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Production-based asset pricing in the literature

• General Equilibrium: Production-based asset pricing “contaminated”
by consumption side

• Cochrane and others: stock returns and investment growth but no
equity premium
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Standard Model: F(st, K(st-1) ) 



In this paper:

Asset pricing implications of producers’ first-order conditions

Questions:

1. What properties of investment and technology are important for ag-

gregate asset prices?

2. Can a model reasonably calibrated to U.S. data explain key asset pric-

ing facts?
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first-order conditions
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From production variables to state prices

Assume we have “complete technologies”, as many capital stocks as states

of nature, can write
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The investment cost function
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• no adjustment cost if ν = b = 1 and c = 0
H (K, I, Z) = I

• Tobin’s Q (market over book)

b (ZI/K)ν−1



Revenue function
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Simulation method
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What determines the equity premium?

Assume one-dimensional Brownian motion. Investment returns are given

by

µj (.) dt+ σj (.) dz, for j = 1, 2

assume state-price process

dΛ

Λ
= −rf (.) dt+ σ (.) dz

under absence of arbitrage

0 = −rf + µj + σjσ for j = 1, 2
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→ if sign (σ1) = sign (σ2), then the equity premium is positive if more

volatile return has higher mean
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Production side in continuous time, no technological uncertainty
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Investment return at (deterministic) steady state, It/Kt = λIt − 1 + δ,
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• Assuming σ1,I = σ2,I → asymmetry in νj is key



• Assuming σ1,I = σ2,I,
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Investment return at (deterministic) steady state, It/Kt = λIt − 1 + δ,
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What is an admissible investment process?
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• need to make sure state prices are positive!



Calibration

• U.S. economy, use investment data for Equipment&Software

and Structures

• Differences between types of capital
δS < δE

νS > νE



Table 1: Parameter values

Investment growth λI (s1) ,λ
I (s2) = 0.9587, 1.1078

Serial correlation ρ = 0.2 or 0
Depreciation rates δE, δS = 0.112, 0.031
Relative value (KE/ZE) / (KS/ZS) = 0.6
Adjust. cost param. bE, bS, cE, cS so that qZ = 1.5
Adjust. cost curv. νE, νS = 2.115, 3.854
Marg. products AE,AS so that R̄E, R̄S = 1.04644, 1.08026



Table 2: U.S. Investment 1947-2003 (Growth rates)
Mean St.Dev. 1st Autoc.

Investment expenditure IE 3.81% 6.98% .08
IS 2.85% 7.94% .27

Investment IZE 5.71% 7.81% .13
IZS 2.29% 6.86% .28

Investment technology ZE 1.82% 2.56% .66
ZS −.44% 2.35% .31



Table 3
Asset Pricing Implications: Baseline calibration

 RM                   RM-Rf Rf Market Price of Risk Sharpe Market
Mean 8.35% 1.09% 0.55 0.52
Std 17.24% 2.07% 0.34 0.38

 RE        RE-Rf  RS              RS-Rf

Mean 4.15% 12.34%
Std 8.48% 25.00%

Std[E(RM-Rf|t)] 6.27%
Std[Std(RM-Rf|t)] 1.03%

Real returns 1947-2003 RM                                 RM-Rf Rf
Mean 8.35% 1.09%
Std 17.24% 2.07%

Returns: RM, market; Rf, risk free; RE, equipment and software; RS, structures
(vE, vS, RE, RS) = (2.11, 3.875, 1.04622, 1.08108)
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Table 4
Asset Pricing Implications: IID case, (no serial correlation)

 RM                   RM-Rf Rf Market Price of Risk Sharpe Market
Mean 8.25% 1.01% 0.52 0.51
Std 17.26% 1.75% 0.31 0.33

 RE        RE-Rf  RS              RS-Rf

Mean 4.18% 11.89%
Std 8.66% 24.22%

Std[E(RM-Rf|t)] 5.36%
Std[Std(RM-Rf|t)] 0.81%

Real returns 1947-2003 RM                                 RM-Rf Rf
Mean 8.35% 1.09%
Std 17.24% 2.07%

Returns: RM, market; Rf, risk free; RE, equipment and software; RS, structures
(vE, vS, RE, RS) = (2.11, 3.875, 1.04622, 1.08108)
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Table 5
Asset Pricing Implications: with shocks to investment technology, positive correlation λI and λZ  

 RM                   RM-Rf Rf Market Price of Risk Sharpe Market
Mean 6.72% 2.34% 0.55 0.52
Std 14.20% 2.52% 0.35 0.40

 RE        RE-Rf  RS              RS-Rf

Mean 2.78% 10.50%
Std 6.09% 21.75%

Std[E(RM-Rf|t)] 5.28%
Std[Std(RM-Rf|t)] 1.08%

Real returns 1947-2003 RM                                 RM-Rf Rf
Mean 8.35% 1.09%
Std 17.24% 2.07%

Returns: RM, market; Rf, risk free; RE, equipment and software; RS, structures
(vE, vS, RE, RS) = (2.11, 3.875, 1.04622, 1.08108)



Table 6
Asset Pricing Implications: with shocks to investment technology, negative correlation λI and λZ  

 RM                   RM-Rf Rf Market Price of Risk Sharpe Market
Mean 10.09% -0.24% 0.57 0.55
Std 19.28% 2.91% 0.34 0.39

 RE        RE-Rf  RS              RS-Rf

Mean 5.71% 14.26%
Std 10.77% 27.11%

Std[E(RM-Rf|t)] 7.20%
Std[Std(RM-Rf|t)] 1.17%

Real returns 1947-2003 RM                                 RM-Rf Rf
Mean 8.35% 1.09%
Std 17.24% 2.07%

Returns: RM, market; Rf, risk free; RE, equipment and software; RS, structures
(vE, vS, RE, RS) = (2.11, 3.875, 1.04622, 1.08108)



Table 7
Asset Pricing Implications: Baseline calibration with A shocks for structures always on

 RM                   RM-Rf Rf Market Price of Risk Sharpe Market
Mean 7.52% 1.90% 0.45 0.42
Std 18.83% 1.91% 0.29 0.33

 RE        RE-Rf  RS              RS-Rf

Mean 3.35% 11.47%
Std 8.48% 27.67%

Std[E(RM-Rf|t)] 6.05%
Std[Std(RM-Rf|t)] 0.63%

Real returns 1947-2003 RM                                 RM-Rf Rf
Mean 8.35% 1.09%
Std 17.24% 2.07%

Returns: RM, market; Rf, risk free; RE, equipment and software; RS, structures
(vE, vS, RE, RS) = (2.11, 3.875, 1.04622, 1.08108); AS shock x=0.3 or larger if needed for positive prices 



Back-of-the-envelop calculation
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• Sharpe ratio in formula is 0.38; Simulations 0.51

• Sharpe ratio at steady-state in baseline model is at 0.37



Conclusion

• Highlight links between investment and asset returns

• Find a sizeable equity premium, reasonably volatile returns and risk
free rate, and very volatile Sharpe ratios and market price of risk

• Next:




