CREDIT SHOCKS IN AN ECONOMY WITH HETEROGENEOUS FIRMS AND DEFAULT

by Aubhik Khan, Tatsuro Senga and Julia K. Thomas

Discussed by Urban Jermann
Contribution

- Present GE model with heterogenous firms and default

Similar objectives as Gomes and Schmid (2010), Arellano, Bai and Kehoe (2012)

Solve & calibrate the model, and study TFP and credit shocks

Credit shocks have persistent effects on N, I and GDP

Slow recovery

Fluctuations in entry and exit are important
Contribution

- Present GE model with heterogeneous firms and default
 - Similar objectives as Gomes and Schmid (2010), Arellano, Bai and Kehoe (2012)

- Credit shocks have persistent effects on N, I and GDP
- Slow recovery
- Fluctuations in entry and exit are important
Contribution

- Present GE model with heterogenous firms and default
 - Similar objectives as Gomes and Schmid (2010), Arellano, Bai and Kehoe (2012)
- Solve & calibrate the model, and study TFP and credit shocks
Contribution

- Present GE model with heterogenous firms and default
 - Similar objectives as Gomes and Schmid (2010), Arellano, Bai and Kehoe (2012)
- Solve & calibrate the model, and study TFP and credit shocks
- Credit shocks have persistent effects on N, I and GDP
Contribution

- Present GE model with heterogenous firms and default
 - Similar objectives as Gomes and Schmid (2010), Arellano, Bai and Kehoe (2012)
- Solve & calibrate the model, and study TFP and credit shocks
- Credit shocks have persistent effects on N, I and GDP
 - Slow recovery
Contribution

- Present GE model with heterogenous firms and default
 - Similar objectives as Gomes and Schmid (2010), Arellano, Bai and Kehoe (2012)
- Solve & calibrate the model, and study TFP and credit shocks
- Credit shocks have persistent effects on N, I and GDP
 - Slow recovery
- Fluctuations in entry and exit are important
Model

- Firms’ production function

\[y_i = z \epsilon_i k_i^a n_i^\nu, \quad \alpha + \nu < 1 \]

- z aggregate TFP
- ϵ_i firm specific TFP
Model

- Firms’ production function

\[y_i = z\varepsilon_i k_i^\alpha n_i^\nu, \quad \alpha + \nu < 1 \]

\(z \) aggregate TFP
\(\varepsilon_i \) firm specific TFP

- \(k_i' = (1 - \delta) k_i + i_i \)
Model

- Firms’ production function

\[y_i = z \varepsilon_i k_i^a n_i^\nu, \quad \alpha + \nu < 1 \]

- \(z \) aggregate TFP
- \(\varepsilon_i \) firm specific TFP

- \(k'_i = (1 - \delta) k_i + i_i \)

- Fixed cost

\[\zeta_0 \]
Model

- Firms’ production function

\[y_i = z \varepsilon_i k_i^\alpha n_i^\nu, \quad \alpha + \nu < 1 \]

\(z \) aggregate TFP
\(\varepsilon_i \) firm specific TFP

- \(k_i' = (1 - \delta) k_i + i_i \)

- Fixed cost

\[\zeta_0 \]

- Labor choice

\[\pi (k, \varepsilon; s, \mu) = \max_n z \varepsilon k^\alpha n^\nu - \omega (s, \mu) n \]
\[= (1 - \nu) y (k, \varepsilon; s, \mu) \]
Financing

- One-period defaultable debt

 due : \(b_i \)

 sold : \(q (k'_i, b'_i, \epsilon_i; s, \mu) b'_i \)
Financing

- One-period defaultable debt

 due : \(b_i \)

 sold : \(q \left(k'_i, b'_i, \varepsilon_i; s, \mu \right) b'_i \)

