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A Analysis of the source of volatility

We address the question of the volatility decomposition in (17). In the main text, we claimed

that nearly all the volatility in returns arises from the volatility in expected dividends, as

represented by b2n−1σ
2
v . Here we explain why this is so. First note that σ2

u is the volatility of

realized dividends. This 0.072 per annum in postwar data. On the other hand, the volatility

of shocks to xt, σv, and the unconditional volatility of xt, σx, are unobserved. To understand

the magnitude of the remaining terms, we turn to the prices of dividend claims, normalized

by current dividends. These are denoted by Φn(xt) and given in (7) and (8).

Recall that the price-dividend ratio on the market is a sum of these component price-

dividend ratios. Furthermore, even if the persistence φ is high, decay is geometric, and so

for n sufficiently large, bn ≈ (1−φ)−1. If we let σ2
pd be the variance of the log price-dividend

ratio on the market, roughly speaking,1

σ2
pd ≡ lim

n→∞
Var(log Φn(xt)) =

σ2
x

(1− φ)2

Then, for long-maturity equity strips (which, due to the properties of geometric decay, best

represents the return on the market) the decomposition (17) takes the form

lim
n→∞

Var(log(1 +Rnt)) = σ2
x +

σ2
v

(1− φ)2
+ σ2

u

≈ (1− φ)2σ2
pd + (1− φ2)σ2

pd + σ2
u. (A1)

While σu ≈ 0.07, σpd ≈ 0.42. The persistence φ will equal the persistence of the price-

dividend ratio. At φ = 0.92, the first term in (A1) equals (0.08× 0.42)2, whereas the second

1Note that the log price-dividend ratio equals

pd = log

∞∑
n=1

Φn(xt) ≈
∞∑
n=1

an + bnxt = a∗ + b∗xt.

Because of geometric decay, b∗ ≈ (1− φ)−1.
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term equals (0.39 × 0.42)2. The second term, representing the effect of innovations to xt is

thus roughly 25 times larger than the term representing xt itself, and roughly 5 times larger

than the term representing dividend volatility.2 Finally note that these terms add up to

(0.18)2, thus (roughly) accounting for the annual volatility in stock returns.

B Could investors believe dividends were predictable?

A possible objection to our model is that, over time, investors would learn that dividends

are in fact unpredictable. If investors did learn the correct distribution, prices would remain

volatile, but return predictability would dissipate. In this section, we confront the hypoth-

esized beliefs with data. We consider an investor whose prior beliefs include the possibility

of dividend growth predictability. The agent updates these beliefs given the historical time

series, seen through the lens of the likelihood implied by equation (1)-(3) in the main paper.

Our evidence speaks to the difficulty of learning the true process for dividend growth.

We assume, as in our model, the agent believes that dividend growth contains a pre-

dictable component. Should this predictable component exist, it follows from the reasoning

in our model that it should be captured by the price-dividend ratio.3 The agent therefore

considers the predictive system:

∆dt+1 = βx̂t + ut+1 (B1)

x̂t+1 = φ̂x̂t + v̂t+1, (B2)

2This will also be true in a rational model with prices driven by discount rate variation. Most of the
variation in realized returns comes from innovations in the discount rate, which are unpredictable. Very
little comes from the variation in the discount rate itself.

3To the extent that the price-dividend ratio fails to capture this component, we are biased against finding
dividend growth predictability, and therefore proving the beliefs to be less justifiable than otherwise.
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where x̂t = pt − dt, the log price-dividend ratio, and where ut

v̂t

 iid∼ N

0,

 σ2
u 0

0 σ̂2
v

 . (B3)

We refer to the predictor variable as x̂t in contrast to xt. Up to linearization error, the

assumptions in Section 2 imply that x̂ and x differ only by a scale factor, approximately

equal to 1/(1− φ). For convenience, we de-mean both variables.4

It suffices to consider a prior on the parameters of the dividend process and the marginal

likelihood for the dividend process, taking observations on x̂t as given. That is, the time-

series regression (B1) for dividend growth is, in this case, equivalent to standard OLS in

which the regressor is strictly exogenous.

