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Abstract

This paper studies firms’ usage of interest rate swaps in a model economy driven by ag-

gregate productivity shocks, inflation shocks, and counter-cyclical idiosyncratic productivity

risk. Consistent with empirical evidence, firms in the model are fixed-rate payers. Counter-

cyclical productivity risk is key for this finding; inflation risk contributes to producing the

opposite outcome. Also consistent with empirical evidence, swap positions are negatively

correlated with the term spread, so that firms appear to be timing the market. In the model,

swaps generate only small economic gains for the typical firm.

Interest rate swaps are derivative contracts through which two parties exchange fixed and

floating rate coupon payments. Such swaps were first used in the early 1980s. By now they are

among the most popular derivative contracts. As shown in Figure 1, the notional amount of

outstanding interest rate swaps denominated in dollars, for non-financial institutions, is about

10 trillion dollars. In surveys of derivative usage, a sizable fraction of the larger firms in the
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US typically indicate that they are using interest rate swaps, and that swaps are their favorite

derivative contract for managing interest rate risk.1

Several empirical and theoretical studies have examined why firms use swaps, and how firm

characteristics affect the use of swaps. However, to the best of our knowledge, there are no

quantitative models of swap choice, and little is known about the impact of the use of interest

rate swaps on corporate default rates, borrowing decisions, real production decisions, and the

economy more generally.

In this paper, we develop a model of firms’ production and financing decisions with firms

that are subject to aggregate and idiosyncratic productivity risk, as well as interest rate risk and

inflation risk. The objective is to examine the optimal swap choice and the impact of the use

of interest rate swaps on the pricing of corporate debt. This is done in an equilibrium setting,

by considering production and financing decisions as well as default in a consistent way. As a

first take on these issues, we consider a relatively simple business cycle model that, in addition

to an interest rate swap, includes only the most standard ingredients. In particular, we abstract

from explicit agency problems and behavioral issues that have been related to swap usage in some

theoretical studies and in some non-structural empirical studies in the literature.

A well documented stylized fact of U.S. firms’ interest rate swap usage is that nonfinancial

firms overall tend to be fixed rate payers. Typically, a firm with floating rate debt can enter a

swap contract to convert the variable payments into payments known in advance. For instance,

Li and Mao (2003) find that in their sample of U.S. non-financial firms that use swaps 44% are

fixed payers, 20% are floating payers, 18% are both, and for 18% this information isn’t available.

These proportions are in line with Saunders’ (1999) findings that were derived from different data.

This is also consistent with Chernenko and Faulkender (2011), and with the survey of Bondnar

et al (2011). In a fully specified model, where swap payouts are correlated with a number of

economic risk factors, firms’ do not necessarily choose to be fixed rate payers. Our analysis can

help us better understand under what conditions this is the case, and what the key determinants

of firms’ swap choices are.

Another characteristic that has attracted attention is that firms seem to be using interest

rate swaps for timing the market. That is, when the yield curve is steep, firms use swaps to

pay a floating rate on their debt, that—at least in the short run—is relatively low; and, when

the yield curve is flat (or inverted), firms use swaps to lock in the relatively attractive fixed

1See Marshall and Kapner (1993) for historical and institutational background, and Bodnar et al. (2011) for

current derivative usage.
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(long-term) rate. Figure 2, based on swap usage data from Chernenko and Faulkender (2011),

shows a strong negative correlation between the aggregate net fixed swap position and the spread

between 10-year and 6 month government yields. The contemporaneous correlation is -0.42, and

with annual growth rates -0.21; if the swap is lagged by one year, these correlations are -0.56 and

-0.57, respectively. While it is tempting to explain this type of behavior as firms being myopic,

it is important to know under what assumptions this negative correlation can emerge with fully

rational agents with no explicit conflicts of interest.

We find that our model can explain these stylized facts about swap usage. In the benchmark

version of our model, firms are fixed-rate payers and swap positions are negatively correlated with

the yield spread. Counter-cyclical idiosyncratic productivity risk turns out to be a key contributor

to firms being fixed-rate payers. Without counter-cyclical idiosyncratic productivity risk, firms

in our model would typically choose to be floating rate payers to hedge the risk of deflation on

their nominal debt. We also find that in the model swaps affect firms’ investment decisions and

debt pricing very moderately, and the availability of swaps generates only small economic gains

for the typical firm.

Our analysis is related to a number of theoretical studies that have considered the motiva-

tions for using interest rate swaps, or derivative contracts more generally. Smith and Stulz (1985)

present a number of reasons why value-maximizing firms use derivative contracts for hedging.

As in their analysis, our model focuses on bankruptcy costs as a motive for risk management.

Wall (1989) links swap usage to some classic agency problems associated with long-term debt.

For instance, Myers (1977) pointed out that long term debt can lead to under-investment, be-

cause creditors share the benefit of new investments through a reduced probability of bankruptcy.

Barnea, Haugen and Senbet (1980) suggested that long term debt encourages risk shifting behav-

ior, that is, the adoption of high risk projects after debt has been issued. Both of these agency

problems can be addressed by issuing short term debt instead. Wall (1989) argues that swaps

are useful in this context, because they allow firms to hedge the interest rate risk associated with

short term borrowing. Titman (1992), building on ideas of Flannery (1986), suggests that short

term debt allows firms with positive private information to lower the expected cost of borrowing.

Interest swaps allow firms to hedge the interest rate risk associated with short term borrowing.

While not modelling any of these agency problems explicitly, in our model, firms are limited to

short term debt as a simple way of representing an inherent advantage for short term debt.

Our analysis is also related to some recent studies that consider equilibrium models with

defaultable debt, such as Gomes and Schmid (2010), or Bhamra, Kuehn and Strebulaev (2008).
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As in these studies we model firm default explicitly. In addition to the defaultable debt considered

in these studies, our model also allows firms to trade derivative contracts. More recently, Begenau,

Piazzesi, and Schneider (2012) estimate banks’ exposures to interest rate risk including swap

positions.

Section 1 presents the model. Section 2 presents a simplified model that admits a closed form

solution that we can use to better understand our main model. Section 3 contains the quantitative

analysis, and Section 4 concludes.

1 Model

A key ingredient of our model are firms with long-term projects that are financed with short-term

debt. This market incompleteness highlights the role played by interest rate swaps as a tool to

manage risks associated with interest rates, inflation and productivity. We consider a general

equilibrium model where asset prices are endogenously determined. Given the huge size of the

aggregate value of the outstanding swap contracts, it seems a priori reasonable to examine the

impact of swaps on the aggregate economy. Another advantage of the general equilibrium analysis

is that we do not need to exogenously parameterize a process for the state prices and its relation

to aggregate productivity, as in a partial equilibrium analysis. Of course, this comes at the cost

of possible misspecification. To minimize the effects of misspecificiation, our quantitative analysis

seeks to match as closely as possible important empirical properties.

