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a b s t r a c t

This paper proposes a dynamic risk-based model capable of jointly explaining the term

structure of interest rates, returns on the aggregate market, and the risk and return

characteristics of value and growth stocks. Both the term structure of interest rates and

returns on value and growth stocks convey information about how the representative

investor values cash flows of different maturities. We model how the representative investor

perceives risks of these cash flows by specifying a parsimonious stochastic discount factor for

the economy. Shocks to dividend growth, the real interest rate, and expected inflation are

priced, but shocks to the price of risk are not. Given reasonable assumptions for dividends

and inflation, we show that the model can simultaneously account for the behavior of

aggregate stock returns, an upward-sloping yield curve, the failure of the expectations

hypothesis, and the poor performance of the capital asset pricing model.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Empirical studies of asset pricing have uncovered a
rich set of properties of the time series of aggregate stock
market returns, of the term structure of interest rates, and
of the cross-section of stock returns. Average returns on
the aggregate stock market are high relative to short-term
interest rates. Relative to dividends, aggregate stock
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returns are highly volatile. They are also predictable;
the return on the aggregate market in excess of the
short-term interest rate is predictably high when the
price–dividend ratio is low and predictably low when
the price–dividend ratio is high. The term structure of
interest rates on U.S. government bonds is upward-slop-
ing, and excess bond returns are predictable by yield
spreads and by linear combinations of forward rates. In
the cross-section, stocks with low ratios of price to
fundamentals (value stocks) have higher returns than
stocks with high ratios of price to fundamentals (growth
stocks), despite the fact that they have lower covariance
with aggregate stock returns. These facts together are
inconsistent with popular benchmark models and there-
fore represent an important challenge for theoretical
modeling of asset prices.2

One approach to explaining these properties of asset
prices is to propose a fully specified model of investor
preferences, endowments, and cash flows on the assets of
interest. Under this approach, the returns investors demand
for bearing risks (the prices of risk) are endogenously
2 See Campbell (2003) and Cochrane (1999) for recent surveys of the

empirical literature and discussion of these benchmark models.
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determined by the form of preferences and the process for
aggregate consumption. These prices of risk in turn deter-
mine risk premiums, volatility, and covariances on the
assets in equilibrium. Models that follow this approach
typically have a small number of free parameters and
generate tight implications for asset prices. We refer to this
as the equilibrium approach.

A second approach is to directly specify the stochastic
discount factor (SDF) for the economy. Foundational work
by Harrison and Kreps (1979) demonstrates that, in the
absence of arbitrage, there exists a process (known as a
stochastic discount factor) that determines current prices
on the basis of future cash flows. Given that such a
process exists, this second approach specifies the SDF
process directly, without reference to preferences or
endowments. The exogenously specified SDF implies
processes for the prices of risk which determine asset
pricing properties. Models based on the SDF typically
have a large number of degrees of freedom and therefore
allow for substantial flexibility in matching asset prices.
Indeed, the parameters of the SDF and of cash flows are
often backed out from asset prices. We refer to this as the
SDF approach.

In this paper, we seek to explain the aggregate market,
cross-sectional, and term structure facts within a single
model. To do so, we combine elements of both approaches
described above. We assume that only risk arising from
aggregate cash flows is priced directly, thus maintaining
the strict discipline about the number and nature of
priced factors imposed by the equilibrium approach. We
determine the parameters of the cash-flow processes
based on data from the cash flows themselves. This
modeling approach maintains the parsimony that is
typical of equilibrium models. However, rather than
specifying underlying preferences, we directly specify
the stochastic discount factor as in the SDF approach.
Our goal is to introduce a small but crucial amount of
flexibility in order to explain the facts listed in the first
paragraph.

Our model’s ability to match the data stems in part
from properties of the time-varying price of risk, which
results in time-varying risk premiums on stocks and
bonds. As in Brennan, Wang, and Xia (2004) and Lettau
and Wachter (2007), we assume first-order autoregressive
(AR(1)) processes for both the price of risk and the real
interest rate. To model the nominal term structure of
interest rates, we introduce an exogenous process for the
price level (Cox, Ingersoll, and Ross, 1985; Boudoukh,
1993) such that expected inflation follows an AR(1).
Realized inflation can therefore be characterized as a
first-order autoregressive moving average process
(ARMA(1,1)). Following Bansal and Yaron (2004) and
Campbell (2003), we assume an AR(1) process for the
expected growth rate of aggregate cash flows.

We calibrate the dividend, inflation, and risk-free rate
processes to their counterparts in U.S data. The price of
risk is then calibrated to match aggregate asset pricing
properties. Several properties of these processes are key
to the model’s ability to fit the data. First, a volatile price
of risk is necessary to capture the empirically demon-
strated property that risk premiums on stocks and bonds
are time-varying. This time-varying price of risk also
allows the model to match the volatility of stock and
bond returns given low volatility of dividends, real inter-
est rates, and inflation. Second, the real risk-free rate is
negatively correlated with fundamentals. This implies a
slightly upward-sloping real yield curve. Expected infla-
tion is also negatively correlated with fundamentals,
implying a yield curve for nominal bonds that is more
upward-sloping than the real yield curve.

Our model illustrates a tension between the upward
slope of the yield curve and the value premium. The value
premium implies that value stocks, which are short-horizon
equity (because their cash flows are weighted more toward
the present), have greater expected returns than growth
stocks, which are long-horizon equity (because their cash
flows are weighted more toward the future). Therefore, the
‘‘term structure of equities’’ slopes downward, not upward.
However, the very mechanism that implies an upward-
sloping term structure of interest rates, namely a negative
correlation between shocks to fundamentals and shocks to
the real interest rate, also implies a growth premium. We
show that correlation properties of shocks to the price of
risk are key to resolving this tension. Namely, when the
price of risk is independent of fundamentals, the model can
simultaneously account for the downward-sloping term
structure of equities and the upward-sloping term structure
of interest rates.

To summarize, our model generates quantitatively
accurate means and volatilities for the aggregate market
and for Treasury bonds, while allowing for low volatilities
in fundamentals. The model can replicate the predict-
ability in excess returns on the aggregate market, the
negative coefficients in Campbell and Shiller (1991) bond
yield regressions, and the tent-shaped coefficients on
forward rates found by Cochrane and Piazzesi (2005).
Finally, besides capturing the relative means of value and
growth portfolios, our model also captures the striking
fact that value stocks have relatively low risk according to
conventional measures like standard deviation and covar-
iance with the market. Therefore, our model replicates the
well-known outperformance of value, and underperfor-
mance of growth relative to the capital asset pricing
model (CAPM).

Our paper builds on studies that examine the implica-
tions of the term structure of interest rates for the
stochastic discount factor. Dai and Singleton (2002,
2003) and Duffee (2002) demonstrate the importance of
a time-varying price of risk for explaining the predict-
ability of excess bond returns. Like these papers, we also
construct a latent factor model in which bond yields are
linear. Ang and Piazzesi (2003), Bikbov and Chernov
(2008), and Duffee (2006) introduce macroeconomic time
series into the SDF as factors; in our work, macroeco-
nomic time series also are used to determine the SDF.
Unlike our work, these papers focus exclusively on the
term structure.

We also build on a literature that seeks to simultaneously
explain prices in bonds and in the aggregate stock market
(see Bakshi and Chen, 1996; Bansal and Shaliastovich, 2007;
Bekaert, Engstrom, and Grenadier, 2006; Buraschi and
Jiltsov, 2007; Gabaix, 2008; Lustig, Van Nieuwerburgh, and



3 However, realized dividend growth may be (and in fact will be)

negatively autocorrelated.

M. Lettau, J.A. Wachter / Journal of Financial Economics 101 (2011) 90–11392
Verdelhan, 2008; Wachter, 2006). We extend these studies
by exploring the consequences of our pricing kernel for a
cross-section of equities defined by cash flows. In particular,
we show that the model can reproduce the high premium
on value stocks relative to growth stocks and the fact that
value stocks have a low variance and low covariance with
the aggregate market.

Finally, we also build on work that seeks to simulta-
neously explain the aggregate market and returns on
value and growth stocks. Several studies link observed
returns on value and growth stocks to new sources of risk
(Campbell and Vuolteenaho, 2004; Campbell, Polk, and
Vuolteenaho, 2010; Lustig and van Nieuwerburgh, 2005;
Piazzesi, Schneider, and Tuzel, 2007; Santos and Veronesi,
2006; Yogo, 2006). Others more closely relate to the
present study in that they model value and growth stocks
based on their underlying cash flows (Berk, Green, and
Naik, 1999; Carlson, Fisher, and Giammarino, 2004;
Gomes, Kogan, and Zhang, 2003; Hansen, Heaton, and Li,
2008; Kiku, 2006; Lettau and Wachter, 2007; Santos and
Veronesi, 2010; Zhang, 2005). Unlike these studies, our
study also seeks to explain the upward slope of the
nominal yield curve and time-variation in bond risk
premiums. As we show, jointly considering the term
structure of interest rates and behavior of value and
growth portfolios has strong implications for the stochas-
tic discount factor.

2. The model

In this section we introduce a model in which prices
are driven by four state variables: expected dividend
growth, expected inflation, the short-term real interest
rate and the price of risk. Appendix A solves a more
general model in which prices are driven by an arbitrary
number of (potentially latent) factors.

2.1. Dividend growth, inflation, and the stochastic discount

factor

The model specified in this section has six shocks,
namely, a shock to dividend growth, to inflation, to
expected dividend growth, to expected inflation, to the
real risk-free rate, and to the price of risk. Let e tþ1 denote
a 6�1 vector of independent standard normal shocks that
are independent of variables observed at or before time t.
We use bold font to denote matrices and vectors.

Let Dt denote the level of the aggregate real dividend at
time t and dt ¼ logDt . We assume that the log growth rate
of the aggregate dividend is conditionally normally dis-
tributed with a time-varying mean zt that follows a first-
order autoregressive process:

Ddtþ1 ¼ ztþrde tþ1, ð1Þ

ztþ1 ¼ ð1�fzÞgþfzztþrze tþ1, ð2Þ

where rd and rz are 1�6 vectors of loadings on the
shocks e , and fz is the autocorrelation. The conditional
standard deviation of dividend growth is sd ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
rdrd

0
p

. In
what follows, we will use the notation si ¼

ffiffiffiffiffiffiffiffiffiffi
riri

0
p

to refer
to the conditional standard deviation of i, and sij ¼ rirj

0 to
refer to the covariance between shocks to i and to j. For
the purpose of discussion, we assume that the autocorre-
lations of z and of the remaining three state variables are
between zero and one; thus, each variable is stationary
and positively autocorrelated.3 The parameter g can
therefore be interpreted as the unconditional mean of
dividend growth.

Because we are interested in pricing nominal bonds,
we also specify a process for inflation. Let Pt denote the
price level and pt ¼ logPt . Inflation follows the process

Dptþ1 ¼ qtþrpe tþ1, ð3Þ

qtþ1 ¼ ð1�fqÞqþfqqtþrqe tþ1, ð4Þ

where rp and rq are 6�1 vectors of loadings on the
shocks, q is the unconditional mean of inflation, and fq is
the autocorrelation. In what follows, all quantities will be
expressed in real terms unless it is stated otherwise;
multiplying by Pt converts a quantity from real to
nominal terms.

Discount rates are determined by the real risk-free rate
and by the price of risk. Let rt+ 1

f
denote the continuously

compounded risk-free return between times t and t+1.
Note that rt + 1

f
is known at time t. We assume that

rf
tþ1 ¼ ð1�frÞr

f
þfrr

f
t þrre t , ð5Þ

where rr is a 6�1 vector of loadings on the shocks, rf is
the unconditional mean of rf

t , and fr is the autocorrela-
tion. The variable that determines the price of risk, and
therefore risk premiums in this homoskedastic model, is
denoted xt. We assume

xtþ1 ¼ ð1�fxÞxþfxxtþrxe tþ1, ð6Þ

where rx is a 6�1 vector of loadings on the shocks, x is the
unconditional mean of xt, and fx is the autocorrelation.

To maintain a parsimonious model, we assume that
only fundamental dividend risk is priced directly. This
assumption implies that the price of risk is proportional to
the vector rd (the formulas in Appendix A allow for a
more general price of risk). Other risks are priced insofar
as they covary with aggregate cash flows. Besides redu-
cing the degrees of freedom in the model, this specifica-
tion allows for easier comparison to models based on
preferences, such as those of Campbell and Cochrane
(1999) and Menzly, Santos, and Veronesi (2004). The
stochastic discount factor (SDF) is thus given by

Mtþ1 ¼ expf�rf
tþ1�

1
2s

2
dx2

t�xtrde tþ1g:

Because the SDF is a quadratic function of xt, the model is
in the essentially affine class (Dai and Singleton, 2002;
Duffee, 2002). Asset prices are determined by the Euler
equation

Et ½Mtþ1Rtþ1� ¼ 1, ð7Þ

where Rt +1 denotes the real return on a traded asset.
Given the lognormal specification, the maximal Sharpe
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ratio is given by

SRt ¼max
EtRtþ1�Rf

tþ1

ðVart½Rtþ1�Rf
tþ1�Þ

1=2
¼
ðVart½Mtþ1�Þ

1=2

Et½Mtþ1�

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ex2

t s
2
d�1

q
� jxtjsd

(see Campbell and Cochrane, 1999; Lettau and Uhlig,
2002; Lettau and Wachter, 2007).

