to be such that there are ¢y,
cg.and {w' (2')},., for which the constraints (4.2), (4.3), (4.5), and (4.4) are
satisfied. Consequently, the domain of T'V for each z € Z, is defined as D (z) =
{w: (TV) (w,2) > U(z) and w > U?(2)}.

It is straightforward to show that the function V*, defined previously, and its
associated domain are a fixed point of 7'. However, the functional equation (4.1)



has more than one fixed point: hence it cannot be a contraction.? In particu-
lar, “autarchy” is always a fixed point, since it is immediate to verify that the
trivial function v defined on the domain given by singleton {U?(z)} and equal
to v (U%(z2),2) = U'(2) is a fixed point of T. Nevertheless, for many parameter
values there are other solutions, namely V*.

Even though the T operator is not a contraction, it is useful in computing V*.
Consider the operator T defined exactly like 7" in 4.1 except that the participation
constraints for both agents 4.5 and 4.4 are removed, and denote its unique fixed
point by V. The function V(-,z) is the full risk-sharing frontier when z = z.
Using the approach proposed by Abreu (1988) and Abreu, Pierce and Stacchetti
(1990) one can easily show that lim,,_., 7"V = V*.

4.1. Risk-sharing regimes

This section describes the types of parameters for which this model has asset
pricing implications different from the ones of the representative agent model.
Depending on parameter values for preferences and endowments there are three
possible “regimes” for the process for {w, z}. Independent of the initial condition
(wo, 29), one can show that:

1. Full risk-sharing forever is possible;
2. Only limited risk-sharing is possible;
3. Only autarchy is possible.

By full risk-sharing we mean that the allocation is Pareto efficient in the
standard sense, ignoring the participation constraints, for some initial condition
(wo, 29). Parameter values that produce the first case are not interesting for us,
since for the purposes of asset pricing, their implications are the same as for the
representative agent economy.

We discuss briefly how to verify whether full risk-sharing is possible. Kocher-
lakota (1996) presents sufficient conditions for each case when the shocks are i.i.d.
and the discount factor is constant. We consider a slightly different case in the
following proposition.

4T does not satisfy one of the Blackwell sufficient conditions for a contraction, namely dis-
counting. T (V 4 a) could be bigger than TV + fa for a constant a, since the feasible set of
choices for (w(2')) .., is bigger for V 4 a than for V.

10



Proposition 4.1. Full risk-sharing is possible if and only if, for all zy € Z,

w(e/2)Y " Bou () 7 (2']z0) > maxU'(zo). (46)

s=0 zteZt

For illustration, consider the case with a constant discount factor g and Z =
{31,32}, with €2 (31) < €2(32), which by symmetry implies € (32) = €2 (31) <
€2 (32) = €1 (31).° Figure 1 illustrates the case when full risk-sharing is possible
for a range of w. When full risk-sharing is not possible, there are two cases: one
case in which autarchy is the only feasible allocation that satisfies the participation
constraints and the other in which some other allocations satisfy the participation
constraints. This last case is the one that we are interested in, since it is not
equivalent to a representative agent economy. Figure 2 illustrates the case when
full risk-sharing is not possible.

Which case applies depends on parameter values as explained in the following
remark. These parameters determine the relative attractiveness of autarchy to
some form of risk sharing. Intuitively, parameter values that make the punishment
less painful, also make full risk sharing harder.

Remark 1. Let, II, = al + (1 — a)Il for a € (0,1), then full risk-sharing is not
possible in any of the following cases:

(a) The time preference parameter, max, (3(z) is sufficiently small;

(b) The persistence of I1,, a, is sufficiently close to one;

(c) The variance of ¢;(z) is sufficiently close to zero;

(d) With CRRA utility, the relative risk aversion, -, is sufficiently small.

The proof of this remark follows by taking the appropriate limit in each of the
four cases and verifying that the inequality of the previous proposition (4.1) does
not hold. In Alvarez and Jermann (2000) we extend this result. In particular, we
show that, as the parameters approach the limit values mentioned in each of the
four cases, autarchy is the only feasible allocation.

Mehra and Prescott (1985) and Weil (1992) emphasize that in order to produce
a high equity premium and low interest rates the representative agent model
requires values of risk aversion + and time preference 3 that are higher than
most researchers’ prior assessments. By contrast, this model has asset pricing
implications different from the representative agent model for low values of v and
[, thus our quantitative results cannot rely upon high values for v and f.

®We provide further analysis of this case in Section 5 of the paper.
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4.2. Decision rules for the planning problem

In this subsection we present some results about the properties of the decision
rules for consumption C; (z,w) and for Agent 2’s continuation utility W, (w, z).
We define H (z) and L (z) as the upper and lower bound of D (z) so that by
monotonicity of V (-, z),

L(z) = U*(z) and H(z) = V(- 2)(U'(2)) for z € Z.

The time separability of the utility function implies that consumption is in-
creasing in the current continuation utility.

Proposition 4.2. Consumption is strictly monotone on z, i.e., Vz, Cy(w,z)
(Cy(w, z), respectively) is strictly increasing (strictly decreasing) in w.

Next we analyze the decision rules for future continuation utility as a func-
tion of current continuation utility. We find that the decision rules are weakly
increasing. Specifically, we consider two cases. First, if the shock z; is repeated,
then consumption and continuation utility are the same. If the shock is different,
then the decision rule is weakly increasing in w. Furthermore, the decision rule
is flat only if the assigned continuation utility is such that either Agent 1 or 2 is
constrained in the next period.

Proposition 4.3. [/ If 2’ = z, then we have W,.(w, 2) = w (the “45°-rule”). [II]
If 2/ # z and (W, w, z,2') are such that (i) w < @ and (ii) both W,/(w, z) and
W.(w, z) are in the interior of the range of W,/ (-, z) i.e.,

W (0, 2), Wa(w,z) € (L(Z'),H(2")),
then W, (w, z) > W (w, 2).

5. The two state case

To illustrate how the model works and to get a rough idea about its quantita-
tive potential to explain asset returns, we analyze a simple example. We com-
pletely characterize the optimal allocations and all the elements of an equilibrium
with solvency constraints that are not too tight, and we compute some numer-
ical cases. Among other things, this example illustrates the circumstances un-
der which agents’ solvency constraints bind. Moreover, our examination of the
Hansen-Jagannathan bounds shows that we can obtain quantitatively interesting
results with low risk aversion.