For the reminder of this section, we first describe firms and their decisions, and then close the

model with investors and consumers.

1.1 Firms with long-term projects

The focus of our analysis is on firms with projects that have a longer maturity than the available

debt financing. It is in this case that an interest rate swap is potentially useful. In this subsection,

we describe their technology and available financial instruments, and we characterize optimal

financing and production decisions.

1.1.1 Technology

A firm’s life extends over three periods, 0 1 and 2. Production requires an initial capital input

  ∈ R+ in period 0, and total output is given by the (concave) production function 
¡
 00

¢
in
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period 2. The logarithm of the productivity level 00 is determined by aggregate and idiosyncratic

shocks that are realized in period 1 and 2. We label the aggregate productivity shock by  ∈ A =
(1 ), and assume it follows a Markov chain, and the idiosyncratic shock by  ∈ Z ⊂ R. The
idiosyncratic shock is independently drawn from a continuous distribution Φ (|), conditional on
, with the expectation of exp () equal to 1. Productivity depends on the history of aggregate

and idiosyncratic shocks such that

00 = 0 +00 + 0 + 00

0 and 00 are the aggregate productivity shocks in period 1 and 2, respectively. The idiosyncratic

shocks 0and 00 are assumed to be known in period 1 and 2, respectively.

In each time period, a continuum of measure one of new firms enter the market. Firms are

ex-ante identical, but differ ex-post due to the realization of the idiosyncratic shocks . Therefore,

in each period, there are three vintages of firms active in production. There is a first group of

identical firms that are investing in new projects. In the second group, firms have active projects

in place, and their first period productivity shocks are revealed. In the third group, the second

period shocks are revealed, production is completed, and firms exit.

1.1.2 Financial contracts

A firm can borrow from investors in the form of one-period nominal debt. A firm initially borrows

 ∈ R+ to finance its investment. 
1 is the (gross) interest rate on the first period debt, where

the superscript  stands for corporate debt, which is subject to default. After one period, the

aggregate shock 0 and the idiosyncratic shock 0 are realized. At this point, the firm needs to

roll over its debt because the project has not produced any output yet. That is, the firm needs

to borrow 
1 for another period. No additional investment in the project is needed. If the firm

can roll over the debt, the new interest rate is 
2. Because the first period idiosyncratic shock

0 is realized, and firms at this stage are heterogeneous, the second period debt interest rates 
2

depends on the firm specific realization of 0. At the end of the project’s second stage, the firm

gets output from the project, repays the second period debt, and pays out profits.

Default on the debt is a possibility. In the second period, the firm defaults if its output is

insufficient to repay the second period debt. In the first period, the firm defaults, if it cannot roll

over its initial debt. The firm cannot roll over its debt, if the firm’s assets are valued less than

its debt.
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In addition to one-period debt, firms have access to an interest rate swap that is chosen in

period 0. According to a swap contract, one party agrees to pay a fixed coupon with a gross

rate  to the other party in period 1 and period 2;  is called the swap rate. In exchange,

payments that are indexed to the one-period risk free rates 1 and 2 are received in period 1

and 2, respectively; this is the floating rate. We assume that the swap rate  is determined so

that the present value of the contract (abstracting from default costs) is zero under the pricing

measure used in the economy.

The amount of the swap is denoted by , which is measured as a fraction of first-period debt

. Due to the firm’s default risk on the interest rate swap, the firm also needs to pay a default

spread in each period. In particular, we assume that in period 1, the firm needs to pay

 ·
£
 + 

¡
 

¢−1
¤


and in period 2

 ·
£
 + 1

¡
 ; 0 0

¢−2 (
0)
¤


where  () and 1 () denote the default spreads, and  0 is the vector of next period’s real-

ized aggregate state variables which include productivity 0 and inflation (to be defined below).

To save on notation, for now, our notation does not explicitly acknowledge the dependence on

endogenous state variables, which will be described later. We assume that 1
¡
 ; 0 0

¢
is

determined in period 1, and that it represents at that time the fair market value of the losses

expected for period 2. Similarly, 
¡
 

¢
is determined at time 0 and represents the compensa-

tion for possible losses due to default that might have occurred at time 1. We assume absolute

priority for the swap, that is, the swap will first get fully paid before lenders get anything.2 We

assume that the firms’ swap counterparties will always fully honor their commitments.

Clearly, at the time the swap contract is signed, the future one-period interest rate 2 is not

known; it will be known at time 1. Therefore, swap payouts are a function of the future one-period

interest rate 2. Because future interest rates are correlated with a number of risks the firm is

exposed to, swaps allow the firm to manage these risks.3

2To the extent that default risk is priced in interest rate swaps, it is typically build into the fixed rate. Thus,

our assumption of a variable default premium deviates somewhat from the most immediate specification. We make

this assumption for numerical tractability, as becomes clear below. Given that defaults on swaps are extremely

rare in the model, this assumption does not affect any of our results.
3Typically, fixed-for-floating interest rates swaps have maturities of several years, and coupon exchanges take

place at quarterly, bi-annual or annual frequencies. We choose a two-period swap contract as the most tractable

specification that captures the swap’s risk management properties.
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1.1.3 Firms’ problem

An individual firm takes as given the interest rate schedule for corporate debt, the schedule for

the swap spreads, as well as the risk-free interest rates that determine the swap payouts. In period

0, a new firm chooses the amount of investment (equivalently debt), and the amount of the swap

to maximize its expected value under the owners’ pricing measure.

In addition to exogenous aggregate and idiosyncratic productivity shocks, the firms and in-

vestors are subject to shocks in the rate of inflation, . Inflation is assumed to follow a Markov

chain. To keep the model as simple as possible, the inflation process is assumed to be exogenous.

However, money is not neutral in this economy, because inflation matters for default, and thus,

firms take it into account when making investment and financing decisions. For compactness the

aggregate shock is denoted by  ≡ ( ).4
We denote the joint distribution of ( 0 0) conditional on the aggregate shocks  as 00| ,

00| = Φ (0| 0)Γ ( 0|) 

with transition matrix Γ ( 0|), and the corresponding pricing measure is denoted by

 ∗00| = 00| ( 0|)  (1)

where  () is the (real) stochastic discount factor;  () also depends on the endogenous state

variables to be defined later. This representation expresses the fact that idiosyncratic risk does

not require a risk premium.

