The Equity Premium Implied by Production

Urban Jermann

Wharton School of the University of Pennsylvania and NBER

Consumption-based asset pricing

Production-based asset pricing

Production-based asset pricing in the literature

 General Equilibrium: Production-based asset pricing "contaminated" by consumption side

 Cochrane and others: stock returns and investment growth but no equity premium

Standard Model: $F(s_t, K(s^{t-1}))$

In this paper:

Asset pricing implications of producers' first-order conditions

Questions:

- 1. What properties of investment and technology are important for aggregate asset prices?
- 2. Can a model reasonably calibrated to U.S. data explain key asset pricing facts?

Model

$$Y\left(s^{t}\right) = F\left(\left\{K_{j}\left(s^{t-1}\right)\right\}_{j\in J}, s^{t}\right)$$

$$K_{j}\left(s^{t}\right) = K_{j}\left(s^{t-1}\right)\left(1 - \delta_{j}\right) + Z_{j}\left(s^{t}\right)I_{j}\left(s^{t}\right)$$

$$H_{j}\left(K_{j}\left(s^{t-1}\right),I_{j}\left(s^{t}\right),Z_{j}\left(s^{t}\right)\right)$$

$$\max_{\left\{I,K',N\right\}} \sum_{t=0}^{\infty} \sum_{s^t} P\left(s^t\right) \left[\begin{array}{c} F\left(\left\{K_j\left(s^{t-1}\right)\right\},s^t\right) \\ \\ -\sum_j H_j\left(K_j\left(s^{t-1}\right),I_j\left(s^t\right),Z_j\left(s^t\right)\right) \end{array} \right]$$

$$s.t.: K_j\left(s^{t-1}\right)\left(1-\delta_j\right) + Z_j\left(s^t\right)I_j\left(s^t\right) - K_j\left(s^t\right) \ge 0, \forall s^t, j$$

first-order conditions

$$1 = \sum_{s_{t+1}} P\left(s_{t+1}|s^{t}\right) \left(\frac{F_{K_{j}}(s^{t}, s_{t+1}) - H_{j,1}(s^{t}, s_{t+1}) + (1 - \delta_{j})q_{j}(s^{t}, s_{t+1})}{q_{j}(s^{t})}\right)$$

with

$$q_{j}\left(s^{t}\right) = H_{j,2}\left(K_{j}\left(s^{t-1}\right), I_{j}\left(s^{t}\right), Z_{j}\left(s^{t}\right)\right) / Z_{j}\left(s^{t}\right)$$

or more compactly
$$\mathbf{1} = \sum_{s_{t+1}} P\left(s_{t+1}|s^t\right) R_j^I\left(s^t, s_{t+1}\right) \qquad \forall s^t, j$$

From production variables to state prices

Assume we have "complete technologies", as many capital stocks as states of nature, can write

$$R^{I}\left(s^{t}\right)p\left(s^{t}\right) = \mathbf{1}$$

for example

$$\left[egin{array}{ccc} R_1^I\left(s^t,\mathfrak{s}_1
ight) & R_1^I\left(s^t,\mathfrak{s}_2
ight) \ R_2^I\left(s^t,\mathfrak{s}_2
ight) \end{array}
ight] \left[egin{array}{ccc} P\left(\mathfrak{s}_1|s^t
ight) \ P\left(\mathfrak{s}_2|s^t
ight) \end{array}
ight] = \mathbf{1}$$

and

$$p\left(s^{t}\right) = \left(R^{I}\left(s^{t}\right)\right)^{-1} \mathbf{1}.$$

then,

$$1/R^{f}\left(s^{t}\right) = \mathbf{1}'p\left(s^{t}\right) = P\left(\mathfrak{s}_{1}|s^{t}\right) + P\left(\mathfrak{s}_{2}|s^{t}\right)$$

and the aggregate capital return (with constant returns to scale) will be

$$R\left(s^{t}, s_{t+1}\right) = \frac{D\left(s^{t}, s_{t+1}\right) + V\left(s^{t}, s_{t+1}\right)}{V\left(s^{t}\right)}$$

$$= \sum_{j} \frac{q_{j}\left(s^{t}\right) K_{j}\left(s^{t}\right)}{\sum_{i} q_{i}\left(s^{t}\right) K_{i}\left(s^{t}\right)} \cdot R_{j}^{I}\left(s^{t}, s_{t+1}\right)$$

The investment cost function

$$H(K, I, Z) = \left\{ \frac{b}{\nu} (ZI/K)^{\nu} + c \right\} (K/Z)$$

 \bullet no adjustment cost if $\nu=b=1$ and c=0

$$H(K, I, Z) = I$$

Tobin's Q (market over book)

$$b(ZI/K)^{\nu-1}$$

Revenue function

$$F\left(\left\{K_{j}\left(s^{t}\right)\right\}_{j\in J}, s^{t}, s_{t+1}\right) = \sum_{j} \frac{A_{j}\left(s_{t+1}\right)}{Z_{j}\left(s^{t}\right)} K_{j}\left(s^{t}\right)$$