- Financial fixed cost

 \(\chi_\theta (s) \bar{\zeta}_1 (\varepsilon) \), with

 \(\chi_\theta (s) = 1, \) if \(\theta \in \) crisis

 \(\chi_\theta (s) = 0, \) if \(\theta \notin \) crisis
Financing

- One-period defaultable debt

 due: \(b_i \)

 sold: \(q \left(k'_i, b'_i, \varepsilon_i; s, \mu \right) b'_i \)

- Financial fixed cost

 \[\chi_\theta \left(s \right) \zeta_1 \left(\varepsilon \right), \quad \text{with} \quad \chi_\theta \left(s \right) = 1, \text{if } \theta \in \text{crisis} \]
 \[\chi_\theta \left(s \right) = 0, \text{if } \theta \notin \text{crisis} \]

- Cash on hand

 \[x \left(. \right) = \left(1 - \nu \right) y \left(. \right) + \left(1 - \delta \right) k - b - \zeta_0 - \chi_\theta \left(s \right) \zeta_1 \left(\varepsilon \right) \]
Financing

- One-period defaultable debt

 \[\text{due : } b_i \]

 \[\text{sold : } q (k'_i, b'_i, \varepsilon_i; s, \mu) b'_i \]

- Financial fixed cost

 \[\chi_{\theta}(s) \xi_1(\varepsilon), \text{ with } \begin{align*}
 \chi_{\theta}(s) &= 1, \text{ if } \theta \in \text{ crisis} \\
 \chi_{\theta}(s) &= 0, \text{ if } \theta \notin \text{ crisis}
 \end{align*} \]

- Cash on hand

 \[x(.) = (1 - \nu) y(.) + (1 - \delta) k - b - \bar{\xi}_0 - \chi_{\theta}(s) \xi_1(\varepsilon) \]

- Dividends

 \[D = x - k' + q(.) b' \]
Financing

- One-period defaultable debt

 due : b_i

 sold : $q(k'_i, b'_i, \varepsilon_i; s, \mu) b'_i$

- Financial fixed cost

 $\chi_\theta(s) \xi_1(\varepsilon)$, with

 $\chi_\theta(s) = 1$, if $\theta \in \text{crisis}$

 $\chi_\theta(s) = 0$, if $\theta \notin \text{crisis}$

- Cash on hand

 $x(.) = (1 - \nu) y(.) + (1 - \delta) k - b - \xi_0 - \chi_\theta(s) \xi_1(\varepsilon)$

- Dividends

 $D = x - k' + q(.) b'$

- Nonnegative dividends, no external equity

 $D \geq 0$
Firms with negative equity default

\[V^1(x, \varepsilon; s_l, \mu) = \pi_d x + (1 - \pi_d) V^2(x, \varepsilon; s_l, \mu) < 0 \]
Firms with negative equity default

\[V^1(x, \varepsilon; s_l, \mu) = \pi_d x + (1 - \pi_d) V^2(x, \varepsilon; s_l, \mu) < 0 \]

with

\[V^2(.) = \max_{k', b'} \left[x - k' + q(.) b' + \sum_{m=1}^{N_s} \pi_{lm}^s d_m(s_l, \mu) \sum i j \pi_{ij}^e V^0(.) \right] \]

subject to

\[x - k' + q(.) b' \geq 0 \]
Debt pricing

\[q(k', b', \varepsilon_i; s_l, \mu) b' = \]

\[\sum_{m=1}^{N_s} \pi_{lm}^s d_m (.) \sum \pi_{ij}^\varepsilon \left[\chi \left(x'_{jm}, \varepsilon_j; s_m, \mu' \right) b' + \left(1 - \chi(.) \right) \min \{ b', \rho(\theta)(1 - \delta) k \} \right] \]
Frictions in the model

- Default cost
Frictions in the model

- Default cost
- Nonnegative dividends / no equity injection
Frictions in the model

- Default cost
- Nonnegative dividends / no equity injection
- Financial (crisis) fixed cost $\chi_\theta (s) \xi_1 (\varepsilon)$
Frictions in the model