In period 2, conditional on the firm not having defaulted on its obligations before, default

occurs if output is not sufficient to cover the firm’s financial obligations. In this case, the counter-

parties for the swap and the debt obtain the available output according to the established priority

rules. We assume that the counterparties do not incur any additional cost for default in period 2.

This assumption helps making the problem more tractable numerically. Due to this assumption,

the value of the firm at time 1 is not affected by the possibility of default at time 2. This is

because the default spreads on the swap and on the one-period debt determined in period 1 are

such as to exactly compensate the investors for expected default losses in period 2. Without a

cost of default, the firm values the ability to default as being equal to the default spread deter-

mined by the investors. Of course, this result also depends crucially on the assumption that the

4Assuming an exogenous inflation process is not necessarily that restrictive. In particular, inflation will be

allowed to be correlated with aggregate productivity.
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firm values profits with the same stochastic discount factor as the investors. This is a version of

Modigliani-Miller’s theorem; see Appendix A for details.

Under the made assumptions, in period 1 the (equity) value of the firm is given byZ

¡
 00

¢
 ∗0000|0 − 

0

½

1

¡
 

¢
+ 

∙
 + 

¡
 

¢−1 +
 −2 (

0)
2 ( 0)

¸¾
 (2)

The present value of the firm’s operational revenues is given by
R

¡
 00

¢
 ∗0000|0, and  is

 deflated by the price level, that is, the debt (and the capital stock) in units of the numeraire

good.5 Interest due on debt is represented by 
1

¡
 

¢
. The term in square brackets displays

the per unit value of the swap including the payments due in period 1. Given our assumption

that default in period 2 is not subject to a deadweight cost, and that a fairly valued default

spread is added to the swap payment, the present value of the swap payment due in period 2,

( −2 (
0)) 2 ( 0), can be obtained by discounting at the risk free rate, 2 ( 0). As is clear

in the equation above, realized inflation 0 affects the real value of the debt and the swap.

If the value of the firm at time 1 is positive, then the one-period debt due
1

¡
 

¢
0 is rolled

over. We can assume that the payment received, or due, from the swap
£
 + 

¡
 

¢−1
¤
0

is used to decrease/increase the debt, although the exact timing of the settlement of the swap is

unimportant here.

If the firm value given in equation 2 is negative, the firm is in default at time 1. In particular,

the firm will be unable to find new investors to roll over its existing debt because the value of

the remaining assets is below the value of the existing debt. We assume that this will generate a

default cost modelled as a reduction in the output available for the creditors to 
¡
 00

¢
with

 ≤ 1. In default, we assume that the swap is honored fully before debt holders get paid. This
is intended to capture that quite often swaps involve some form of collateral and can thus be

thought as representing a more senior claim than debt. Counterparties are given shares in the

remaining firm assets. Specifically, if

 ·
Z


¡
 00

¢
 ∗0000|0 ≥ 



0

½
 + 

¡
 

¢−1 +
 −2 (

0)
2 ( 0)

¾
 (3)

swap counterparties get fully paid, and the reminder is distributed to the debt holders. In case

the swap has a positive value for the firm, that is, the RHS of Equation (3) is negative, debt

holders, as the new owners, take over as creditors from the firm. If

 ·
Z


¡
 00

¢
 ∗0000|0  



0

½
 + 

¡
 

¢−1 +
 −2 (

0)
2 ( 0)

¾
 (4)

5There is some abuse of notation for the sake of brievity, the pricing schedules, such as 
1

¡
 

¢
, are henceforth

denoted as function of the debt in real terms .
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then the swap counterparties get all the remaining assets from the firm, that is, they get  ·R

¡
 00

¢
 ∗0000|0, the debt holders get nothing. Depending on the realization of the idio-

syncratic shock 0 we have either one of the three outcomes. Typically, for values of 0 above a

given threshold there is no default. Below that threshold, default reduces the debt holders’ claim.

And for very low values of 0, swap counterparties do not get fully paid (assuming they are owed

anything). The aggregate shock realization  0 and the endogenous state variables affect these

cutoff levels.

We can now state the firm’s objective as maximizing the expected value as of period 0 of its

expected value as of period 1 over the no-default set for ( 0 0) denoted by 1

¡
 

¢
,

max


Z
1()

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R

¡
 00

¢
 ∗

0000|0

− 

0

³

1

¡
 

¢
+  ·

h
 + 

¡
 

¢−1 +
−2(0)
2(0)

i´
⎫⎪⎪⎪⎬⎪⎪⎪⎭  ∗00| 

In our model, as a function of the firms’ decisions, creditors and counterparties are compen-

sated for default losses through additional payments in the no-default states. In order to solve

for the firms’ problem, we need to derive the default spreads built into the corporate interest rate


1

¡
 

¢
and the default spread for the swap in the first period 

¡
 

¢
. To solve for optimal

decisions, we can aggregate the default spread into a total default spread


¡
 

¢ ≡ 
1

¡
 

¢−1 + × 
¡
 

¢


By no-arbitrage, for a given choice
¡
 

¢
, the default spread  is given by


¡
 ·  ·

¢
=  ( · default loss to creditors) 

where  is the stochastic discount factor introduced in eq. (1). We assume that bond investors

and swap counterparties use the same pricing measure as the firms’ equity holders. Substituting

in the creditors’ default loss and rearranging yields


¡
 

¢
=

R
1(0)

n
1
0 +


0

h
 −1 +

−2(0)
2(0)

i
− ¡¢ R  ¡ 00¢  ∗0000|0

o
 ∗00|R

1(0)
1
0

∗
00|



The numerator represents the value lost at default relative to default free contracts, the denomi-

nator is the risk-adjusted no-default probability.

Once the model is solved, including  it is straightforward to compute the default spread

for debt and the swap separately, following the seniority rule outlined above. Similarly, default

spreads for period 2 can be computed after the model is solved.

9



Using default spreads defined in this way, after some algebra, the firm’s objective can be

rewritten as

max


⎧⎨⎩
R hR


¡
 00

¢
 ∗0000|0

i
 ∗00| − 

− R
1()

hR
(1− )

¡
 00

¢
 ∗0000|0

i
 ∗00|

⎫⎬⎭  (5)

where 1

¡
 

¢
stands for the default set. This representation makes it clear that the firm value

is given by the following three components

PV(output)
¡

¢− debt ¡¢− PV( default cost) ¡ ¢

where PV(.) stands for present value. This decomposition shows that the swap only affects the

firm value through the default cost. This implies that without default cost, that is, if  = 1 the

swap choice is indeterminate. This is because the swap then simply represents a contract that

has a zero market value. With default costs   1 the firm optimally chooses the swap to reduce

default costs. This property is related to the analysis of Smith and Stulz (1985). While inflation

does not seem to appear in Equation (5), inflation 0 does enter through its effect on the default

set 1

¡
 

¢
, as shown in Equations (3) and (4).

