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Why do value stocks have higher average returns than growth stocks, despite having lower
risk? Why do these stocks exhibit positive abnormal performance, while growth stocks
exhibit negative abnormal performance? This paper offers a rare-event-based explanation
that can also account for the high equity premium and volatility of the aggregate market.
The model explains other puzzling aspects of the data, such as joint patterns in time-series
predictablity of aggregate market and value and growth returns, long periods in which
growth outperforms value, and the association between positive skewness and low realized
returns. (JEL G12)
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Among the myriad of facts that characterize the cross-section of stock returns,
the value premium stands out both for its empirical robustness and for the
problem it poses for theory. The value premium is the finding that stocks
with high book-to-market ratios (value) have higher expected returns than
stocks with low book-to-market ratios (growth). By itself, this finding would
not constitute a puzzle, for it could be that value firms are more risky. Such
firms would then have high expected returns in equilibrium, which would
simultaneously explain both their high realized returns and their low valuations.
The problem with this otherwise appealing explanation is that value stocks are
not riskier according to conventional measures. Over the postwar period, which
is long enough to measure second moments, value stocks have lower covariance
with the market, and lower standard deviations. And while one could argue that
neither definition of risk is appropriate in a complex world, the challenge still
remains to find a measure of risk that does not, in equilibrium, essentially
amount to covariance or standard deviation. Over a decade of theoretical
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research on the value premium demonstrates that this is a significant challenge
indeed.

This paper proposes an explanation of the value premium that is not risk based
but rather is based on rare events. We introduce a representative-agent asset
pricing model in which the endowment is subject to positive and negative events
that are much larger than what would be expected under a normal distribution.
One of our theoretical contributions is to show an asymmetry in how disasters
and booms affect average returns. The possibility of a disaster raises risk
premiums. While realized returns are lower in samples with disasters than in
those without, these two types of samples are similar in that, in both of them, an
econometrician would calculate a positive disaster premium. The possibility of
a boom also raises risk premiums, because it also is a source of risk. Samples
with and without booms look different, however. The econometrician would
calculate a positive boom premium in the first type of sample but a negative
boom premium in the second. We use this simple theoretical observation to
account for the value premium. In our model, the growth sector consists of
stocks that capture the benefits of a large consumption boom. We show that a
a value premium will be observed if booms were expected but did not occur.

What is the source of the asymmetry between disasters and booms? Why,
in other words, is the measured premium for bearing boom risk positive in
population but negative in samples without rare events? Consider first the case
of a risk-neutral investor, and assume (reasonably) that asset prices rise in
booms and fall in disasters. To hold an asset exposed to disasters, the risk-
neutral investor must be compensated by higher realized returns in the event
a disaster does not occur. Likewise, when holding an asset exposed to booms,
he is willing to tolerate lower returns in the event the boom does not occur.
If returns were also higher when booms did not occur, no-arbitrage would be
violated.

Now consider the more realistic case of a risk-averse investor. This investor
requires a premium to hold assets exposed to disasters. We would thus expect
such assets to have higher returns, even in samples that contain the “correct”
number of disasters. In samples that, ex post, have no disasters, we would
expect these assets to have yet higher returns because of the no-arbitrage effect
discussed in the previous paragraph. As a result, the econometrician would
measure a positive disaster premium in both types of samples: the true premium
is positive, and the observed premium in no-disaster samples is also positive.

As in the case of disasters, the risk-averse investor requires a positive risk
premium to hold assets exposed to booms. However, by no-arbitrage, these
assets must have lower returns in samples in which booms do not occur. How
can these two statements be reconciled? It must be that the higher returns
due to the risk premium come about when the boom itself is realized. Samples
with and without booms look qualitatively different: assets exposed to booms
have higher true expected returns, but, on average, lower realized returns when
booms do not occur.
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This reasoning explains why one should expect to observe a negative
premium for boom risk in samples without rare events. However, it says nothing
about the magnitude of the effect. To obtain quantitatively relevant results, a
second mechanism is important. In our model, we make the standard assumption
of constant relative risk aversion (CRRA), which leads to stationary rates of
return. This standard assumption also implies that boom risk has a lower price
than disaster risk. Because any risk premium for booms works against our main
mechanism, this second source of asymmetry between disasters and booms
combines with the first to produce an economically significant value premium.

