Aggregate implications of a credit crunch

by Francisco Buera and Benjamin Moll

Discussed by Urban Jermann
Contribution

- Studies how financial frictions in models with heterogenous agents show up as aggregate wedges
- Analytical results: A model with financial friction has undistorted Euler equation for the aggregate of firm owners
- Numerical examples.
 - Model versions with the same friction and different heterogeneity have different wedges: in TFP, Euler equation, or in the labor market
Model:
Entrepreneurs (continuum) choose c, k', d', and l

- Preferences

 $$E_0 \sum_{t=1}^{\infty} \log (c_{it})$$

- Technology

 $$y_{it} = (z_{it} k_{it})^\alpha l_{it}^{1-\alpha}$$

- Capital accumulation

 $$k_{it+1} = x_{it} + k_{it} (1 - \delta)$$

- Budget constraint

 $$c_{it} + x_{it} - d_{it+1} = y_{it} - w_t l_t - (1 + r_t) d_{it}$$

- Borrowing constraint

 $$d_{i,t+1} \leq \theta_t k_{it+1}$$

Discussed by Urban Jermann
Model:

Workers (representative) choose C^W and L

Preferences

$$u \left(C_t^W \right) - v \left(L_t \right)$$
Entrepreneurs’ recursive problem 1

\[V_t(k, d, z_{-1}, z) = \max_{c, d', k'} \log c + \beta E \left[V_{t+1}(k', d', z, z') \right] \]

s.t.

\[c + k' - d' = z_{-1} \pi_t k + (1 - \delta) k - (1 + r_t) d \]
\[d' \leq \theta_t k' \]
\[k' \geq 0 \]
Entrepreneurs’ recursive problem 1

\[V_t(k, d, z_{-1}, z) = \max_{c,d',k'} \log c + \beta E \left[V_{t+1}(k', d', z, z') \right] \]

s.t.

\[c + k' - d' = z_{-1} \pi_t k + (1 - \delta) k - (1 + r_t) d \]
\[d' \leq \theta_t k' \]
\[k' \geq 0 \]

Define "cash-on-hand": \(m = z_{-1} \pi_t k + (1 - \delta) k - (1 + r_t) d \)
Entrepreneurs' recursive problem 1

\[V_t(k, d, z_{-1}, z) = \max_{c, d', k'} \log c + \beta E \left[V_{t+1}(k', d', z, z') \right] \]

s.t.

\[c + k' - d' = z_{-1} \pi_t k + (1 - \delta) k - (1 + r_t) d \]
\[d' \leq \theta_t k' \]
\[k' \geq 0 \]

- Define "cash-on-hand": \(m = z_{-1} \pi_t k + (1 - \delta) k - (1 + r_t) d \)
- Low productivity, \(z \), Lenders: \(k' = 0 \) and \(-d' = m - c \)
Entrepreneurs’ recursive problem 1

\[V_t (k, d, z_{-1}, z) = \max_{c, d', k'} \log c + \beta E \left[V_{t+1} (k', d', z, z') \right] \]

s.t.

\[c + k' - d' = z_{-1} \pi_t k + (1 - \delta) k - (1 + r_t) d \]
\[d' \leq \theta_t k' \]
\[k' \geq 0 \]

- Define "cash-on-hand": \(m = z_{-1} \pi_t k + (1 - \delta) k - (1 + r_t) d \)
- Low productivity, \(z \), Lenders: \(k' = 0 \) and \(-d' = m - c \)
- High \(z \), Producers: \(d' = \theta_t k' \), and \(k' = \frac{1}{1-\theta_t} (m - c) \equiv \lambda_t (m - c) \)

Discussed by Urban Jermann
Entrepreneurs’ recursive problem 2

\[V_t (m, z) = \max_{a', c} \log (c) + \beta EV_{t+1} (m', z') \]

s.t.

\[m' = R_{t+1}^a (m - c) \]
Entrepreneurs’ recursive problem 2

\[V_t (m, z) = \max_{a', c} \log (c) + \beta EV_{t+1} (m', z') \]

s.t.
\[m' = R^a_{t+1} (m - c) \]

\[R^a_{i,t+1} \equiv \{ \max [(z\pi_{t+1} - \delta - r_{t+1}) \lambda_t, 0] + 1 + r_{t+1} \} \]
\[= \{ \max [(R^k_{i,t+1} - 1 + r_{t+1}) \lambda_t, 0] + 1 + r_{t+1} \} \]
Entrepreneurs’ recursive problem 2

\[V_t (m, z) = \max_{a', c} \log (c) + \beta EV_{t+1} (m', z') \]

s.t.

\[m' = R_{t+1}^a (m - c) \]

\[R_{i,t+1}^a = \{ \max \left[(z\pi_{t+1} - \delta - r_{t+1}) \lambda_t, 0 \right] + 1 + r_{t+1} \} \]

\[= \{ \max \left[\left(R_{i,t+1}^k - 1 + r_{t+1} \right) \lambda_t, 0 \right] + 1 + r_{t+1} \} \]

\[R_{i,t+1}^a = \tilde{\lambda}_t \cdot R_{i,t+1}^k + \left(1 - \tilde{\lambda}_t \right) (1 + r_{t+1}) \]

\[\tilde{\lambda}_{LENDERS}^t = 0, \text{ and } \tilde{\lambda}_t^{PRODUCERS} = \lambda_t > 1 \]
Entrepreneurs’ Euler equations

\[\frac{1}{c_i} \beta E \left[\frac{1}{c_i'} \right] = R_{i,t+1}^a \text{ for all agents } i, \]
Entrepreneurs’ Euler equations

\[\frac{1/c_i}{\beta E \left[1/c'_i \right]} = R_{i,t+1}^a \text{ for all agents } i, \]

Surprise: this aggregates up to

\[\frac{1/C^E_i}{\beta 1/C^{E'}} = \alpha \frac{Y'}{K'} + 1 - \delta \]

Discussed by Urban Jermann (7 / 15)
#1-Weights

\[
\int \frac{1/c_i}{\beta E[1/c'_i]} \left(\frac{m_i - c_i}{K'} \right) \, di = \int R_{i,t+1}^a \left(\frac{m_i - c_i}{K'} \right) \, di
\]

Note

\[
\int k_i \, di = K
\]

\[
\int (m_i - c_i) \, di = \int (k_i - d_i) \, di = \int k_i \, di - \int d_i \, di = K.
\]
\[\int R_{i,t+1}^{a} \left(\frac{m_{i} - c_{i}}{K'} \right) \, di \\
= \int_{P} \left\{ \lambda_{t} \cdot R_{i,t+1}^{k} + (1 - \lambda_{t}) (1 + r_{t+1}) \right\} \left(\frac{m_{i} - c_{i}}{K'} \right) \, di \\
+ \int_{L} (1 + r_{t+1}) \left(\frac{m_{i} - c_{i}}{K'} \right) \, di \]
\[
\begin{align*}
\int R_{i,t+1}^a \left(\frac{m_i - c_i}{K'} \right) \, di \\
= \int_P \left\{ \lambda_t \cdot R_{i,t+1}^k + (1 - \lambda_t) (1 + r_{t+1}) \right\} \left(\frac{m_i - c_i}{K'} \right) \, di \\
+ \int_L (1 + r_{t+1}) \left(\frac{m_i - c_i}{K'} \right) \, di \\
= \int_P \lambda_t \cdot R_{i,t+1}^k \left(\frac{m_i - c_i}{K'} \right) \, di = \int_P R_{i,t+1}^k \left(\frac{k_i'}{K'} \right) \, di
\end{align*}
\]
\[
\int R_{i,t+1}^a \left(\frac{m_i - c_i}{K'} \right) \, di \\
= \int_P \left\{ \lambda_t \cdot R_{i,t+1}^k + (1 - \lambda_t) (1 + r_{t+1}) \right\} \left(\frac{m_i - c_i}{K'} \right) \, di \\
+ \int_L (1 + r_{t+1}) \left(\frac{m_i - c_i}{K'} \right) \, di \\
= \int_P \lambda_t \cdot R_{i,t+1}^k \left(\frac{m_i - c_i}{K'} \right) \, di = \int_P R_{i,t+1}^k \left(\frac{k_i'}{K'} \right) \, di \\
= \int_P \left[\frac{\alpha y_{it+1}'}{k_{it+1}} + 1 - \delta \right] \left(\frac{k_i'}{K'} \right) \, di = \alpha \frac{Y_{t+1}}{K_{t+1}} + 1 - \delta
\]
\[
\int \frac{1/c_i}{\beta E[1/c_i']} \left(\frac{m_i - c_i}{K'} \right) \, di = \int R_{i,t+1}^a \left(\frac{m_i - c_i}{K'} \right) \, di
\]

Discussed by Urban Jermann
\[\int \frac{1/c_i}{\beta E[1/c_i']} \left(\frac{m_i - c_i}{K'} \right) \, di = \int R^a_{i,t+1} \left(\frac{m_i - c_i}{K'} \right) \, di \]

\[= \int \frac{m'_i}{m_i - c_i} \left(\frac{m_i - c_i}{K'} \right) \, di = \int \frac{m'_i}{K'} \, di = \frac{M'}{K'} = \frac{M'}{M - CE} \]
\[\int \frac{1/c_i}{\beta E[1/c_i]} \left(\frac{m_i - c_i}{K'} \right) \, di = \int R_{i,t+1}^a \left(\frac{m_i - c_i}{K'} \right) \, di \]

\[= \int \frac{m'_i}{m_i - c_i} \left(\frac{m_i - c_i}{K'} \right) \, di = \int \frac{m'_i}{K'} \, di = \frac{M'}{K'} = \frac{M'}{M - C^E} \]

Now need log utility

\[c_{i,t} = (1 - \beta) m_{i,t} \rightarrow C^E = (1 - \beta) M \]

so that

\[\frac{M'}{M - C^E} = \frac{1}{1 - \beta} \frac{C^{E'}}{C^E - C^E} = \frac{C^{E'}}{\beta C^E} \]
How general is this result?

- Euler equation for aggregate consumption (not just entrepreneurs). Wedge is "unimportant": "small" and "up-side-down"
How general is this result?

- Euler equation for aggregate consumption (not just entrepreneurs). Wedge is "unimportant": "small" and "up-side-down"
How general is this result?

- Aggregate Euler equation with CRRA: not small, "up-sided-down"
How general is this result?

- Aggregate Euler equation with CRRA: not small, "up-sided-down"
More general lesson. How controversial is this?

- No general mapping between **wedges** and structural **shocks/frictions**

Discussed by Urban Jermann
More general lesson. How controversial is this?

- No general mapping between **wedges** and structural **shocks**/frictions
- "Our analysis suggests that models in which financial frictions show up primarily as investment wedges are not promising while models in which financial frictions show up as efficiency or labor wedges may well be."

Discussed by Urban Jermann
More general lesson. How controversial is this?

- No general mapping between wedges and structural shocks/frictions

"Our analysis suggests that models in which financial frictions show up primarily as investment wedges are not promising while models in which financial frictions show up as efficiency or labor wedges may well be."

- Chari, Kehoe and McGrattan (2007, "Business Cycle Accounting")
More general lesson. How controversial is this?

- No general mapping between wedges and structural shocks/frictions

"Our analysis suggests that models in which financial frictions show up primarily as investment wedges are not promising while models in which financial frictions show up as efficiency or labor wedges may well be."

- Chari, Kehoe and McGrattan (2007, "Business Cycle Accounting")

"The intertemporal wedge associated with different perturbations of the RBC model represent different ways of bundling the fundamental economic shocks to the economy."
More general lesson. How controversial is this?

- No general mapping between **wedges** and structural **shocks/frictions**

 "Our analysis suggests that models in which financial frictions show up primarily as investment wedges are not promising while models in which financial frictions show up as efficiency or labor wedges may well be."

- Chari, Kehoe and McGrattan (2007, "Business Cycle Accounting")

 "The intertemporal wedge associated with different perturbations of the RBC model represent different ways of bundling the fundamental economic shocks to the economy."

- Christiano and Davis (2006, "Two Flaws In Business Cycle Accounting")

Discussed by Urban Jermann
Which financial friction is more promising?

\[d' \leq \theta_t k' \quad \text{or} \quad d' \leq \theta_t A_t l' \]
Which financial friction is more promising?

- $d' \leq \theta_t k'$ or $d' \leq \theta_t A_t l'$

- Empirically, labor wedge is important

\[
- \frac{u_L(C, L)}{u_C(C, L)} = (1 - \alpha) \frac{Y}{L} \cdot X, \text{ with } X = (1 - \tau)
\]
Which financial friction is more promising?

\[d' \leq \theta_t k' \quad \text{or} \quad d' \leq \theta_t A_t l' \]

Empirically, labor wedge is important

\[- \frac{u_L(C, L)}{u_C(C, L)} = (1 - \alpha) \frac{Y}{L} \cdot X, \quad \text{with} \quad X = (1 - \tau) \]
Conclusion

- Elegant analysis
- Work to be done
 - Quantitative implementation of the most promising friction