1.2 Firms with short-term projects

In addition to firms with long-term projects that require two periods to produce output, there

are firms with short-term projects that produce output in one period. At a conceptual level, the

short-term firms add very little to our analysis. They are however needed to produce reasonable

quantitative implications. In particular, our model without these firms would typically produce

strongly oscillating movements in short-term interest rates. This is due to the fact that the

consumers’/investors’ desire to smooth consumption between two adjacent periods will have to

be frustrated with such interest rate movements because there would be no technology to transfer

resources from one period to the one immediately next. This problem is reminiscent of the

oscillating interest rates in models with time-to-build in investment (see for instance, Rouwenhorst

(1991) or Kuehn (2009)). With short-term firms, the economy has the ability to physically transfer

resources from one period to the next, and this essentially eliminates oscillating interest rates.

We keep this sector as simple as possible.

Firms invest  at time 0, and produce output one period later according to a production

function

 ( 0 + 0)
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that depends on aggregate and idiosyncratic productivity 0 and 0. Capital is financed with

one-period defaultable debt. For computational simplicity, we assume no default cost. Given our

presentation of the long-term firms problem, the short-term firms’ problem is straightforward and

thus omitted from the presentation.

1.3 Consumers/investors and equilibrium

We assume a continuum of measure one of identical, infinitely-lived, consumers/investors. We

can thus focus on a representative whose goal is to maximize lifetime utility given by

0

∞X
=0

 () 

with  the time discount factor,  consumption in period , and  () a concave momentary

utility. In every period, the consumers earn profits from owning firms, receive interest, and make

or receive payments associated with swaps. To save on notation, we do not write out the budget

constraint.

We assume that consumers/investors take all prices as given and choose consumption and in-

vestment strategies for debt and swaps to maximize lifetime utility. In equilibrium, bond markets

and swap markets clear, and the economy-wide resource constraint holds. The later is given by

  +   =  +   + 

where   and   are aggregate output and investment in the two sectors. As is clear from the

resource constraint, it is assumed that default costs are not deadweight costs at the level of the

economy. Given that we typically think of default costs as due to legal costs or asset fire sales,

losses to firms and investors correspond to gains for lawyers and vulture investors.

In this model, the asset pricing measure is given by

 ∗00| = 00|
0 ( 0)
0 ()



1.4 Functional forms and aggregate state variables

We use the standard utility function  () = 1− (1− ), with risk aversion coefficient . The

production function for long-term and short-term firms is represented by

 ( ) = exp () [ + (1− )] 
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with   1.   0 is a scale parameter. Parameter values can potentially be different for

the long-term and short-term firms. In particular, we set   = 1 for the long-term sector as

a normalization,  then determines the relative size of the short-term sector. The fact that

(1− ) is also multiplied by the productivity shock exp () is somewhat nonstandard, and

effectively introduces stochastic depreciation. This specification reduces the number of state

variables, and thus improves numerical tractability.

Included in the aggregate state vector ν are the current aggregate shocks  = ( ) plus two

variables that summarize the amount of resources in the economy that are at different stages of

production. In particular, this includes −1 the amount of debt/capital chosen by long-term firms

that were started in the previous period, as well as exp (−1)
¡£
−2
¤
+ (1− ) 


−2
¢
+

£
−1
¤
+

(1− ) 

−1 which summarizes the accumulated aggregate resources due to long-term firms started

two periods ago and the short-term firms started in the previous period.

The model is solved numerically by guessing policy functions for  (ν) and  (ν). Based on

these, aggregate consumption and the state-prices can be computed for future periods 1 and 2.

Then, the firms’ problems are solved, including default cost schedules. The policy functions  (ν)

and  (ν) are updated until convergence.

2 Simplified model of swap choice

To help understand model mechanisms, this section describes a simplified model that focuses on

the swap choice only, and that admits a closed-form solution.

Under a set of simplifying assumptions, the firms’ problem for choosing the swap is equivalent

to minimizing the variance of the total position at time 1 that is given in equation 2. Most

important is the assumption that default losses are not state contingent. While the assumptions

needed are not exactly satisfied in our main model, the simple model here illustrates some key

quantitative channels. See Appendix B for an explicit derivation that spells out all the required

assumptions.

Consider the problem of a firm choosing the fraction of debt that is swapped  so as to

minimize the variance of the value of equity at time 1,

min




µ
1 [12

00]− 

0

∙
1 + + 

µ
 −1 +

 −2

2

¶¸¶


where 1 [12
00] represents the expected value of output conditional on productivity realized at
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time 1. Slightly rewriting yields

min




µ
1 [m12 |A0]−  [1 + ]

π0
− 



π0

∙µ
 −1 +



R2
− 1
¶¸¶

(6)

with the stochastic terms in bold (m12A
0π0R2). In the same order, these are: the stochastic

discount factor, productivity realized at time 1, inflation realized at time 1, and the one-period

interest at time 1. The first two terms in the variance in equation (6) represent the firm’s exposure

to risk, that is, the initial position that is subject to interest rate, productivity, and inflation risk.

The third (and last) term represents the effect of the swap. Minimizing the variance of the hedged

position is typically the way finance practitioners’ text books present the choice of an optimal

hedge; see, for instance, Hull (2000).

Linearizing the terms in the variance gives



200

³
̂0 − ̂2 +c00´+µ [1 + ]

0

¶ b0 + 

µ


0


2

¶
̂2 (7)

where ̂ ≡ . Note that ̂2 = − (̂12) +c00, that is, the (log-linearized) nominal interest
rate equals the real interest rate plus expected inflation. Also note that realized inflation doesn’t

multiply the swap because the expected value as of time 0 of
³
 −1 +

−2
2

´
= 0, and this

is the point of linearization. Thus, to a first-order approximation, the swap doesn’t create any

exposure to realized inflation.

Taking first-order conditions with respect to  and rearranging terms gives the optimal level

of the swap as

∗ =

Ã


200


0



2

!⎡⎣ ̂2−
00| {z }

Real interest rate risk

− 
0|{z}

Productivity risk

⎤⎦−µ1 + 

2

¶

0|{z}

Inflation risk

 (8)

where ̂ ≡ 
³
̂ ̂2

´


³
̂2

´
, the coefficient in a regression of the nominal interest rate

on ̂.6

These interest rate betas measure the contribution to the optimal hedge due to each of the

three sources of risk.