Specifically, in our calibrated model, the average excess market return is
5%. However, the average return on growth stocks is only 3%, and the average
return on value stocks is 6%. Moreover, our model also explains why value
stocks have strong abnormal performance, and growth stocks poor abnormal
performance relative to the CAPM. The relative abnormal performance of value
stocks implied by our model is 5%, as it is in the data. Indeed, our model
naturally explains aspects of the data on value and growth that have posed a
challenge to previous general equilibrium models. Namely,

1. growth stocks have higher variance and covariance with the market
despite having lower observed returns.

2. growth stocks have yet higher covariances with the market, and greater
returns than value stocks, during periods of high market valuations (for
example, the late 1990s).

3. the value-minus-growth return, unlike the market excess return, cannot
be predicted by the price-dividend ratio. It can however be predicted by
the value spread.

Moreover, while a full explanation of skewness puzzles is outside the scope of
this study, our model does imply that high valuation stocks have high skewness
and low expected returns, as in the data. Our model also implies that assets
with high upside betas and low downside betas also have low excess returns,
as in the data.

In explaining these facts, we tie our hands by assuming that value and growth
cash flows have the same exposure to disaster risk. While differential exposure
is plausible and in the spirit of the model, we assume it away to focus on
our main mechanism. Moreover, we assume that booms affect consumption as
well as dividends; this implies boom risk is priced, and this works against us
in finding a value premium.

Finally, because of the presence of disasters, the model explains a high
equity premium and equity volatility, along with low observed volatility of
consumption growth. The model achieves this with a risk aversion coefficient
of three. Low risk aversion helps in explaining the value premium puzzle
in our setting; if risk aversion were too high, growth would carry a higher
premium in population, and we would not be able to match low observed
returns over the sample. The model generates realistic stock return volatility
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through the mechanism of time-varying disaster and boom risk, combined
with recursive preferences. Without this mechanism, equity claims would have
counterfactually low volatility during normal times.

In our focus on the underlying dynamics separating value and growth, our
model follows a substantial literature that explicitly models the cash-flow
dynamics of firms, or sectors, and how these relate to risk premiums in the
cross-section (Ai and Kiku 2013;Ai, Croce, and Li 2013; Berk, Green, and Naik
1999; Carlson, Fisher, and Giammarino 2004; Gârleanu, Kogan, and Panageas
2012; Gomes, Kogan, and Zhang 2003; Kogan, Papanikolaou, and Stoffman
2013; Novy-Marx 2010; Zhang 2005). These papers show how endogenous
investment dynamics can lead to a value premium. Ultimately, however, the
value premium arises in these models because of greater risk. Thus these models
do not explain the observed pattern in variances and covariances. A second
branch of the literature relates cash-flow dynamics of portfolios, as opposed
to underlying firms, to risk premiums (Bansal, Dittmar, and Lundblad 2005;
Da 2009; Hansen, Heaton, and Li 2008; Kiku 2006). This literature finds that
dividends on the value portfolio are more correlated with a long-run component
of consumption than dividends and returns on the growth portfolio. In the
context of a model in which risk to this long-run component is priced (Bansal
and Yaron 2004) this covariance leads to a higher premium for value. However,
for this long-run component to be an important source of risk in equilibrium, it
also must be present in the market portfolio, and it must be an important source
of variation in these returns themselves. Again, this would seem to imply,
counterfactually, that the covariance with the market return and volatility of
returns would be greater for value than for growth. Moreover, if the long-run
component of consumption growth is an important source of risk in the market
portfolio, consumption growth should be forecastable by stock prices; however,
it is not (Beeler and Campbell 2012).