12



5.1. Efficient allocations

Consider the case with a constant discount factor 5 and Z = {31,32}, with
€2 (31) < €2 (32), which by symmetry implies €; (32) = €2 (31) < €2 (32) = €1 (31)-
We first show that when full risk-sharing is not possible, the decision rules imply
a unique ergodic set, where continuation utility w, and hence consumption, de-
pend exclusively on the current value of z. Second, we characterize the values of
consumption in the ergodic set.

The decision rules of problem (4.1) are completely described by analyzing
two cases. If 2’ = z, then the optimal policy is the 45° line as we have shown
before. For the remaining case of 2z’ # z, the following proposition, proven in the
appendix, shows that the policies rules are constant, a result that we refer to as
saying that they are flat after reversal.

Proposition 5.1. Decision rules that achieve V' are “flat” after a reversal of the
shock, that is, for allw € D (z) = [L(2), H (2)]

Wi, (w,31) = L(32) =w(32) and
Wi, (w,32) = H(31) = w0(31).

Figure 3 plots the decision rules W,/ (w, z). For any initial (w, z), after one re-
versal of the shock z, continuation utility and consumption for Agent 2 will attain
the values w(z) and ¢(z), and depend only on the current state z. By inspection
of these decision rules, if full risk-sharing is not possible, the process for {w, z}
has a unique invariant distribution, with mass on (w (31),31) and (w0 (32) ,32). If
full risk sharing is possible, then the domains D (31) and D (32) have non-empty
intersection, thus any constant value of w in that intersection is optimal, and
hence any distribution over D (31) N D (32) is an invariant distribution.

Given our characterization, if full risk-sharing is not possible, Agent 2’s con-
tinuation utilities in the ergodic set, (w(31),w(32)), and the corresponding con-
sumptions, (¢(31),¢(32)), have to satisfy the following system of four equations:
two promise keeping conditions,

w(31) = u(c(31)) + Brw(3:) + B(1 — 7T)w(32), and

W(32) = u(C(32)) + Brw(32) + B(1 — T)w(31),
the boundary condition w(32) = U?(32), and, due to the symmetry across agents

and the resource constraint, ¢(3;) = e — ¢(32). The following Proposition, proven
in the appendix, determines and characterizes the efficient allocation.
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Proposition 5.2. The system of four equation has at most two solutions and at
least one; autarchy is always a solution. The solution different from autarchy is
efficient if and only if it has a smaller variability than autarchy, that is, €; (31) <

c(31) <2(32) < €2 (32)

5.2. Equilibrium allocations

In this section we construct the elements of an equilibrium with solvency con-
straints that are not too tight corresponding to the efficient allocations found in
the previous section. This illustrates the second welfare theorem for this envi-
ronment and clarifies how the equilibrium works. In particular, we show that
“poor” agents are the ones that face binding solvency constraints, and we show
that the interest rates is lower and the pricing kernel is more variable than in the
corresponding economy without solvency constraints.

We support the efficient allocation found in the previous subsection as follows.
Arrow prices depend exclusively on whether the current state z; is the same as
the state z;, 1,

t — .
@ (2" 201) = @ if 241 = 2z and

qt (Zt, Zt+1) = Gnr if 211 # 2, \V/Ztuvzt+1-
Using the relationship defining Arrow prices in equation (3.4), we obtain that

g = pr for 2 =z, (5.1)
u

for
Qnr = Eg( 3)) (1 —7) for 2’ # 2. (5.2)

Since one period bond prices are equal to the sum of the Arrow prices, the price
of an uncontingent bond, and hence the interest rate 1 + i, is constant, and equal

to:
1 _ (v (e@) _

=0 () 47 o9
By inspection of (5.3), the interest rate for the economy with solvency constraints
is lower than the interest rate for the corresponding representative agent econ-
omy, which equals 4. Also, by inspection of (5.1), the pricing kernel, given by
q¢ (2, z41) /7 (2421|2¢) is more volatile than the pricing kernel of the corresponding
representative agent economy, which is constant in this case.
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Agent 2’s consumption depends only on the current state z, i.e., ¢4 (2%, 2z441) =
¢(2441), V24, V2,1 for the ¢ given by the efficient allocation, and Agent 2’s pur-
chases of Arrow securities depend only on the state in which they pay, as 11 (2%, z111) =
a(z41), V25, V2i41. Agent 1’s consumption and Arrow securities holdings are given
by: 141 (2 = € — copp1 (2711 and a1 (2'1) = —agua (4.

We find the values of a(z) using the sequence budget constraints (3.2) for
Agent 2 together with the resource constraint (2.2),

(52) _ 6(52)_62(i2><0

1 + anr — 4y
a(3) = —a(3)>0.

Ql

The signs of the asset positions are very intuitive. Indeed, @ (3;) > 0 means that
Agent 2 saves for his low income state, and a (32) < 0 means that Agent 2 borrows
against his high income state.

The solvency constraints for the high-income state can be found easily fol-
lowing our definition in equation (3.5). In an efficient allocation, the contin-
uation utility corresponding to the high-income shock (z;11 = 32 for Agent 2)
is given by U’(z441), then B;;q (2771) = a;441 (2'11), which for Agent 2 gives
B (32) = Bayia1 (32,2") = @ (32) -

The solvency constraints corresponding to the low-income shock (z;11 = 31
for Agent 2) cannot be determined directly from the optimal allocations, because
they depend on the solutions to off-equilibrium consumption and portfolio choice
problems. We show in the appendix how to determine the constraint in this
particular example.

Proposition 5.3. B (31) = Bay.1 (24,31) = [161%] B (3) <0.

In this equilibrium, agents are constrained against borrowing against the future
state 2,4, where their income will be high, regardless of the current state 2. But
there is an important difference depending on the current state z;. If the agent
has his high-income shock (say, z; = 3o for Agent 2), the agent does not want
to borrow more against either the bad or the good future state, since for both
cases, his marginal rate of substitution is equal to the Arrow price. In this case,
he is at the constraint but it is a“false corner.” If the solvency constraint were

6Due to symmetry, the asset positions and solvency constraints for Agent 1 are trivial, once
these are determined for Agent 2.
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relaxed a bit, he would not change the optimal choice of consumption and asset
holdings. On the other hand, if the current state is the one where the agent has
his low income (z; = 3; for Agent 2), then the agent wants to borrow against his
good state, but he cannot. In this case, the solvency constraint binds and the
marginal rate of substitution between consumption in z; = 3; and in 2,1 = 3o for
Agent 2 is strictly lower than the corresponding Arrow price. In this state, the
solvency constraint cannot be relaxed without changing the choice of consumption
and asset holdings. Hence, the solvency constraints ‘bind’ only in the case where
the agent’s current income shock is low, i.e. poor agents are constrained from
borrowing.