2.2. Prices and returns on bonds and equities

2.2.1. Real bonds

Let Pr
nt denote the price of an n-period real bond at

time t. That is, Pr
nt denotes the time-t price of an asset with

a fixed payoff of one at time t+n. Because this asset has no
intermediate payoffs, its return between t and t+1 equals

Rr
n,tþ1 ¼

Pr
n�1,tþ1

Pr
nt

: ð8Þ

The prices of real bonds can be determined recursively
from the Euler equation given in (7). Substituting in (8)
for the return implies that

Et½Mtþ1Pr
n�1,tþ1� ¼ Pr

nt , ð9Þ

while the fact that the bond pays a single unit at maturity
implies that Pr

0t ¼ 1. Appendix C verifies that (9) is
satisfied by

Pr
nt ¼ expfAr

nþBr
rnðr

f
tþ1�rf

ÞþBr
xnðxt�xÞg: ð10Þ

The coefficient on the risk-free rate is given by

Br
rn ¼�

1�fn
r

1�fr

: ð11Þ

The coefficient on the price of risk is given by the
recursion

Br
xn ¼ Br

x,n�1fx�Br
r,n�1sdr�Br

x,n�1sdx, ð12Þ

with boundary condition Br
x0 ¼ 0. The constant term Ar

n is
defined by (C.8). The yield to maturity on a real bond is
defined as

yr
nt ¼�

1

n
logPr

nt ¼�
1

n
ðAr

nþBr
rnðr

f
tþ1�rf

ÞþBr
xnðxt�xÞÞ ð13Þ

and is linear in the state variables.
Eq. (10) shows that prices of real bonds are driven by

the risk-free rate and by the price of risk. Expected
dividend growth and expected inflation do not directly
influence the prices of real bonds (though they might
influence these prices indirectly through correlations with
rt +1

f
and with xt). As (11) shows, an increase in the risk-

free rate lowers the bond price. Moreover, the magnitude
of the price response to a change in rt +1

f
is increasing in

maturity. This is the duration effect, and it is driven by the
persistence fr . Because the risk-free rate is persistent, a
higher value today suggests that future values will also be
high. Because of compounding, the further out the cash
flow, the larger the effect a change in the risk-free rate has
on the price. As (12) shows, the sign of the effect of the
price-of-risk variable depends on the correlations sdr and
sdx. The sign and magnitude of the effect of an increase in
the price of risk is best understood by examining the
formula for risk premiums, as we now explain.

Let rr
nt ¼ logRr

nt be the continuously compounded
return on the real zero-coupon bond of maturity n.
Because real bond prices are lognormally distributed, rr

nt

is conditionally normally distributed. We derive risk
premiums by taking the logs of both sides of Eq. (7) and
use the properties of the lognormal distribution to eval-
uate the expectation. It follows that the risk premiums on
real zero-coupon bonds satisfy

Et½r
r
n,tþ1�rf

tþ1�þ
1
2Vartðr

r
n,tþ1Þ ¼ Covtðr

r
n,tþ1,Ddtþ1Þxt : ð14Þ

Note that the second term on the left hand side of (14) is
an adjustment for Jensen’s inequality. Eqs. (10) and (11)
imply that

Covtðr
r
n,tþ1,Ddtþ1Þ ¼ Br

r,n�1sdrþBr
x,n�1sdx: ð15Þ

Risk premiums on real bonds are time-varying and
proportional to xt. Given a value for xt, the level of risk
premiums is determined by the correlations sdr and sdx.
Comparing (12) and (15), it is clear that the same vari-
ables that drive risk premiums influence the coefficients
Br

xn with a negative sign. This is not surprising, as Br
xn

represents the effects of the price-of-risk variable on the
price of the real bond. When bonds carry positive risk
premiums, Br

xno0, which implies that an increase in xt

lowers the price of real bonds. Moreover, if risk premiums
are increasing in maturity, the greater the maturity, the
greater the effect of an increase in xt on the price.

2.2.2. Equity

Let Pd
nt denote the time-t price of the asset that pays

the aggregate dividend at time t+n. We will refer to
this asset as zero-coupon equity. In solving for the price,
it is convenient to scale Pd

nt by the aggregate dividend at
time t to eliminate the need to consider Dt as a state
variable. The return on this zero-coupon equity claim is
equal to

Rd
n,tþ1 ¼

Pd
n�1,tþ1

Pd
nt

¼
Pd

n�1,tþ1=Dtþ1

Pd
nt=Dt

Dtþ1

Dt
: ð16Þ

Let rd
n,t ¼ logRd

n,t denote the continuously compounded
return. Substituting (16) into the Euler equation (7)
implies that Pd

nt satisfies the recursion

Et Mtþ1
Dtþ1

Dt

Pd
n�1,tþ1

Dtþ1

" #
¼

Pd
nt

Dt
, ð17Þ

with boundary condition Pd
0t=Dt ¼ 1. Appendix C verifies

that (17) is solved by a function of the form

Pd
nt

Dt
¼ expfAd

nþBd
znðzt�gÞþBd

rnðr
f
tþ1�rf

ÞþBd
xnðxt�xÞg: ð18Þ

The coefficients on expected dividend growth and the
risk-free rate are given by

Bd
zn ¼

1�fn
z

1�fz

, Bd
rn ¼�

1�fn
r

1�fr

: ð19Þ

The coefficient on the price of risk satisfies the recursion

Bd
xn ¼ Bd

x,n�1fx�s2
d�Bd

z,n�1sdz�Bd
r,n�1sdr�Bd

x,n�1sdx, ð20Þ
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with boundary condition Bd
x0 ¼ 0. The constant term Ad

n is
defined by (C.14). Following logic similar to that used to
compute risk premiums on zero-coupon bonds, we find
that risk premiums on zero-coupon equity claims are
given by

Et ½r
d
n,tþ1�rf

tþ1�þ
1
2Vartðr

d
n,tþ1Þ ¼ Covtðr

d
n,tþ1,Ddtþ1Þxt , ð21Þ

where (18) and (19) imply that

Covtðr
d
n,tþ1,Ddtþ1Þ ¼ s2

dþBd
z,n�1sdzþBd

r,n�1sdrþBd
x,n�1sdx:

ð22Þ

Eq. (18) shows that price–dividend ratios are driven by
expected dividend growth, by the real interest rate and by
the price of risk. Expected inflation does not directly
influence equity valuations. As (19) shows, an increase
in expected dividend growth increases prices. Because
expected dividend growth is persistent, and because Dt + n

cumulates shocks between t and t+n, the greater is the
maturity n, the greater is the effect of changes in zt on
the price. An increase in the real interest rate lowers the
equity price, and this effect is greater, the greater is the
maturity. The intuition is the same as that for real bonds.

As in the case of real bonds, the effect of a change in
the price of risk on equities is more subtle and depends on
risk premiums. Comparing (20) and (22) indicates that the
variables that influence risk premiums on equities also
govern the evolution of Bd

xn. Risk premiums on zero-
coupon equity are determined by the variance of cash
flows, and the covariance of cash flows with shocks to
expected dividend growth, to the risk-free rate, and to the
price of risk. For the model to account for the value
premium, risk premiums on equities will need to be
decreasing in maturity rather than increasing. For this
reason, Bd

xn will be a non-monotonic function of n. We will
discuss risk premiums on zero-coupon equities more fully
later in the paper.

In our model, the aggregate market portfolio is the
claim to all future dividends. Therefore, its price–dividend
ratio is given by

Pm
t

Dt
¼
X1
n ¼ 1

Pd
nt

Dt
¼
X1
n ¼ 1

expfAd
nþBd

znðzt�gÞþBd
rnðr

f
tþ1�r f

ÞþBd
xnðxt�xÞg:

ð23Þ

Appendix B describes sufficient conditions on the para-
meters such that (23) converges for all values of the state
variables. The return on the aggregate market equals

Rm
tþ1 ¼

Pm
tþ1þDt

Pm
t

¼
ðPm

tþ1=Dtþ1Þþ1

Pm
t =Dt

Dtþ1

Dt
: ð24Þ

Note that the price–dividend ratio is not an affine func-
tion of the state variables.

2.2.3. Nominal bonds

Let Ppnt denote the real price of a zero-coupon nominal
bond maturing in n periods. The real return on this bond
equals

Rp
n,tþ1 ¼

Ppn�1,tþ1

Ppnt

¼
Ppn�1,tþ1Ptþ1

PpntPt

Pt

Ptþ1
: ð25Þ

Let rpn,tþ1 ¼ logRp
n,t denote the continuously compounded

return on this bond. This asset is directly analogous to the
dividend claim above: the ‘‘dividend’’ is the reciprocal of
the price level, and the ‘‘price–dividend ratio’’ on this
asset is its nominal price PpntPt .

The Euler equation holds for the real return on this
bond; therefore, the price satisfies

Et Mtþ1
Pt

Ptþ1
Ppn�1,tþ1Ptþ1

� �
¼ PpntPt , ð26Þ

with boundary condition Pp0tPt ¼ 1. Appendix C shows
that the recursion (26) can be solved by a function of the
form

PpntPt ¼ expfAp
nþBpqnðqt�qÞþBprnðr

f
tþ1�rf

ÞþBpxnðxt�xÞg:

ð27Þ

The coefficients on expected inflation and the risk-free
rate are given by

Bpqn ¼�
1�fn

q

1�fq

, Bprn ¼�
1�fn

r

1�fr

: ð28Þ

The coefficient on the price of risk satisfies the recursion

Bpxn ¼ Bpx,n�1fxþsdp�Bpq,n�1sdq�Bpr,n�1sdr�Bpx,n�1sdx, ð29Þ

with boundary condition Bpx0 ¼ 0. The constant term Ap
n is

defined by (C.20). Following logic similar to that used to
compute risk premiums on real bonds, risk premiums on
nominal bonds are equal to

Et ½r
p
n,tþ1�rf

tþ1�þ
1
2Vartðr

p
n,tþ1Þ ¼ Covtðr

p
n,tþ1,Ddtþ1Þxt , ð30Þ

where

Covtðr
p
n,tþ1,Ddtþ1Þ ¼�sdpþBpq,n�1sdqþBpr,n�1sdrþBpx,n�1sdx:

Real risk premiums on nominal bonds are determined by
the loadings on expected inflation, the real risk-free rate
and the price of risk, along with the covariance of each of
these sources of risk with shocks to fundamentals. In
addition, risk premiums are determined by the covariance
of unexpected inflation with fundamentals.

Eq. (27) shows that nominal bond prices are driven by
expected inflation, the real interest rate, and the price of
risk. Expected dividend growth does not directly influence
nominal bond prices. As (28) shows, an increase in
expected inflation lowers nominal bond prices at all
maturities. This effect is greater, the greater the maturity,
because Ptþn cumulates shocks between t and t+n. An
increase in the real interest rates lowers nominal bond
prices at all maturities; the greater the maturity, the
greater is this effect because of duration. The same
variables that determine risk premiums govern the evolu-
tion of Bpxn. Because nominal bonds will have risk pre-
miums that are positive and increasing in maturity, Bpxn

will be negative and decreasing in maturity. That is, an
increase in the price of risk will lower prices of nominal
bonds, and will have a greater effect on long-term bonds
than short-term bonds.

We also consider the nominal return on the nominal
bond, and the nominal yield. Following Campbell
and Viceira (2001), we use the superscript $ to denote
nominal quantities for the nominal bond. The nominal
(continuously compounded) yield to maturity on this
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bond is equal to

y$
nt ¼�

1

n
logðPpntPtÞ ¼ �

1

n
ðAp

nþBpqnðqt�qÞþBprnðr
f
tþ1�rf

Þ

þBpxnðxt�xÞÞ ð31Þ

and, like the yield on the real bond, is linear in the state
variables. Finally, we use the notation R$

n,tþ1 to denote the
nominal return on the nominal n-period bond:

R$
n,tþ1 ¼

Ppn�1,tþ1Ptþ1

PntPt
:

Risk premiums on nominal bonds (relative to the one-
period nominal bond) are also of interest. It follows from
the equation for nominal prices (27) that

Et½r
$
n,tþ1�y$

1t�þ
1
2Vartðr

$
n,tþ1Þ ¼ Covtðr

$
n,tþ1,Ddtþ1Þxt , ð32Þ

where

Covtðr
$
n,tþ1,Ddtþ1Þ ¼ Bpq,n�1sdqþBpr,n�1sdrþBpx,n�1sdx:

This section has shown that risk premiums on all zero-
coupon assets are proportional to xt. While there is some
conditional heteroskedasticity in the aggregate market
that arises from time-varying weights on zero-coupon
equity, this effect is small. A natural way to drive a wedge
between time-variation in bond and stock premiums is to
allow for time-varying correlations as in Campbell,
Sunderam, Viceira (2009). For simplicity and to maintain
our focus on the slope of the term structures of equity and
interest rates, we do not pursue this route here.

2.3. Average slope of the term structure of equity and

interest rates

Prior to describing the full calibration of the model and
results from simulated data, we use the results developed
above to describe the model’s qualitative implications for
risk premiums on bonds and stocks. We illustrate the
issues by comparing bonds and equity maturing in two
periods with those maturing in one period. It follows from
(14) and (15) that the risk premium of the real bond
maturing in two periods equals

Et½r
r
2,tþ1�rf

tþ1�þ
1
2Vartðr

r
2,tþ1Þ ¼�sdrxt :

The risk premium on the one-period real bond is, by
definition, equal to zero. The term sdr represents the
covariance of shocks to the real interest rate with shocks
to dividend growth: a negative covariance leads to a
positive risk premium on the two-period bond because
it implies that bonds pay off in good times (bond prices
move in the opposite direction from the risk-free rate).
The same term appears in the average spread between the
yields of the one- and the two-period bond:

E½yr
2�yr

1� ¼ �
1
2 sdr�

1
4s

2
r ð33Þ

(see (13) and (C.8)). The second term represents an
adjustment for Jensen’s inequality and is relatively small.

The risk premiums on one- and two-period equity
claims are equal to

Et½r
d
1,tþ1�rf

tþ1�þ
1
2Vartðr

d
1,tþ1Þ ¼ s

2
dxt , ð34Þ
Et½r
d
2,tþ1�rf

tþ1�þ
1
2Vartðr

d
2,tþ1Þ ¼ ðs

2
d�sdrþsdz�s2

dsdxÞxt :

ð35Þ

While the one-period equity claim is only exposed to
unexpected changes in dividends, the two-period equity
claim is also exposed to unexpected changes in the
interest rate, expected dividend, and the price of risk.
These risk factors are represented by the covariance
terms sdz, sdr , and sdx. If these processes are correlated
with the priced fundamental dividend factor, the risk
premium of the two-period equity claim will be different
from the one-period premium. Note that the extent to
which two-period equity is driven by xt depends on the
one-period premium. This explains why s2

d multiplies sdx

in (35).
The positive premium of value (short-horizon) stocks

over growth (long-horizon) stocks in the data suggests
that the equity term structure is downward-sloping. Thus,
the premium on two-period equity should be less than
that on one-period equity. Comparing (33) to (34) and
(35) suggests that an upward-sloping term structure of
interest rates requires interest rate shocks to be nega-
tively correlated with dividend shocks (sdr o0). Ceteris
paribus, this effect leads also to an upward-sloping term
structure of equity, which implies a growth premium
rather than a value premium.