To capture the disconnect between risk and return in the cross-section, shocks
associated with growth stocks should have a low price of risk. As shown
by Lettau and Wachter (2007), Santos and Veronesi (2010), and Binsbergen,
Brandt, and Koijen (2012), achieving this pricing poses a challenge for general
equilibrium models.1 Kogan and Papanikolaou (2013) endogenously generate
a cross-section of firms through differences in investment opportunities, but,
like Lettau and Wachter, they assume an exogenous stochastic discount factor.
Papanikolaou (2011) presents an equilibrium model in which investment
shocks have a negative price of risk. This is achieved by assuming that the
representative agent has a preference for late resolution of uncertainty. While
this assumption allows the model to explain the cross-section, it implies an

1 Campbell and Vuolteenaho (2004) and Lettau and Wachter (2007) consider the role of duration in generating a
value premium when discount rate shocks carry a zero or negative price. McQuade (2013) shows that stochastic
volatility in production can generate a value premium, depending on how the risk of volatility is priced. These
models are in partial equilibrium.
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equity premium that is counterfactually low. In our model, growth stocks are
exposed to a source of risk that, endogenously, has a low price. Nonetheless,
our model has a reasonable equity premium.

Our model features rare disasters, as do the models of Rietz (1988), Longstaff
and Piazzesi (2004), Veronesi (2004), and Barro (2006). Time variation in
disaster risk is the primary driver of stock market volatility, as in the models
of Gabaix (2012), Gourio (2012), and Wachter (2013). Jorion and Goetzmann
(1999) argue that focusing on the United States, which has not had disasters,
leads to an estimate of the equity premium that is too high. These papers do not
study rare booms. Our rare booms are similar to the technological innovations
modeled by Pástor and Veronesi (2009), and Jovanovic and Rousseau (2003).2

Bekaert and Engstrom (2013) also assume a two-sided risk structure, but
propose a model of the representative agent motivated by habit formation.
These papers do not address the cross-section of stock returns which is the
primary focus of our paper.

Thus far, the literature has shown that one-sided rare events, namely, disasters
explain the equity premium. We show, however, that the presence of booms has
a large affect on the cross-section if some assets are exposed to them and some
are not. That is, by introducing booms as well as disasters, one can explain not
only the equity premium puzzle but also the value premium puzzle.

1. Model

1.1 Endowment and preferences
We assume an endowment economy with an infinitely lived representative
agent. Aggregate consumption (the endowment) follows a diffusion process
with time-varying drift:

dCt

Ct

=µCt dt +σdBCt , (1)

where BCt is a standard Brownian motion. The drift of the consumption process
is given by

µCt = µ̄C +µ1t +µ2t , (2)

where
dµjt =−κµj

µjtdt +ZjtdNjt , (3)

for j =1,2. Rare events are captured by the Poisson variables Njt . Absent rare
events, the drift rate of consumption is µ̄C and the volatility is σc. This model
implies that consumption adjusts smoothly as in the data (see Nakamura et al.
2013), but that it also can undergo periods of extreme growth in either direction.

2 Pástor and Veronesi (2009) show how the transition from idiosyncratic to systematic risk can explain the time
series patterns of returns around technological revolutions. In the present paper, the risk of the technology is
systematic from the start. Jovanovic and Rousseau (2003) show that technological revolutions can have long-lived
effects on market valuations, consistent with our model.
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We assume Z1t <0 and Z2t >0. Namely, N1t represents disasters and N2t

represents booms. Let ν1 denote the (time-invariant) disaster distribution and
ν2 the boom distribution. We write Eνj

to denote expectations taken over the
distribution νj .