- Default cost
- Nonnegative dividends / no equity injection
- Financial (crisis) fixed cost $\chi_{\theta} (s) \xi_1 (\varepsilon)$
- Exit & entry
Credit Shock
Many moving parts

- Credit shock = Recovery shock + Fixed cost shock
Many moving parts

- Credit shock = Recovery shock + Fixed cost shock
- Default vs Entry&Exit
Many moving parts

- Credit shock = Recovery shock + Fixed cost shock
- Default vs Entry&Exit
- Capital distribution at entry
Many moving parts

- Credit shock = Recovery shock + Fixed cost shock
- Default vs Entry&Exit
- Capital distribution at entry
 - Pareto distribution with lower bound k_0 and curvature parameter κ_0
Many moving parts

- Credit shock = Recovery shock + Fixed cost shock
- Default vs Entry&Exit
- Capital distribution at entry
 - Pareto distribution with lower bound k_0 and curvature parameter κ_0
- Firm specific "Disaster Shocks"
Many moving parts

- Credit shock = Recovery shock + Fixed cost shock
- Default vs Entry&Exit
- Capital distribution at entry
 - Pareto distribution with lower bound k_0 and curvature parameter κ_0
- Firm specific "Disaster Shocks"
 - 10% probability of $\varepsilon = 0$
Simplified partial equilibrium model

\[V(x) = \]

\[= \max_{k', b'} \left[x - k' + q(k', b')b' + \beta E \max \left\{ \left(A\epsilon' k' \frac{a}{1 - \nu} + (1 - \delta) k' \right), 0 \right\} \right] \]
Simplified partial equilibrium model

\[V(x) = \]

\[= \max_{k', b'} \left[x - k' + q(k', b')b' + \beta E \max \left\{ \left(A\epsilon' k' \frac{a}{1-v} + (1 - \delta) k' \right), 0 \right\} \right] \]

Assume

\[k' = q(b')b' + x \]
Simplified partial equilibrium model II

\[
\max_{B'} \beta E \int_{\epsilon'^* (B')}^{\bar{\epsilon}'} \left\{ \epsilon' \left[A (B' + x)^{\frac{a}{1-v}} + (1 - \delta) (B' + x) \right] \right. \\
- B' R^c (B') - \tilde{\xi}_0 - \chi_\theta (\theta') \tilde{\xi} \epsilon' \left. \right\} d\Phi (\epsilon')
\]
Simplified partial equilibrium model II

\[
\max_{B'} \beta E \int_{\varepsilon^*'(B')}^{\varepsilon'} \left\{ \varepsilon' \left[A (B' + x)^{\frac{a}{1-\nu}} \right. \right.
\left. + (1 - \delta) (B' + x) \right] \\
- B' R^c (B') - \zeta_0 - \chi_\theta (\theta') \zeta \varepsilon' \right\} d\Phi (\varepsilon')
\]

\[
\frac{B'}{\beta} = E \{ \Phi (\varepsilon^*') BR^c \}
\]

\[
+ E \left\{ \int_{\bar{\varepsilon}} \min \left[\rho (\theta) (1 - \delta) \varepsilon' (B' + x), BR^c \right] d\Phi (\varepsilon') \right\}
\]
Optimal policies
Recovery rate shock

Reduction in recovery parameter from 0.37 to 0

Change in expected default
Change in firm value

Change in k'

Cash on hand, x
Recovery rate shock with lower interest rate

Change in expected default

Change in firm value

Change in k^*

Reduction in recovery parameter from 0.37 to 0, with decline of interest rate 0.05%
Fixed cost shock (balance sheet shock)
Conclusion

- Progress: GE with default and heterogeneous firms

I would like tighter calibration and more clarity in the empirical evaluation.
Conclusion

- Progress: GE with default and heterogenous firms
- I would like
Conclusion

- Progress: GE with default and heterogenous firms
- I would like
 - tighter calibration and more clarity
Conclusion

- Progress: GE with default and heterogenous firms
- I would like
 - tighter calibration and more clarity
 - more explicit empirical evaluation