5.3. Calibration: Risk-sharing and the Hansen-Jagannathan bounds

We calibrate individual income following Heaton and Lucas (1996) based on a large
sample from the PSID. In particular they find that the log of an agent’s income,
relative to the aggregate, In¢; ,, is stationary with a first order serial correlation of
0.5 and a standard deviation of 0.29 for annual data. We set 3 = 0.65 and explore
the effect of risk aversion for consumption and for asset pricing implications, we
will explore the quantitative effects of 3 below.”

Figure 4 presents the efficient consumption allocation and the corresponding
equilibrium elements for values of risk aversion between 0 and 6 using the formulae
described above. The top panel displays consumption of Agent 2 in each state,
as a fraction of mean income. As risk aversion increases, efficient allocations go
from autarchy, to partial risk-sharing (risk aversion approximately between 2 and
4), and finally to full risk sharing. In the bottom panel we display Agent 2’s asset
holdings and solvency constraints for each state. The figure shows that for low
risk aversion, where the equilibrium corresponds to autarchy, asset holdings equal
solvency constraints, which allow no borrowing at all. For higher risk aversion,
Agent 2 is constrained only in borrowing contingent on the realization of state
2, when he has relatively high income. For higher values of risk aversion, the
equilibrium displays more insurance, which is supported by solvency constraints
that allow more borrowing. For even higher levels of risk aversion, the equilibrium
displays full risk sharing, and the solvency constraints do not bind in either of the

0% om | ety ] =

"The parameters for this case are the following: II =
0.641 ea(31) | | 0.359
0359 || e2(32) | | 0.641 |~
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states.

Hansen and Jagannathan’s volatility lower bounds for stochastic discount fac-
tors provide a concise and widely used diagnostic device for asset pricing models.®
Figure 5 shows the Hansen and Jagannathan volatility bound for each mean value
of the kernel implied by the data, together with standard deviation and means of
the model pricing kernel for selected values of risk aversion. The model is able
to generate kernels that fall inside the Hansen and Jagannathan bound for risk
aversion coefficients around 2. As is well known, the standard economy without
solvency constraints is very far from passing this test for such low values of risk
aversion.’

This positive finding also confirms empirical results by He and Modest (1995)
that show that solvency constraints can pass a modified volatility bound test for
aggregate consumption data. A close look at this picture reveals the two-sided role
of the risk aversion coefficient. In most of the asset pricing literature, increasing
risk aversion increases the volatility of the pricing kernel, because for a given
consumption process marginal utility is more volatile. In our framework however,
the extent of risk-sharing and thus the volatility of the consumption process is
endogenous. The highest volatility for the pricing kernel is achieved with modest
values of risk aversion, which correspond to very limited risk-sharing. This can
be seen by examining the consumption allocations, asset holdings, and solvency
constraints in Figure 4 for risk aversion values close to 2.

6. Quantitative predictions about asset returns

We now consider an endowment process that allows for variable degrees of depen-
dence between individual and aggregate income uncertainty. The form and the
extent of this dependence turns out to be very important for asset prices. For
that reason, our objective in this section is not only to document to what extent
a plausibly calibrated model can explain a set of asset pricing moments, but also
to derive some qualitative properties about how specific forms of dependence be-
tween individual and aggregate income uncertainty generate specific asset return
properties.

8For a detailled survey of applications of this test see, for example, Cochrane and Hansen
(1992).

9Introducing aggregate uncertainty into our example would of course generally give further
volatility to the pricing kernel and help it pass the test.
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6.1. Specification of the endowment process

We specify the endowment process with four values for the share of income of each
agent and two values for the aggregate growth rate, respecting symmetry across
agents. The set Z has four elements, with symmetry we end up with a total of 10
parameters to be selected, six for II, two for e () and two for A (+).

The subscripts r and e index a recession and an expansion respectively. The
subscripts h and [ index a high- and a low-income share for Agent 2. With this
convention we have!"

A(31) = A(33) = A < A=A (32) = A(34), and

1

€(31) = a< 5 < €pr = €2 (33)
1

€2(32) = €< B < €pe = €2 (34) -

6.2. Calibration of the benchmark endowment process

We use 10 moments describing the aggregate and household income data to select
the 10 free parameters of the endowment process. The model period is a year.
We focus on four moments of U.S. aggregate output growth in the 20" century,
and on six other moments to characterize household income risk. The preference
parameters, risk aversion and pure time discount factor, are discussed in the next
section.

M1. First order serial correlation, p(A) = —0.14, Mehra and Prescott (1985).

M2. Pr(expansion)/ Pr(recession) = 2.65, NBER business cycle chronology
for 1889-1991.

The first two moments restrict the probability matrix. In particular, they im-
ply a 2 by 2 matrix for the aggregate state obtained by combining the probabilities
for the two recession states, 3; and 33, and the two expansion states, 3o and j34.
Given this matrix, the next two conditions determine the two values of .

M3. E(\) = 1.83%, Mehra and Prescott (1985).

M4. Std(A\) = 3.57%, Mehra and Prescott (1985).

The remaining free parameters are determined jointly. We use the studies by
Heaton and Lucas (1996), henceforth HL, and Storesletten, Telmer and Yaron

0By symmetry, for each z, and each value of €3 (z) there must be another Z such that €; (2) =
€2 (z). This implies that €, + €p = 1 and € + €pe = 1.
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(1997), henceforth STY, to guide us in determining a benchmark calibration.!!
After defining these moments and our benchmark values, we discuss further below
how these choices are related to the two original data studies.

MS5. Std (Ine(z)) = 0.296.

MBS6. First order serial correlation, p (Ine(z)) = 0.53.

The last four moments determine the relationship between idiosyncratic and
aggregate income behavior. Consistent with HL and STY we introduce conditional
heteroscedasticity of the idiosyncratic incomes exclusively through the probability
matrix, as shown by M7 below.

MT7. The cross sectional dispersion of the shares in recessions relative to
expansions, v,/v. = 1. In a given state, this is defined as

P =33 a 3]

i=1,2

and by symmetry we have v (31) = v (33) and v (32) = v (34) -
MBS8. Relative standard deviation of individual shares conditional on current
and past realizations of the aggregate shock:
e Std(Ine€; (ze1) [ A1 = Ay At = Ae)

= — ].5 .12
Oecle std (ln €; (Zt+1) |)\t+1 = )\e, )\t = )\e)

M9. Relative standard deviation of individual shares conditional on current
and past realizations of the aggregate shock:

Trir _ std (In€; (ze41) [Mey1 = A, Mo = A) L5
oor  std(Ine (ze01) M1 = Aes e = A)

M10. Relative standard deviation of individual shares conditional on past
realization of the aggregate shock:

o.  std(lne (ze11) [N = M)

. std(ln€ (ze41) | A = Ae)

= 0.95.