We let λj t denote the intensity of Njt . We will refer to λj t as the probability
of rare event j in what follows; given our calibration, the intensity is a good
approximation of the annual probability. We assume λj t follows the process

dλj t =κλj
(λ̄j −λj t )dt +σλj

√
λj t dBλj t , j =1,2, (4)

where Bλ1t ,Bλ2t , and BCt are independent Brownian motions. For convenience,
we define the vector notation λt =[λ1t , λ2t ]⊤, µt =[µ1t , µ2t ]⊤, Bλt =[Bλ1t ,

Bλ2t ]⊤, and Bt =[BCt , B
⊤
λt ]

⊤.
We assume the continuous-time analog of the utility function, defined by

Epstein and Zin (1989) and Weil (1990), that generalizes power utility to allow
for preferences over the timing of the resolution of uncertainty. The continuous-
time version is formulated by Duffie and Epstein (1992). We assume that the
elasticity of intertemporal substitution (EIS) is equal to one. That is, the utility
function Vt for the representative agent is defined using the following recursion:

Vt =Et

∫ ∞

t

f (Cs,Vs)ds, (5)

where

f (Ct,Vt )=β(1−γ )Vt

(
logCt −

1
1−γ

log((1−γ )Vt )
)

. (6)

The parameter γ represents relative risk aversion and β the rate of time
preference. The assumption of EIS equal to one implies a closed-form solution
up to ordinary differential equations.3

1.2 The state-price density
We start by establishing how the various sources of risk are priced in the
economy. We use the notation Jj (·) to denote how a process changes in
response to a rare event of type j . For example, for the state-price density
πt , Jj (πt )=πt −πt− if a type-j jump occurs at time t . In our complete-markets
endowment economy, the state-price density represents the marginal utility of
the representative agent.

Theorem 1. The state-price density πt follows the process

dπt

πt−
=µπ t dt +σπ t dBt +

∑

j=1,2

Jj (πt )
πt−

dNjt , (7)

3 Using log-linearization, Eraker and Shaliastovich (2008) and Benzoni, Collin-Dufresne, and Goldstein (2011)
find approximate solutions to related continuous-time jump-diffusion models when the EIS is not equal to one.
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where
σπ t =

[
−γ σ, bλ1σλ1

√
λ1t , bλ2σλ2

√
λ2t

]
, (8)

and

Jj (πt )
πt

=e
bµj Zjt −1, (9)

bµj
=

1−γ

κµj
+β

, (10)

bλj
=

1
σ 2

λj

(

β +κλj
−
√
(
β +κλj

)2 −2Eνj

[
e
bµj Zjt −1

]
σ 2

λj

)

, (11)

for j =1,2. Moreover, for γ >1, bλ1 >0, bλ2 <0, and bµj
<0 for j =1,2.

Proof. See Appendix B.2. !

Equations (9) and (10) imply that marginal utility jumps up in a disaster
and down in a boom, with the upward jump larger than the downward jump
for the same size shock Zjt . Equation (8) shows that changes in the rare
event probabilities also affect marginal utility: marginal utility rises when the
probability of a disaster rises, and falls when the probability of a boom rises.
All else equal, marginal utility rises more in the case of a disaster than it falls
in the case of a boom.

Because the EIS is equal to one, and because only expected consumption (not
realized consumption) is subject to jumps, the risk-free rate in this economy is
standard.

Corollary 2. Let rt denote the instantaneous risk-free rate in this economy.
Then

rt =β +µCt −γ σ 2. (12)

Proof. See Appendix B.2 !

Looking ahead, Table 1 summarizes the effects of state variables on prices
and returns. We derive these effects in the sections that follow.