As shown in Lettau and Wachter (2007), a key para-
meter for the slope of the equity term structure is the
correlation of fundamental dividend risk with shocks to
the price-of-risk process xt. To understand the role of this
correlation, consider the special case of sdx ¼ 1 and
sdr ¼ sdz ¼ 0. In this case, the two-period equity claim is
riskless, as (35) shows. Recall that returns of zero-coupon
equity depend on dividend growth and the change in the
price–dividend ratio (see (16)). If sdx ¼ 1, positive divi-
dend shocks are associated with positive price-of-risk
shocks. In this special case, the effect on the price–
dividend ratio cancels out the effect on the dividend
growth rate, creating a perfectly hedged one-period
return. This example illustrates a general property of the
model. If dividend shocks are associated with positive
price-of-risk shocks (sdx40), long-term equity tends to
be less risky than short-term equity. On the other hand, if
sdxo0, the equity term structure tends to be upward-
sloping, which is inconsistent with the large value pre-
mium in the data.

While the correlation sdx does not enter the formulas
for the risk premium and the yield of the two-period
bond, it does for bonds of maturities greater than two
periods. A negative correlation between interest rates and
fundamentals implies that long-term bonds have positive
risk premiums. Because bond prices are determined by
risk premiums, it follows that changes in risk premiums
are another source of risk for these bonds. Holding all else
equal, sdxo0 leads to a term structure that is more
upward-sloping than otherwise. However, as explained
above, sdxo0 also leads to higher expected returns on
long-term equities relative to short-term equities, the
opposite of what cross-sectional asset pricing data sug-
gest. The root of the problem is that duration operates for
both bonds and equities; when shocks to discount rates



Table 1
State variable means and autocorrelations.

Means of expected dividend growth, expected inflation, and the risk-

free rate are in annual terms (i.e., multiplied by four). Autocorrelations

for all state variables are in annual terms (i.e., raised to the 4th power).

The model is simulated at a quarterly frequency.

State variable Unconditional mean Autocorrelation

Expected dividend growth zt 1.29% 0.90

Expected inflation qt 3.68% 0.78

Real risk-free rate rf
t 0.96% 0.92

Price of risk sdxt 0.85 0.85

Table 2
Conditional cross-correlations of shocks.

The table reports conditional cross-correlations of shocks to dividend

growth Ddt , inflation Dpt , expected dividend growth zt, expected

inflation qt, the risk-free rate rt+ 1

f
, and the price-of-risk variable xt. The

model is simulated at a quarterly frequency.

Variable Dpt zt qt rt + 1

f
xt

Ddt �0.30 �0.83 �0.30 �0.30 0

Dpt 0 1.00 0 0

zt 0 0 0.35

qt 0 0

rt+ 1

f
0

Table 3
Conditional standard deviations of shocks.

The table reports conditional standard deviations of shocks in annual

percentage terms (i.e., multiplied by 200) for dividend growth Ddt ,

inflation Dpt , expected dividend growth zt, expected inflation qt, the

risk-free rate rf
t, and the scaled price-of-risk variable sdxt . The model is

simulated at a quarterly frequency.

Variable Ddt Dpt zt qt rf
t sdxt

Conditional standard

deviation

10.00 1.18 0.32 0.35 0.19 40.00
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are priced, risk premiums on all long-term instruments
are driven up relative to short-term instruments.

In the calibration that follows, we show that it is
indeed possible to match both the upward slope of the
term structure of interest rates and the downward slope
of the term structure of equities in a model where the
risk-free rate and the risk premium vary. Part of the
answer lies in the role of expected dividend growth which
appears in the equations for equities above, and part of
the answer lies in the role of expected inflation which
influences risk premiums on nominal bonds.

3. Implications for returns on stocks and bonds

To study our model’s implications for returns on the
aggregate market, on real and nominal bonds, and for
portfolios sorted on scaled-price ratios, we simulate
100,000 quarters from the model. Given simulated data
on shocks e t , and on expected dividend growth zt,
expected inflation qt, the real risk-free rate rf

t, and the
price-of-risk variable xt, we compute real prices of real
bonds given (10), ratios of prices to the aggregate divi-
dend for zero-coupon equity (18), and nominal prices of
nominal bonds (27). We also compute a series for realized
dividend growth (1) and realized inflation (3). In what
follows, we focus attention on the aspects of the model
that differ from that of Lettau and Wachter (2007):
namely, the term structure of interest rates and the
interactions between state variables and returns. Simu-
lated moments for the aggregate market are very similar
to those found in our earlier paper.

3.1. Calibration

The model specifies processes for dividends, inflation,
the real risk-free rate, and the price of risk. We calibrate
the inflation parameters to data on inflation, dividend
parameters to data on dividends, and risk-free rate para-
meters to data on interest rates. The process for the price
of risk and correlations between the price-of-risk process
and the other variables is then determined jointly by
the term structure of interest rates and equity prices.
Tables 1–3 give the calibrated values for the means and
autocorrelations, the cross-correlations, and the standard
deviations, respectively.

To calibrate the process for inflation, we use the
maximum likelihood estimates of Wachter (2006). As
Wachter shows, the likelihood function implied by (3)
and (4) is the same as that for an ARMA(1,1) process. This
is estimated on quarterly data from the second quarter of
1952 to the second quarter of 2004. The mean of expected
inflation is 3.68% per annum, and expected inflation is
found to have an annual autocorrelation of 0.78 (equiva-
lent to a quarterly autocorrelation of 0.94). The volatility of
expected inflation is 0.35% per annum, while the volatility of
unexpected inflation is 1.18% per annum. The correlation
between shocks to expected and unexpected inflation cannot
be identified from inflation data alone. As in Wachter (2006),
we set this correlation equal to one. This has the benefit of
reducing the parameter space (because it reduces the num-
ber of shocks by one, and therefore eliminates five
correlations), and it does not appear to reduce the model’s
ability to fit the data.

Following Lettau and Wachter (2007), the process for
dividend growth is calibrated based on an annual data set
of Campbell (2003) that begins in 1890; we update it to
2004 using data from the Center for Research in Security
Prices (CRSP). Average log dividend growth is set to 1.29%,
the average for real growth in log dividends over that
period. We assume the volatility of realized dividend
growth is equal to 10%, a value that falls between
estimates in the long data (� 14%), and in the post-war
sample (� 6%). Dividend growth is unpredictable over
this sample; R2 values are essentially zero, and coeffi-
cients are insignificant. These facts suggest a standard
deviation of zt that is low relative to the standard devia-
tion of realized dividend growth. We find that a standard
deviation of 0.32% per annum is consistent with the
data in that it implies R2 values that range from less than
1% to 2% at the ten-year horizon. The autocorrelation for zt

and the correlation between shocks to zt and shocks to
dividends is calibrated in the same way as in Lettau and



Table 4
Moments of zero-coupon bond yields.

Each panel displays means, standard deviations, and one-year auto-

correlations of bond yields. Yields are in annual percentage terms. Panel

A displays moments of real yields in the model, Panel B displays

moments of nominal yields in the model, and Panel C displays moments

of nominal yields in monthly data from 1952 to 2004.

Maturity (years) 0.25 1 2 3 4 5

Panel A: Real bonds

Mean 0.91 1.05 1.23 1.40 1.56 1.71

Standard deviation 1.95 1.89 1.83 1.79 1.75 1.71

AC(1) 0.92 0.92 0.92 0.92 0.92 0.91

Panel B: Nominal bonds

Mean 5.15 5.53 5.98 6.38 6.73 7.04

Standard deviation 2.89 2.80 2.73 2.70 2.68 2.67

AC(1) 0.85 0.85 0.86 0.86 0.86 0.87

Panel C: Data

Mean 5.23 5.59 5.80 5.98 6.11 6.19

Standard deviation 2.93 2.93 2.87 2.80 2.76 2.72

AC(1) 0.80 0.82 0.84 0.85 0.86 0.87
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Wachter (2007); namely, the consumption–dividend ratio
is used as an empirical proxy for zt. Lettau and Ludvigson
(2005) show that if consumption follows a random walk
and if the consumption–dividend ratio is stationary, the
consumption–dividend ratio captures the predictable
component of dividend growth. The consumption–divi-
dend ratio can therefore be identified with zt up to an
additive and multiplicative constant. We therefore take
the autocorrelation of zt to be 0.90, the autocorrelation of
the consumption–dividend ratio over the 1890–2004
period. We take the correlation between shocks to zt

and shocks to Ddt to be �0.83, equal to the correlation
between these shocks over the 1890–2004 period.

Data on nominal interest rates are taken from CRSP.
The yield on the 90-day Treasury bill represents the short-
term nominal yield. Yields of maturities from one to five
years are taken from Fama-Bliss data, which begin in
1952. We choose the mean of the real risk-free rate in
order to match the sample mean of the short-term
nominal yield over the 1952–2004 period. Our procedure
is as follows. From (31) and (C.20), it follows that the
mean of the one-period nominal yield is given by

Ey$
1t ¼ r f

þq�1
2s

2
p�sdpx:

Namely, the expected short-term nominal yield is the
sum of the real risk-free rate, expected inflation, the
negative of one-half times the volatility of realized infla-
tion (Jensen’s inequality adjustment), and an inflation risk
premium. The sample mean on the three-month bill is
1.31% (5.23% per annum). The terms q and 1

2s
2
p are known

from the inflation calibration; subtracting the former and
adding the latter to 1.31% implies a (quarterly) value of
0.39%. Based on this value for rf , we then calibrate sdp and
x as described below, and adjust rf for the inflation risk
premium (which turns out to equal 0.15% per quarter).
Because the moments of the aggregate market are rela-
tively insensitive to the precise value of rf , it is not
necessary to repeat this process more than once to obtain
the correct value of the nominal yield.4

Choosing the autocorrelation and the volatility of the
risk-free rate is less straightforward than choosing the
level because these parameters are less tightly linked to
their counterparts in nominal interest rate data (for
example, the volatility of nominal interest rates in the
model depends, in a nonlinear way, on the volatilities and
autocorrelations of the real risk-free rate, the price of risk,
and expected and realized inflation). We first choose a set
of values to give reasonable implications for the auto-
correlation and volatility of nominal interest rates, given a
process for xt. We then re-calibrate the process for xt

based on the new values for rf
t, and repeat as necess-

ary. Given that the autocorrelation of inflation is 0.78
(in annual terms), the autocorrelation of the real risk-free
rate must be higher in order to match the autocorrelations
of nominal yields, which are above this value. The auto-
correlations and volatilities in the model and in the
data are shown in Table 4. An autocorrelation of 0.92 for
4 The difference between the simulated value of 5.15% and the mean

of 5.23% is due to simulation noise.
the risk-free rate results in an autocorrelation for the
three-month bond that is somewhat higher than in the
data, but that matches the autocorrelations for longer
term bonds exactly. Choosing the volatility of the risk-free
rate to be 0.19% per annum results in a good fit to
volatilities across the maturity spectrum. The volati-
lity of the three-month yield is 2.89% in the model
versus 2.93% in the data, while the volatility of the five-
year yield is 2.67% in the model versus 2.72% in the data.
The model is therefore able to capture the fact that
interest rate volatilities decrease in the maturity of
the bond.

The parameters of the process for xt are chosen to fit
moments of stock returns. Like the volatility and persis-
tence of the real risk-free rate, these values are chosen
numerically; there is no analytical formula that links
these parameters to population moments implied by the
model. The average price of risk, xsd is chosen to be 0.85;
this generates an average maximal quarter Sharpe ratio offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

expð0:852
Þ�1

q
¼ 1:03. As shown in Table 7, a high value

of x allows us to come close to the high Sharpe ratio of the
extreme value portfolio (0.58 in the model versus 0.63 in
the data). The Sharpe ratio on the market (not reported in
the tables) is equal to a reasonable 0.40. Note that while
the extreme value portfolio has the highest Sharpe ratio
of the ten portfolios in our cross-sectional calibration, it
does not achieve the maximal Sharpe ratio. In order to
achieve the maximal Sharpe ratio, its return would need
to be perfectly correlated with the dividend shock.
However, because some of its payoffs occur in future
periods, its return depends, to some degree, on expec-
ted dividend growth, real interest rates, and the price
of risk.5
5 In Lettau and Wachter (2007), we choose a lower value for xsd ,

0.625. Resetting x to this value in the present model implies lower

Sharpe ratios and risk premiums. Specifically, the Sharpe ratio for the

market portfolio is 0.25 and the Sharpe ratio for the extreme value
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To match the high volatility and predictability of stock
returns given the low volatility of fundamentals as
described above, the volatility of the price-of-risk variable
must be high. We choose the volatility of shocks to sdxt to
be 40, implying a volatility of the price–dividend ratio of
0.36, close to its value of 0.40 in the data. We choose the
persistence of xt to equal 0.85; this implies a persistence
of 0.86 for the price–dividend ratio, close to its value of
0.87 in the data. In fact, long-horizon stock returns are
slightly more predictable than in the data: the regression
of the stock returns on the price–dividend ratio has an R2

of 45% at the one-year horizon, compared with 25% the
1890–2004 sample. Raising the volatility or the persis-
tence of xt to match the data counterparts exactly would
increase the amount of predictability.

Risk premiums in the model are determined by corre-
lations with realized dividends dt. The correlation
between expected inflation qt and realized dividend
growth determines the premium for nominal over real
bonds. A value of �0.30 implies that nominal bonds will
carry a premium over real bonds, and moreover, that this
premium increases in maturity (because realized inflation
and expected inflation are perfectly correlated, realized
inflation also must have a correlation of �0.30 with dt).
The correlation between the real risk-free rate and
expected dividend growth is also �0.30. This implies an
upward-sloping real term structure. As explained in detail
in Section 3.3, these values represent a compromise
between fitting the upward slope of the yield curve
and the deviations from the expectations hypothesis.
The more negative are these correlations, the greater the
slope of the yield curve, and the greater the deviation
from the expectations hypothesis. The correlation with
expected inflation mainly affects the behavior of short-
term yields, while the correlation with the real interest
rate mainly affects the behavior of long-term yields.
Finally, as in Lettau and Wachter (2007), the correlation
between xt and dividend growth is set to be zero. The
implication of this parameter choice is discussed further
in Section 3.4.