1. The first term in brackets represents the hedge against real interest rate risk for the firm’s

assets that comes from the (real) stochastic discount factor. The more volatile the real

interest rate relative to the nominal interest rate, the more risk there is, and the larger is

the swap position. Unless expected inflation is very volatile, this term will be positive. If

expected inflation is non-stochastic ̂2−
00 = 1.

6For instance, for min  (̃− ̃), with random variables ̃ and ̃, setting the derivative with respect to  to

0 yields  ·  (̃) =  (̃ ̃).
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2. The second term in brackets, 
0, represents the hedge against productivity risk. Given

that output and nominal interest rates are typically negatively correlated (empirically, at

least, over the long run), this term contributes positively to the swap position.

3. The third term represents the hedge against inflation (or deflation) risk associated with

the nominal debt. Typically, realized inflation is positively correlated with nominal interest

rates, thus we expect the overall contribution of this term to the swap position to be negative.

Intuitively, inflation risk on the nominal debt is hedged by getting a swap that requires the

firm to pay the floating rate. For instance, when realized inflation is low, there is a capital

loss due to the increase in the real value of the debt, and this can be compensated by lower

floating rate payments on the swap. Thus, this term contributes negatively to the swap

position  (which we have defined as a swap that requires the firm to pay fixed and receive

floating).

The two terms in round brackets capture the exposures due to firm assets and debt divided

by the sensitivity of the swap to changes in interest rates. Both of these terms are positive. To a

first approximation
³


200

 
0



2

´
equals the total value of the firm divided by debt, that is, the

inverse of the leverage ratio. In the aggregate, we would expect this term to be slightly larger

than 2, while
³

1+
2

´
is slightly larger than 1. Thus, the first two hedging motives are magnified

compared to inflation risk.

Finally, we can see that persistent expected inflation, everything else equal, scales up the

swap position. If the swap position is positive, higher (persistent) inflation requires a bigger

swap position. To see this, assume 2 = 
2, and  = , which holds to a first-order

approximation, and 00 = 0 =  , then

 = 

(Ã


2





2

!h
̂2−

00 − 
0i−µ

1 + 


2

¶

0
)


Intuitively, inflation contributes to shrinking the real size of the swap position over time given

that the notional is in nominal terms. The optimal hedge counters this effect by scaling up the

position. We will return to this model when discussing the implications of the fully specified

model.

3 Quantitative analysis

In this section the model is parameterized and quantitative properties are examined.
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3.1 Parameterization

Parameter values are chosen according to two types of criteria. A first set of parameters are given

values based on direct evidence on the parameters or to keep the model simple. A second set

of parameters values are chosen so that selected moments of endogenous model quantities match

empirical counterparts.

Table 1 shows the first set of parameter values.

Table 1

Parameter values

Depreciation (annual)  01

Risk aversion  15

Capital curvature  05

Short term sector size  075

The depreciation rate  at 0.1 annually is a standard value. We assume a model period of

five years. Based on this, the depreciation rates in the model are 1 − (1− ) with  equal

to 5 or 10 for short-term and long-term firms, respectively.  is set to 075 to have the short

term sector roughly produce half of the economy’s output, the other half being produced by

the long-term sector. The capital curvature parameter  is set to 05. Plant level estimates of

this parameter from Cooper and Haltiwanger (2006) and Cooper and Ejarque (2003) are around

06− 07, the typical values used in business cycle studies for aggregate production functions are
around 03−04. We set risk aversion to 15, as a way of generating nonnegligeable risk premiums.
Alternatively, we could introduce a richer utility specification as typically used in asset pricing

studies. Given the computational cost, and given that the focus of the paper is not on the ability

to match the overall size of risk premiums, we prefer this more parsimonious approach.

Table 2 presents a list of parameters with values chosen so that the model closely replicates

empirical counterparts. Model statistics are based on a very long simulated sample. The joint

process for aggregate productivity, , and inflation, , is built from two two-state Markov chains.

For both, the diagonal elements are set to determine the serial correlation coefficients. In the

combined four-state Markov process, elements that are associated with relatively high (or low)

realizations for both, productivity and inflation, are increased by 4, the others are decreased

by 4. This is a convenient way to introduce non-zero correlation between productivity and

inflation. For instance, as is easy to see, if both productivity and inflation are IID, then  equals

the correlation coefficient between productivity and inflation. Given that inflation is exogenous,
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it is easy to perfectly match mean, standard deviation and first-order serial correlation of the

data.

All other target moments are endogenous, and the simulated model comes very close to match-

ing the calibration targets. The empirical counterparts for consumption and output are based on

constructing aggregates for 5 year periods, the interest rate is taken to be a five year rate. Log-

arithms are taken of consumption, output, interest rates and inflation. The Appendix contains

a more detailed description of how empirical counterparts are constructed. Following Bloom et

al (2009), idiosyncratic productivity risk varies countercyclically with aggregate productivity, so

that with low aggregate productivity it is  +∆ and with high aggregate productivity  −∆.

The level of  is set to match default rates in the data, and the variation, ∆, is in the range of

the empirical evidence presented in Bloom et al (2009). In particular, they report the % increase

of various dispersion measures in recessions relative to expansions to be between 023 and 067;

our model target is set to 05. The correlation between inflation and productivity,  (),

is set so that the model is reasonably close to the data for the correlations of output growth

with both inflation and the nominal interest rate. The model cannot exactly match both of these

correlations. As we show below, this parameter matters mainly for the correlation of the swap

and the term spread.

Table 2

Parameters set to match moments

Parameter Target Statistic Data Model

 078  () 0302 0314

 05 (Recovery rate) 040 043

 037 (Default rate) 00709 00722

∆ , in  ±∆ 0075 Dispersion (Rec.)/Disp(Exp.) −1 023− 067 05

() 00625  (∆) 0032 0035

 () 0  (∆) −006 −003
 () 0184  () 0184 0184

 () 011  () 011 011

 () 045  () 045 045

 () −03 (∆) −02 −023
 (∆) −031 −022
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3.2 Model implications for swaps

Two facts about firms’ swap usage emerge from empirical studies: swap positions are positive

(firms are net fixed payers), and swap positions commove negatively with the term spread, so

that firms increase net fixed rate obligations when long-term interest rates are relatively low. As

shown in Table 3, the model’s benchmark calibration can produce these two properties, with the

expected swap level at 033 and the correlation between the swap and the term spread at −075.
As is clear from Table 3, the model’s ability to produce these facts hinges critically on the types

of risks included in the model.