1Tn some cases there are two sets of parameters that replicate the selected moments. In
these cases we pick the solution that has less variations in the means conditional on whether
the destination is a recession or an expansion. This is the process that is closer to the linear
processes estimated by HL and STY.

1214 can be shown that std (In€; (2ze41) [Mes1 = Ay At = Ae) =
std (In€; (ze41) [Ae41 = Ary At = Aey €5¢), that is, the conditional standard deviation of the
share (and the log) does not depend on the current idiosynchratic shock, only on the aggregate
growth state that is fully described by A;.
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The following Table contains the moments implied by the HL. and the STY
estimation of the household income processes. For the HL calibration there are
two values in each cell, the first for the entire sample of 860 households and the
second for the subsample of 327 stockholders. Since HL and STY estimate the
individual income process conditional on the aggregate income, we combine their
estimates of the individual income process with our specification for aggregate
income. Our calibration mainly follows the HL calibration, given that they are
calibrating a model with the same infinite horizon, two-agent structure. Given
that earlier work on asset pricing with incomplete markets has shown that the

moments 8 and 9 are important we choose a value slightly higher than HL, but
still below STY’s.

HL HL, our )\; | STY, our \; | Benchmark
M5 | Std(lne) |0.3/0.4 0.71 3
M6 | p(lne(z)) | 0.53/.3 0.87 .53
M7 | v /ve 1.02/0.93 | 1.03/0.9 [93 —1.07] |1
M8 | ope/0ee | 0.99/1.19 | 0.99/1.27 | 1.88 1.5
M9 | o,y /0wy, | 0.09/1.10 | 0.99/1.27 | 1.88 1.5
M10 | 0,/0e 1.37/1.01 | 0.45/0.86 | 0.90 .95.13

The model can be solved by iterating on the functional equation (4.1). For
the results presented in this paper we use a guess and verify strategy based on
the sufficient conditions presented in Alvarez and Jermann (2000). Efficient al-
locations have a finite number of consumption values, but consumption takes, in
general, more values than the number of states in Z. The main advantage of this
approach is that our results are very accurate.

6.3. Quantitative implications for the benchmark case

We document the implications for risk-sharing and asset pricing as a function of
risk aversion, 7, and the pure time-discount factor, 3, for the benchmark endow-
ment process. Figure 6 presents consumption share volatility, the average risk-free
rate, the equity premium, and the premium for long term bonds. We define equity
as a claim to aggregate endowment and the long term bond as a real consol. We

13The two studies define their idiosynchratic income variable in a slightly different way. HL
use y = In(e), whereas, STY use z =In¢; (2;) — 7 > j—1,1In€; (2). Using a first order log-linear
approximation the two measures differ only by a constant, so that the two can be considered,
to a first approximation, as identical for the moments we consider here.
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find that the extent of risk-sharing, as measured by the volatility of consump-
tion shares, is increasing in risk aversion and the time-discount factor. This is a
quantitative illustration of the results in Remark (1). With limited risk-sharing
there is only a small region, close to the one corresponding to autarchy, where the
risk free rate attains reasonably low values. Interestingly, the equity premium is
highest for values of risk aversion that are higher than what is required to be in
autarchy. Finally, the shape of the premium for long term bonds, as a function of
~ and (3, is similar to the one for the equity premium, but the values are lower.
To gain intuition about what determines the level of the risk-free rate, we
compare it to the one of the representative agent economy. In the later case

-
Ct+1
5 (=) ] ,
€t
and the risk-free rate, Rl{ ++1, changes one for one with changes in the time-discount
factor §. In the economy with solvency constraints the risk-free rate satisfies

-y A -y
€i+1 Cit+1
B — max{ [ —=——— ,
€t =12 Cit

and thus [ changes the risk-free rates one for one for a constant consumption
allocation ¢; 4, ¢; 41+1. Because the equilibrium allocation depends also on [ there is
a second effect on the level of the interest rate. For instance, if 3 is lowered, there
is less risk-sharing and individual consumption shares become more dissimilar and
thus the ‘max’ increases, leading to a reduction in the interest rate. This is an
illustration of the result shown in Alvarez and Jermann (2000) that state prices in
the solvency constraints economy are higher than the prices in the corresponding
representative agent economy.

In Table 1 and 2, for our benchmark case, we set risk aversion v = 3, and
choose (3 to match the historical average of the U.S. risk-free rate of 0.80% per
annum. The implications from our benchmark case are very encouraging. We can
generate a sizeable equity premium with low risk aversion.'* The volatility of the
risk-free rate and the premium for long-term bonds are close to their empirical
counterparts. As suggested by the high volatility of the pricing kernel, Std(M) =

1
R{,t+1

- E,

1
R{,tJrl

—F

4 Note that stocks in the model economy do not have leverage, therefore we should compare
it to the unlevered equity premium in the data, which is lower than the 6.18% of the reported,
levered, equity premium.
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0.99, the Sharpe ratio of equity is high. Specifically, it stands at 0.44, slightly
higher than the historical average of 0.37. Table 1 illustrates that, compared
with the representative agent economy, the restrictions on the portfolio choices
implied by the endogenous solvency constraints substantially improve the ability
to generate realistic asset pricing implications.

The implied value of 3 is lower than the values used in other studies. We have
followed the typical procedure used to identify (3, i.e. we have chosen it to match
the average risk-free rate. An alternative way to interpret our calibration is that
the value of (3 is somewhat of a proxy of things which have been abstracted for in
the model and which influence the attractiveness of default relative to the future
access to credit markets. The last row of Table 1 presents an alternative “High
(7 parametrization of the endowment process where individual shocks are more
persistent (M6 = .9) and where recessions and expansions are more asymmetric
(M8 = M9 = 4 and M10 =.85). For this parametrization we set v = 3.5. In this
case, 3 = .78 is required to match the risk free rate. Notice that the asset pricing
implications are very similar to the previous case.'”