For simplicity, we assume that most remaining corre-
lations are equal to zero.6 Exceptions are the correlation
between realized and expected inflation (as discussed
above) and between expected dividend growth and the
price of risk. We allow this latter correlation to be positive
based on direct evidence in Lettau and Ludvigson (2005)
that expected dividend growth is positively correlated
with the risk premium on stocks. Indeed, Lettau and
Wachter (2007, Table 8) show that the price–dividend
(footnote continued)

portfolio is 0.35. The term structure has a flatter slope (the difference

between the average five-year and three-month yield is 1.36%). Because

discount rates are lower, the average price–dividend ratio is higher and

equal to 35.3. The qualitative implications of the model are unchanged.

These results differ from those of Lettau and Wachter (2007) in large

part because of the presence of a time-varying real interest rate. This

introduces a source of risk which is priced to a lesser extent than

dividend risk.
6 Correlations between variables not including dt do not directly

impact risk premiums and thus, have modest implications for the return

moments that are the focus of this paper.
ratio predicts dividend growth with a negative sign at
long horizons (though the effect is insignificant). This
counter-intuitive result supports the notion that expected
dividend growth and discount rates move in the same
direction, and that the discount rate effect is stronger than
the cash-flow effect. We set the correlation between xt

and zt to be 0.35; this reduces the predictability of
dividend growth to nearly zero at long horizons despite
the persistence of expected dividend growth. Raising the
correlation further results in a variance–covariance
matrix for which the Cholesky decomposition fails to
exist.7

In this calibration, we have set a number of interaction
terms equal to zero. Richer models that are used to
estimate the term structure allow arbitrary cross-correla-
tions of shocks and interactions through conditional
means. Results from term structure studies (e.g., Dai and
Singleton, 2003; Duffee, 2002) suggest that such interac-
tions may be important for fully capturing the dynamics
of the term structure of interest rates. Appendix A
calculates prices under a more general model that allows
for such interactions. Empirically, however, it is not clear
how to cleanly identify these parameters with our macro-
based approach. Moreover, our simpler model has the
advantage that it is easier to interpret. While our model
may miss some of the term structure properties captured
by the more complex models, it nonetheless seems
appropriate for our current purpose.

3.2. Prices and returns as functions of the state variables

Fig. 1 shows the factor loadings on each state variable
for prices of real bonds, nominal bonds, and equity as
functions of maturity. As discussed in Section 2, and
shown in this figure, the factor loadings on the risk-free
rate are negative. An increase in the real risk-free rate
decreases prices of all assets. The factor loading on
expected inflation is negative for nominal bonds and zero
otherwise: An increase in expected inflation decreases
nominal bond prices, while leaving other prices
unchanged. The factor loading on expected dividend
growth is positive for equities and zero otherwise: An
increase in expected dividend growth increases stock
prices, while leaving other prices unchanged. The magni-
tude of all of these effects increases as a function of
maturity, and the assumptions of AR(1) processes implies
that the rate of increase declines exponentially.

Fig. 1 also shows that the dynamic effects of changes in
the price of risk are subtle and differ qualitatively from
the effects of the other processes. For real bonds, Br

xn is
negative and decreasing in magnitude, like the coefficient
on the risk-free rate. However, in contrast to that of Br

rn,
the rate of decrease of Br

xn does not die out exponentially.
The reason for this is the interaction between duration
and increasing risk premiums. At short maturities, the
price of risk has little impact (as compared to the risk-free
7 Intuitively, zt and dt are highly negatively correlated. This implies a

relation between correlations of variables with zt and correlations with

variables and dt. As explained below, dt and xt have a zero correlation, so

the correlation between zt and xt cannot be too far from zero.
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Fig. 1. Solutions to Brn, the sensitivity of prices to the real risk-free rate (top left); to Bqn, the sensitivity of prices to expected inflation (top right); to Bzn,

the sensitivity of prices to expected dividend growth (bottom left); and to Bxn, the sensitivity of prices to the price-of-risk variable. Dotted lines denote

the solutions for zero-coupon equity prices expressed in real terms, dashed-dotted lines denote the solutions for real bond prices expressed in real terms,

and dashed lines denote the solutions for nominal bond prices expressed in nominal terms. The solutions are scaled by the persistence f of the variables.

The solution for Br is identical for all three asset classes. The solution for Bq is identical for equities and real bonds and equal to zero. The solution for Bz is

identical for real and nominal bonds and equal to zero.
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rate) because these assets have very small risk premiums.
At long maturities, the price of risk has large impact
(as compared to the risk-free rate) because these assets
have large risk premiums. Therefore, shocks to xt have a
greater effect at longer maturities than would be suggested
by the size of the persistence fx. Similar comparisons hold
for Bpxn, the effect of the price of risk on nominal bonds.

For equities, the factor loading on xt is not even mono-
tonic. Over a range of zero to ten years, Bd

xn decreases in
maturity. This is the duration effect: the longer the
maturity, the more sensitive the price is to changes in
the risk premium. After ten years, Bd

xn increases, and then
asymptotes to a level that is lower than Bd

x0.8 This increase
is somewhat surprising because it appears to contradict
the notion of duration: long-maturity equity should be
more sensitive to changes in the risk premium than short-
maturity equity. However, because shocks to expected
dividend growth are negatively correlated with shocks to
realized dividend growth, long-maturity equity acts as a
hedge. This effect generates risk premiums on long-
maturity equity that are relatively low. Because long-
8 In the figure, Bd
xn has the appearance of asymptoting to the same

level as Br
xn; however, Bd

xn remains lower than Br
xn even in the limit.
maturity equity has lower risk premiums, it is less
sensitive to changes in xt.

Fig. 2 shows the zero-coupon yield curve for real
bonds, while Fig. 3 shows the zero-coupon yield curve
for nominal bonds. The figures show yields at their long-
run averages, and when the state variables are two
standard deviations above or below their long-run
averages. An increase in either the risk-free rate or the
price of risk increases yields at all maturities. The risk-free
rate and (in the case of nominal bonds) expected inflation
have the greatest effect for short-term yields. In contrast,
xt has very little effect on short-term yields, and much
greater effect on medium and long-term yields.
3.3. The term structure of interest rates

3.3.1. Means and volatilities of yields

Table 4 shows the implications of the model for means,
standard deviations, and annual autocorrelations of nom-
inal and real bond yields. Data moments for bond yields
using the CRSP Fama-Bliss data set are provided for
comparison. These data are available starting in June of
1952, and are monthly. For the three-month yield, we use
the bid yield on the 90-day Treasury bond, also available
from CRSP.
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line) two unconditional quarterly standard deviations. All other state

variables are kept at their long-run mean. Panel B shows analogous

results when the real risk-free rate rf
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Fig. 3. Yields on zero-coupon nominal bonds. Panel A shows quarterly
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state variables are equal to their long-run mean (solid line), and when

expected inflation qt is equal to the long-run mean plus (dashed-dotted

line) or minus (dotted line) two unconditional quarterly standard

deviations. All other state variables are kept at their long-run mean.

Panel B shows analogous results when the real risk-free rate rf
t is varied

by plus or minus two unconditional quarterly standard deviations. Panel

C shows analogous results when the price-of-risk variable xt is varied by

plus or minus two unconditional quarterly standard deviations.

9 This equation, like others below, holds both for real and nominal

bonds. We therefore omit the r and $ superscripts.
10 In contrast, a single-factor model that allows for significant

heteroskedasticity in the state variable can successfully match these

data (Wachter, 2006). It is also possible that part of the deviation in the

data is reflective of a peso problem (Bekaert, Hodrick, and Marshall,

2001) that is not captured by the model.
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Panel A shows that the real yield curve is upward-
sloping. This occurs because of the negative correlation
between the real risk-free rate and fundamentals. Because
bond prices fall when the real risk-free rate rises, bond
prices fall when growth in fundamentals is low. Therefore,
long-term real bonds carry a risk premium over short-term
real bonds, a risk premium that is reflected in the yield
spread.

The negative correlation between the real risk-free
rate and fundamentals also drives the nominal term
spread. In the case of nominal bonds, there is an addi-
tional effect arising from the negative correlation between
fundamentals and expected inflation. This negative corre-
lation implies that nominal bond prices fall when funda-
mentals are low, leading to a positive inflation risk
premium: this effect also operates in the models of
Piazzesi and Schneider (2006) and Wachter (2006). The
model’s implications are consistent with empirical evi-
dence that yields on indexed Treasury bonds are increas-
ing in maturity, but that this slope is less than for nominal
bonds (Roll, 2004).

The model implies volatilities for nominal bonds that are
close to those in the data across all maturities. Volatilities
are decreasing in maturity, as in the data. This decrease
follows from the stationary autoregressive nature of the
underlying processes. The table also shows annual auto-
correlations (in the data, these are calibrated based on
overlapping monthly observations). The autocorrelations
are also similar, though the pattern is flatter in the model
(0.85 at the short end, 0.87 at the long end) than in the data
(0.80 at the short end and 0.87 at the long end).
3.3.2. Campbell and Shiller (1991) regressions

Table 5 shows the outcome of regressions of changes
in yields on yield spreads:

yn�h,tþh�ynt ¼ anþbn

1

n�h
ynt�y1tð Þþetþh,

for real and nominal yields in simulated data.9 Historical
data are provided for comparison. We take h=4, corre-
sponding to an annual frequency. These ‘‘long-rate’’
regressions are performed by Campbell and Shiller
(1991) to test the hypothesis of constant risk premiums
on bonds. The coefficient bn is equal to one if and only if
risk premiums are constant. Campbell and Shiller find
that the coefficients are in fact negative, indicating that
risk premiums on bonds vary substantially over time.

As Table 5 shows, the model also implies a significant
departure from the expectations hypothesis. Coefficients bn

are negative for all maturities. However, the failure of the
expectations hypothesis is not as extreme in the model as in
the data. This reflects a general limitation of models driven
by a single homoskedastic factor. Indeed, Dai and Singleton
(2002) find, within the affine class, only a model with three
factors driving the price of risk is capable of fully matching
the failure of the expectations hypothesis.10



Table 5
Long-rate regressions on bond yields.

The table reports annual regressions of changes in yields on the scaled

yield spread:

yn�4,tþ4�ynt ¼ anþbn

1

n�4
ynt�y1tð Þþerror:

We report results for real bonds in the model and nominal bonds in the

model and in the data. For each data regression, the table reports

ordinary least squares (OLS) estimates of the regressors, Newey-West

(1987) corrected t-statistics (in parentheses), and R2-statistics (in

brackets). For each model regression, the table reports OLS estimates

of the regressors and R2-statistics. The maturities of the bonds range

from two to five years. Data are monthly from 1952 to 2004.

Maturity (years) 2 3 4 5

Panel A: Real bonds

bn �0.64 �0.67 �0.68 �0.70

R2 [0.02] [0.02] [0.02] [0.02]

Panel B: Nominal bonds

bn �0.60 �0.59 �0.59 �0.59

R2 [0.02] [0.02] [0.02] [0.01]

Panel C: Data

bn �0.76 �1.11 �1.50 �1.48

t-Statistic (�1.66) (�2.02) (�2.42) (�2.13)

R2 [0.03] [0.04] [0.06] [0.05]
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Fig. 4. Decomposition of coefficients from long-rate regressions. Panel A

shows the covariance between the return on an n-period bond and

fundamentals as a function of maturity. Panel B shows the coefficient

from a regression of the price-of-risk variable xt on the yield spread as a

function of the yield maturity. Panel C shows the coefficient bn from the

regression

yn�1,tþ1�ynt ¼ anþbn

1

n�1
ðynt�y1t Þþerror,

as a function of maturity. Results are shown for real bonds (solid lines)

and nominal bonds (dotted lines). The covariance between returns and

fundamentals, the coefficient from a regression of xt on the yield spread

and bn are related by the equation

bn ¼ 1�Covðrn,tþ1 ,Ddtþ1Þ
Covðxt ,ynt�y1tÞ

Varðyn�1,tþ1�y1tÞ
:

The results are from data simulated from the model at a quarterly

frequency.
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Using the model, it is possible to write the coefficients bn

in terms of more fundamental quantities. This sheds light on
the mechanism behind the failure of the expectations
hypothesis in the model, as well as tension between the
model’s ability to match the average yield curve and the
magnitude of the failure of the expectations hypothesis. For
the purposes of this derivation, we assume h=1. By definition

bn ¼
Covðyn�1,tþ1�yn,ynt�y1tÞ

Varðyn�1,tþ1�y1tÞ
ðn�1Þ: ð36Þ

It follows from the definition of the bond return that

rn,tþ1 ¼ ynt�ðn�1Þ yn�1,tþ1�ynt

� �
:

Rearranging and taking expectations implies

Et½yn�1,tþ1�ynt� ¼
1

n�1
ðynt�y1tÞ�

1

n�1
Et½rn,tþ1�y1t�: ð37Þ

Substituting into (36) and noting that time-ðtþ1Þ shocks
have zero correlation with time-t yields, we have

bn ¼
Covðynt�y1t�Et rn,tþ1�y1t

� �
,ynt�y1tÞ

Varðyn�1,tþ1�y1tÞ

¼ 1�Covðrn,tþ1,Ddtþ1Þ
Covðxt ,ynt�y1tÞ

Varðyn�1,tþ1�y1tÞ
, ð38Þ

where the second line follows from (14). If xt were constant,
then the covariance term in this expression would be zero
and bn ¼ 1, its value implied by the expectations hypothesis.
The deviation from the expectations hypothesis depends on
two quantities. The first is Covðrn,tþ1,Ddtþ1Þ, the covariance
between bond returns and fundamentals. This determines
the average risk premium on the bond as indicated by (14).
The greater are risk premiums on bonds, the greater the
deviation from the expectations hypothesis. The second
term is the coefficient from a regression of xt on the yield
spread. The more risk premiums covary with yield spreads,
then, the greater the deviation from the expectations
hypothesis.