We assume a prior inverse-gamma distribution for σ2
u and, conditional on σ2

u, a normal

distribution for the predictive coefficient β:

β |σu ∼ N(β0, g
−1σ2

uΛ−10 ) (B4)

σ2
u ∼ IG(a0, b0). (B5)

We set parameters a0 and b0 so that the prior on σ2
u is diffuse.5 Equation B5 implies a

conjugate prior on β (Zellner, 1996). As explained below, Λ0 is a scale factor that will allow

us to interpet g as indexing the strength of the prior.

Given the priors (B4) and (B5), and the likelihood defined by (B1–B3), the agent forms

a posterior. Let x̂t = {x̂0, . . . , x̂t}, namely the set of observations on x̂s, up to and including

time t. Let yt = {∆d1, . . .∆dt} be the dividend growth observations up to and including

4De-meaning the variables simplifies the analysis, and only affects the conclusions through a degree-of-
freedom adjustment that becomes negligible as the same size grows.

5Because our focus will be on the posterior mean of β, these play no further role in our analysis.
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time t. The agent calculates

p(β, σu | x̂t,yt) ∝ L(yt | x̂t, β, σu)p(β, σu), (B6)

where p(β, σu) is the prior specified in (B4) and (B5) and L(yt | x̂t, β, σu) is the likelihood of

observing the dividend growth data given the predictor variable and the parameters.

We fix time T as the last data point observed. We stack the observations on x̂t and ∆dt

into vectors:

Y =


∆d1

...

∆dT

 , X =


x̂0
...

x̂T−1

 .
Note that the OLS estimate of β equals

β̂ = (X>X)−1X>Y,

and that (B1) implies

Y = βX + U,

where U ∼ N(0, σ2
uI), and I is the T × T identity matrix. It follows that the posterior (B6)

is given by

p(β, σu |, x̂T ,yT ) ∝ σ−nu exp

{
− 1

2σu
(Y −Xβ)>(Y −Xβ)

}
σ−1u exp

{
−gΛ0(β − β0)2

2σ2
u

}

where ∝ means up to a proportionality factor that does not depend on β and σu. Completing

the square implies

p(β, σu |, x̂T ,yT ) ∝ σ−1u exp

{
−(X>X + gΛ0)(β − β̄)2

2σ2
u

}
× p(σu | x̂T ,yT ), (B7)
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where

β̄ = (gΛ0 +X>X)−1(gΛ0β0 +X>Y )

= (gΛ0 +X>X)−1(gΛ0β0 + (X>X)β̂),

and where p(σu | x̂T ,yT ) is a term that does not depend on β and is therefore the marginal

posterior of σu (see (Zellner, 1996, Chapter 8) for more detail). It is clear from (B7) that

the posterior of β conditional on σu is normal with posterior mean β̄. Note also that β̄ is

a weighted average between the prior mean β0 and the sample mean β̂, with the weights

determined by the precisions of the prior and of the sample respectively.

If we, ex post, set Λ0 = X>X, then g corresponds to the weight on β0 as a percent of

the weight on β̂, so that g = 0.1 implies that the prior receives 1/10 of the weight of the

sample, and g = 0.01 means it receives 1/100 of the weight. We set the prior mean of β to

a value consistent with the agent’s beliefs in Section 2. For comparability with Tables 5–8,

which show regressions on the dividend-price ratio, Figure B1 shows the negative of the

posterior mean of β. We consider an informative prior, with g = 0.10, and a diffuse prior,

with g = 0.01.

Figure B1 shows that the agent does indeed revise her prior beliefs, at least at first. She

revises it to imply more, not less predictability of dividend growth. Indeed, from the 1930s to

the 1970s, it appears that dividend growth was more predictable than later in the sample.6

Only when nearly the full sample is used, namely around 2000, does the posterior mean

converge to the sample estimate, which happens to be close to, though implying slightly

more predictability than, the prior. Note that the convergence implies that the prior does

not matter when the full sample is used.

