CREDIT BOOMS, FINANCIAL CRISES AND MACROPRUDENTIAL POLICY

by Mark Gertler, Nobuhiro Kiyotaki, Andrea Prestipino

Discussed by Urban Jermann

Contribution

- Extends Gertler & Kiyotaki (2015, AER) bank run model
 - ▶ Booms induced by news shocks (GKP 2018)
 - Macroprudential policy
- ► Main results
 - Crises are hard to forecast.
 - Regulatory capital requirement should not be constant

Model

- Fixed supply of capital managed by banks or housholds
- Households less efficient
- Banks financed with short term debt facing leverage constraint
- ▶ "Bank run" equilibrium possible
- Model driven by productivity shocks

Bank's problem

$$\begin{array}{l} \blacktriangleright \ V_t\left(n\right) = \max_{\phi \geq 0} \left\{0, E_t \Lambda_{t,t+1}\left[\left(1-\sigma\right) n' + \sigma V_{t+1}\left(n'\right)\right]\right\} \\ \\ n' = \left[\left(\frac{Z_{t+1} + Q_{t+1}}{Q_t} - \bar{R}_{t,t+1}\left(\phi\right)\right) \phi + \bar{R}_{t,t+1}\left(\phi\right)\right] n : \text{``net worth''} \\ \\ \phi = \frac{Q_t k^b}{n} : \text{``leverage ratio''} \end{array}$$

 $\theta Q_{t} k^{b} < V_{t} (n)$

- no dividend/equity choice
- ightharpoonup time-varying choice of ϕ through equilibrium
- ▶ need n > 0, (new banks get "start-up equity")

Bank run

Possible if

$$(Z_t + Q_t^*) K_{t-1}^b < D_{t-1} \bar{R}_{t-1,t}$$

- $ightharpoonup Q_t^* < Q_t$, run can make banks insolvent!
- Need large decline in price of capital

$$Q_{t} = \sum_{j=1}^{\infty} E_{t} \left(\Lambda_{t,t+1} Z_{t+j} \right) - \alpha \sum_{j=0}^{\infty} E_{t} \left(\Lambda_{t,t+1} \left(1 - K_{t+j}^{b} \right) \right)$$

lacktriangle Bank net worth is the endogenous state variable $K_t^b\left(N_t, Z_t
ight)$

$$N_{t+1} = \sigma \left[\left(\frac{Z_{t+1} + Q_{t+1}}{Q_t} - \bar{R}_{t,t+1} \right) \phi_t + \bar{R}_{t,t+1} \right] N_t + W$$

▶ Bank capitalization affected by exogenous "start-up equity"
W

Bank run, history dependence

▶ Possible if

$$(Z_t + Q_t^*) K_{t-1}^b < D_{t-1} \bar{R}_{t-1,t}$$

or

$$Z_t + Q_t^* < Q_{t-1} ar{R}_{t-1,t} \left(rac{\phi_{t-1} - 1}{\phi_{t-1}}
ight)$$

with
$$\phi = Q_t k^b / n$$

- ▶ More likely if ϕ_{t-1} high and Q_{t-1} high
- ϕ_{t-1} high with high expected returns
- $ightharpoonup Q_{t-1}$ high with high bank intermediation

Regulatory capital ratio

$$\bar{\kappa}_t \le \frac{n_t}{Q_t k_t^b} = \frac{1}{\phi_t}$$

- ► Trade off
 - ▶ lower run probability
 - ▶ lower bank intermediation, k_t^b
 - ► more useful when economy fragile (high *N*)

Run after large negative shock - benchmark

Run after large negative shock - high "start-up equity"

Excess Return on Equity U.S. banks

Conclusion

- ► Important work. Nonlinearity and history dependence in parsimonious environment.
- ► Endogenous external bank equity would be useful