THE QUANTO THEORY OF EXCHANGE RATES
by Lukas Kremens and Ian Martin

Discussed by Urban Jermann
Contribution

- No-arbitrage equation for currencies depending on quanto forwards prices and relative interest rates
Contribution

- No-arbitrage equation for currencies depending on quanto forwards prices and relative interest rates
- For special case, log-investor in S&P500, forecasting equation has no residual
Contribution

- No-arbitrage equation for currencies depending on quanto forwards prices and relative interest rates
- For special case, log-investor in S&P500, forecasting equation has no residual
- Data for 11 currencies 12/2009 – 05/2015
Contribution

- No-arbitrage equation for currencies depending on quanto forwards prices and relative interest rates
- For special case, log-investor in S&P500, forecasting equation has no residual
- Data for 11 currencies 12/2009 – 05/2015
 - Quanto higher R2 than interest rates in sample
Contribution

- No-arbitrage equation for currencies depending on quanto forwards prices and relative interest rates
- For special case, log-investor in S&P500, forecasting equation has no residual
- Data for 11 currencies 12/2009 – 05/2015
 - Quanto higher R2 than interest rates in sample
 - Out-of-sample KM equation beats UIP, RW and PPP
Theory

- No arbitrage

\[1 = E_t \left(M_{t+1} R_{f,t}^s \right) \quad \text{and} \quad 1 = E_t \left(M_{t+1} R_{f,t}^i \frac{e_{i,t+1}}{e_{i,t}} \right) \]

\[E_t \frac{e_{i,t+1}}{e_{i,t}} = \frac{R_{f,t}^s}{R_{f,t}^i} - R_{f,t}^s \text{cov}_t \left(M_{t+1}, \frac{e_{i,t+1}}{e_{i,t}} \right) \]

- UIP fcst
- residual-R1
Consider $1 = \frac{1}{R_{f,t}} E_t^* (R_{t+1})$ and $\text{cov}(x, y) = Exy - ExEy$

$$E_t\left(\frac{e_{i,t+1}}{e_{i,t}}\right) = \frac{R_{f,t}^S}{R_{f,t}^i} + \frac{1}{R_{f,t}^S} \text{cov}_t^* (R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}}) - \text{cov}_t (M_{t+1} R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}})$$
KM equation

Consider \(1 = \frac{1}{R_{f,t}} E_t^* (R_{t+1}) \) and \(\text{cov} (x, y) = Exy − ExEy \)

\[
E_t \left(\frac{e_{i,t+1}}{e_{i,t}} \right) = \frac{R^S_{f,t}}{R^i_{f,t}} + \frac{1}{R^S_{f,t}} \text{cov}^* \left(R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}} \right) − \text{cov} \left(M_{t+1} R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}} \right)
\]

If \(R_{t+1} \) S&P500 and log-investor \(M_{t+1} = 1/R_{t+1} \)

\[
E_t \left(\frac{e_{i,t+1}}{e_{i,t}} \right) = \frac{R^S_{f,t}}{R^i_{f,t}} + \frac{1}{R^S_{f,t}} \text{cov}^* \left(R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}} \right)
\]

\text{UIP fcst} \quad \text{"quanto RP"}
S&P500 index forward pays $P_{t+1} - F_t$ and is priced as

$$F_t = E_t^* P_{t+1}$$
S&P500 index forward pays $P_{t+1} - F_t$ and is priced as

$$F_t = E^*_t P_{t+1}$$

Quanto forward pays this in EUR

$$E^*_t [e_{i,t+1} (P_{t+1} - Q_{i,t})] = 0$$
Quantos

- S&P500 index forward pays $P_{t+1} - F_t$ and is priced as

$$F_t = E_t^* P_{t+1}$$

- Quanto forward pays this in EUR

$$E_t^* [e_{i,t+1} (P_{t+1} - Q_{i,t})] = 0$$

- Combined (and assuming known initial dividends)

$$\frac{Q_{i,t} - F_t}{R_{f,t}^i P_t} = \frac{1}{R_{f,t}^S} \text{cov}_t^* \left(R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}} \right)$$
KM equation different versions

$E_t(\frac{e_{i,t+1}}{e_{i,t}}) =$

$\frac{R^s_{f,t}}{R^i_{f,t}} + \frac{1}{R^s_{f,t}} \text{cov}^*(R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}}) - \text{cov}(M_{t+1}R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}})$
KM equation different versions