In Table 2 we document the amount of risk sharing and the tightness of the
solvency constraints. An overall measure of the amount of risk sharing is pro-
vided by comparing the standard deviation of the shares of consumption to the
standard deviation of the income shares. For the benchmark case, consumption
volatility, at 28.3%, is only slightly lower than income volatility, 29.6%, indicating
that there is little risk sharing in equilibrium. The rest of Table 2 illustrates the
way in which solvency constraints implement this limited amount of risk shar-
ing: constraints bind relatively infrequently, when they bind they are very tight,
and they are similar across states. Consider the benchmark case. The value of
an agent’s portfolio is equal to the solvency constraints 24.7% of the time, and
these constraint bind, i.e. they have strictly positive Lagrange multiplier, 21.3%
of the time.!® Conditional on agents’ portfolio values being equal to their sol-
vency constraints, the constraints are —0.8% of current income and 2.6% of the
corresponding values for the economy without constraints. Conditional on the
solvency constraints being equal the values of agents’ portfolio, they do not vary
much across states, the coefficient of variation is 4.4%. For comparison, in the

D Interestingly, Ligon, Thomas and Worral (1997), using a similar model and data from indi-
vidual consumption and income from poor villages, have estimated values of 5 in the neigbour-
hood of 1/2.

16Tn Section 5 we discuss in detail the distinction between having a strictly positive Lagrange
multiplier and being at a false corner.
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“High (" case there is somewhat more risk sharing and the constraints are slightly
looser.

6.3.1. Comparison with other quantitative studies

Other studies have explored the connection between limited risk sharing, asset
prices, and ezogenously given borrowing constraints. For instance, Telmer (1993)
and Heaton and Lucas (1996) show that agents can attain significant risk sharing
when faced with transitory income shocks provided that they are allowed to take
large short positions. Heaton and Lucas (1996) also display examples where im-
posing short-sales constraints on one-period bonds improves their model’s asset
pricing implications.

Zhang (1997) presents a model with endogenous borrowing constraints mo-
tivated by a participation constraint like ours. He considers a fixed borrowing
constraint, independent of the agent’s current income and wealth. Because his
borrowing constraint is fixed, it cannot be not too tight in general. In his model
Agents are only allowed to trade one-period uncontingent debt, thus restricting
the asset pricing analysis to short term interest rates. In the cases presented in
his paper there is considerable risk sharing and somewhat counterfactual asset
pricing implications.!” In our benchmark case, there is little risk sharing and
asset pricing implications are closer to the data. Motivated by this contrast, we
provide more details about the differences in the two papers.

The difference between the results in the two studies lies primarily in the
way asset prices are related to marginal rates of substitution, and in the way
the time preference parameter (3 is chosen. Denote by Rf f 41 and R,{i ++1 the one
period return on an uncontingent bond in Zhang’s economy and in ours. In

Zhang’s equilibrium 1/ Rtth 1 = max;_12 B [ﬁ “;f,‘zci)l)] . In our equilibrium, the

price of a one period bond equals the sum of the Arrow securities,1/ R{’ 1 =

E, [maxi:m ﬁ% . Clearly Rl{ 1 < Rf I '+1. Concerning the choice of parame-
ters, his endowment processes and risk aversion are similar to ours, however his
time-preference coefficient 3 is close to 1 which is much higher than ours. As a
consequence, his examples do not replicate historical mean risk free interest rates
of 0.8%. For instance, with risk aversion equal to 3, as in our benchmark case,

the interest rate in his economy is higher than 6% annually.

1"For instance, the volatility of the pricing kernel in Zhang’s paper is well below the Hansen-
Jagannathan volatility bound.
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6.4. Determinants of the equity premium and the term structure

To understand the determinants of the equity premium and of the term structure,
we analyze the behavior of risk premia for different types of dependence between
aggregate and individual income uncertainty. We start with the case where ag-
gregate and individual income shocks are independent. Then we document the
consequences for asset prices of the types of dependence introduced through het-
eroscedasticity in the individual risks as described by the moments M8 to M10.
We find that the equity premium depends on the comovement between individual
income uncertainty and the contemporaneous aggregate income growth. The term
premium depends on the comovement between the forecast of future individual
income uncertainty and aggregate income growth.

We refer to the case where the aggregate income growth shock is i.i.d. and
independent of the individual income shock as Independent risks. The first panel
of Table 3 displays the asset pricing implications of the case with Independent
risks, for which M1 = 0 and M2, M7, M8, M9, M10 = 1.!8 In all cases presented
in Table 3, risk aversion v = 3 and the time-discount factor § = 0.5, with these
values all the equilibria display some, but not complete, risk-sharing as can be seen
by the fact that 0 < Std(In¢) < 0.296 = Std(Ine). We summarize our findings in
two propositions and two results.

Proposition 6.1. With Independent risks, interest rates are constant and thus
there is no risk premium for bonds.

As shown in the appendix, the assumption of independent risks is not sufficient
to generate this result in general. This result also depends on the particular
number of states and agents chosen in this calibration. Nevertheless, we think
this is a useful benchmark, because starting with a case that has constant interest
rates will allow us to consider separately what determines term premia and premia
for payout uncertainty. In the appendix we show:

Proposition 6.2. With Independent risks, the (multiplicative) equity premium
in the solvency constraints economy is identical to the one in the corresponding
representative agent economy.

18The economy also displays symmetry between expansions and recessions, that is, M2 = 1.
This is not necessary for the results presented here. Even with M2 # 1, the same qualitative
properties hold. For comparison, Table 3 also displays a ‘No heteroscedasticy’ case, where
M1 = -0.14 and M2 = 2.65 as in the benchmark calibration.
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As the reader can see in panel 1 of Table 3, the multiplicative risk premium for
both economies is equal to 0.3689%.'% It is in general true that with Independent
Risks, the risk premium for a one-period risky claim with payout contingent on the
aggregate endowment is the same in the solvency constraints economy as the one
in the corresponding representative agent economy. As shown in the appendix,
this equivalence result extends here to the equity premium because interest rates
are constant.

The following result illustrates a departure from Independent risks that pro-
duces a different equity premium in the solvency constraints economy.

Result 1. A negative covariance of the individual income variance with the con-
temporaneous aggregate income growth (M8 = M9 > 1) increases the equity
premium and a positive covariance (M8 = M9 < 1) reduces the equity premium
relative to the corresponding representative agent economy.

With M8 = M9 > 1 recessions are associated with higher individual income
risk. Therefore, given the limited amount of risk sharing, the agents end up
absorbing more risk in their consumption in recessions. Thus, in recessions the
pricing kernel is higher, because volatility in idiosyncratic consumption translates
into higher values through the max-operator, as is suggested by equation (3.4).
This makes equity more risky, as illustrated in the second panel of Table 3. Result
1 is related to a well known result by Mankiw (1985), who shows that the price of
a risky strip will be lower in a static model with exogenous incomplete markets. In
his environment, the convexity of the marginal utility is a necessary condition for
a higher premium. Constantinides and Duffie (1995) use an assumption analogous
to M8 = M9 > 1in a model with exogenously incomplete markets and permanent
individual income shocks to show that the pricing kernel is identical to the one
in an economy with complete markets but for an agent with higher risk aversion.
In both cases, the results follow from the assumption that agents have convex
marginal utility and that there are no binding portfolio constraints: hence all
agents have the same valuation of assets. Instead, in the economy with solvency
constraints, Result 1 follows from the fact that marginal valuations across agents
differ, and prices are equal to the highest marginal rate of substitution.

Note that interest rates remain constant even if we introduce dependence of

YThe multiplicative equity premium is defined as Ey(Rf )/ Et(R{’ 1+1) — 1. We define the

equity premium in the standard way as E(Rf;,;) — E(R{ ++1)- In the case considered for
proposition 6.2, the multiplicative equity premium is constant across states and the conditional
expectations of the two returns are constant.
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the aggregate and individual risk such that M8 = M9 # 1, as can be seen in the
second panel of Table 3. For this case, the dependence introduced between the
aggregate and the individual shocks does not introduce any predictable changes
in the pricing kernel, which is why interest rates remain constant.

The next result isolates a feature that explains volatility in interest rates and
the existence of non-zero risk premia for bonds.

Result 2. Introducing dependence between the aggregate income growth and next
period’s individual income risk makes the risk-free rate variable. A positive co-
variance of the aggregate income growth and next period’s individual income risk,
M10 < 1, creates positive term premia. A megative covariance of the aggregate in-
come growth and next period’s individual income risk, M10 > 1, creates negative
term premia.

Predictable movements in the pricing kernel are required for nonconstant in-
terest rates. In this case, the predictable changes are introduced through the
conditional variance of the individual’s income.?’ For instance, if in recessions
the variance for next period’s consumption share is expected to be lower than in
expansions, then the price of bonds is lower in recessions and higher in expan-
sions, thus a positive term premium is required to compensate bond holders. In
other words, with countercyclical interest rates, capital gains accrue to bondhold-
ers when they are valued relatively less—requiring positive term premia. Panel 3
of Table 3 illustrates this case.

7. Conclusions

The objective of this paper was to explore the asset pricing implications of a
model with endogenously determined solvency constraints. We show under which
circumstances the endogenous solvency constraints will bind and we characterize
the pricing kernel. We found that for plausibly calibrated income processes and
for low values of risk aversion the model produces solvency constraints that bind
often, and as a consequence, individual consumption is volatile enough so that the
resulting pricing kernel passes the Hansen and Jagannathan test. Additionally,
given the calibrated correlations between the individual income risk and the aggre-
gate income, the model produces sizable premia for equity and long-term bonds.

20By contrast, in the standard representative agent model of Campbell (1986), this happens
through serial correlation in the growth rate of aggregate consumption.
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We also provide characterizations of how the dependence between individual and
aggregate risks determines both equity and bond premia.

We think that this model improves on the standard representative agent econ-
omy and on the—arbitrary—incomplete markets economies, since it makes the
portfolio constraints endogenous and simultaneously obtains asset pricing impli-
cations that are closer to the data. Nevertheless, our assumption about pun-
ishment from defaulting is also arbitrary. We assume that default is punished
by permanent exclusion of all asset markets but entails no garnishment of labor
income. Instead, if the exclusion from asset markets is temporary, it will make
default more attractive. On the other hand, if only a fraction of the labor income
is garnished, it will make default less attractive. Incorporating these more real-
istic alternatives may produce similar results, since they compensate each other.
We leave the investigation of these alternatives, as well as the introduction of
endogenous costly punishment, as a topic for future research.

A shortcoming of our approach is that default does not occur in equilibrium,
and thus we cannot analyze interesting issues such as the pricing of securities
with positive probability of default or the incentives and characteristics of agents
that do default. With respect to the incentives to default, the parameterization
in this paper displays two properties. First, agents that are currently poor find
themselves unable to borrow. Second, the solvency constraints prevent agents with
high income realizations from defaulting. While the first property is realistic, the
second is not.

Another open issue pertains to the amount of borrowing—measured by the
frequency and the size of the binding solvency constraints. In our benchmark
calibration the constraints do not bind very frequently, but when they do, in-
trospection suggest that they allow for too little borrowing. An alternative to
examining the solvency constraints directly is to compare the extent of risk shar-
ing in the model with the empirical evidence. In our benchmark cases there is
very limited risk sharing. Our reading of the literature is that the available empir-
ical evidence on this issue is mixed. For high frequency income changes, there is
evidence for considerable but far from perfect risk sharing (Attanasio and Weber
(1992), Mace (1991) and Attanasio and Davis (1996)). For low frequency in-
come changes, the evidence indicates almost no risk sharing (Attanasio and Davis
(1996) and Cochrane (1991)). Our analysis in Remark 1, part (b) shows that
persistent shocks are more difficult to share. Thus, modelling the income process
as composed of a transitory and a permanent component, observed separately,
will likely help to close this gap between the model and the evidence. We leave
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this task for future research.

Finally, the quantitative results in this paper, like related work with het-
erogenous asset pricing models relies on the interaction between idiosyncratic and
aggregate risk. Further empirical research on this interaction should usefully com-
plement the construction of new models.
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Appendix

Proof of Proposition 4.1. Full risk-sharing is characterized by resource
feasibility and constancy of the ratio of the marginal utilities across agents. If
condition (4.6) is satisfied, then the participation constraints are satisfied for the
allocation ¢; = e/2 . Conversely, if full risk-sharing is feasible, clearly condition
(4.6) is satisfied.

Proof of Proposition 4.2. By using Benveniste and Scheinkman, one shows
that

oV (w, ) u (e — Cy (w, 2))
=— (7.1)
ow u (Cs (w, 2))

which is strictly decreasing in w since the value function is strictly concave. Thus
Cs (w, 2) is increasing.

Proof of Proposition 4.3. The proof of [I] follows from examining the case
where neither agent is constrained in the future, in this case,

oV (w, z) _ _u' (e =Gy (w,2)) _ _u'(e—=Cy(W; (w,2),2)) _ oV (W, (w,z), 2)
Ow uw (Cy (w, 2)) W (Cy (W, (w,2),2)) Ow '

Finally, using Proposition (4.2) [I] is obtained. [II] follows from a variation of the
previous argument.

Proof of Proposition 5.1. In order to demonstrate this property we state
the following two lemmas.

Lemma 7.1. If OV (w (31) ,31) /Ow > OV (W (32) , 32) /Ow then the decision rules
that achieve T'V are flat after reversal.

Proof. The proof follows immediately from the first order conditions of the
problem defined by the RHS of equation (4.1).

Lemma 7.2. Ifthe decision rules after reversal are flat, then 0TV (w(31),31)/0w >
OTV (w(32), 32)/Ow.

Proof. Using the “45° line” result from Proposition (4.3) and the assumption that
the “decision rules are flat after reversal” in the two promise keeping equations
(4.3) evaluated at w(31) and w(32) we obtain

u(e—Co(W(31),31)) — u(Co (0(32),32))
1-prn+p(1—7) '

w(31) — w(32) =
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The desired result now follows by using the envelop condition.

If full risk-sharing is not possible, then AV (@ (31) ,31) /0w > OV (@ (32) , 32) /Ow.
The result that the optimal decision rules are flat after reversal for the fixed point
V* follows by the combination of the previous two lemmas with the result that
lim,, ..o TV = V*. At each iteration, the two lemmas are applied sequentially
and then the domains are computed for T'V. The fact that the described property
is preserved for the limit follows directly from the fact that the limit is differen-
tiable.

Proof of Proposition 5.2. By repeated substitution, this system reduces to
one equation, us = h (uy), in one unknown, us = u(¢(32)), where the equation is
defined as:

(1-p8)1 —287 + )
1- Br

f(ug) = u(e—ut(up)). Since u is strictly increasing and strictly concave, the
function his strictly increasing and strictly convex, and hence (7.2) has at most
two solutions. Notice that autarchy, i.e., @ (3,) = U? (3;), ¢ (3:) = €2 (3;) fori = 1,2
satisfies (4.3), resource feasibility, and the boundary condition, and hence (7.2)
has at least one solution. We now describe which of the two solutions characterizes
the efficient allocation, which we denote as 5.

Consider the two solutions of (7.2), uy and wugp, ordering them as ugy < ugp,
we show that usg; is the efficient allocation. First, if ug equals autarchy, then usgy,
corresponds to an allocation that is more volatile than the allocation at usy;, with
the same mean, thus by concavity ug gives higher utility. Second, we consider
the case where ug), equals autarchy. By assumption U?(32) > 1“_—/6 (i.e there is no
full risk sharing), which by direct computation implies that h (u*) > «* and by
convexity of h, u* < ug or ug, < u*. Because ug, < u* is ruled out if ugy, equals
autarchy, we have u* < ug, that is: £ < G(32) < €2(32). Thus, uy has higher
utility than autarchy wugp, and by symmetry €3 (31) < ©(31) < €(32) < €2 (32)-
Finally, because of concavity, the participation constraint for 3; is satisfied.

Proof of Proposition 5.3. For the given prices {g}, we directly check the
definition for solvency constraints that are not too tight for the postulated solvency
constraints for Agent 2, {By}. For 2.1 = 32, with initial wealth a;;1 = B (32),
the efficient choice for consumption and asset holdings from the equilibrium is
still feasible with these constraints, and Js ;41 (E (32), (zt,g,Q)) = U?(32) as is
required for solvency constraints that are not too tight. For z,,1 = 3;,with initial

wealth a;11 = B (31), for any future path for which state 3; continues to repeat

A -7)
1- gr

U*(32) — fuz), (7.2)

ug = h(ug) =
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itself uninterruptedly for the next k periods, the Euler equation and the price
g, imply optimal individual choices such that ¢(z11 = 31) = c(zik = 31) = &,
a(zex = 31) = B (31) and J2 4k (E(gl) , (zt,g,l)) = U?(31). For z;,; = 31,with
initial wealth ;.1 = B (31), followed by 2,9 = 32, the solvency constraint will
bind at B (32), and from there on optimal consumption and portfolio choices will
be identical to the ones in the equilibrium, given that prices are unchanged, initial
wealth identical and constraints such that these choices are feasible. With this
characterization we have the following two equations for ¢, and B(3;), a budget
constraint and the equation defining implicitly the solvency constraints:

e (31) + B(31) =7, B(31) + T B(32) + ¢, and

Joev1 (B (1), (2'31)) = U* (31) = uley) + B7U* (1) + B(L = 7)U (52) ,

which give that ¢, = € (31), and B (31) = [,/ (1 —,)] B (32) < 0. The same
argument can be applied for any time period; for Agent 1, the solvency constraints
are obtained by symmetry.

Proof of Proposition 6.1. Assume z can be decomposed as z = (z,y) € Z =
X x Y, and where )\ and ¢; are functions of yand x, respectively. Specifically,
A:Y — R, and ¢ : X — (0,1). By Independent Risks we mean that there
is a probability distribution ¢ and a stochastic matrix ¢ such that = (2'|z) =
(@, y) [ (z,y)) = ¢ (y) - ¢ (¢'|x) for all z, 2.

Now, consider the price of a one-period bond,

-~ —
5222?}5 [(Cg::rl) ] A1) 7P (Yer1) - Y (T |we) -

Tt+1 Yt+1

In Alvarez and Jermann (2000) we show in proposition 4.18 that for an economy
with independent risks the consumption shares ¢; do not depend on the aggregate
state y (otherwise unnecessary volatility in consumption would be introduced).
Thus, the price of a one-period bond can be written as

B {Z A(ye+1) 79 (ym)} {mt 1 iy [(Aié:l)ﬂ] 1 (:rt+1|a:t)} :

Yt+1

and each of the two terms in curly brackets can be shown to be constant, due to
the independent risks assumption. By no-arbitrage, the risk premia for bonds of
any maturity is zero.
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Proof of Proposition 6.2. We start by rewriting the equity premium as a
weighted average of risk premia to individual dividends. Let D, be the dividend
of a stock at t+k, and {D;;}72, be the dividend process, and V; [-] the value at ¢
of Dy.j. Define the value of the stock as V;[{ Dy }32 1] = > pey Vi [Disr), so that
the price of a stock can be seen to be the price of a portfolio containing claims
to each dividend, that is, a portfolio of dividend strips. The one-period holding
return of equity is:

RuallDiain) =3 <%> R Do

where the one-period return of a dividend strip is: Ry ¢y1 [Disr] = Vita [Desk] /VilDesi]-
Denoting by 1,41 a constant dividend, the conditional multiplicative equity pre-
mium equals

Ey(Re i1 [{ Devr b)) _ iwt[DHk] B(Bipia[ D)) (7.3)

Rt,t+1[1t,t+1] Rt,t+1[1t,t+1] ’

where w; are non-negative weights w;[Dyyx] = Vi[Dysi]/Vi[{ D11 }32,] and where
Ei(Rit+1[Ditk])/ Ret+1[l441] is the conditional multiplicative risk premium of a
strip paying D, at t + k.

Equation (7.3) shows that the equity premium is equal to a weighted average of
all the strip premia. We have shown in Alvarez and Jermann (2000) in Proposition
(4.18) that with Independent risks the risk premium for a one-period dividend
strip, that is Ey(Rts1[Div1])/ Rt t+1[1e441], is identical in the solvency constraint
economy to the one in the corresponding representative agent economy. Thus,
in order to show that the multiplicative equity premium is equal across the two
economies it is sufficient to show that risk premia for strips with different maturity
dates k are equal for each economy separately.

We first show that for a representative agent economy risk premia for strips
with different maturities are equal for all k. Given i.i.d. aggregate growth rates

Vi[Dyyx) = [BE()]", and we have Ey(Ry41[Dyyx]) = 1/ [BE(A'™)] , and thus
Et(Rt,tJrl[DtJrk]) . E()\ﬂ)

Rt ii1[Le 411 E\YY

We now show that for the solvency constraints economy considered here, risk
premia for strips with different maturities are equal for all k. In Alvarez and Jer-
mann (2000) we show in proposition 4.18 that for an economy with independent
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risks the consumption shares ¢; do not depend on the aggregate state y (oth-
erwise unnecessary volatility in consumption would be introduced). Thus, the
pricing kernel can be written as G {Ayi11) 70 (yer1) } {m (xii1|xy) - (21| 2e) }s
where the first part in curly brackets depends only on the aggregate shock and
the second part in curly brackets depends only on the individual shock. Using
this notation, we can write that V;[D,1] = BE(A'"7)E(m), where we have used
the fact that, aggregate growth rates are i.i.d., that interest rates are constant
so that E; (m (z41]z¢)) = E(m), and that the probabilities are separable for y
and z so that covy (A(yis1)"7,m (x441|2¢)) = 0. More generally, we have that

Vi[Dik] = [5E()\1_7)E(m)}k, where we have used the additional result that
covy (m (xp41|xt) ,m (Teso|Ter1)) = 0. This last result follows directly from the
fact that with constant interest rates, term premia are all equal to zero. We then

have Ey(Rys41[Divk]) = 1/ [BE(X'77)E(m)] , and thus

Ey(Ryy41[Diyi]) - E(\7)

Rt ii1[Le 411 E\YY

Thus, as before, the term structure for strip premia is flat, thus it is at the same
level as the one of the representative agent economy.
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Table 1

Statistics for Benchmark Economy

Time-preference, 3, chosen so as to match E(rf)

E(f) | E(b-rf) | E(re-rf) | Sharpe | Std(rf) | Std(rb) | Std(re) | EM) | Stdm) | pM) | B
Benchmark 0.80 2.19 3.91 0.44 478 6.39 8.83 0.99 0.99 -0.02 0.488
Represent. Agent 4.00 0.16 0.53 0.11 1.68 2.16 4.81 0.95 0.11 -0.14 1.000
"High B" 0.80 2.03 3.41 0.37 5.56 7.05 9.22 1.00 1.15 -0.02 0.779
US-Data 0.80 1.68 6.18 0.37 5.67 10.54  16.54

Returns are defined as follows: rf is the one-period risk-free rate; rb is the return of a long-term bond (a perpetual bond
in the model); re is the return to equity. E(.) and Std(.) are unconditional means and standard deviations,

p () stands for the first order serial correlation coefficient.
For the "High B " case we use: M8,9=4, M10=.85, M6=.9, and risk aversion=3.5.

US-Data for equity and risk-free rates is from Mehra and Prescott (1985);

long term government bond returns are from Ibbotson Associates (1998). The model is annual.

M stands for the pricing kernel, defined as: M = max i=1,2 { Bu'(cit+1 )/u'(cit)}.




Table 2
Statistics for Benchmark Economy cont'd

Benchmark "High "

Std(In{ei}) 0.296 0.296
Std(In{ci}) 0.283 0.276
Fraction of time at constraint 0.247 0.147
Fraction of time with binding constraint 0.213 0.050
Expected value of constraint, conditional on being at constraint:

as a fraction of current income -0.008 -0.026

as a fraction of asset holdings for first best 0.026 0.039
Coefficient of variation of constraints, conditional on being at constraint 0.044 0.026

Std(In{ei}) and Std(In{ci}) stand for the standard deviations of the individual income share and consumption share, respectively.




Table 3

Determinants of the Equity Premium and the Term Structure

Deviations from 'Independent Risks'

E(rf) E(rb-rf) E(re-rf) | Sharpe Std(rf) Std(rb) Std(re) [ Std(In{ci}) B E(l+re) Calibration

1 —\=
Solvency constraints economy E(1+rf)

Independent Risks 5.62 0.00 0.39 0.10 0.00 0.00 3.72 0.27 0.50 |0.3689% | M8,9,10,2=1,M1=0

No heteroscedasticity 5.49 0.16 0.51 0.11 1.69 2.15 4.83 0.27 0.50 M8,9,10=1
Representative Agent 109.63 0.00 0.77 0.10 0.00 0.00 7.38 0.00 0.50 0.3689% M1=0, M2=1
2
Solvency constraints economy: The Equity Premium
Cov(\',std(In{ei'}))<0 6.63 0.00 1.29 0.34 0.00 0.00 3.78 0.26 0.50 M8=M9=1.5
Cov(\',std(In{ei'}))>0 4.85 0.00 -0.34 -0.09 0.00 0.00 3.66 0.28 0.50 M8=M9=0.75
3
Solvency constraints economy: The Term Structure
Cov(A,std(In{ei'})>0 5.15 0.42 0.83 0.10 3.85 5.32 8.39 0.28 0.50 M10=.95
Cov(A,std(In{ei'}))<0 6.22 -0.31 0.06 0.02 3.65 5.01 3.67 0.27 0.50 M10=1.05

Returns are defined as follows: rf is the one-period risk-free rate; rb is the return of a long-term bond (a perpetual bond
in the model); re is the return to equity. E(.) and Std(.) are unconditional means and standard deviations.
Std(Infei}) and Std(In{ci}) stand for the standard deviations of the individual income share and consumption share, respectively.
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