Fig. 4 displays Covtðrn,tþ1,Ddtþ1Þ, Covðxt ,ynt�y1tÞ=Var
ðyn�1,tþ1�y1tÞ, and bn for real and nominal bonds. As Panel
A shows, Covtðrn,tþ1,Ddtþ1Þ increases in maturity, reflect-
ing the fact that risk premiums increase in maturity and
that the term spread is upward-sloping. Risk premiums
are greater for nominal bonds then for real bonds, and
increase faster in the maturity. Despite this, as shown in
Panel C, the model implies a greater deviation from the
expectations hypothesis for real bonds than for nominal
bonds. Moreover, the model predicts coefficients that are
roughly constant in maturity over the range of zero to five
years, while risk premiums are upward-sloping. The
reason is that the upward slope for risk premiums is
canceled out by a downward slope in Covðxt ,ynt�y1tÞ=

Varðyn�1,tþ1�y1tÞ, which arises from the mean-reverting
nature of xt. Moreover, nominal bonds, whose yields are
driven by expected inflation as well as by discount rates,
have lower values of Covðxt ,ynt�y1tÞ=Varðyn�1,tþ1�y1tÞ.
This explains why the model produces a less dramatic
failure of the expectations hypothesis for nominal bonds,
despite their higher risk premiums.
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Fig. 5. Regressions of excess bond returns on forward rates. Annual

returns on two-, three-, four-, and five-year nominal bonds, in excess of

the return on the one-year bond, are regressed on the one-, three-, and

five-year forward rates in data simulated from the model. The figure

shows the resulting regression coefficients as a function of the forward-

rate maturity.

Table 6
R2-statistics from forward-rate regressions.

Annual continuously compounded excess returns on zero-coupon

bonds of maturities ranging from two to five years are regressed on

three forward rates in the model and five forward rates in the data. Bond

returns are in excess of the return on the one-year bond. In the model,

the forward-rate maturities are one, three, and five years. In the data,

forward-rate maturities are one, two, three, four, and five years. The

table reports the resulting R2-statistics for real bonds in the model,

nominal bonds in the model, and nominal bonds in the data. Data are

monthly from 1952 to 2004.

Maturity in years

2 3 4 5

Real bonds 0.14 0.14 0.13 0.12

Nominal bonds 0.22 0.20 0.18 0.16

Data 0.22 0.23 0.27 0.24

M. Lettau, J.A. Wachter / Journal of Financial Economics 101 (2011) 90–113102
3.3.3. Cochrane and Piazzesi (2005) regressions

Finally, we ask whether the model can explain the
findings of Cochrane and Piazzesi (2005). Cochrane and
Piazzesi regress annual excess bond returns on a linear
combination of forward rates, where the forward rate for
loans between periods t+n and t+n+h is defined as the
difference between the log price of the nominal bond
maturing in n�h periods and the log price of the nominal
bond maturing in n periods:

f $
nt ¼ logðPpn�h,tPtÞ�logðPpntPtÞ ¼ logPpn�h,t�logPpnt :

In what follows, we take h=4 so that the forward rate is
annual. We refer to n as the forward-rate maturity.
Cochrane and Piazzesi show that the regression coeffi-
cients on the forward rates form a tent-shape pattern as a
function of maturity (see also Stambaugh, 1988). More-
over, they show that a single linear combination of
forward rates has substantial predictive power for bond
returns across maturities.

These results offer support for our model’s assump-
tions in that they imply that a single predictive factor
drives much of the predictability in bond returns. In our
model, that factor is represented by the latent variable xt.
Forward rates, like bond prices, are linear combinations of
factors; therefore, some linear combination of forward
rates will uncover xt. The model therefore predicts that
some linear combination of forward rates will be the best
predictor of bond returns, and that the regression coeffi-
cients for bonds of various maturities should be the same
up to a constant of proportionality (because the true
premiums are all proportional to xt).

We replicate the Cochrane and Piazzesi (2005) analysis
in our simulated data. We report results for forward rates
with n=1, 3, and 5 years, but the results are robust to
alternative choices. Fig. 5 shows the regression coefficients
as a function of the forward-rate maturity. As this figure
shows, the model reproduces the tent-shape in regression
coefficients.11 Table 6 reports R2-statistics in the model and
in the data. From monthly Fama-Bliss data (beginning in
1952 and ending in 2004), we construct overlapping annual
observations. The R2-statistics in the model are smaller than
those in the data (16% versus 24% for the five-year bond),
but still economically significant.12

Given the three-factor affine structure of the model, it
is straightforward to solve for the linear combination of
any three forward rates that is proportional to the price of
risk xt. Appendix D gives an analytical formula for these
regressions coefficients, and shows that they must either
form a tent- or a ‘‘V’’-shape. For example, if we use the
one, three, and five-quarter forward rates, and assume
that the horizon for forward rates is one-quarter, the
11 The regression coefficients are larger in magnitude than those

shown in Cochrane and Piazzesi (2005); this occurs because the

correlation between bond returns in our model is greater than that in

the data.
12 The differences between these R2-statistics and those reported in

Cochrane and Piazzesi (2005) are due to a difference in sample period;

their sample begins in 1964 whereas ours begins in 1952.
linear combination

�f2
qf

2
r f1tþðf

2
qþf

2
r Þf3t�f5t ð39Þ

equals xt up to a constant of proportionality. The shape
arises in part from the fact that forward rates are highly
correlated. The coefficient on the first and the third
forward rates must be the opposite sign of that on the
middle forward rate in order to undo the effects of
expected inflation qt and the risk-free rate rf

t. Because qt

and rf
t enter into the equation for forward rates with the

same sign at all maturities, undoing their effects requires
that the coefficients reverse in sign.

Whether the shape is a tent or a ‘‘V’’ depends on the
pattern of forward-rate sensitivities to xt. Simulation
results suggest that a tent-shape occurs as long as xt is
not extremely persistent (i.e., not more persistent than
both rf

t and qt). The derivation in Appendix D gives some
insight into why this might be true. Intuitively, if xt is
extremely persistent, then the forward rate with the



13 That is,
PN

i ¼ 1 sit ¼ sþð1þgsÞ
N=2sþ2

PN=2�1
i ¼ 1 ð1þgsÞ

is ¼ 1.
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greatest maturity among the three regressors will also be
relatively sensitive to xt. In this case, a ‘‘V’’-shape results
because the linear combination that exactly replicates xt

loads positively on the forward rate of greatest maturity.
However, if the persistence of xt lies between that of rf

t

and qt, the middle forward rate will be relatively sensitive
to xt. In this case, a tent-shape results because the linear
combination that exactly replicates xt loads positively on
the middle forward rate. The preceding results in this
section suggest that this is the most empirically relevant
case because it is the case that also allows the model to
capture facts about equity returns. Perhaps surprisingly,
the model implies a tent-shape even if the persistence of
xt is below that of rf

t and qt. As discussed in Section 3.2, the
response of the yield curve to a change in xt depends on
the pattern of bond risk premiums, which in turn depend
on the persistences of rf

t and qt. Therefore, a change in xt

can have a large effect on intermediate-maturity bonds
even if xt is not very persistent itself. For this reason, the
tent-shape is typical of the model (in the sense that it
holds for a variety of realistic calibrations), while the ‘‘V’’-
shape is the exception.

3.4. The cross-section of equities

This section shows the implications of the model for
portfolios formed by sorting on price ratios. Following
Lynch (2003) and Menzly, Santos, and Veronesi (2004),
we exogenously specify a share process for cash flows on
long-lived assets. For each year of simulated data, we sort
these assets into deciles based on their price–dividend
ratios and form portfolios of the assets within each decile.
We then calculate returns over the following year. This
follows the procedure used in empirical studies of the
cross-section (e.g., Fama and French, 1992). We then
perform statistical analysis on the portfolio returns.

We specify our share process so that assets pay a
nonzero dividend at each time (implying that the price–
dividend ratio is well-defined), so that the total dividends
sum up to the aggregate dividend of the market (so that
the model is internally consistent), and so that the cross-
sectional distribution of dividends, returns, and price
ratios is stationary. The continuous-time framework of
Menzly, Santos, and Veronesi (2004) allows the authors to
specify the share process as stochastic, and yet keep
shares between zero and one. This is more difficult in
discrete time, and for this reason we adopt the simplifying
assumption that the share process is deterministic. We
assume the same process as in Lettau and Wachter
(2007): shares grow at a constant rate of 5% per quarter
for 100 quarters, and then shrink at the same rate for the
next 100 quarters. Lettau and Wachter show that these
parameters imply a cross-sectional distribution of divi-
dend and earnings growth similar to that in the data.

More precisely, consider N sequences of dividend
shares sit, for i=1,y,N. For convenience, we refer to each
of these N sequences as a firm, though they are best
thought of as portfolios of firms in the same stage of the
life-cycle. As our ultimate goal is to aggregate these firms
into portfolios based on price–dividend ratios, this sim-
plification does not affect our results. Firm i pays sit of the
aggregate dividend at time t, si,tþ1 of the aggregate
dividend at time t+1, etc. Shares are such that sit Z0
and

PN
i ¼ 1 sit ¼ 1 for all t (so that the firms add up to the

market). Because firm i pays a dividend sequence
si,tþ1Dtþ1,si,tþ2Dtþ2, . . ., no-arbitrage implies that the
ex-dividend price of firm i equals

PF
it ¼

X1
n ¼ 1

si,tþnPd
nt :

Let s be the lowest share of a firm in the economy, and
assume without loss of generality that firm 1 starts at s,
namely s11 ¼ s. We assume that the share grows at a
constant rate gs until reaching s1,N=2þ1 ¼ ð1þgsÞ

N=2s and
then shrinks at the rate gs until reaching s1,Nþ1 ¼ s again.
At this point, the cycle repeats. All firms are ex ante
identical, but are ‘‘out of phase’’ with one another: As
firms move through the life-cycle, they slowly shift (on
average) from the growth category to the value category,
and then revert back to the growth category. Firm 1 starts
out at s, Firm 2 at s21 ¼ ð1þgsÞs, Firm N/2 at
sN=2,1 ¼ ð1þgsÞ

N=2�1s, and Firm N at sN1 ¼ ð1þgsÞs. The
variable s is such that the shares sum to one for all t.13

We set the number of firms to 200, implying a 200-
quarter, or equivalently, 50-year life-cycle for a firm.
These share processes fully define the firms in the
economy.

Panel A of Table 7 shows moments implied by the
model. We compute the expected excess return, the
volatility of the excess return, and the Sharpe ratio. We
also compute the abnormal return relative to the CAPM
(ai), and the coefficient on the market portfolio (bi) from a
time-series regression of expected excess portfolio
returns on expected excess market returns. Panel B shows
counterparts from the data when portfolios are formed on
the book-to-market ratio. Monthly data from 1952 to
2004 are from Ken French’s Web site. Lettau and
Wachter (2007) show that very similar results occur when
portfolios are formed on earnings-to-price or cash-flow-
to-price ratios.

Comparing the first line of Panel A with that of Panel B
shows that the model matches most of the spread
between expected returns on value and growth stocks.
In both the model and the data, the expected excess
return is about 6% per annum for the extreme growth
portfolio. In the model, the extreme value portfolio has an
expected excess return of 10%, compared with 11% in the
data. Comparing the second line of Panel A with that of
Panel B shows that, in the model, the risk of value stocks
is lower than that of growth stocks, just as in the data.
Sharpe ratios increase from about 0.3 for the extreme
growth portfolio to about 0.6 for the extreme value
portfolio.

More importantly, the model is able to match the value
puzzle. Even though the model predicts that value stocks
have high expected returns, value stocks in the model
have lower CAPM b’ s than growth stocks. The CAPM a in
the model is �2.5% per annum for the extreme growth
portfolio and rises to 3.3% per annum for the extreme



Table 7
Moments of equity portfolio returns.

In Panel A, firms in simulated data are sorted into deciles based on their dividend–price ratios in each simulation year. Returns are calculated over the

subsequent year (portfolio 1 consists of firms with the lowest dividend–price ratios, portfolio 10 with the highest). In Panel B, firms in historical data are

sorted into deciles based on their book-to-market ratio. Returns are calculated on a monthly basis and annualized (multiplied by 12 in the case of means

and intercepts and
ffiffiffiffiffiffi
12
p

in the case of standard deviations). Data are monthly from 1952 to 2004. In both panels, Ri�Rp
1 refers to the return on the ith

portfolio in excess of the return on the short-term nominal bond, where both returns are measured in real terms. Intercepts (ai) and slope coefficients (bi)

are from OLS time-series regressions of excess portfolio returns on the excess market return. Means, intercepts, and standard deviations are reported in

percentage terms.

G Growth to Value V V–G

Portfolio 1 2 3 4 5 6 7 8 9 10 10-1

Panel A: Model

ERi
�Rp

1
5.72 5.90 6.18 6.57 7.09 7.69 8.33 8.92 9.45 10.35 4.63

sðRi�Rp
1 Þ

20.72 20.90 21.03 21.05 20.84 20.30 19.45 18.50 17.85 17.86 8.17

Sharpe ratio 0.28 0.28 0.29 0.31 0.34 0.38 0.43 0.48 0.53 0.58 0.57

ai �2.52 �2.44 �2.24 �1.87 �1.30 �0.51 0.47 1.49 2.35 3.33 5.85

bi 1.02 1.03 1.04 1.04 1.04 1.01 0.97 0.92 0.88 0.87 �0.15

Panel B: Data

ERi
�Rp

1
5.91 6.74 7.38 7.29 8.35 8.62 8.56 10.30 10.32 11.64 5.73

sðRi�Rp
1 Þ

17.60 15.87 15.79 15.45 14.64 14.74 14.71 15.09 15.81 18.37 14.93

Sharpe ratio 0.34 0.43 0.47 0.47 0.57 0.58 0.58 0.68 0.65 0.63 0.38

ai �1.72 �0.30 0.40 0.65 2.19 2.35 2.58 4.20 4.02 4.70 6.41

bi 1.10 1.02 1.01 0.96 0.89 0.91 0.87 0.88 0.91 1.01 �0.10
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value portfolio. The corresponding numbers in the data
are �1.7% per annum and 4.7% per annum.