Simulation method

$$I_{j}\left(s^{t}, s_{t+1}\right) = I_{j}\left(s^{t}\right) \lambda^{I_{j}}\left(s^{t+1}\right)$$

$$A_{j}\left(s^{t+1}\right)$$

$$Z_{j}\left(s^{t}, s_{t+1}\right) = Z_{j}\left(s^{t}\right) \lambda^{Z_{j}}\left(s^{t+1}\right)$$

$$K_{j}\left(s^{t}\right) = K_{j}\left(s^{t-1}\right)\left(1 - \delta_{j}\right) + Z_{j}\left(s^{t}\right)I_{j}\left(s^{t}\right)$$

$$R_{j}^{I}\left(s^{t},s_{t+1}\right)=R_{j}^{I}\left(\frac{I_{j}\left(s^{t}\right)Z_{j}\left(s^{t}\right)}{K_{j}\left(s^{t-1}\right)};\lambda^{I_{j}}\left(s^{t+1}\right),\lambda^{Z_{j}}\left(s^{t+1}\right),A_{j}\left(s^{t+1}\right)\right)$$

for j=1,2

What determines the equity premium?

Assume one-dimensional Brownian motion. Investment returns are given by

$$\mu_j(.) dt + \sigma_j(.) dz$$
, for $j = 1, 2$

assume state-price process

$$\frac{d\Lambda}{\Lambda} = -r^f(.) dt + \sigma(.) dz$$

under absence of arbitrage

$$0 = -r^f + \mu_j + \sigma_j \sigma$$
 for $j = 1, 2$

$$r^f = \frac{\sigma_2}{\sigma_2 - \sigma_1} \mu_1 - \frac{\sigma_1}{\sigma_2 - \sigma_1} \mu_2$$

$$\mu_1 - r^f = -\sigma\sigma_1 = \sigma_1 \left[\frac{\mu_2 - \mu_1}{\sigma_2 - \sigma_1} \right]$$

$$\mu_2 - r^f = -\sigma\sigma_2 = \sigma_2 \left[\frac{\mu_2 - \mu_1}{\sigma_2 - \sigma_1} \right]$$

 \rightarrow if $sign(\sigma_1) = sign(\sigma_2)$, then the equity premium is positive if more volatile return has higher mean

Production side in continuous time, no technological uncertainty

$$Y_t = A_1 K_{1,t} + A_2 K_{2,t}$$

$$dK_{j,t} = \left(I_{j,t} - \delta_j K_{j,t}\right) dt$$

$$H_j\left(I_{j,t},K_{j,t}\right) = \left\{\frac{b_j}{\nu_j}\left(I_{j,t}/K_{j,t}\right)^{\nu_j} + c_j\right\}K_{j,t}$$

Investment return at (deterministic) steady state, $I_t/K_t=\lambda_t^I-1+\delta$,

$$\left\{ \left(\bar{R}_{j}-1\right)+\frac{1}{2}\left(\nu_{j}-1\right)\left(\nu_{j}-2\right)\sigma_{j,I}^{2}\right\} dt+\left(\nu_{j}-1\right)\sigma_{j,I}dz$$

with $ar{R}_{j} \equiv$ return at steady state in deterministic model

$$ar{R}_j = rac{A_j - c_j}{b_j \left(\lambda_j^I - 1 + \delta_j
ight)^{
u_j - 1}} + \left(1 - rac{1}{
u_j}
ight) \lambda_j^I + rac{1}{
u_j} \left(1 - \delta_j
ight)$$

ullet Assuming $\sigma_{1,I}=\sigma_{2,I}
ightarrow$ asymmetry in u_j is key

ullet Assuming $\sigma_{1,I}=\sigma_{2,I}$,

$$\mu_j - r^f|_{ss} = \left(\nu_j - 1\right) \left[\frac{\bar{R}_2 - \bar{R}_1}{\nu_2 - \nu_1} + \frac{\nu_1 + \nu_2 - 3}{2} \sigma_I^2 \right]$$

Investment return at (deterministic) steady state, $I_t/K_t = \lambda_t^I - 1 + \delta$,

$$\left\{ \left(\bar{R}_{j}-1\right)+\frac{1}{2}\left(\nu_{j}-1\right)\left(\nu_{j}-2\right)\sigma_{j,I}^{2}\right\} dt+\left(\nu_{j}-1\right)\sigma_{j,I}dz$$

with $ar{R}_j \equiv$ return at steady state in deterministic model

ullet Assuming $\sigma_{1,I}=\sigma_{2,I}$, and $ar{R}_1=ar{R}_2$

$$\frac{\partial}{\partial \nu} \left[(\nu - 1) \right] > 0$$

$$\frac{\partial}{\partial \nu} \left[\frac{1}{2} (\nu - 1) (\nu - 2) \right] = \nu - \frac{3}{2}$$