To better understand the determinants of the level and the cyclical behavior of the swap, it is

useful to consider the solution of the simplified model, which we reproduce here for convenience

∗ =

Ã


200


0



2

!⎡⎣ ̂2−
00| {z }

Real interest rate risk

− 
0|{z}

Productivity risk

⎤⎦−µ1 + 

2

¶

0|{z}

Inflation risk

 (9)

3.2.1 Swap level

We compare different model versions, starting with version A in Table 3 that has only aggregate

productivity shocks. Idiosyncratic productivity shocks with constant variance are included in

versions A, B and C; the benchmark version features idiosyncratic productivity shocks with

countercyclical variance. For case A, the level of the swap is positive and large, with an expected

value of 598. The high level is easy to understand with the solution of the simplified model

in equation (9). Indeed, as shown in Table 3, the real interest rate beta, ̂2−
00, is equal to

one, because there is no expected inflation risk. Productivity risk also makes a large positive

contribution. Interest rates and productivity are negatively related, and (conditional) interest

rate volatility is low, thus the large value for −0. The inflation beta,  0, is obviously equal
to zero in this case. Note, Table 3 reports the average of the conditional betas, computed from

the model solution, as it is the conditional relation that determines the swap choice. Also, betas

are computed under the risk neutral probabilities (that is, physical probabilities are scaled by the

stochastic discount factor), as this is what firms care about (not the physical probabilities).

Column B in Table 3 displays the case with productivity and inflation shocks, assuming that

the two are uncorrelated. Unlike the case A with only productivity risk, this case produces a

negative swap position, with an expected value of −196. Clearly, inflation risk has a first-order
impact on swap choice. As shown in Table 3, the change in the betas drives the strongly lower,

and now negative, swap position. Most importantly, the inflation beta makes a large negative
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contribution. This is because realized inflation and expected inflation (and thus interest rates) are

positively correlated. With interest rates now being driven to a large extent by expected inflation

(see the conditional interest rate volatility), the real interest rate beta and the productivity beta

are now making a considerably weaker contribution.

Table 3

Model implications: Swap choice depending on risks in the model

(A) (B) (C) Benchmark

Statistic            ∆

E(swap) 598 −196 −137 032

Corr(swap, term spread) 024 095 −092 −076
Std(swap) 005 016 013 012

Corr(swap, interest rate) −027 −081 043 096

Corr(swap, inflation) − −094 094 072

Std() 00626 00791 00872 00873

E
¡
Std(|− 1)¢ 00180 00476 00528 00528

Std
¡
Std(|− 1)¢ 00012 00004 00030 00030

̂2−
00 1 014 023 023

−0 308 044 063 063

− 0 0 −191 −173 −173
(, aggregate productivity shocks,  , inflation shocks,  negatively

correlated productivity and inflation, ∆ time-varying idiosyncratic productity)

Case C introduces negative correlation between exogenous aggregate productivity and infla-

tion. Relative to case B with uncorrelated productivity and inflation, this has a modest effect

on the level of the swap. Among the betas, the contribution of the productivity beta changes

the most. This is now larger, because with negatively correlated productivity and inflation, the

negative correlation between productivity and the interest rate is stronger.

The Benchmark case shown in Table 3, in addition to the shocks in case C, also features

idiosyncratic productivity shocks with countercyclical variance. As shown in Table 3, this has

a big effect on the level, making it positive, with a mean of 032. While the simplified model

doesn’t explicitly include time-varying idiosyncratic risk, the model nevertheless suggests how

this can increase the level of the swap. With idiosyncratic risk higher when productivity is lower,
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idiosyncratic productivity risk amplifies aggregate productivity risk, and this amplification can

be seen as requiring an increase in the swap position for hedging against aggregate productivity

risk.

Overall, time-varying idiosyncratic productivity risk is a necessary ingredient to generate

positive swap positions and to overturn the strong negative effect from inflation risk.

3.2.2 Swap fluctuations

Table 3 presents correlations of the swap with the term spread, and several other moments that

characterize the fluctuations of the swap. Inflation shocks again play a crucial role. First, inflation

shocks make the swap more volatile, as seen in case B. Second, when inflation is negatively

correlated with productivity as in case C, the swap moves negatively with the term spread, as

does its empirical counterpart. Cyclical properties are only moderately affected when adding

idiosyncratic productivity risk in the benchmark case.

As shown in Table 3, in case B, the introduction of inflation shocks substantially increases

the volatility of the swap compared to A, and this produces a strong positive correlation between

the swap and the term spread. Figure 3 illustrates how fluctuations in the swap are related

to the components of the swap choice from the simple model presented in equation (9). The

upper row shows fluctuations due to each of the three sources of risk. The lower panels show the

corresponding betas. For instance, "total productivity risk" refers to the effect of fluctuations in³


200
 
0



2

´

0 on the approximate swap from the simple model. In this case, only this term

is allowed to change, while the other terms in equation (9) are held constant at their average

level. The figure displays a random sample of 100 periods. To produce this figure, the swap of

the simple model is scaled to match the mean and standard deviation of the swap from the full

model, because the level of the swap in the simple model does not match exactly the level in the

full model.

In the third panel on the top row of Figure 3 we can see that total inflation risk, −
³

1+
2

´

0,

closely tracks the movements of the swap. Given that the inflation beta does not track the swap

that closely, it is the "exposure" term
³

1+
2

´
that makes an important contribution to the

variation in the swap. As is clear, this term is strongly positively correlated with the current

one-period rate, 1, and because of the negative sign, this produces the negative correlation of

−081 of the swap and the current interest rate, shown in Table 3. Given that the term spread

ln
¡
1

¢
moves negatively with the short rate 1, this explains the positive correlation between
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the swap and the term spread in case B.

As shown in Table 3, introducing a negative correlation between productivity and inflation

(going from case B to C) dramatically changes the cyclical behavior of the swap. The correla-

tion between the swap and the term spread is now negative, at −092. Figure 4 provides some
indication about why the correlation of the swap and the term spread changes so much. Indeed,

total inflation risk now plays a minor role, but the betas, and the productivity beta in partic-

ular, are dominant drivers. The movement in the inflation beta mostly offsets the movement

in the "exposure" term
³

1+
2

´
, this is why inflation risk now makes a marginal contribution

to the time-variation. Clearly, from the movements in the betas we can see that there is some

heteroscedasticity in the model. Table 3 shows that the standard deviation of the short rate, 1,

under the risk free measure, is about 8 times larger with correlated inflation than with uncor-

related inflation. While quantitatively small in itself, this effect has a significant impact on the

cyclical fluctuations of the swap.

The main results highlighted here are not very sensitive to changes in most of the calibrated

parameter values. As suggested by the discussion in the preceding paragraph, one parameter that

can have some impact on some of the results is the correlation between inflation and productivity.