These results for value and growth stocks may at first
seem counter-intuitive, especially given the implications
of the model for the term structure of interest rates. The
term structure results in the previous section show that
long-run assets require higher expected returns than
short-run assets. The results in this section show that
the opposite is true for equities. For equities, it is the
short-run assets that require high expected returns.

The model resolves this tension between the down-
ward-sloping term structure of equities and the upward-
sloping term structure of interest rates by the dividend
process, the inflation process, and the price-of-risk
process xt. As implied by the data, expected dividend
growth is negatively correlated with realized dividend
growth. This makes growth stocks a hedge and reduces
their risk premium relative to what would be the case if,
say, expected inflation were constant. Moreover, ex-
pected inflation is negatively correlated with realized
dividend growth. This makes long-term nominal bonds
riskier than short-term nominal bonds and riskier than
real bonds.

The prices of inflation and dividend risks are important
for accounting for the combined behavior of equities
and bonds. However, they are not sufficient. As the
discussion in Section 2.3 indicates, characteristics of the
price-of-risk process xt are also crucial. Because equities
carry a higher risk premium than bonds, they are more
sensitive to changes in xt in the sense that a greater
proportion of their variance comes from xt than from
rf

t as compared to both real and nominal bonds. In our
specification, variation in the price of risk is itself
unpriced. This implies variability in returns on growth
stocks (on account of duration), but, at the same time, low
expected returns because this variability comes in the
form of risk that the representative investor does not
mind bearing.

3.5. Interactions

3.5.1. Comparison between the model and the data

We now examine the model’s implications for inter-
actions between the aggregate market, the term structure
of interest rates, and the cross-section of equities. We
consider four state variables in the data and in the model:
the price–dividend ratio, the yield spread, the linear
combination of forward rates that best predicts bond
returns, and the value spread. We also consider three
excess returns: the return on the market portfolio over
the short-term bond, the return on the five-year nominal
bond over the short-term bond, and the return on the
value portfolio over the growth portfolio. We calculate
cross-correlations of the four state variables, cross-corre-
lations of the three excess returns, and predictive regres-
sions of each excess return on each state variable.

We construct the prices and return series using
monthly data from 1952 to 2004 (because Fama-Bliss
data on bond yields begin in June of 1952, this is the
earliest starting point we consider for all of the series in
this section). The price–dividend ratio in the data is
constructed by dividing the price of the value-weighted
CRSP index by the dividends paid over the previous year.
The yield spread is the five-year yield (from Fama-Bliss
data) minus the three-month yield (equal to the bid yield
on the 90-day Treasury bond). Both yields are nominal
and continuously compounded. We create a forward-rate
factor following the approach of Cochrane and Piazzesi
(2005), namely, we compute the average excess holding
period return on bonds of maturities ranging from two to
five years and regress it on annual forward rates with
maturities ranging from one to five years. In what follows,



Table 8
Cross-correlation of state variables.

The table reports correlations between the log price–dividend ratio on

the market portfolio, the spread between the five-year yield and the

three-month yield on nominal bonds (the yield spread), the linear

combination of forward rates constructed to best predict average

holding-period returns on bonds (the CP factor), and the value spread.

In the model, the value spread is defined as the log dividend–price ratio

of the value portfolio minus the log dividend–price ratio of the growth

portfolio. In the data, the value spread is defined as the log book-to-

market ratio of the value portfolio minus the log book-to-market ratio of

the growth portfolio. Data are monthly from 1952 to 2004.

Yield spread CP factor Value spread

Panel A: Model

Price–dividend ratio �0.47 �0.73 0.86

Yield spread 0.80 �0.10

CP factor �0.32

Panel B: Data

Price–dividend ratio 0.17 0.03 0.70

Yield spread 0.69 0.03

CP factor �0.14

Table 9
Cross-correlation of excess returns.

The table reports correlations between three continuously com-

pounded annual excess returns: the return on the market portfolio in

excess of the return on the short-term nominal bond, the return on the

nominal five-year zero-coupon bond in excess of the short-term nominal

bond, and the return on the value portfolio in excess of the return on the

growth portfolio. Data are monthly from 1952 to 2004.

Bond return V-G return

Panel A: Model

Market return 0.83 �0.44

Bond return �0.28

Panel B: Data

Market return 0.15 �0.33

Bond return 0.15
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we refer to this linear combination of forwards (and its
analogue in the model) as the CP factor. The value spread
is defined as in Cohen, Polk, and Vuolteenaho (2003). That
is, we start with the six portfolios formed by first sorting
firms into two portfolios by size and then into three
portfolios by the book-to-market ratio (see Fama and
French, 1993). The value portfolio then consists of the
portfolio that equally weights the portfolio of large stocks
with high book-to-market ratios and the portfolio of small
stocks with high book-to-market ratios. The growth
portfolio is likewise formed from the portfolio of large
stocks with low book-to-market ratios and the portfolio of
small stocks with low book-to-market ratios. The value
spread is the difference between the log book-to-market
ratio of the value portfolio and the log book-to-market
ratio of the growth portfolio. Data on these portfolios are
from Ken French’s Web site.

The return on the value-weighted CRSP index repre-
sents the market return. We construct the return on the
five-year nominal bond using yields on the four- and five-
year bonds from Fama-Bliss data. To form excess returns,
we subtract the return on the 90-day Treasury bill. We
construct the value-minus-growth return using returns
on the value portfolio and the growth portfolio as defined
in the previous paragraph. All returns are continuously
compounded, and we form overlapping annual (and five-
year) observations from the monthly data.

We construct the price–dividend ratio and yield spread
in the model as described in previous sections. We
construct the CP factor as in the data, except that (to
avoid colinearity) we use the one-, three-, and five-
year forward rates rather than all five forwards. The
value spread is the dividend–price ratio on the ext-
reme value portfolio minus the dividend–price ratio on
the extreme growth portfolio. The market return and
bond return were defined previously; we subtract from
these returns the real return on the one-quarter nominal
bond. The value-minus-growth return is formed using the
return on the extreme value portfolio and the return on
the extreme growth portfolio. All returns are real and
continuously compounded. The model is simulated at a
quarterly frequency. From these quarterly observations,
we create an annual time series of state variables and
annual returns.

Table 8 shows the cross-correlations between the state
variables in the model and in monthly data. The table
shows that the price–dividend ratio and the yield spread
are negatively correlated in the model (because increases
in xt positively impact the price–dividend ratio but
negatively impact the yield spread), but slightly positively
correlated in the data. The price–dividend ratio is also
negatively correlated with the CP factor (not surprisingly,
because the linear combination of forward rates is per-
fectly correlated with xt). This correlation is close to zero
in the 1952–2004 sample. The model correctly accounts
for the strong positive correlation between the price–
dividend ratio and the value spread. This positive correla-
tion results from the fact that the market and the value
spread both respond negatively to increases in xt and rf

t and
positively to increases in zt (note that growth firms are more
sensitive than value firms to changes in these variables). The
correlation between the value spread and the yield spread is
small and negative in the model and small and positive in
the data. The correlation between the value spread and the
CP factor is negative in both the model and the data, though
the model correlation is larger in magnitude (�0.32 versus
�0.14).

Table 9 shows the cross-correlations between the
three returns in the model and in the data. The correlation
between excess returns on the market and excess returns
on bonds is positive, both in the model and in the data,
though the model correlation is higher (0.83 versus 0.15).
This positive correlation occurs because both bond and
stock returns are driven to a large extent by xt. Likewise,
the model predicts a negative correlation between bond
returns and the value-minus-growth portfolio. However,
the model correctly captures the moderately negative
correlation between the value-minus-growth return and
the market return (�0.44 in the model and �0.33 in the
data). It may at first seem surprising that the model can
match this negative correlation: after all, both the equity



Table 10
Long-horizon regressions of returns on the price–dividend ratio.

The table reports regressions

XH

i ¼ 1

re
tþ i ¼ b0þb1ðp

m
t �dtÞþerror,

where re
tþ1 is either the excess return on the market portfolio, the excess

return on the five-year nominal zero-coupon bond, or the return on the

strategy that is long the value portfolio and short the growth portfolio.

Returns are measured over horizons of one year and five years. The

right-hand side variable is the lagged price–dividend ratio on the

market. For each model regression, the table reports OLS estimates of

the regressors and R2-statistics (in brackets). For each data regression,

the table reports OLS estimates of the regressors, Newey-West (1987)

corrected t-statistics (in parentheses), and R2-statistics (in brackets).

Data are monthly from 1952 to 2004.

Market return Bond return V–G return

Horizon 1 5 1 5 1 5

Panel A: Model

b1 �0.14 �0.50 �0.06 �0.20 �0.08 �0.31

R2 [0.07] [0.23] [0.09] [0.22] [0.15] [0.19]

Panel B: Data

b1 �0.11 �0.40 0.02 0.06 0.02 0.01

t-Statistic (�1.99) (�3.37) (0.89) (1.02) (0.40) (0.18)

R2 [0.07] [0.17] [0.01] [0.02] [0.01] [0.00]

Table 11
Long-horizon regressions of returns on the yield spread.

The table reports regressions

XH

i ¼ 1

re
tþ i ¼ b0þb1ðy

$
5t�y$

1tÞþerror,

where re
tþ1 is either the excess return on the market portfolio, the excess

return on the five-year nominal zero-coupon bond, or the return on the

strategy that is long the value portfolio and short the growth portfolio.

Returns are measured over horizons of one year and five years. The right-

hand side variable is the lagged spread between the yield on the five-year

nominal zero-coupon bond and the yield on the three-month zero-coupon

bond. For each model regression, the table reports OLS estimates of the

regressors and R2-statistics (in brackets). For each data regression, the table

reports OLS estimates of the regressors, Newey-West (1987) corrected t-

statistics (in parentheses), and R2-statistics (in brackets). Data are monthly

from 1952 to 2004.

Market return Bond return V–G return

Horizon 1 5 1 5 1 5

Panel A: Model

b1 3.15 12.00 1.42 5.35 1.87 7.01

R2 [0.07] [0.25] [0.11] [0.30] [0.14] [0.18]

Panel B: Data

b1 4.15 12.68 2.48 1.66 2.30 �4.82

t-Statistic (1.78) (3.04) (3.56) (0.72) (1.33) (�1.76)

R2 [0.04] [0.10] [0.13] [0.01] [0.02] [0.04]

Table 12
Long-horizon regressions of returns on the linear combination of

forward rates.

The table reports regressions

XH

i ¼ 1

re
tþ i ¼ b0þb1h

0f tþerror,

where re
tþ1 is either the excess return on the market portfolio, the excess

return on the five-year nominal zero-coupon bond, or the return on the

strategy that is long the value portfolio and short the growth portfolio.

Returns are measured over horizons of one year and five years. The

right-hand side variable is a lagged linear combination of forward rates

on nominal bonds, constructed as in Cochrane and Piazzesi (2005). For

each model regression, the table reports OLS estimates of the regressors

and R2-statistics (in brackets). For each data regression, the table reports

OLS estimates of the regressors, Newey-West (1987) corrected t-statis-

tics (in parentheses), and R2-statistics (in brackets). Data are monthly

from 1952 to 2004.

Market return Bond return V–G return

Horizon 1 5 1 5 1 5

Panel A: Model

b1 3.80 14.07 1.67 6.18 2.26 8.67

R2 [0.11] [0.37] [0.17] [0.43] [0.23] [0.30]

Panel B: Data

b1 1.11 2.80 1.46 2.58 0.94 �0.24

t-Statistic (1.15) (1.44) (4.79) (3.70) (1.66) (�0.21)

R2 [0.02] [0.03] [0.24] [0.14] [0.02] [0.00]

14 The size of the predictive coefficients is larger in the model than
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premium and the value premium depend on xt with a
positive sign. However, this correlation is determined to a
large degree by unexpected, rather than expected returns.
Positive shocks to xt and rf

t lead to negative market return
shocks, while positive shocks to zt lead to positive market
return shocks. These factors also influence the value-
minus-growth return, but with the opposite sign because
they affect growth firms more than value firms. The
correlation is not perfectly negative because of the role
of shocks to realized dividends, which influence the
market portfolio and the value-minus-growth portfolio
in the same direction.

Tables 10–13 show the outcomes from predictive regres-
sions of each state variable on the three returns. We
consider return horizons of one and five years. Table 10
reports regressions of the three returns on the lagged price–
dividend ratio. The price–dividend ratio predicts excess
returns on the market in both the data and the model.
However, the model implies that the price–dividend ratio
should predict excess returns on bonds, a fact that does not
hold up in the data. Finally, the price–dividend ratio predicts
returns on the value-minus-growth strategy with a negative
sign in the model, but fails to predict this return in the data.

Table 11 repeats the exercise for the yield spread. The
model’s predictions are in line with the data in that the
yield spread is capable of predicting both market and
bond excess returns in the model and in the data with the
correct sign (however, the effect for bonds is insignificant
at longer horizons). The model produces the correct sign
for the value-minus-growth portfolio at the one-year
horizon, though the R2-statistic is greater in the model
than in the data. In the data (but not in the model), the
sign of the relation reverses at the five-year horizon.
However, the effect is insignificant. Table 12 reports
results for the CP factor. The results in this table are
qualitatively similar to those for the yield spread.14
in the data because the linear combination of forward rates is smoother.



Table 13
Long-horizon regressions of returns on the value spread.

The table reports regressions

XH

i ¼ 1

re
tþ i ¼ b0þb1ðvalue spreadÞtþerror,

where re
tþ1 is either the excess return on the market portfolio, the excess

return on the five-year nominal zero-coupon bond, or the return on the

strategy that is long the value portfolio and short the growth portfolio.

Returns are measured over horizons of one year and five years. The

right-hand side variable is the value spread, constructed as the log

dividend–price ratio of the value portfolio minus the log dividend–price

ratio of the growth portfolio in the model and as in Cohen, Polk, and

Vuolteenaho (2003) in the data. For each model regression, the table

reports OLS estimates of the regressors and R2-statistics (in brackets).