• Assuming $\sigma_{1,I} = \sigma_{2,I}$

$$r^f|_{ss} = rac{
u_2 - 1}{
u_2 -
u_1} ar{R}_1 - rac{
u_1 - 1}{
u_2 -
u_1} ar{R}_2 - 1 - (
u_1 - 1)(
u_1 - 2) rac{\sigma_I^2}{2}$$

• Assuming $\sigma_{1,I} = \sigma_{2,I}$

$$r^f = \frac{\nu_2 - 1}{\nu_2 - \nu_1} \mu_1 - \frac{\nu_1 - 1}{\nu_2 - \nu_1} \mu_2$$

What is an admissible investment process?

$$\frac{P\left(s^{t},\mathfrak{s}_{1}\right)}{P\left(s^{t},\mathfrak{s}_{2}\right)} = \frac{R_{2}^{I}\left(s^{t},\mathfrak{s}_{2}\right) - R_{1}^{I}\left(s^{t},\mathfrak{s}_{2}\right)}{R_{1}^{I}\left(s^{t},\mathfrak{s}_{1}\right) - R_{2}^{I}\left(s^{t},\mathfrak{s}_{1}\right)}$$

need to make sure state prices are positive!

Calibration

• U.S. economy, use investment data for <u>Equipment&Software</u> and <u>Structures</u>

• Differences between types of capital

$$\delta_S$$
 < δ_E

$$\nu_S > \nu_E$$

Table 1: Parameter values							
Investment growth			0.9587, 1.1078				
•	λ (\$1), λ (\$2)	-	0.9367, 1.1076				
Serial correlation	ho	=	0.2 or 0				
Depreciation rates	δ_E, δ_S	=	0.112, 0.031				
Relative value	$\left(K_E/Z_E ight)/\left(K_S/Z_S ight)$	=	0.6				
Adjust. cost param.	b_E, b_S, c_E, c_S so that qZ	=	1.5				
Adjust. cost curv.	$ u_E, u_S$	=	2.115, 3.854				
Marg. products	A_E, A_S so that $ar{R}_E, ar{R}_S$	=	1.04644, 1.08026				

Table 2: U.S. Investment 1947-2003 (Growth rates)							
		Mean	St.Dev.	1^{st} Autoc.			
Investment expenditure	$\overline{I_E}$	3.81%	6.98%	.08			
	I_S	2.85%	7.94%	.27			
Investment	IZ_E	5.71%	7.81%	.13			
	IZ_S	2.29%	6.86%	.28			
Investment technology	Z_E	1.82%	2.56%	.66			
	Z_S	44%	2.35%	.31			

Table 3
Asset Pricing Implications: Baseline calibration

Mean

Std

Mean Std	R ^M 17.24%	R ^M -R ^f 8.35%	Rf 1.09% 2.07%		Market Price of Risk 0.55 0.34	Sharpe Market 0.52 0.38
Mean Std	R ^E 8.48%	R ^E -R ^f 4.15%	R ^S	R ^S -R ^f 12.34%	-	
$\begin{aligned} & \text{Std}[\text{E}(\text{R}^{\text{M}}\text{-}\text{R}^{\text{f}} \text{t})] \\ & \text{Std}[\text{Std}(\text{R}^{\text{M}}\text{-}\text{R}^{\text{f}} \text{t})] \end{aligned}$			6.27 1.03		-	
Real returns 1947-2003	R ^M	R ^M -R ^f	R	f		

1.09%

2.07%

Returns: R^M, market; R^f, risk free; R^E, equipment and software; R^S, structures

8.35%

 $(v_{E},\,v_{S},\,R_{E},\,R_{S})=(2.11,\,3.875,\,1.04622,\,1.08108)$

17.24%

• Volatility of $E_t \left(R_{t+1} - R_t^f \right)$?

Roughly:
$$\sqrt{R^2} std\left(R - R^f\right) = \sqrt{0.1} \times 0.17 = 5.27\%$$

 $E_t \left(R_{t+1} - R_t^f \right) = -\frac{\sigma_t \left(m_{t+1} \right)}{E_t m_{t+1}} \sigma_t \left(R_{t+1} \right) \rho_t \left(m_{t+1}, R_{t+1} \right)$

Sharpe ratios

$$\frac{E_{t}\left(R_{t+1} - R_{t}^{f}\right)}{\sigma_{t}\left(R_{t+1}\right)} = -\frac{\sigma_{t}\left(m_{t+1}\right)}{E_{t}m_{t+1}}\rho_{t}\left(m_{t+1}, R_{t+1}\right)$$