Thus an agent, viewing the evidence on annual dividend growth rates in isolation, would

6Jagannathan and Liu (2019) also show that dividend growth predictability features striking instability
over the sample, declining after 1970.
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Figure B1: Predicting dividend growth using the dividend-price ratio
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This figure shows the posterior mean of the predictive coefficient in a regression of one-year
ahead dividend growth on the dividend-price ratio. The posterior mean is calculated using
Bayesian methods, assuming an informative prior, where g indexes the degree of informa-
tiveness. For each year in the sample, the agent uses all available data to form a posterior
for the predictive coefficient. Data begin in 1927. A prior parameter of g = 0.1 implies that
the prior mean of the coefficient receives a weight of 10% relative to the sample estimate,
whereas a prior parameter of g = 0.01 implies that the prior mean receives a weight of 1%.
Shaded areas denote plus and minus 2 posterior standard deviations.
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be justified in maintaining a belief that dividend growth rates are predictable. This agent,

however, is not fully rational. He incorrectly extrapolates the predictability from the one-

year horizon to long horizons. Moreover, he fails to notice that excess returns are also

predictable.7

7While we do not model reinforcement learning (which is a feature of Skinner (1948)), these results
suggest that the agent would have received positive reinforcement, throughout the sample, in the sense that
he or she would have predicted cash flow growth with relative accuracy. While returns would have been
different than expect, the low R2 in return predictability regressions suggests that reinforcement learning
through this channel would not have been significant.
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C Predictability of Treasury bond excess returns and

survey data

C.1 Model and simulation

Assume that investors believe that the continuously-compounded short-term interest rate rt

follows a first-order autoregressive process, so that

∆rt+1 = (φ− 1)(rt − r̄) + vt+1 (C1)

where ∆rt+1 = rt+1 − rt, |φ| < 1, r̄ is the unconditional mean of rt, and vt+1
iid∼ N(0, σ2

v).

Note that φ is the first-order autocorrelation of rt.
8

As with dividend growth, investors believe that changes in interest rates are more fore-

castable than they are in reality. That is, while (C1) represent beliefs, the true process is

governed by

∆rt+1 = (ζ − 1)(rt − r̄) + vt+1, (C2)

with

|ζ − 1| < |φ− 1|. (C3)

We focus on the case where ζ, φ ∈ [0, 1] so that (C3) implies ζ > φ. In forecasting next

8The analysis in this section takes the short-term interest rate rt as a given. Perhaps the simplest way to
micro-found variation in this rate is to consider a risk-neutral investor with discount rate δ and an exogenous
inflation process ∆πt+1 such that

∆πt+1 = π̄ + zt + ut+1

and
zt+1 = φzt + vt+1,

with ut+1 and vt+1 distributed as in (3). The interest rate rt then solves

Et
[
δe−∆πt+1+rt

]
= 1.

Under these assumptions, the analysis proceeds exactly as described.
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period’s interest rate, (C3) implies that investors put more weight on previous values of the

interest rate than they should. Alternatively stated, interest rates are closer to a random

walk (they mean revert more slowly) in the data than investors believe (ζ > φ).

We consider risk-neutral pricing for bonds. The dynamics thus far define a discrete-time

Vasicek (1977) model.9 Let Bn(rt) denote the price of the n-period bond as a function of

the riskfree rate between periods t and t+ 1. Then bond prices satisfy the recursion

Bn(rt) = E∗t
[
e−rtBn−1(rt+1)

]
, (C4)

with B0(rt) = 1 and B1(rt) = e−rt . It follows that

logBn(rt) = −an − bnrt (C5)

with

an = an−1 + bn−1(1− φ)r̄ − 1

2
b2n−1σ

2
v

bn = 1 + bn−1φ

(C6)

and a0 = b0 = 0. Note that a1 = 0 and b1 = 1, so that B1(rt) = e−rt . The solution for bn is

again

bn =
1− φn

1− φ
. (C7)

Defining the continuously compounded yield on the n-period bond as

ynt = − 1

n
logBn(rt)