For each data regression, the table reports OLS estimates of the

regressors, Newey-West (1987) corrected t-statistics (in parentheses),

and R2-statistics (in brackets). Data are monthly from 1952 to 2004.

Market return Bond return V–G return

Horizon 1 5 1 5 1 5

Panel A: Model

b1 �0.20 �0.75 �0.07 �0.24 �0.12 �0.46

R2 [0.02] [0.06] [0.02] [0.04] [0.04] [0.05]

Panel B: Data

b1 �0.25 �0.63 0.05 0.14 0.23 0.62

t-Statistic (�2.07) (�2.15) (1.04) (0.74) (2.05) (3.61)

R2 [0.05] [0.07] [0.02] [0.02] [0.09] [0.17]

15 In the full model, we define the value spread as the log dividend–

price ratio on the value portfolio less the log dividend–price ratio on the

growth portfolio. For the zeros, however, there is no dividend stream. To

form stationary ratios, we can scale the prices by the aggregate

dividend; the aggregate dividend will then cancel when we take the

differences of the log ratios.
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Table 13 reports regressions of the returns on the value
spread. The model correctly captures the sign and degree
to which the value spread predicts the aggregate market
return in the data. In both model and data, the value
spread has little ability to predict bond returns. In the
model, the value spread predicts the return on the value-
minus-growth portfolio with a negative sign, though the
effect is economically small (the R2 is 5% at a five-year
horizon). In the data however, the value spread predicts
the value-minus-growth return with a positive sign.

How should we think about the wedge between model
and data when it comes to the value spread’s ability to
predict the value-minus-growth return? The discrepancy
may in part arise from the construction of the value
spread in the data, a construction which favors small
stocks. Other methods of constructing the value spread
that weight large stocks more heavily do not have a
statistically significant ability to predict the value minus
growth return. Given that our results may be best inter-
preted as a theory for large stocks (even the value stocks
in the model are large and well-diversified), it may be that
this deviation in predictive ability is not a significant
failing.

A closer look at the model also indicates that the sign
of the relation may not be an intrinsic property, but may
rather depend on the precise definition of value and
growth. The value spread is negatively correlated with xt

in our calibration because the growth portfolio is more
sensitive to changes in xt than is the value portfolio. This
is why the value spread predicts the value-minus-growth
return with a negative sign. However, as shown in Fig. 1,
the effect of xt on the price–dividend ratio reverses at
sufficiently long maturities: medium-maturity equity
loads more on xt than does short-maturity, but long-
maturity equity loads less on xt than does medium-
maturity equity. Our current construction of firms implies
that even the extreme growth firm consists primarily of
medium-maturity equity. A construction that puts more
weight on long-maturity equity could produce a different
result.

To explore the magnitude of this effect, we consider a
simplified model of value and growth portfolios. We form
pairs of equity ‘‘zeros’’ (i.e., zero-coupon equity claims),
with cash flows separated by ten years. The shorter-term
claim is the value claim; the longer-term claim is the
growth claim. The analogue of the value spread is the log
price of the value claim less the log price of the growth
claim.15 To be consistent, we define the value-minus-
growth return using the same claims. That is, we take the
log return on the value claim and subtract the log return
on the growth claim. For example, our first pair consists of
the one-year zero and the 11-year zero; the value spread
is defined as the log price of the 11-year zero minus the
log price of the one-year zero, and the value-minus-
growth return is defined as the return on the one-year
minus the return on the 11-year. We regress the value-
minus-growth return for this pair on the value spread,
and repeat for the pair consisting of the two-year and the
12-year, and so forth. The advantage of this method is that
it clarifies the relation between the sign of the regression
results and the maturity of the claims.

The results are shown in Fig. 6. The top panel shows
the ‘‘zero-coupon’’ value premium, defined as the expec-
tation of the difference between the log value return and
the log growth return. As this panel shows, this difference
is always positive, confirming that the value premium
takes the correct sign for all maturities. The difference
between the expected returns goes to zero as the maturity
of the claims rises; this occurs because the model is
stationary and thus, the expected returns converge as
the maturity approaches infinity. The bottom panel shows
the sign of the regression coefficient in the predictive
regression. The sign of the coefficient is negative when the
maturity of the value claim is less than three years (thus,
the maturity of the growth claim is less than 13 years),
and crosses zero between three years and four years. This
is consistent with the behavior of the model reported in
Table 13: When the value claim is essentially short-
horizon and the growth claim is medium-horizon, the
sign of the predictive coefficient is (counterfactually)
negative. However, when the value claim has a maturity
of four years or greater, the regression coefficient is
positive, as it is in the data.
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Fig. 6. Coefficient on the zero-coupon value spread in a predictive regression as a function of the maturity of the claims. The top panel shows the zero-

coupon value premium; the bottom panel shows the coefficient from a predictive regression of the value-minus-growth return on the value spread. For

this figure, the value claim is defined as a zero-coupon equity claim with maturity n, the growth claim is a zero-coupon equity claim with maturity n+10.

The value-minus-growth return is defined as the difference between the log return on the value claim and the log return on the growth claim. The value

premium is defined as the expectation of the value-minus-growth return. The value spread is the log price of the value claim minus the log price of the

growth claim. The resulting value premium and the regression coefficient are shown as functions of n. Returns and the regression horizon are annual.
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3.5.2. Are the correlations between markets

parameter-specific?

The above results show that the model largely suc-
ceeds at capturing the ability of equity state variables to
predict equity returns and bond state variables to predict
bond returns (an exception is the sign of the coefficient
when the value-minus-growth return is regressed on the
value spread, discussed in the paragraphs above). How-
ever, the model implies correlations between these two
markets that are higher than in the data. We now argue
that these correlations are likely to pose a puzzle for any
model with a single factor driving risk premiums.

Consider a general homoskedastic model with m

factors such that a single linear combination of these
factors drives the price of risk. Such a model is described
in Appendix A; the model we have calibrated in this paper
is a special case. In any such model, the price of risk is
observable up to an additive and multiplicative constant
provided one can observe m forward rates. The reasoning
is as follows: The forward rates are linear combinations of
the m factors, so (provided that there is a nonzero term
premium), there must be some linear combination of the
m forward rates that uncovers the price of risk (Appendix
D explicitly computes this combination for the three-
factor model calibrated in the paper). Because risk
premiums on zero-coupon instruments are equal to a
constant times the price of risk plus a shock,16 this linear
combination can be identified by a regression of excess
16 We prove this result in Section 2 for the special case that we

calibrate. However, the reasoning holds for the more general model

described in Appendix A.
returns on lagged forward rates. Namely, the price of risk
can be identified by running Cochrane and Piazzesi (2005)
regressions, and the resulting price of risk will be propor-
tional to the CP factor.

The discussion in the previous paragraph shows that
the correlation between the price–dividend ratio and the
CP factor (which is near zero in the data), is equal to the
correlation between the price–dividend ratio and xt. Let
pm

t �dt ¼ logðPm
t =DtÞ, the log price–dividend ratio on the

market. Consider a projection of the log price–dividend
ratio onto xt:

pm
t �dt ¼

Covðpm
t �dt ,xtÞ

s2
x

xtþx0
t , ð40Þ

where x0
t ¼ pm

t �dt�ðCovðpm
t �dt ,xtÞ=s2

x Þxt has zero covar-
iance with xt. The population R2 of the projection (40) is
given by

R2
pm�d,x ¼

Covðpm
t �dt ,xtÞ

s2
x

	 
2 s2
x

Varðpm
t �dtÞ

¼ Corrðpm
t �dt ,xtÞ

2:

ð41Þ

Intuitively, (41) measures the proportion of the variance
of the price–dividend ratio that is explained by changes in
risk premiums. Eq. (41), together with the reasoning in
the previous paragraph, shows that a model capable of
explaining the near-zero correlation between the CP
factor and the price–dividend ratio would also have to
require that the price–dividend ratio be driven almost
exclusively by factors other than risk premiums. In a fully
specified SDF model such as the one in this paper, these
factors could only be expected dividend growth and the
risk-free rate. Longstanding empirical results (e.g.,
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Campbell and Shiller, 1988; Cochrane, 1992) indicate that
these factors have very little influence on the price–
dividend ratio, and indeed, that the price–dividend ratio
is driven mainly by future risk premiums. To summarize:
if a single factor drives risk premiums, (41) must be high
to explain the evidence on the predictability of excess
stock returns. However, (41) is also the square of the
correlation of the price–dividend ratio with the CP factor.
In the data, the correlation between these two variables is
quite low.

We can also use (41) to generalize the model’s implica-
tions for return predictability across markets. Namely, we
show below that under a reasonable parametrization of a
model with a single factor driving risk premiums, excess
returns that are predictable by the price–dividend ratio
should also be predictable by the CP factor and conversely,
excess returns predictable by the CP factor should also be
predictable by the price–dividend ratio.17 Thus, the data on
cross-market predictability are puzzling for a general class of
models, not simply for our calibration.

Let rtþ1 be the continuously compounded excess
return on a zero-coupon instrument. For example, for an
n-period nominal bond, rtþ1 ¼ r$

n,tþ1�y$
1t . Let Z be the

term multiplying xt in the risk premium on this asset; for
the nominal bond in the model we solve in Section 2,
Z¼ Covtðr

$
n,tþ1,Ddtþ1Þ. It follows from (32) that the excess

return can be written as

rtþ1 ¼ constantþZxtþEr,tþ1, ð42Þ

where Er,tþ1 is mean zero and uncorrelated with any
variable known at time t. Because the CP factor is
perfectly correlated with xt, the population R2 of a
predictive regression of rtþ1 on the CP factor equals

R2
r,CP ¼

Z2s2
x

Varðrtþ1Þ
:

The shock Er,tþ1 is uncorrelated with time-t variables, so it
is also uncorrelated with the part of the price–dividend
ratio that is orthogonal to xt. It follows that

Covðrtþ1,pm
t �dtÞ ¼ Cov ZxtþEr,tþ1,

Covðpm
t �dt ,xtÞ

s2
x

xtþx0
t

	 


¼ Z Covðpm
t �dt ,xtÞ:

The population R2 of a predictive regression of the return
on the price–dividend ratio is therefore

R2
r,pm-d ¼

Z2 Covðpm
t �dt ,xtÞ

2

Varðrtþ1ÞVarðpm
t -dtÞ

¼
Z2s2

x

Varðrtþ1Þ
R2

pm�d,x

¼ R2
r,CPR2

pm�d,x: ð43Þ

Eq. (43) shows that the ratio between the R2 from a
regression on the price–dividend ratio and a regression on
the CP factor equals the proportion of the variance of the
price–dividend ratio explained by xt. The computation
above only holds exactly for zero-coupon returns because
these are the only assets for which (42) applies. However,
it holds as an approximation for more complex returns,
17 This statement holds precisely for returns on zero-coupon instru-

ments; it holds approximately for returns on complex instruments such

as the market portfolio.
such as the return on the market. Further, while we have
written these equations assuming the regression takes
place one period ahead, the fact that xt follows a first-
order autoregressive process implies that this result holds
for regressions at any horizon.

Comparing Tables 10 and 12 shows that the ratio of
the R2’s for bond returns implied by the model is 0.53 for
a one-year horizon and 0.51 for a five-year horizon. The
correlation between the price–dividend ratio and the CP
factor in the model is �0.73, so, from (41), R2

pm-d,x ¼ 0:53,
confirming these calculations (the minor discrepancy for
the five-year horizon can be explained by simulation
error). In the data, the price–dividend ratio has very little
ability to forecast bond returns over this sample, implying
a ratio of 0.04 at a one-year horizon and 0.14 at a five-year
horizon. As the discussion above demonstrates, it is hard
to see how a model with one factor driving risk premiums
could simultaneously capture the ability of bond factors
to predict bond returns and the inability of stock factors
to predict bond returns. More broadly, these results
suggest that explaining these correlations and predictive
regressions requires a model with multiple factors driving
risk premiums. A challenge for future research will be to
not only specify these factors, but also to assign them
economic content.

4. Conclusion

This paper has shown that properties of the cross-
section of returns, the aggregate market, and the term
structure of interest rates can all be understood within a
single framework. We introduced a parsimonious model
for the pricing kernel capable of accounting for the
behavior of value and growth stocks, nominal bonds,
and the aggregate market. At the root of the model are
dividend, inflation, and interest rate processes calibrated
to match their counterparts in the data. Time-varying
preferences for risk, modeled using a first-order autore-
gressive process for the price of risk, capture the observed
volatility in equity returns and bond yields, as well as
time-varying risk premiums in the equity and the bond
markets.

Our model highlights a challenge for any model that
attempts to explain both bonds and the cross-section of
equities. The upward-sloping yield curve for bonds indi-
cates that investors require compensation in the form of a
positive risk premium for holding high-duration assets.
However, data on value and growth stocks imply the
opposite: investors require compensation for holding
value stocks, which are short-horizon equity. Our model
addresses this tension by specifying a real risk-free rate
that is negatively correlated with fundamentals and a
price-of-risk shock that has zero correlation with funda-
mentals. We hope that future work will suggest micro-
economic foundations for these specifications.