- \(E_t \left(\frac{e_{i,t+1}}{e_{i,t}} \right) = \frac{R^s_{f,t}}{R^i_{f,t}} + \frac{1}{R^s_{f,t}} \text{cov}^*_t \left(R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}} \right) - \text{cov}_t \left(M_{t+1} R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}} \right) \)

- If \(R_{t+1} = R^i_{f,t} \cdot \frac{e_{i,t+1}}{e_{i,t}} \)
KM equation different versions

\[E_t \left(\frac{e_{i,t+1}}{e_{i,t}} \right) = \]
\[\frac{R_{f,t}^s}{R_{f,t}^i} + \frac{1}{R_{f,t}^s} \text{cov}_t^* \left(R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}} \right) - \text{cov}_t \left(M_{t+1} R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}} \right) \]

\[\text{If } R_{t+1} = R_{f,t}^i \frac{e_{i,t+1}}{e_{i,t}} \]

\[E_t \left(\frac{e_{i,t+1}}{e_{i,t}} \right) = \]
\[\frac{R_{f,t}^s}{R_{f,t}^i} + \frac{R_{f,t}^i}{R_{f,t}^s} \text{var}_t^* \left(\frac{e_{i,t+1}}{e_{i,t}} \right) - R_{f,t}^i \text{cov}_t \left(M_{t+1} \frac{e_{i,t+1}}{e_{i,t}}, \frac{e_{i,t+1}}{e_{i,t}} \right) \]
KM equation different versions

\[E_t\left(\frac{e_{i,t+1}}{e_{i,t}}\right) = \]
\[\frac{R_f^s}{R_f^i} + \frac{1}{R_f^s} \text{cov}_t^*(R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}}) - \text{cov}_t\left(M_{t+1}R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}}\right) \]

\[\text{If } R_{t+1} = R^i_{f,t} \frac{e_{i,t+1}}{e_{i,t}} \]

\[E_t\left(\frac{e_{i,t+1}}{e_{i,t}}\right) = \]
\[\frac{R_f^s}{R_f^i} + \frac{R^i_{f,t}}{R_f^s} \text{var}_t^* \left(\frac{e_{i,t+1}}{e_{i,t}}\right) - R^i_{f,t} \text{cov}_t\left(M_{t+1} \frac{e_{i,t+1}}{e_{i,t}}, \frac{e_{i,t+1}}{e_{i,t}}\right) \]

\[\text{Della Corte, Ramadorai, and Sarno (2016)} \]
KM equation different versions

\(E_t \left(\frac{e_{i,t+1}}{e_{i,t}} \right) = \)
\(\frac{R^S_f}{R^i_f} + \frac{1}{R^S_f} \text{cov}^*(R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}}) - \text{cov}_t(M_{t+1}R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}}) \)

\(\text{If } R_{t+1} = R^i_f \frac{e_{i,t+1}}{e_{i,t}} \)
\(E_t \left(\frac{e_{i,t+1}}{e_{i,t}} \right) = \)
\(\frac{R^S_f}{R^i_f} + \frac{R^i_f}{R^S_f} \text{var}_t \left(\frac{e_{i,t+1}}{e_{i,t}} \right) - R^i_f \text{cov}_t(M_{t+1} \frac{e_{i,t+1}}{e_{i,t}}, \frac{e_{i,t+1}}{e_{i,t}}) \)

\(\text{Della Corte, Ramadorai, and Sarno (2016)} \)

\(\text{If } R_{t+1} = R^j_f \frac{e_{j,t+1}}{e_{j,t}} \)
KM equation different versions

\[E_t \left(\frac{e_{i,t+1}}{e_{i,t}} \right) = \]
\[\frac{R^s_{f,t}}{R^j_{f,t}} + \frac{1}{R^s_{f,t}} \text{cov}^* \left(R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}} \right) - \text{cov}_t \left(M_{t+1} R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}} \right) \]