9A substantial literature on latent factor models strongly rejects a single-factor model in favor of multi-
factor alternatives (Dai and Singleton, 2002; Duffee, 2002). Piazzesi et al. (2015) show how subjective
expectations can be incorporated into a model with richer dynamics. For the purpose of illustrating our
mechanism, however, this simple model suffices.
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It follows from (C7) that the yield spread equals

ynt − y1t = constant +

(
1

n

1− φn

1− φ
− 1

)
rt (C8)

(recall that y1t = rt). The (continuously compounded) holding period return on the n-period

bond is given by

rn,t+1 = logBn−1(rt+1)− logBn(rt)

(note that r1,t+1 = rt). Substituting in for (C5), (C7), and for the physical evolution of rt,

(C2), we find the following equation for continuously-compounded excess returns:

rxn,t+1 = rn,t+1 − r1,t+1 = constant + (ζ − φ)
bn−1

1− (1/n)bn
(ynt − y1t) + bn−1vt+1.

When ζ = φ, we recover the equilibrium with correct beliefs in which excess returns are

unpredictable. However, when ζ > φ, the yield spread will predict excess returns with a

positive sign, as in the data.

The economic intuition is similar to that of predictability of stock returns by the price-

dividend ratio. Long-term bond yields fluctuate due to changing forecasts of future short-

term interest rates. When long-term yields are high relative to short-term yields, it is because

(in this model), investors expect short-term yields to rise. However, short-term yields are

not as predictable as investors believe, and thus on average, short-term yields will rise less

than anticipated (or even fall). This leads to a positive excess return on the long-term bond.

The ability of the yield spread to forecast excess bond returns was first noted in the

data by Campbell and Shiller (1991). According to the expectations hypothesis of interest

rates, yields on long-term bonds should reflect forecasts of future short-term interest rates.10

10There are slight differences depending on whether this hypothesis is articulated in logs or levels (Camp-
bell, 1986).
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Table C1: Moments of Bond Yields

Maturity in Years
1 2 3 4 5

Panel A: Data 1952-2019
βn 1.58 2.09 2.33 2.44
t-stat [2.90] [3.46] [3.73] [3.52]

σ(yn) 3.08 3.04 2.97 2.93 2.87
AC(yn) 0.88 0.90 0.91 0.91 0.92
σ(yn − y1) 0.33 0.53 0.69 0.81
AC(yn − y1) 0.41 0.46 0.52 0.55

Panel B: Model
βn 1.48 1.31 1.19 1.10

σ(yn) 2.83 2.05 1.56 1.23 1.01
AC(yn) 0.86 0.86 0.86 0.86 0.86
σ(yn − y1) 0.78 1.27 1.60 1.82
AC(yn − y1) 0.86 0.86 0.86 0.86

Panel A of the table reports the volatility and the first-order autocorrelation of zero-coupon
bond yields and yields spread, as well as the regression coefficients βn as in rxn,t+1 = αn +
βn(ynt − y1t) + εt+1, where rxn,t+1 is the return of n-year bond in excess of y1 over period
t + 1. The t-statistics adjust for heteroskedasticity. Panel B report the percentiles of those
moments computed over 1000 simulations, each with 66 years of length. Data are from 1952
to 2019.

Indeed, the recursion (C4) implies

ynt = − 1

n
logE∗t

[
e−

∑n−1
τ=0 rt+τ

]
.

If investors correctly anticipate yields, then bond returns will be unpredictable. However,

Campbell and Shiller (1991), Fama and Bliss (1987) and a large subsequent literature show

that excess bond returns are strongly forecastable. We replicate this finding in Table C1,

which reports coefficients from regressing bond returns on yield spreads using the Fama-Bliss

data set for zero-coupon bonds.

As an illustrative calculation, we calibrate σv and φ to jointly match the volatility and
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first-order autocorrelations of yields. This implies σv = 1.5% per annum and an annual

autocorrelation ζ of (roughly) 0.90. Given these parameters, φ = 0.45 gives us roughly the

amount of predictability in the data.

Table C1 shows results from historical data and from simulating 1000 samples of length

70 years. We run the regression

rxn,t+1 = αn + βn(ynt − y1t) + εt+1

for zero-coupon bonds for maturities ranging from 2 to 5 years. Bond excess returns are

strongly predictable in both data and model.

In addition to the moments in Table C1, the model makes predictions that can be tested

with survey data. In the subsection below we describe the survey data and then perform the

tests.

C.2 Survey data

Our primary survey data soruce is interest rate forecasts from Blue Chip Financial Forecasts

(BCFF). This data source contains survey forecasts for a variety of interest rates in the US,

in particular the Treasury rates. Behind each Treasury rate consensus are forecasts provided

by tens of major banks and financial institutions, e.g. J.P. Morgan and S&P Global. This

data source goes back to Q4 of 1982.

An alternate data source of interest rate forecasts to Blue Chip Financial Forecasts

(BCFF) is Survey of Professional Forecasters (SPF). This is a quarterly survey contains

a large number of economic variables, including the 3-month Treasury rates. The contribu-

tors to these surveys are economists of a variety of backgrounds. The interest rate forecast

data go back to Q3 of 1981, which is similar to BCFF. While SPF is not a specialized in-

terest rate data source and contains only the 3-month Treasury rate forecasts, it is useful as

a robustness check on top of the BCFF data. Here, the correlations between interest rate
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forecasts and earning growths forecasts computed with BCFF data, as shown in Figure C1

are very similar to those computed with the SPF data in Figure C2.

C.3 Results

Equation C1, C2, and C8 predict that the term spread be very positively associated with

forecasted change of interest rate and less positively associated with its realization. Column

1-2 and 4-5 of Table C2 show that this does not hold in the survey data. Contrary to the

model’s prediction, we see that the term spreads are more positively associated with realized

interest rate changes in the future. Similar results are seen also in the SPF data, shown in

Table C3.

A counterfactual aspect of the model is that the level of the interest rate and the term

spread are perfectly negatively correlated. It therefore also predicts that the level of the

interest rate should be very negatively associated with forecasted interest rate change and

less negatively associated with its realization. Column 3 and 6 of Table C2 and C3 show

that this is also not the case either. The model is therefore soundly rejected by the survey

data.
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Figure C1: Forecasted earnings growth versus forecasted interest rates (BCFF data)
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Panel B: Lagged forecasts of interest rates
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This figure plots log forecasted 1-year earnings growth against forecasted 3-month Treasury
bill rate 4 quarters away. Data are quarterly from 1982–2018.
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Figure C2: Forecasted earnings growth versus forecasted interest rates (SPF data)

Panel A: Contemporaneous forecasts of interest rates
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Panel B: Lagged forecasts of interest rates
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This figure plots log forecasted 1-year earnings growth against forecasted 3-month Treasury
bill rate 4 quarters away. Data are quarterly from 1981–2019.
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Table C2: Term Spreads, Short Rates, and Forecasted Changes in Short Rates—BCFF

(1) (2) (3) (4) (5) (6)

Êt[r3,t+4]− r3,t r3,t+4 − r3,t

y60,t − r3,t 0.315*** 0.425*
[4.36] [1.68]

y120,t − r3,t 0.269*** 0.357**
[5.10] [2.12]

r3,t -0.105*** -0.139**
[-3.81] [-2.47]

constant -0.076 -0.153 0.726*** -0.743* -0.836** 0.327
[-0.60] [-1.12] [5.68] [-1.97] [-2.18] [1.37]

N 145 145 145 145 145 145

Column 1 of this table reports results of the follow quarterly time-series regression:
Êt[r3,t+4] − r3,t = α + β(y60,t − r3,t) + εt. Here Êt[r3,t+4] − r3,t is the forecasted change
of 3-month Treasury bill rates. r60,t − r3,t is the 5-year Treasury bond rate subtracting 3-
month Treasury bill rate in quarter t. Column 2 instead uses the 10-year/3-month term
spread as the independent variable. Column 3 instead uses the 3-month Treasury bill rate as
the dependent variable. Column 4-6 are analogous regressions with the dependent variables
changed to realized short rate changes. Data are quarterly from 1982Q4-2018Q4. T-stats
calculated using Newey-West standard errors with 6 lags are reported in the square brackets.
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Table C3: Term Spreads, Short Rates, and Forecasted Changes in Short Rates—SPF