Table 4 Asset Pricing Implications: IID case, (no serial correlation)

		R^{M}	R^M - R^f	İ	₹f	Market Price of Risk	Sharpe Market
Mean			8.25%	1.0)1%	0.52	0.51
Std	17.26%		1.7	75%	0.31	0.33	
		R ^E	R ^E -R ^f	R ^S	R ^S -R ^f		
	Mean		4.18%		11.89%	-	
	Std	8.66%	2	24.22%			
	Std[E(R ^M -R ^f t)]			5.3	36%	-	
	Std[Std(R ^M -R ^f t)]				31%		
Real retur	ns 1947-2003	R^M	R^{M} - R^{f}		Rf		
	Mean		8.35%)9%		
	Ctd	17 2/0/			70/		

Std 17.24% 2.07%

Returns: R^M, market; R^f, risk free; R^E, equipment and software; R^S, structures

 $(v_E, v_S, R_E, R_S) = (2.11, 3.875, 1.04622, 1.08108)$

Figure 1 Expected Investment Returns as a Function of Investment-Capital Ratios

Table 5 Asset Pricing Implications: with shocks to investment technology, positive correlation λ^I and λ^Z

		\mathbb{R}^{M}	R^{M} - R^{f}	Rf	Market Price of Risk	Sharpe Market
	Mean Std		6.72%	2.34% 2.52%	0.55 0.35	0.52 0.40
	Mean Std	R ^E 6.09%	R ^E -R ^f 2.78% 2	R ^S R ^S -R ^f 10.50% 1.75%	-	
	Std[E(R ^M -R ^f t)] Std[Std(R ^M -R ^f t)]			5.28% 1.08%	_	
Real retur	ns 1947-2003 Mean Std	R ^M 17.24%	R ^M -R ^f 8.35%	Rf 1.09% 2.07%		

Returns: R^{M} , market; R^{f} , risk free; R^{E} , equipment and software; R^{S} , structures $(v_{E}, v_{S}, R_{E}, R_{S}) = (2.11, 3.875, 1.04622, 1.08108)$

Table 6 Asset Pricing Implications: with shocks to investment technology, negative correlation λI and λZ

		\mathbb{R}^{M}	R^{M} - R^{f}	Rf	Market Price of Risk	Sharpe Market
	Mean Std	19.28%	10.09%	-0.24% 2.91%	0.57 0.34	0.55 0.39
	Mean Std	R ^E 10.77%	R ^E -R ^f 5.71% 2	R ^S R ^S -R ^f 14.26% 27.11%	-)	
	Std[E(R ^M -R ^f t)] Std[Std(R ^M -R ^f t)]			7.20% 1.17%	_	
Real retur	rns 1947-2003 Mean Std	R ^M 17.24%	R ^M -R ^f 8.35%	Rf 1.09% 2.07%		

Returns: R^M , market; R^f , risk free; R^E , equipment and software; R^S , structures $(v_E, v_S, R_E, R_S) = (2.11, 3.875, 1.04622, 1.08108)$

Table 7
Asset Pricing Implications: Baseline calibration with A shocks for structures always on

		R^{M}	R^{M} - R^{f}	i	₹f	Market Price of Risk	Sharpe Market
	Mean Std	18.83%	7.52%	1.90% 1.91%		0.45 0.29	0.42 0.33
		R ^E	R ^E -R ^f	R ^S	R ^S -R ^f	_	
	Mean Std	8.48%	3.35%	7.67%	11.47%		
	Siu	0.4076	2	.7.07 /6			
	Std[E(R ^M -R ^f t)] Std[Std(R ^M -R ^f t)]				05% 63%		
Real retur	ns 1947-2003 Mean	R^{M}	R ^M -R ^f 8.35%		Rf 09%		
	Std	17.24%			07%		

Returns: R^{M} , market; R^{f} , risk free; R^{E} , equipment and software; R^{S} , structures (v_E, v_S, R_E, R_S) = (2.11, 3.875, 1.04622, 1.08108); A_S shock x=0.3 or larger if needed for positive prices

Back-of-the-envelop calculation

$$\frac{\mu_j - r^f}{\sigma_j}|_{ss} = \frac{\bar{R}_2 - \bar{R}_1}{(\nu_2 - \nu_1)\,\sigma_I} + \frac{\nu_1 + \nu_2 - 3}{2}\sigma_I,$$

Baseline calibration, $\left(
u_{E},
u_{S},ar{R}_{E},ar{R}_{S},\sigma_{I}
ight)$

- Sharpe ratio in formula is 0.38; Simulations 0.51
- Sharpe ratio at steady-state in baseline model is at 0.37

Conclusion

• Highlight links between investment and asset returns

• Find a sizeable equity premium, reasonably volatile returns and risk free rate, and very volatile Sharpe ratios and market price of risk

• Next: