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Theory

Focus on innovations in SDF with time-non-separabilities

∆Et+1mt+1 = ∆Et+1
∞

∑
k=0

zk · xt+1+k

with priced variable xt

Assume a vector MA process for state variables

xt = B1Xt = B1Γ (L) εt

∆Et+1mt+1 = −∑
j

 ∞

∑
k=0

zk︸︷︷︸
Price of risk

· gj ,k︸︷︷︸
Imp rsp.

 εj ,t+1
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Result 1

∆Et+1mt+1 = −∑
j

(
∞

∑
k=0

zkgj ,k

)
εj ,t+1

= −∑
j

(
1
2π

∫ π

−π
Z (ω)Gj (ω) dω

)
εj ,t+1

with

Z (ω) ≡ z0 + 2
∞

∑
k=1

zk cos (ωk)

Gj (ω) ≡
∞

∑
k=1

gj ,k cos (ωk)
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Derivation

#1: Discrete-time Fourier Transform, and Inverse

G̃j (ω) ≡
∞

∑
k=0

e−iωkgj ,k , and gj ,k =
1
2π

∫ π

−π
G̃j (ω) e

−iωkdω

∞

∑
k=0

zkgj ,k =
∞

∑
k=0

zk

(
1
2π

∫ π

−π
G̃j (ω) e

iωkdω

)
#2: Using fact that gj ,k = 0, for k < 0 , and algebra

∞

∑
k=0

zk

(
1
2π

∫ π

−π
G̃j (ω) 2 cos (ωk) dω

)
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∑∞
k=0 zkgj ,k =

1
2π

∫ π
−π G̃j (ω)

[
z0 +

∞

∑
k=1

zk2 cos (ωk)

]
︸ ︷︷ ︸

≡Z (ω)

dω,

Z (ω) ≡ ‘weighting function’
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#3: A lot more algebra

∞

∑
k=0

zkgj ,k =
1
2π

∫ π

−π
Gj (ω)

[
z0 +

∞

∑
k=1

zk2 cos (ωk)

]
︸ ︷︷ ︸

≡Z (ω)

dω

with

Gj (ω) = re
(
G̃j (ω)

)
=

∞

∑
k=1

gj ,k cos (ωk)

Gj (ω) and Z (ω) are real

Frequency response function: H (ω) = |H (w)| · e−iψ(ω)
Need Inverse "Dew-Becker-Giglio" Transform

zk =
1
2π

∫ π
−π Z (ω) dω for k = 0

1
π

∫ π
−π Z (ω) cos (ωk) dω for k > 0
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Alternative derivation

#1: Parseval’s theorem

∞

∑
k=−∞

zkgk =
∫ π

−π
Z (ω)G (ω)dω

Z (ω) =
∞

∑
k=−∞

zke
−iωk , G (ω) =

∞

∑
k=−∞

gke
−iωk

Z (ω) is complex, because ∑∞
k=0 zkL

−k
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#2: Make {zk} into a two-sided symmetric filter, z−k = zk

∞

∑
k=−∞

zkgk =
∞

∑
k=−∞

z [2Sym]k gk , because gk = 0, for k < 0

Frequency response function

Z (ω) =
∞

∑
k=−∞

z [2Sym]k e−iωk = z0 +
∞

∑
k=1

zk2 cos (ωk)

This is the "Dew-Becker-Giglio" Weighting Function!

Need Inverse D-B-G Transform, split weights
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Habits versus Epstein-Zin
CRRA

Et+1mt+1 = −αEt+1∆ct+1

Z (ω) = α

Habits
u (.) =

1
1− α

(Ct − bCt−1)1−α

exp (mt+1) = β
(Ct+1 − bCt)−α − Et+1b (Ct+2 − bCt+1)−α

(Ct − bCt−1)−α − Etb (Ct+1 − bCt)−α

Et+1mt+1 ≈ −α

[ (
b (1− b)−2 + 1

)
Et+1∆ct+1

−b (1− b)−2 Et+1∆ct+2

]
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Internal Habit

If Et+1∆ct+2 = Et+1∆ct+1 : very persistent shock

Et+1mt+1 ≈ −α

[ (
b (1− b)−2 + 1

)
Et+1∆ct+1

−b (1− b)−2 Et+1∆ct+2

]
= −αEt+1∆ct+1

if Et+1∆ct+2 = −Et+1∆ct+1 : shock reversed immediately

Et+1mt+1 ≈ −α

[
2b

(1− b)2

]
Et+1∆ct+1

= −α [40]Et+1∆ct+1 for b = .8
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Consumption durability b < 0

If Et+1∆ct+2 = Et+1∆ct+1 : very persistent shock

Et+1mt+1 ≈ −α

[ (
b (1− b)−2 + 1

)
Et+1∆ct+1

−b (1− b)−2 Et+1∆ct+2

]
= −αEt+1∆ct+1

if Et+1∆ct+2 = −Et+1∆ct+1 : shock reversed immediately

Et+1mt+1 ≈ α

[
2b

(1− b)2

]
= −α

[
1.6

(1.8)2

]
Et+1∆ct+1

= −α [0.5]Et+1∆ct+1
External habits, only innovations in ∆ct+1, spectrum is flat

exp (mt+1) = β
(Ct+1 − bC̄t)−α

(Ct − bC̄t−1)−α
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Epstein-Zin
If Et+1∆ct+1+j = Et+1∆ct+1 : very persistent shock

∆Et+1mt+1 ≈ −
(

ρ∆Et+1ct+1 + (a− ρ)∆Et+1∆ct+1
∞

∑
j=0

θj

)

= −
(

ρ+ (a− ρ)
1

1− θ

)
∆Et+1ct+1

= −
(
.5+ (5− .5) 1

.025

)
∆Et+1ct+1

= − [180]∆Et+1ct+1
if Et+1∆ct+2 = −Et+1∆ct+1 : shock reversed immediately

∆Et+1mt+1 ≈ −ρ∆Et+1ct+1
= −0.5∆Et+1ct+1
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Estimates of spectral weighting functions

Parameterize spectral functions

Utility basis

ZU (ω) = q1
∞

∑
j=1

θj cos (ωj) + q2 + q3 cos (ω)

EZ : q1, q2 > 0, q3 = 0

Internal Habit : q3 < 0, q2 > 0, q3 = 0

Bandpass basis

ZBP (ω) = q1Z (∞,32quarters) + q2Z (32,6) + q3Z (6,2)
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Apply Inverse Transform

∆Et+1mt+1 = −q̄′

 ∞

∑
j=0

HU ,BPj︸ ︷︷ ︸
Freq.func.

B1Φj

 (Xt+1 −ΦXt)︸ ︷︷ ︸
VAR state var.

= −q̄′ut+1

Moment conditions

E
(
Ri ,t − Rft−1

)
= −E

(
−q̄′ut+1, ri ,t − r ft−1

)
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Results

Epstein-Zin Risk Aversion coeffi cient implied by Utility basis

q1 = (α− ρ) 2

Risk Aversion: α =
555.47
2

+ ρ > 277.7
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Other comments

Comparison with Yu (2012)

Cross-section: Drivers of results, and literature (ex: Parker and
Julliard (2005), Hansen, Heaton, Lee & Roussanov (2007))
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Conclusion

Nice paper!
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