1.3 The aggregate market
Here, we derive results for the price-dividend ratio and the equity premium
on the aggregate market. Unless otherwise stated, proofs can be found in
Appendix B.4.
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Table 1
The effects of shocks on prices and returns

High λ1 High λ2 Low µ1 High µ2

Risk-free rate 0 0 − +
Market price-dividend ratio − + − +
Value price-dividend ratio − − − −
Population equity premium + + 0 0
Population risk premium for value + − 0 0
Average excess market return in samples without rare events + − 0 0
Average excess value return in samples without rare events + + 0 0

Signs of the effect of shocks to each state variable on the risk-free rate, price dividend ratios, and risk premiums.
“High λ1” refers to an increase in the disaster probability. “High λ2” refers to an increase in the boom probability.
“Low µ1” refers to a decrease in the component of expected consumption growth due to disasters. “High µ2”
refers to an increase in the component of expected consumption growth due to booms. The true and observed
risk premiums are all relative to the risk-free rate. The observed premiums refer to the expected excess return
that would be observed in a sample without rare events.

Let Dt denote the dividend on the aggregate market. Assume that dividends
follow the process

dDt

Dt

=µDt dt +φσ dBCt , (13)

where

µDt = µ̄D +φµ1t +φµ2t .

This structure allows dividends to respond by a greater amount than
consumption to booms and disasters. For simplicity, we assume that the same
parameter φ governs the dividend response to normal shocks, booms and
disasters. This φ is analogous to leverage as in Abel (1999), and we will refer
to it as leverage in what follows.

1.3.1 Valuation. Our first result gives the formula for the price of the
aggregate market. By no-arbitrage,

F (Dt,µt ,λt )=Et

∫ ∞

t

πs

πt

Ds ds,

where πs is the state-price density. Valuing the market amounts to calculating
the expectation on the right-hand side.

Theorem 3. Let F (Dt,µt ,λt ) denote the value of the market portfolio. Then

F (Dt,µt ,λt )=
∫ ∞

0
H (Dt,µt ,λt ,τ )dτ, (14)

where

H (Dt,µt ,λt ,τ )=Dt exp
{
aφ(τ )+bφµ(τ )⊤µt +bφλ(τ )⊤λt

}
, (15)

bφµj
(τ )=

φ−1
κµj

(
1−e

−κµj τ
)
, j =1,2 (16)
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and the remaining terms satisfy
dbφλj

dτ
=

1
2
σ 2

λj
bφλj

(τ )2 +
(
bλj

σ 2
λj

−κλj

)
bφλj

(τ )+Eνj

[
e
bµj Zjt

(
e
bφµj

(τ )Zjt −1
)]

,

(17)

daφ

dτ
= µ̄D −µ̄C −β +γ σ 2 (1−φ)+bφλ(τ )⊤

(
κλ∗ λ̄

)
, (18)

with boundary conditions bφλj
(0)=aφ(0)=0. Furthermore, the price-dividend

ratio on the market portfolio is given by

G(µt,λt )=
∫ ∞

0
exp

{
aφ(τ )+bφµ(τ )⊤µt +bφλ

(τ )⊤λt

}
dτ. (19)

Here, and in what follows, bφµ(τ )= [bφµ1 (τ ), bφµ2 (τ )]⊤, bφλ(τ )= [bφλ1 (τ ),
bφλ2 (τ )]⊤, and ∗ denotes element-by-element multiplication.

Equation 14 expresses the value of the aggregate market as an integral of prices
of zero-coupon equity claims. H gives the values of these claims as functions
of the disaster and boom terms µ1t ,µ2t , the probabilities of a disaster and boom
λ1t ,λ2t and the time τ until the dividend is paid.

These individual dividend prices (and, by extension, the price of the market
as a whole) have interpretations based on the primitive parameters. As (16)
shows, prices are increasing in µ1t and µ2t . There is a tradeoff between the
effect of expected consumption growth on future cash flows and on the risk-
free rate. Because leverage φ is greater than the EIS (namely, 1), the cash-flow
effect dominates and the valuation of the market falls during disasters and rises
during booms. Moreover, the more persistent is the process (the lower is κµj

),
the greater is the effect of a change in µjt on prices.4

The probability of rare events also affect prices, but the intuition is more
subtle. The functions bφλ1 (τ ) and bφλ2 (τ ) would be identically zero without the
last term in the ODE (17). It is this term that determines the sign of bφλj