\[\text{If } R_{t+1} = R^i_{f,t} \frac{e_{i,t+1}}{e_{i,t}} \]
\[E_t \left(\frac{e_{i,t+1}}{e_{i,t}} \right) = \]
\[\frac{R^s_{f,t}}{R^j_{f,t}} + \frac{R^i_{f,t}}{R^s_{f,t}} \text{var}^* \left(\frac{e_{i,t+1}}{e_{i,t}} \right) - R^i_{f,t} \text{cov}_t \left(M_{t+1} \frac{e_{i,t+1}}{e_{i,t}}, \frac{e_{i,t+1}}{e_{i,t}} \right) \]
\[\text{Della Corte, Ramadorai, and Sarno (2016)} \]

\[\text{If } R_{t+1} = R^j_{f,t} \frac{e_{j,t+1}}{e_{j,t}} \]
\[E_t \left(\frac{e_{i,t+1}}{e_{i,t}} \right) = \]
\[\frac{R^j_{f,t}}{R^s_{f,t}} + \frac{R^j_{f,t}}{R^s_{f,t}} \text{cov}^* \left(\frac{e_{j,t+1}}{e_{j,t}}, \frac{e_{i,t+1}}{e_{i,t}} \right) - R^j_{f,t} \text{cov}_t \left(M_{t+1} \frac{e_{j,t+1}}{e_{j,t}}, \frac{e_{i,t+1}}{e_{i,t}} \right) \]

\[\text{Mueller, Stathopoulos and Vedolin (2016)} \]
KM equation different versions

\[E_t\left(\frac{e_{i,t+1}}{e_{i,t}}\right) = \]
\[\frac{R_{f,t}^s}{R_{f,t}^d} + \frac{1}{R_{f,t}^s} \text{cov}_t^*\left(R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}}\right) - \text{cov}_t\left(M_{t+1} R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}}\right) \]

\[\text{If } R_{t+1} = R_{f,t}^i \frac{e_{i,t+1}}{e_{i,t}} \]
\[E_t\left(\frac{e_{i,t+1}}{e_{i,t}}\right) = \]
\[\frac{R_{f,t}^s}{R_{f,t}^d} + \frac{R_{f,t}^i}{R_{f,t}^s} \text{var}_t^*\left(\frac{e_{i,t+1}}{e_{i,t}}\right) - R_{f,t}^i \text{cov}_t\left(M_{t+1} \frac{e_{i,t+1}}{e_{i,t}}, \frac{e_{i,t+1}}{e_{i,t}}\right) \]

\[\text{Della Corte, Ramadorai, and Sarno (2016)} \]

\[\text{If } R_{t+1} = R_{f,t}^j \frac{e_{j,t+1}}{e_{j,t}} \]
\[E_t\left(\frac{e_{i,t+1}}{e_{i,t}}\right) = \]
\[\frac{R_{f,t}^s}{R_{f,t}^d} + \frac{R_{f,t}^j}{R_{f,t}^s} \text{cov}_t^*\left(\frac{e_{j,t+1}}{e_{j,t}}, \frac{e_{i,t+1}}{e_{i,t}}\right) - R_{f,t}^j \text{cov}_t\left(M_{t+1} \frac{e_{j,t+1}}{e_{j,t}}, \frac{e_{i,t+1}}{e_{i,t}}\right) \]

\[\text{Mueller, Stathopoulos and Vedolin (2016)} \]
Is new residual a priori smaller than initial?

\[E_t(\frac{e_{i,t+1}}{e_{i,t}}) = \frac{R^s_{f,t}}{R^l_{f,t}} - R^s_{f,t} \text{cov}_t(M_{t+1}, \frac{e_{i,t+1}}{e_{i,t}}) \]

\[E_t(\frac{e_{i,t+1}}{e_{i,t}}) = \frac{R^s_{f,t}}{R^l_{f,t}} + \frac{1}{R^s_{f,t}} \text{cov}^*_t(R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}}) - \text{cov}_t(M_{t+1}R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}}) \]
Is new residual a priori smaller than initial?

1. \[E_t\left(\frac{e_{i,t+1}}{e_{i,t}}\right) = \frac{R_f^s}{R_f^i} - R_f^s \text{cov}_t\left(M_{t+1}, \frac{e_{i,t+1}}{e_{i,t}}\right) \]

2. \[E_t\left(\frac{e_{i,t+1}}{e_{i,t}}\right) = \frac{R_f^s}{R_f^i} + \frac{1}{R_f^s} \text{cov}_t^*\left(R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}}\right) - \text{cov}_t\left(M_{t+1} R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}}\right) \]

Log-investor 100% in S&P500, "much more reasonable", \(R2 = 0\)
Is new residual a priori smaller than initial?

\[E_t\left(\frac{e_{i,t+1}}{e_{i,t}}\right) = \frac{R^S_{f,t}}{R^I_{f,t}} - R^S_{f,t} \operatorname{cov}_t\left(M_{t+1}, \frac{e_{i,t+1}}{e_{i,t}}\right) \]

\[E_t\left(\frac{e_{i,t+1}}{e_{i,t}}\right) = \frac{R^S_{f,t} \operatorname{cov}_t^*\left(R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}}\right) - \operatorname{cov}_t\left(M_{t+1} R_{t+1}, \frac{e_{i,t+1}}{e_{i,t}}\right)}{R^I_{f,t}} \]

\[R^2 \]

Log-investor 100% in S&P500, "much more reasonable", \(R^2 = 0 \)

CRRA-10 investor 100% in S&P500

\[R^2 = \operatorname{cov}_t\left(R^{-9}_{t+1}, \frac{e_{i,t+1}}{e_{i,t}}\right) \]
Is new residual a priori smaller than initial?

\[E_t\left(\frac{e_{i,t+1}}{e_i,t}\right) = \frac{R^S_{f,t}}{R^i_{f,t}} - R^S_{f,t} \text{cov}_t(M_{t+1}, \frac{e_{i,t+1}}{e_i,t}) \]

\[E_t\left(\frac{e_{i,t+1}}{e_i,t}\right) = \frac{R^S_{f,t}}{R^i_{f,t}} + \frac{1}{R^S_{f,t}} \text{cov}^*\left(R_{t+1}, \frac{e_{i,t+1}}{e_i,t}\right) - \text{cov}_t(M_{t+1}R_{t+1}, \frac{e_{i,t+1}}{e_i,t}) \]

- Log-investor 100% in S&P500, "much more reasonable", \(R2 = 0 \)
- CRRA-10 investor 100% in S&P500

\[R2 = \text{cov}_t\left(R^{-9}_{t+1}, \frac{e_{i,t+1}}{e_i,t}\right) \]

- \(R2 \) probably \(< R1 \)
Is the "Quanto Risk Premium" a risk premium?

- ?

Assume risk neutrality

\[Q_i, t \]

\[F_t P_t R_{if}, t = 1 R_f, t \]

Assume binomial S&P500 and EUR, long quanto position

\[P_{t+1}, (P_{t+1} + Q_t) \]

Up, gain, positive corr, EUR up, gains is amplified

Down, loss, pos corr, EUR down, loss is weakened

Why get quanto forward on S&P500?

European investor hedges currency

Regular forward hedges expected value

Quanto hedges perfectly

"Quanto" is short for "quantity adjusting option"
Is the "Quanto Risk Premium" a risk premium?

- ?
- Assume risk neutrality
Is the "Quanto Risk Premium" a risk premium?

- ?
- Assume risk neutrality

\[
\frac{Q_{i,t} - F_t}{P_t R_{f,t}^i} = \frac{1}{R_{f,t}^S} \text{cov}_t \left(\frac{e_{i,t+1}}{e_{i,t}}, R_{t+1} \right)
\]
Is the "Quanto Risk Premium" a risk premium?

- ?
- Assume risk neutrality

\[
\frac{Q_{i,t} - F_t}{P_t R_{f,t}^i} = \frac{1}{R_{f,t}^S} \text{cov}_t \left(\frac{e_{i,t+1}}{e_{i,t}}, R_{t+1} \right)
\]

- Assume binomial S&P500 and EUR, long quanto position:

 \[e_{t+1} (P_{t+1} - Q_t)\]
Is the "Quanto Risk Premium" a risk premium?

- ?
- Assume risk neutrality

\[
\frac{Q_{i,t} - F_t}{P_t R^i_{f,t}} = \frac{1}{R^S_{f,t}} \text{cov}_t \left(\frac{e_{i,t+1}}{e_{i,t}}, R_{t+1} \right)
\]

- Assume binomial S&P500 and EUR, long quanto position

\[e_{t+1} (P_{t+1} - Q_t)\]

 - \(P\) up, gain, positive corr, EUR up, gains is amplified
Is the "Quanto Risk Premium" a risk premium?

- ?
- Assume risk neutrality

\[
\frac{Q_{i,t} - F_t}{P_t R_{f,t}^i} = \frac{1}{R_{f,t}^S} \text{cov}_t \left(\frac{e_{i,t+1}}{e_{i,t}}, R_{t+1} \right)
\]

- Assume binomial S&P500 and EUR, long quanto position

\[e_{t+1} (P_{t+1} - Q_t)\]

- \(P\) up, gain, positive corr, EUR up, gains is amplified
- \(P\) down, loss, pos corr, EUR down, loss is weakened
Is the "Quanto Risk Premium" a risk premium?

- ?
- Assume risk neutrality

\[
\frac{Q_{i,t} - F_t}{P_t R_{f,t}^i} = \frac{1}{R_{f,t}^S} \text{cov}_t \left(\frac{e_{i,t+1}}{e_{i,t}}, R_{t+1} \right)
\]

- Assume binomial S&P500 and EUR, long quanto position

\[e_{t+1} (P_{t+1} - Q_t)\]

- \(P\) up, gain, positive corr, EUR up, gains is amplified
- \(P\) down, loss, pos corr, EUR down, loss is weakened

- Why get quanto forward on S&P500?
Is the "Quanto Risk Premium" a risk premium?

- ?
- Assume risk neutrality

\[
\frac{Q_{i,t} - F_t}{P_t R^i\text{,}_t} = \frac{1}{R^S\text{,}_t} \text{cov}_t \left(\frac{e_{i,t+1}}{e_{i,t}}, R_{t+1} \right)
\]

- Assume binomial S&P500 and EUR, long quanto position
 \[e_{t+1} (P_{t+1} - Q_t)\]
 - \(P\) up, gain, positive corr, EUR up, gains is amplified
 - \(P\) down, loss, pos corr, EUR down, loss is weakened

- Why get quanto forward on S&P500?
 - European investor hedges currency
Is the "Quanto Risk Premium" a risk premium?

- ?
- Assume risk neutrality
-
 \[
 \frac{Q_{i,t} - F_t}{P_t R_{f,t}^i} = \frac{1}{R_{f,t}^S} \text{cov}_t \left(\frac{e_{i,t+1}}{e_{i,t}}, R_{t+1} \right)
 \]
- Assume binomial S&P500 and EUR, long quanto position

 \(e_{t+1} \left(P_{t+1} - Q_t \right) \)

 - \(P \) up, gain, positive corr, EUR up, gains is amplified
 - \(P \) down, loss, pos corr, EUR down, loss is weakened

- Why get quanto forward on S&P500?

 - European investor hedges currency
 - Regular forward hedges expected value
Is the "Quanto Risk Premium" a risk premium?

- ?
- Assume risk neutrality

\[
\frac{Q_{i,t} - F_t}{P_t R_{f,t}^i} = \frac{1}{R_{f,t}^S} \text{cov}_t \left(\frac{e_{i,t+1}}{e_{i,t}}, R_{t+1} \right)
\]

- Assume binomial S&P500 and EUR, long quanto position \(e_{t+1} (P_{t+1} - Q_t) \)
 - \(P \) up, gain, positive corr, EUR up, gains is amplified
 - \(P \) down, loss, pos corr, EUR down, loss is weakened

- Why get quanto forward on S&P500?
 - European investor hedges currency
 - Regular forward hedges expected value
 - Quanto hedges perfectly
Is the "Quanto Risk Premium" a risk premium?

- ?
- Assume risk neutrality

\[
\frac{Q_{i,t} - F_t}{P_t R_{f,t}^i} = \frac{1}{R_{f,t}^S} \text{cov}_t \left(\frac{e_{i,t+1}}{e_{i,t}}, R_{t+1} \right)
\]

- Assume binomial S&P500 and EUR, long quanto position

\[
e_{t+1} (P_{t+1} - Q_t)
\]

- \(P \) up, gain, positive corr, EUR up, gains is amplified
- \(P \) down, loss, pos corr, EUR down, loss is weakened

- Why get quanto forward on S&P500?