(1) (2) (3) (4) (5) (6)

Êt[r3,t+4]− r3,t r3,t+4 − r3,t

y60,t − r3,t 0.329*** 0.477**
[3.94] [2.38]

y120,t − r3,t 0.228*** 0.463**
[3.17] [2.53]

r3,t -0.051** -0.212***
[-2.50] [-3.29]

constant -0.181 -0.161 0.482*** -0.958** -1.184** 0.552*
[-1.26] [-1.00] [5.10] [-2.44] [-2.53] [1.91]

N 150 150 150 150 150 150

Column 1 of this table reports results of the follow quarterly time-series regression:
Êt[r3,t+4] − r3,t = α + β(y60,t − r3,t) + εt. Here Êt[r3,t+4] − r3,t is the forecasted change
of 3-month Treasury bill rates. y60,t − r3,t is the 5-year Treasury bond rate subtracting 3-
month Treasury bill rate in quarter t. Column 2 instead uses the 10-year/3-month term
spread as the independent variable. Column 3 instead uses the 3-month Treasury bill rate as
the dependent variable. Column 4-6 are analogous regressions with the dependent variables
changed to realized short rate changes. Data are quarterly from 1981Q4-2018Q4. T-stats
calculated using Newey-West standard errors with 6 lags are reported in the square brackets.
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D Additional results for equities

In our model of the cross section of equities, the value spread is the absolute value of zt.

The return to a HML strategy is −sign(zt)vz,t+1. The aggregate valuation ratio is xt. With

the addition of stochastic volatility, because the value spread and HML returns are both

driven by the same set of shocks, their volatilities should be highly correlated. However, the

aggregate valuation ratio is driven by xt and thereby vx,t+1. Our model therefore predicts

weak correlations between the volatility of aggregate valuation and those of the value spread

and HML returns.

Panel A of Figure D1 plots quarterly volatility of aggregate E/P ratio versus that of

the value spread. They have a low correlation of 0.17. Panel B plots quarterly volatility of

aggregate E/P ratio versus that of the HML return. They have a low correlation of 0.22.

Panel C plots quarterly volatilites of the HML returns and the value spread we constructed.

They have a reasonably high correlation of 0.53. These results are broadly consistent with

the model’s predictions.

In our model, the value spread is the absolute value of zt, and aggregate valuation ratio is

xt. Because xt and zt are based on difference iid Gaussian shocks, the model predicts a cor-

relation of 0 between these two measures. Also, return to a HML strategy is −sign(zt)vz,t+1.

That to a market timing strategy trading on the aggregate valuation ratio is−xtvx,t+1. Again,

because they are driven by two different sets of iid Gaussian shocks, our model predicts that

they are uncorrelated.
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Figure D1: Relation between market risk and risk to a value strategy

Panel A: Volatility of aggregate E/P versus volatility of value spread
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Panel B: Volatility of aggregate E/P versus volatility of HML returns
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Panel C: Volatility of HML returns versus volatility of the value spread
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Notes: HML is a portfolio that is long the high E/P ratio quintile and short the low E/P
ratio. The value spread is defined as the difference of E/P ratio of bin 5 and bin 1 scaled by
the aggregate E/P ratio. Data are quarterly from 1971–2020.
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Figure D2: Relation between the value anomaly and aggregate valuations

Panel A: Value spread versus deviation of aggregate dividend-to-price from its mean
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Panel B: Returns to timing the market versus HML returns
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Notes: The value spread is defined as the difference between the D/P ratio of bin 5 in a
value sort and that of bin 1, scaled by the aggregate D/P ratio. Data are monthly from
1926–2020.
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