Appendix A. General model

Let Ht be an m�1 vector of state variables at time t

and let e tþ1 be an (m+2)�1 vector of independent
standard normal shocks. We assume that the state



M. Lettau, J.A. Wachter / Journal of Financial Economics 101 (2011) 90–113110
variables evolve according to the vector autoregression

Htþ1 ¼H0þHHtþrHe tþ1, ðA:1Þ

where H0 is m�1, H is m�m, and rH is m� (m+2).
Assume that the aggregate dividend Dt + 1 follows the
process (1) and that the price level Ptþ1 follows the
process (3). However, expected dividend growth,
expected inflation, the risk-free rate, and the price of risk
will be general affine functions of the underlying state
vector:

zt ¼ d0þd0Ht ,

qt ¼ Z0þg0Ht ,

rf
tþ1 ¼ a0þa0Ht ,

xt ¼ x0þn0Ht ,

where d0, Z0, a0, and x0 are scalars and d, g, a, and n are
m�1 vectors. Assume that the intertemporal marginal
rate of substitution takes the form

Mtþ1 ¼ expf�rf
tþ1�

1
2JkJj

2x2
t�xtk

0e tþ1g: ðA:2Þ

The price of risk is therefore xtk. In the main text, we
impose the restriction k¼ rd

0 .
We describe the solution method for the case of zero-

coupon equity. Consider the recursion (17), and conjec-
ture that the solution takes the form

Pd
nt

Dt
¼ expfAd

nþBd
nHtg, ðA:3Þ

where Ad
n is a scalar and Bd

n is 1�m. Substituting (A.3) into
(17) and expanding out the expectation implies

Et ½expf�a0�a0Ht�
1
2ðx0þn0HtÞ

2JkJj2

�ðx0þn0HtÞk
0e tþ1þd0þd0Htþrde tþ1

þAd
n�1þBd

n�1ðH0þHHtþrHe tþ1Þg�

¼ expfAd
nþBd

nHtg:

It follows from properties of the lognormal distribution
that

expf�a0�a0Ht�
1
2ðx0þn0HtÞ

2JkJj2þd0þd0HtþAd
n�1

þBd
n�1ðH0þHHtÞþ

1
2ðrd�ðx0þn0HtÞk

0
þBd

n�1rHÞ

ðrd�ðx0þn0HtÞk
0
þBd

n�1rHÞ
0
g ¼ expfAd

nþBd
nHtg:

Matching coefficients implies18:

Bd
n ¼�a0 þd0 þBd

n�1H�ðrdþBd
n�1rHÞkn0, ðA:4Þ

Ad
n ¼�a0þd0þAd

n�1þBd
n�1H0�ðrdþBd

n�1rHÞkx0

þ1
2 rdrd

0 þBd
n�1rHrd

0 þ1
2Bd

n�1rHrH
0 B0n�1d, ðA:5Þ

with Bd
0 ¼ 01�m and Ad

0 ¼ 0. Note that the terms that are
quadratic in Ht cancel.

Note that the recursion for real bonds (9) takes the
same form as the recursion for equities (17), except that
there is no dividend growth term. We can therefore apply
18 Because n0Ht and k0ðrdþBd
n�1rHÞ

0 are each scalars,

n0Htk
0
ðrdþBd

n�1rHÞ
0
¼ k0ðrdþBd

n�1rHÞ
0n0Ht ¼ ðrdþBd

n�1rHÞkn0Ht :
(A.4) and (A.5), provided that we replace d0 with 0, d1

with 0m�1, and rd with 01�ðmþ2Þ. Therefore, real bond
prices satisfy

Pr
nt ¼ expfAr

nþBr
nHtg, ðA:6Þ

where Ar
n is a scalar and Br

n is a 1�m vector satisfying

Br
n ¼�a0 þBr

n�1H�Br
n�1rHkn0, ðA:7Þ

Ar
n ¼�a0þAr

n�1þBr
n�1H0�Br

n�1rHkx0þ
1
2Br

n�1rHrH
0 B0n�1r,

ðA:8Þ

with Br
0 ¼ 01�m and Ar

0 ¼ 0.
To price nominal bonds, note that the recursion (26)

takes the same form as the equity recursion (17), except
that growth in dividends is replaced by the inverse of
inflation. Therefore, we can again apply (A.4) and (A.5),
provided that we replace d0 with �Z0, d with �g, and rd

with �rp. Therefore, the nominal price of the nominal
bond satisfies

PpntPt ¼ expfAp
nþBp

n Htg, ðA:9Þ

where Ap
n is a scalar and Bp

n is a 1�m vector satisfying

Bp
n ¼�a0�g0 þBp

n�1H�ð�rpþBp
n�1rHÞkn0, ðA:10Þ

Ap
n ¼�a0�Z0þAp

n�1þBp
n�1H0�ð�rpþBp

n�1rHÞkx0

þ1
2 rprp

0 �Bp
n�1rHrp

0 þ1
2Bp

n�1rHrH
0 B0n�1p, ðA:11Þ

and Bp
0 ¼ 01�m and Ap

0 ¼ 0.
Appendix B. Convergence of the market price–dividend
ratio in the general model

This appendix derives conditions that guarantee the
convergence of the price–dividend ratio, assuming the
general model in Appendix A. The results can be specia-
lized to the model in Section 2 using the definitions in
Appendix C. Let K1 ¼H�rHkn0 and K2 ¼�a0 þd0�rdkn0.
Then (A.4) can be rewritten as

Bd
n ¼ Bd

n�1K1þK2:

The limit of Bd
n as n goes to infinity is the fixed point of

this equation. As long as the eigenvalues of K1 have
absolute value less than one, a fixed point exists (see
Hamilton, 1994, Chapter 10). In this case, Im�K1 is
invertible, and the fixed point is

B ¼K2ðIm�K1Þ
�1:

Now assume that the eigenvalues of K1 have absolute
value less than one. In the general case, the price–
dividend ratio is given by (23), where Pd

nt=Dt takes the
general form (A.3). Define

A ¼�a0þd0þBH0�ðrdþBrHÞkx0þ
1
2rdrd

0 þBrHrd
0

þ1
2BrHrH

0B
0
:

It follows from (A.5) that for sufficiently large N,

Ad
n � Anþconstant for nZN,
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where the constant does not depend on n. Therefore,

XL

n ¼ N

expfAd
nþBd

nHtg � expfconstantþBHtg
XL

n ¼ N

expfAng:

As long as Ao0, the right-hand side approaches a finite
limit for L-1.

Appendix C. Solution to the model in Section 2

The model in Section 2 can either be solved directly, or
by applying the formulas in Appendix A under appro-
priate restrictions. The general model in Appendix A
reduces to the model in Section 2 if

d¼

1

0

0

0

2
6664

3
7775, g¼

0

1

0

0

2
6664

3
7775, a¼

0

0

1

0

2
6664

3
7775, n¼

0

0

0

1

2
6664

3
7775, ðC:1Þ

and if

H¼

fz

fq

fr

fx

2
66664

3
77775, rH ¼

rz

rq

rr

rx

2
6664

3
7775, ðC:2Þ

where H is a diagonal matrix. Further, set H0 ¼ 04�1 so
that g ¼ d0, q ¼ Z0, rf

¼ a0, and x ¼ x0. Label the elements
of the vectors Br

n, Bd
n, and Bp

n as follows:

Br
n ¼ ½B

r
zn,Br

qn,Br
rn,Br

xn�,

Bd
n ¼ ½B

d
zn,Bd

qn,Bd
rn,Bd

xn�,

Bp
n ¼ ½B

p
zn,Bpqn,Bprn,Bpxn�: ðC:3Þ

We continue to assume that the price of risk is given by
the general form (A.2); the formulas in Section 2 can be
obtained by setting k¼ rd

0 .
For real bonds, (A.7) and (A.8) imply that

Br
zn ¼ Br

z,n�1fz, ðC:4Þ

Br
qn ¼ Br

q,n�1fq, ðC:5Þ

Br
rn ¼�1þBr

r,n�1fr , ðC:6Þ

Br
xn ¼ Br

x,n�1fx�rr
ðnÞk, ðC:7Þ

Ar
n ¼�rf

þAr
n�1�rr

ðnÞkxþ1
2Jr

r
ðnÞJj

2, ðC:8Þ

where

rr
ðnÞ ¼ Br

r,n�1rrþBr
q,n�1rqþBr

z,n�1rzþBr
x,n�1rx

is the vector of loadings on the shocks for the return on
the n-period real bond. The boundary conditions are
Br

z0 ¼ Br
q0 ¼ Br

r0 ¼ Br
x0 ¼ Ar

0 ¼ 0. Eqs. (C.4) and (C.5) together
with the boundary conditions imply that Br

zn ¼ Br
qn ¼ 0 for

all n. The solution to (C.6) is Br
rn ¼�ð1�f

n
r Þ=ð1�frÞ. The

solution to (C.7) is

Br
xn ¼

rrk

1�fr

1�fn
l

1�fl
�

rrk

1�fr

fn
r�f

n
l

fr�fl
, ðC:9Þ

where fl ¼fx�rxk.
In the case of equities, (A.4) and (A.5) imply that

Bd
zn ¼ 1þBd

z,n�1fz, ðC:10Þ

Bd
qn ¼ Bd

q,n�1fq, ðC:11Þ

Bd
rn ¼�1þBd

r,n�1fr , ðC:12Þ

Bd
xn ¼ Bd

x,n�1fx�rd
ðnÞk, ðC:13Þ

Ad
n ¼�rf

þgþAd
n�1�rd

ðnÞkxþ1
2Jr

d
ðnÞJj

2, ðC:14Þ

where

rd
ðnÞ ¼ rdþBd

r,n�1rrþBd
q,n�1rqþBd

z,n�1rzþBd
x,n�1rx

is the vector of loadings on the shocks for the return on
n-period zero-coupon equity. The boundary conditions
are Bd

z0 ¼ Bd
q0 ¼ Bd

r0 ¼ Bd
x0 ¼ Ad

0 ¼ 0. Eq. (C.11) together with
the boundary condition implies that Bd

qn ¼ 0 for all n. The
solution to (C.10) is Bd

zn ¼ ð1�f
n
z Þ=ð1�fzÞ, while the solu-

tion to (C.12) is Bd
rn ¼�ð1�f

n
r Þ=ð1�frÞ. The solution to

(C.13) is

Bd
xn ¼ �rdkþ

rrk

1�fr

�
rzk

1�fz

	 

1�fn

l
1�fl

�
rrk

1�fr

fn
r�f

n
l

fr�fl

þ
rzk

1�fz

fn
z�f

n
l

fz�fl
: ðC:15Þ

In the case of nominal bonds, (A.10) and (A.11) imply
that

Bpzn ¼ Bpz,n�1fz, ðC:16Þ

Bpqn ¼�1þBpq,n�1fq, ðC:17Þ

Bprn ¼�1þBpr,n�1fr , ðC:18Þ

Bpxn ¼ Bpx,n�1fx�rp
ðnÞk, ðC:19Þ

Ap
n ¼�rf

�qþAp
n�1�rp

ðnÞkxþ1
2Jr

p
ðnÞJj

2, ðC:20Þ

where

rp
ðnÞ ¼ �rpþBpr,n�1rrþBpq,n�1rqþBpx,n�1rx

is the vector of loadings on the shocks for the return on
the n-period nominal bond. The boundary conditions are
Bpz0 ¼ Bpq0 ¼ Bpr0 ¼ Bpx0 ¼ Ap

0 ¼ 0. Eq. (C.16) together with the
boundary condition implies that Bpzn ¼ 0 for all n. The
solutions to (C.17) and (C.18) are given in the main text.
The solution to (C.19) is

Bpxn ¼ rpkþ
rrk

1�fr

þ
rqk

1�fq

 !
1�fn

l
1�fl

�
rrk

1�fr

fn
r�f

n
l

fr�fl

�
rqk

1�fq

fn
q�f

n
l

fq�fl
: ðC:21Þ

Appendix D. Cochrane-Piazzesi (2005) regressions

The forward rate for loans between periods t+n and
t+n+h is given by the difference in log nominal prices of
nominal bonds

f $
nt ¼ logPpn�h,tPt�logPpntPt :
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Let

Cqn ¼ Bpq,n�h�Bpqn

and likewise for Crn and Cxn. It follows from the formula
for nominal bond prices (27), that

f $
nt ¼ CqnqtþCrnrf

tþ1þCxnxt : ðD:1Þ

It follows from (28) that

Cqn ¼fn�h
q

1�fh
q

1�fq

, Crn ¼fn�h
r

1�fh
r

1�fr

: ðD:2Þ

The formula for Cxn is more complicated, but can be
calculated from (C.21). Eq. (D.1) can be written in matrix
form as

C

qt

rf
tþ1

xt

2
64

3
75¼ f t , ðD:3Þ

where

C ¼

Cqn1
Crn1

Cxn1

Cqn2
Crn2

Cxn2

Cqn3
Crn3

Cxn3

2
64

3
75, f t ¼

f $
n1t

f $
n2t

f $
n3t

2
6664

3
7775,

for three forward-rate maturities n34n24n1.
We now solve for the linear combination of forward

rates that is proportional to xt. Accordingly, let h be a 3�1
vector such that h0f t ¼ xt . It follows from (D.3) that

h¼ ½0 0 1�C�1

¼
1

jCj
½Cqn2

Crn3
�Cqn3

Crn2
,Crn1

Cqn3
�Crn3

Cqn1
,Cqn1

Crn2
�Cqn2

Crn1
�,

¼
1

jCj

f�h
q f�h

r ð1�f
h
qÞð1�f

h
r Þ

ð1�fqÞð1�frÞ

�½fn2
q fn3

r �f
n3
q fn2

r ,fn3
q fn1

r �f
n1
q fn3

r ,fn1
q fn2

r �f
n2
q fn1

r �,

ðD:4Þ

where jCj denotes the determinant of C. Assume fqafr .
Because n34n24n1, it follows that the first and third
element of h must take the opposite sign from the second
element of y. Therefore, h must either have a tent- or ‘‘V’’-
shape.

Whether h takes the form of a tent or a ‘‘V’’ depends on
the sign of the determinant jCj. The formula for the
determinant of a 3�3 matrix implies that jCj is equal to
a positive constant times

Cxn1
ðfn2

q fn3
r �f

n3
q fn2

r ÞþCxn2
ðfn3

q fn1
r �f

n1
q fn3

r Þ

þCxn3
ðfn1

q fn2
r �f

n2
q fn1

r Þ:

Consider the case of fr 4fq (which holds in our calibra-
tion). It follows from (D.4) that h has a tent-shape if and
only if jCj is negative. This will occur when Cxn2

is large
relative to Cxn1

and Cxn3
, namely, when the effect of xt is

largest at intermediate maturities. Simulation results
show that this tends to occur when fx is less than fr .
Long-maturity forward rates are then driven more by fr .
Even if fx is less than fq, it turns out that short-maturity
forward rates are driven more by fq, because the effect of
a change in xt tends to be determined by a combination of
fx and the autocorrelation of the most persistent source
of risk that is correlated with fundamentals.
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