For the benchmark calibration this is set to  () = −03, as shown in Table 3. With this
value, the model correlation of output growth and inflation (∆ ) is −023, in the data
this is −02, and the model correlation of output growth and the nominal interest rates is −022,
in the data this is −031. Setting  () to either −025 or −04, so that the model either
exactly matches (∆ ) or (∆ ) respecetively, makes the correlation of the swap with

the term spread to be either −022 or −093 respectively, in the benchmark case it is −076. In
sum, while varying the value of  () can have a significant quantitative impact, within the

range of reasonable values our main conclusions remain unchanged.

3.2.3 Other model implications

Table 4 presents a set of model implications and their empirical counterparts that demonstrate

that the model captures reasonably well a number of additional facts it was not calibrated to.

Importantly, the model roughly matches the interest rate volatility and the volatility of output.

The model falls somewhat short on the investment volatility. However, the empirical volatility

of investment is particularly high due to the selected sample period that the includes the Great
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Depression.

Table 4

Model implications

Statistic Data Model

Std() 0114 0087

Std(∆) 0097 0071

Std(∆) 0231 0153

Std (default rate) 0037 0066

Std(recovery rate) 0047 0021

3.3 Consequences and value of swap usage

So far we have focused on the optimal swap choice, we consider now how the availability of interest

rate swaps changes other equilibrium outcomes in the model, and how much value is created by

firms’ access to interest rate swaps. For this purpose, we introduce a swap transaction cost that

is proportional to the swap position. In period 1, with a swap, the firm now needs to pay

 ·
£
 + 

¡
 

¢
+  ()  −1

¤


with  ≥ 0, and in period 2

 ·
£
 + 1

¡
 ; 0 0

¢
+  ()  −2 (

0)
¤


The transaction cost  adds to the bid-ask spread of the swap. If the firm is a fixed rate payer,

  0, then  is added to the fixed rate that is paid by the firm and received by the swap

counterparty, and vice versa with   0. Empirically, firms pay for swaps through a bid-ask

spread of this type. So far, the swap default spreads  () and 1 () allowed for some bid-

ask spread. However, given the vanishingly small default probabilities on the swap in the cases

considered, the spread has been essentially zero. Clearly, making  large enough will lead firms to

stop using interest rate swaps. The sensitivity of the swap choice to  is also informative about

the value created by the swap.

Consider first the issue how swap usage affects firm behavior and debt pricing. For this we

can compare column 2 and column 4, in Table 5. Both consider the benchmark calibration with

all the risks included. Column 2 is the benchmark case with no transaction cost (and is the same

case as reported in Table 3). Column 4 has a transaction cost of 10 basis points,  = 001, and

with this level of cost firms stop using swaps. No real quantities are included in Table 5, as there
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are no significant real differences in the two cases in the model. There are some differences in

default behavior and the debt risk premiums, though these are also relatively minor. As shown

in equation (5), the swap choice is driven by the objective to minimize default costs. Table 5

shows that despite this objective default rates are not necessarily lower when firms have access to

swaps. But, default becomes slightly less frequent in states with low aggregate productivity—for

which state prices are relatively high—and defaults become more common in high productivity

state that have lower state prices. The outcome of this shift of defaults can be seen in the default

spread and the debt risk premium, both are moderately reduced by the presence of the swap.7

To further illustrate the effects of swaps on default and debt pricing, consider the case with

only productivity shocks, displayed in the last two columns of Table 5. Without the swap, that

is the case where  = 0001, the default rate is 786% with low aggregate productivity and

310% with high productivity. Allowing for the swap without costs equalizes average default

rates conditioned on low and high productivity. In this model version, there are is only one type

of aggregate risk, the productivity shock, and conditionally, productivity and interest rates are

perfectly (negatively) correlated. Therefore, the swap is very effective in managing default risk

induced by aggregate shocks.

Table 5 (2) (3) (4) (5) (6)

Model implications as a function of swap transaction cost, 

Benchmark Productivity shocks only

 = 0  =  =  = 0  =

Statistic 000025 0001 0001

E(swap) 032 006 0 598 0

Corr(swap, term spread) −076 −076 − 024 −
E(default rate) 00722 00719 00718 00624 00548

E(default rate|A) 01274 01285 01288 00624 00786

E(default rate|A) 00169 00152 00147 00623 00310

Default spread,  ln 

1
00607 00608 00608 00362 00384

Debt risk premium 00177 00180 00180 −0002 0007

Based on the fact that with a transaction cost of 10 basis points, firms stop using swaps, this

can be taken as the upper bound of the value (per period) created by the swap. It is probably

7See the Appendix for a formal definition of the debt risk premium.
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uncontroversial that this is a rather small number. It might be interesting then to compare this to

the empirical level of costs for interest rate swaps. According to current Reuter’s quotes, bid-ask

spreads for 10-year interest rate swaps in USD are about 1 basis point (at an annualized basis).

That is, from the end-users’ perspective, the cost of a swap is about 1/2 of a basis point on an

annualized basis, and 2.5 basis point for a 5-year period. Introducing such a transaction spread

into the model leads firms to substantially reduce swap usage. As shown in Table 5, with a 2.5

basis points cost, swap usage is reduced to an average of 0.06 compared to 0.33 in the case with

 = 0. There is no change on the correlation of the swap and the term spread. The conclusion

from this analysis is that swaps do not create a lot of value for the typical firms in this model. But,

because swaps are cheap, it nevertheless makes sense to use them. The simplifying assumption

that all firms are initially identical seems to be one reason why swaps do not create a lot of value

in our model. To the extent that some firms have relatively high probabilities of default, they

would attach a higher value to the insurance provided by the swap.

4 Conclusion

We have built a simple equilibrium model to study swap usage. Based on available empirical

evidence, the focus is on whether this model can produce positive positions for endusers of swaps

that require fixed rate payments, and a negative co-movement between swaps and term spreads.

The calibrated model with uncertainty about aggregate productivity and inflation, and with

countercyclical idiosyncratic productivity shocks, can produce these two properties. Specifically,

firms optimally reduce the share of debt that is swapped into fixed when long term rates are

high relative to short rates. In the model, all firms behave rationally, and there are no explicit

agency conflicts between managers and shareholders. Considering the impact of swap usage, we

find that swaps have essentially no effect on firms’ real investment behavior. The firms’ objective

to use swaps to minimize default costs does not result in a reduction of the overall default

frequency. However, firms end up with moderately decreased default rates in recessions—for which

stochastic discount factors are high—and with moderately increased default rates in expansions—

when stochastic discount factors are low. Thus, the cost of debt financing is somewhat reduced

by the swap. Overall, we find only small economic gains from swap usage.

