ASSET PRICING IN THE FREQUENCY
DOMAIN: THEORY AND EMPIRICS
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Contribution

o Study asset prices in the frequency domain

o Theoretical results: Frequency domain representation for SDF
with applications

o Empirical results: Estimation of risk prices by frequency from
cross-section, find significantly priced low frequency risk

o Analysis suggests EZ closer to data than Habits
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Result 1

o
AEt+1mt+1 = - 2 (2 Zkgj,k) €j,t+1
k=0

- (5 ) 2@ 6 @) e
with

Z(w) = zo+2:ilzkcos(wk)

G(w) = Y. gucos(whk)

k=1
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Derivation

o #1: Discrete-time Fourier Transform, and Inverse

_°° L A —iwk
:; ng,anngk—2ﬂ/ Gj (w) e "“"dw

o0 o0 1 T ~ i
Z Zk8jk = Z Z) (2—/ Gj (w) e’“Jkdw>
k=0 T —n

k=0
o #2: Using fact that gj x = 0, for k < 0, and algebra

¥z (5 [ 6 (@200 (k) dw)

k=0 -
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20+ ) z2cos (wk)] dw
k=1

Z (w) = 'weighting function’
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o #3: A lot more algebra

i = e
Zkgj,kZ—/ j (w
k=0 271 J—n

2+ ) z2cos (wk)] dw
k=1

. /

with o
G (@) = re (6;(w)) = ) g cos (k)
k=1
o Gj(w) and Z (w) are real
o Frequency response function: H (w) = |H (w)] - e~ P(w)
o Need Inverse "Dew-Becker-Giglio" Transform

o Z ) dw for k=0
L7 Z(w)cos( wk)dwfork>0

z:
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Alternative derivation

o #1: Parseval's theorem
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o Z(w) is complex, because Y3 o z L *
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o

#2: Make {z,} into a two-sided symmetric filter, z_, = z

(ee]

Z Zk 8k — Z 25ym gk, because gx =0, for k <0

k=—00 k=—00

©

Frequency response function

7 (w) _ Z zl£25ym]e—/wk =2z + Z Z,2 COoS (a)k)
k=—o00 k=1

©

This is the "Dew-Becker-Giglio" Weighting Function!
Need Inverse D-B-G Transform, split weights

o
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Figure 2. Theoretical spectral weighting functions
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Internal Habit

o If Ex11A¢i12 = Er41Act41 @ very persistent shock

Q
b(1—b)~? 1) E.iA
Eerimen = —a [ ( ( ) j’z t+18Ct+1
—b (1 - b) Et+lACt+2
= —aE1Aceq
0 if Exy1Act42 = —Er11Ace41 @ shock reversed immediately
Qo

2b
Etyimeyn =~ —a [m] Ert1Act41

= —w[40] E;y1Ac41 for b= .8
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o

Consumption durability b < 0
If Evr1Act+2 = Erp1Acey1 : very persistent shock

©

(b (1-b) 2+ 1) Eri1Acein
—b(1—b)"? Ep1lcein
= —aE1Ac

Eepimen = —04[

©

if Exy1Act4+0 = —Er11Acey1 @ shock reversed immediately
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o Consumption durability b < 0
o If Ex11Ac¢i12 = Er41Act+1 @ very persistent shock
°
b(1— b)2 1) Ei1h
Etrimepn = —a [ ( ( ) —,I_z s
—b(1—b) “ Ery1lcei2
= —aE1Ac
o if Esy1Act42 = —Er11Ac¢i41 @ shock reversed immediately
Q
2b 1.6
Elmlza—:—(x—ElAcl
= —K [05] Et+1ACt+1
o External habits, only innovations in Acy1, spectrum is flat

(Cey1— bG) "
(Ct - thfl)ilX

exp (mt+1) =p
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Estimates of spectral weighting functions

o Parameterize spectral functions
o Utility basis

7Y (w) = @ Y. ¢/ cos (wj) + g2 + g3 cos (w)
j=1

EZ : q.2>0 g3=0
Internal Habit : ¢3 <0, g0 >0,g3=0

o Bandpass basis

ZBP (w) — qlz(oo,32quarters) + q22(32,6) + C73Z(6’2)
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o Apply Inverse Transform
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o Apply Inverse Transform

[e0]

=/ U,BP 1
AEeyimer = —q 2 H; Bi® | (Xep1 — OXi)
Jj=0 =~~~ N——
Freq.func. VAR state var.
—/
= —qU

o Moment conditions

E (Ri,t - Rf_;[) =k <_q/ut+1' fint r,_f_1>
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Results
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Results

Portfolios: FF25
Basis: Bandpass  t-stat Utllity (0.975)  t-stat
. ql 269 2.47 * 555.47 1.66 *
Consumption R - i~ ez
srowth q2 -431 -11 44265 044
= q3 138 0.33 616.12 0.32

Q

o Epstein-Zin Risk Aversion coefficient implied by Utility basis

Q= (x—p)2

555.47
Risk Aversion: & = 5 +p0 > 2777
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Other comments
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o Cross-section: Drivers of results, and literature (ex: Parker and
Julliard (2005), Hansen, Heaton, Lee & Roussanov (2007))
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Conclusion

Nice paper!
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