DISASTER RISK AND BUSINESS CYCLES by Francois Gourio

Discussed by Urban Jermann

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

1 / 17

Discussed by Urban Jermann

Contribution

- Introduces Time-varying Disaster Risk into Real Business Cycle model
- Analytical results
- Quantitative findings:
 - Calibrated model matches key asset pricing and business cycle moments:
 - \star Unconditional moments for stock market and risk-free rate
 - ★ Predictability regressions
 - * Std(ΔY , ΔI , ΔC , ΔN) and Corr(ΔY , [ΔI , ΔC , ΔN])
 - Disaster probability shocks measured to match actual P/D ratios produce reasonable business cycles

<ロト 4 回 ト 4 三 ト 4 三 ト 三 - の Q (P)</p>

Model

$$W(K, z, p) = \max_{C,I,N} \left\{ \left(C^{v} \left(1 - N \right)^{1-v} \right)^{1-\gamma} + \beta \left(E_{p',\varepsilon',x'} W(K', z', p')^{\frac{1-\theta}{1-\gamma}} \right)^{\frac{1-\gamma}{1-\theta}} \right\}$$

$$C + I = z^{1-\alpha} K^{\alpha} N^{1-\alpha}$$
$$K' = \left((1-\delta) K + \phi \left(\frac{I}{K} \right) K \right) (1 - x' b_k)$$
$$\log z' = \log z + \mu + \sigma \varepsilon' + x' \log (1 - b_{tfp})$$

Discussed by Urban Jermann

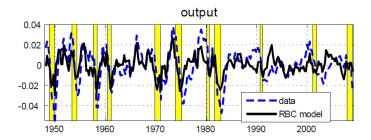
Analytical results

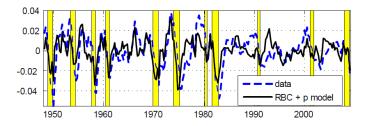
- With b_k = b_{tfp}, a disaster leads to equal declines in K, Y, C and I, with N unchanged. (Also in Gabaix)
- With b_k = b_{tfp} economy with disasters is the same as one without disasters with different and time-varying discount factor

$$eta^* = eta \left(1 - eta + eta \left(1 - b_{tfp}
ight)^{v(1- heta)}
ight)^{rac{1-\gamma}{1- heta}}$$

(as long as no disaster is realized)

Quantitative results 1


	$E\left(R_{e,lev}-R_b ight)$	$E(R_b)$	$\sigma(R_{e,lev})$	$\sigma\left(\textit{R}_{b} ight)$
Data	1.70	0.21	8.14	0.81
No disaster	0.03	0.71	1.59	0.04
Benchmark	1.51	0.42	7.14	0.85


	$\frac{\sigma(\Delta \log C)}{\sigma(\Delta \log Y)}$	$\frac{\sigma(\Delta \log I)}{\sigma(\Delta \log Y)}$	$\frac{\sigma(\Delta \log N)}{\sigma(\Delta \log Y)}$	$\sigma(\Delta \log Y)$	$\rho_{C,Y}$	$ ho_{I,Y}$	$\rho_{N,Y}$	$ ho_{I,C}$
Data	0.57	2.68	0.92	0.98	0.45	0.68	0.71	0.49
No disaster	0.66	1.86	0.24	0.78	1.00	1.00	0.99	0.99
Benchmark	0.73	3.03	0.54	0.83	0.66	0.85	0.72	0.21

5 / 17

Quantitative results 2

- D/P forecasts excess returns and dividend growth at 4 quarters with similar R²s as in the data
- 2 Cov $(\tilde{y}_t, R^e_{t+k} R^f_{t+k})$ matches roughly the data
- ③ VAR evidence of relationship between VIX and GDP matches roughly the data
- ④ $Cov(i_{t+k}, \log(P_t/D_t))$ matches roughly the data
- IES estimated with model data is 0.38 (IES is 2 in the model)

Discussed by Urban Jermann

7 / 17

Definition of dividends in the model

Benchmark

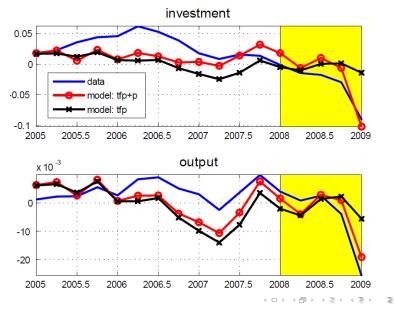
$$D_t = Y_t^\lambda$$
, with $\lambda = 2$

• Unlevered payout to capital stock

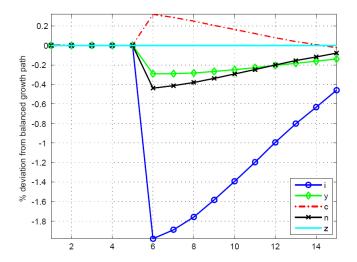
$$D_t^{unlev} = Y_t - w_t N_t - I_t = \alpha Y_t - I_t$$
, with $\alpha = .34$

		$E\left(R_{e,lev}-R_b ight)$	$\sigma(R_{e,lev})$
•	Data	1.70	8.14
<u> </u>	Benchmark, $D_t = Y_t^\lambda$	1.51	7.14
	$D_t^{unlev} = lpha Y_t - I_t$	0.46	0.4

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ▲日 ▶

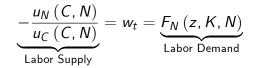

8 / 17

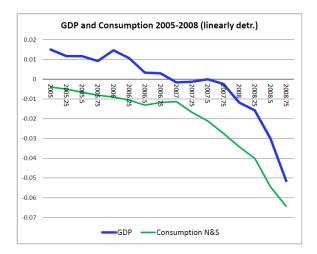
Possible solutions


$$D_t^{unlev} = Y_t - w_t N_t - I_t = \alpha Y_t - I_t$$

Capital adjustment cost Explicit financial leverage Operational leverage (Gourio (2007), Danthine and Donaldson (2002))

2008/2009 Recession



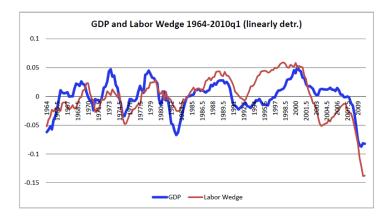

Responses to a shock in the disaster probability

Discussed by Urban Jermann

$$Y \equiv z^{1-\alpha} K^{\alpha} N^{1-\alpha} = C + I$$

Discussed by Urban Jermann

<□ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ ∽ Q ↔ 13 / 17


Labor efficiency wedge

$$-\frac{u_N(C, N)}{u_C(C, N)} = F_N(z, K, N) \cdot X$$
$$X = (1 - \tau)$$

$$-\frac{u_{N}(C, N)}{u_{C}(C, N)} = (1 - \alpha) \frac{Y}{N} \cdot X$$

Discussed by Urban Jermann

<□ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > ⊇ ∽ < </p>

Potential drivers of labor wedge

- Tax increase
- Countercyclical markups
- Labor search frictions
- Financial frictions

Conclusion

- Very nice paper!
- Work to be done
 - Production models with realistic dividends
 - Richer business cycles