Given that the conclusions of the analysis depend on the modelling assumptions, one can

speculate about how general these findings are. The model was designed to be as simple as possible

and to only include first-order macroeconomic risks. Additional risks and richer processes have
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the potential to change some of the conclusions about the level and cyclical behavior of interest

rate swaps. For swaps to have a larger economic impact, more fundamental changes in the model

are needed. In typical macroeconomic models, risk does not have first-order effects on production

choices, therefore, our conclusions on this dimension are likely to be robust for a large class of

models.
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A Default spread and deadweight cost

This section shows how default spreads are determined, and how a deadweight costs introduce a

wedge between the spread determined by the investor and the valuation of the option to default

for the firm. This section is added for completeness, the derived results are standard.

Securities are priced by the investors (the market) through the stochastic discount factor 

so that the price of the security  is given by

 =  ( · Payout) 

where Payout is the state contingent payment to be received by the owner.

Consider a defaultable version of this security and consider splitting the set of possible states

into two: no-default states and default states. In a no-default state the security pays the promised

Payout and in a default state the security pays  () Payout(). Clearly, this security will have

a lower price than the non-defaultable claim. To justify the same price as the non-defaultable

security, the defaultable security needs to offer a default spread  which we take to be a constant,

so that in no-default states the security pays Payout() +  while in default states it pays  ().

The default spread is found as the solution to

 ( · Payout) = e [ · (Payout + )] + e [ ·  ()] 

where e denotes the partial expectation over the set . This implies

e ( · [Payout- ()]) = e [ · ] , ore [ · ] = e ( · [Payout+- ()])

which implies

 =
e ( · [Payout- ()])e [ ]

 (10)

Thus, there is an easy way to keep the price of the defaultable security identical to the non-

defaultable one. It involves adding a default spread that equals the value of the loss given defaulte ( · [Payout- ()]) scaled by the value of the no-default states.
From the firm’s ( the borrower’s) perspective, the default spread is the price that is paid for

the option to default in some states. It is easy to see that if there are no deadweight costs for

default, then a borrower that uses the same  values this option to default also as . However,

with a deadweight cost this is no longer the case, and the borrower’s value of the default option

will be lower than , because the borrower effectively pays the deadweight cost.
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Assuming as in the main text that  () =  (), with   1 capturing the deadweight cost,

that is, while at default the borrower pays  () the lender gets only a fraction   1 of it. In

this case, the value that the borrower attaches to the option to default is given by

 =
e [ · (1−  ())]e [ ]


e [ · (1−  ())]e [ ]

= 

that is, it is smaller than the spread actually paid. The wedge between the cost and the value of

the option to default for the borrower is given by

 −  =
e [ · ( ())]e [ ]

(1− ) 

Clearly, this wedge is larger, the smaller the recovery parameter , the more likely default is, and

the more expensive default states are. Without deadweight costs,  = 1, there is no wedge.

B Simplified model

This appendix derives the simplified model of swap choice presented in the main text. As shown

in Eq. (5), for a given amount of debt, the swap is chosen to minimize the expected value of

default costs. For the simplified model, it is assumed that default losses are constant across

states of nature, which is approximately true if the loss imposed on default is relatively large.

The objective is then to minimize the probability of default (under the risk-neutral distribution),

which for convenience we rewrite as

Φ (∗) ∝
Z
1()

 ∗00| 

where  is the expectation under the risk-neutral distribution, ∗ the cutoff level for default of

the idiosyncratic shock, 0, and Φ () the cdf of 0.

To solve min
Φ (∗), the first-order necessary condition is

 (∗)
∗


= 0

with  () the pdf.

The linear approximation of the equity value given in Eq. (7) can be written as

 +


200

³
̂0 + ̂0 − ̂2 +c00´+µ [1 + ]

0

¶ b0 + 

µ


0


2

¶
̂2

where variables with ‘^’ are the random variables, and ̂ ≡ , and  the level of the equity

value around which we approximate.
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The cutoff value for ̂0, ∗, is implicitly defined by setting this to 0, so that

∗ = −
³
[1+]

0

´


200

b0 − 

³

0



2

´


200
̂2 − − ̂0 +

³
̂2 +c00´

= − · b0 −  · ̂2 − − ̂0 +
³
̂2 +c00´ 

The first-order condition can then be rewritten as

 (∗)
∗


=  (∗) ̂2 = 0

implying


³
 (∗)  ̂2

´
= 0

because to a first-order approximation 
³
̂2

´
= 0.

Consider a first-order approximation of the pdf, so that we can write  (∗) = 0+ 1
∗. The

first-order condition can be then solved for 


³
−c·0 −  · ̂2 − − ̂0 +

³
̂2 + c00´  ̂2´ = 0

 =
1




³³

̂2 +c00´− ̂0 ̂2
´


³
̂2

´ − 




³b0 ̂2´


³
̂2

´ 

which corresponds to Eq. (8) in the main text.

C Data

Consumption, output and investment are from NIPA. A model period being 5 years, annual data,

1930-2006, is summed over 5-year periods. Interest rates are 5-year Treasury constant maturity

rate rates, 1953-2007, from Board of Governors of the Federal Reserve System, averaged over

5-year periods. Inflation is the CIP-U, 1930-2009, averaged over 5-year periods. Default and

recovery rates are from Moody’s (2006) for all issuers. Default rates cover 1920-2005 for the

average of 5-year cumulative default rates, 1970-2005 for the standard deviation. Recovery rates

cover 1982-2005.

D Definition of default risk premium

We can think of corporate default spreads as being determined by two components. First, the

investor is compensated for the possibility of receiving less than the promised debt payment.
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Second, there is a risk premium due to the covariance between the realized return and the implied

stochastic discount factor. This section is added for completeness, the derived results are standard.

Define the realized return on a corporate bond as , where  ≤ 1 is the recovery rate. The
spread can be decomposed as follows

ln (1) = ln

∙
1

1

 ()

¸
| {z }

Risk premium

+ ln 1 ()| {z }
Expected default loss



The second term on the right hand side is the expected default loss, and the first term, the

residual, is called the risk premium. To link this second term explicitly to the risk premium,

consider the no-arbitrage relationship

1 = 

µ

0 (0)
0 ()



¶
that implies

 =
1

 () 1 + 
³

0(0)
0()  

´ 
with the covariance term capturing the risk premium. As is easily seen, if 

³

0(0)
0()  

´
= 0,

then ln (1) = ln 1 (), which explicitly justifies our labelling of the residual term as the

risk premium in the first equation of this section. Alternatively, by definition, 1 =  ()1,

where  is the expectation under risk-neutral probabilities. Thus, the risk premium equals

 ()  ().
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Figure 4:    Drivers of Swap Fluctuations with Inflation and Productivity Correlated (Case C)
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