- European investor hedges currency
- Regular forward hedges expected value
- Quanto hedges perfectly
- "Quanto" is short for "quantity adjusting option"
Empirical analysis

- Detailed and well-executed
Empirical analysis

- Detailed and well-executed
- Only 5.5 years of data!
Empirical analysis

- Detailed and well-executed
- Only 5.5 years of data!
- Missing institutional details
Empirical analysis

- Detailed and well-executed
- Only 5.5 years of data!
- Missing institutional details
 - quotes, traded prices?
Empirical analysis

- Detailed and well-executed
- Only 5.5 years of data!
- Missing institutional details
 - quotes, traded prices?
 - bid-ask spreads?
Empirical analysis

- Detailed and well-executed
- Only 5.5 years of data!
- Missing institutional details
 - quotes, traded prices?
 - bid-ask spreads?
 - how illiquid?
Nikkei CME Futures USD Quanto - cov(NIK, JPY/$)
Nikkei CME Futures USD Quanto - cov(NIK, JPY/$)
Out-of-sample forecasts JPY/USD, 2004-2017

\[
\begin{align*}
KM & : \quad E^Q \left(\frac{e_{t+1}}{e_t} \right) - 1 = \frac{Q_{t,t+1} - f_{t,t+1}}{f_{t,t+1}} + \frac{F_{t,t+1}}{S_t} - 1 \\
UIP & : \quad E^U \left(\frac{e_{t+1}}{e_t} \right) - 1 = \frac{F_{t,t+1}}{S_t} - 1 \\
\text{Constant} & : \quad E^C \left(\frac{e_{t+1}}{e_t} \right) - 1 = 0
\end{align*}
\]
Out-of-sample forecasts JPY/USD, 2004-2017

$KM : \quad E^Q \left(\frac{e_{t+1}}{e_t} \right) - 1 = \frac{Q_{t,t+1} - f_{t,t+1}}{f_{t,t+1}} + \frac{F_{t,t+1}}{S_t} - 1$

$UIP : \quad E^U \left(\frac{e_{t+1}}{e_t} \right) - 1 = \frac{F_{t,t+1}}{S_t} - 1$

Constant : \quad E^C \left(\frac{e_{t+1}}{e_t} \right) - 1 = 0

$R_{OS}^2 = 1 - \sum_t \left(\varepsilon_{t+1}^Q \right)^2 / \sum_t \left(\varepsilon_{t+1}^B \right)^2$
Out-of-sample forecasts JPY/USD, 2004-2017

\[R_{OS}^2 = 1 - \sum_t \left(\varepsilon_{t+1}^Q \right)^2 / \sum_t \left(\varepsilon_{t+1}^B \right)^2 \]
Out-of-sample forecasts JPY/USD, 2004-2017

\[R_{OS}^2 = 1 - \frac{\sum_t (\varepsilon_t^Q)^2}{\sum_t (\varepsilon_t^B)^2} \]

<table>
<thead>
<tr>
<th></th>
<th>Squared err</th>
<th>Absolute err</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UIP</td>
<td>Constant</td>
</tr>
<tr>
<td>2004-2017 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3M</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>1Y</td>
<td>-0.15</td>
<td>-0.41</td>
</tr>
</tbody>
</table>
Out-of-sample forecasts JPY/USD, 2004-2017

\[R_{OS}^2 = 1 - \frac{\sum_t (\epsilon_{t+1}^Q)^2}{\sum_t (\epsilon_{t+1}^B)^2} \]

<table>
<thead>
<tr>
<th></th>
<th>Squared err</th>
<th>Absolute err</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UIP</td>
<td>Constant</td>
</tr>
<tr>
<td>2004-2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3M</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>1Y</td>
<td>-0.15</td>
<td>-0.41</td>
</tr>
<tr>
<td>12/09-05/15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3M</td>
<td>4.8</td>
<td>3.9</td>
</tr>
<tr>
<td>1Y</td>
<td>4.4</td>
<td>2</td>
</tr>
</tbody>
</table>
Conclusion

- This is progress
Conclusion

- This is progress
 - useful framework

To do: more data and more information about prices
Conclusion

- This is progress
 - useful framework
 - seems to have worked well in short sample

To do: more data and more information about prices
Conclusion

- This is progress
 - useful framework
 - seems to have worked well in short sample
- To do: more data and more information about prices