(τ ),
and thus how prices respond to changes in probabilities. We can decompose
this last term as follows:

Eνj

[
e
bµj Zjt

(
e
bφµj

(τ )Zjt −1
)]

=

−Eνj

[(
e
bµj Zjt −1

)(
1−e

bφµj
(τ )Zjt

)]

︸ ︷︷ ︸
Risk premium effect

+ Eνj

[
e
bφµj

(τ )Zjt −1
]

︸ ︷︷ ︸
Cash-flow and risk-free rate effect

. (20)

The first term in (20) is one component of the equity premium, namely, the
static rare-event premium (we discuss this terminology in the next section).5

4 The derivative of (16) with respect to κµj is proportional to (κµj τ +1)e
−κµj τ −1 which is negative, because

e
κµj τ

>κµj τ +1.

5 More precisely, this is the static rare-event premium for zero-coupon equity with maturity τ .
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Because an increase in the discount rate lowers the price-dividend ratio, this
risk premium appears with a negative sign. The second term is the expected
price response if the rare event occurs, representing the combined effect of
changes in expected future cash flows and risk-free rates. Thus, the response of
equity values to a change in the rare-event probability is determined by a risk
premium effect, and a (joint) cash-flow and risk-free rate effect.

These effects have different implications depending on whether the rare
event is a disaster or boom. First, consider disasters (j =1). When the risk of
a disaster increases, the equity premium increases (the first term in (20) is
negative). Expectations of future cash flows and risk-free rates decrease, with
the cash-flow effect dominating (the second term in (20) is also negative). Thus,
an increase in the disaster probability lowers valuations. Now consider booms
(j =2). When the probability of a boom increases, the equity premium increases
(the first term in (20) is again negative). Expectations of future cash flows and
risk-free rates increase with the cash-flow effect dominating (the second term
in (20) is positive). An increase in the probability of a boom increases the price
because the cash-flow/risk-free rate effect outweighs the risk premium effect.
The next corollary summarizes these results.

Corollary 4. The price-dividend ratio G(µt,λt ) is increasing in µjt (for j =
1,2), decreasing in λ1t , and increasing in λ2t .

Proof. The result for µjt follows immediately from the form of the function.
The result for λj t follows from Corollary B.10. !

The left panel of Figure 1 shows bφµj
(τ ) and bφλj

(τ ) for the calibration
discussed below. We see that bφµj

(τ ) is positive and increasing for j =1,2,
and quickly converges. This reflects the fact that disasters and booms are short
lived in our calibration. We also see that bφλ1 (τ ) is negative, and bφλ2 (τ ) is
positive. Both take a longer time to converge because rare-event probabilities
are more persistent than the rare events themselves. Also interesting is the
fact that bφλ2 (τ ) is so much smaller than bφλ1 (τ ).6 This occurs because the
cash-flow/risk-free rate effect and the risk premium effect operate in the same
direction for disasters but in opposite directions for booms.

1.3.2 The equity premium. We now turn to the equity premium. For our
quantitative results, we will average excess returns in a simulation, where
returns are calculated over a finite time interval that matches the data. However,
we can gain intuition by examining instantaneous returns.

By Ito’s lemma, we can write the price process for the aggregate market as
dFt

Ft−
=µFt dt +σF t dBt +

∑

j=1,2

Jj (Ft )
Ft−

dNjt ,

6 Booms are smaller than disasters in our calibration; however, this result holds even when they are the same size.
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Panel A: Expected growth rates
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Panel B: Rare-event probabilities
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Figure 1
Solution for the price-dividend ratio
Panel A shows the coefficients multiplying µ1 and µ2 (the disaster and boom components in expected
consumption growth, respectively) in the price-dividend ratio. Panel B shows the coefficients multiplying λ1t
(the probability of a disaster) and λ2t (the probability of a boom). The left panel shows results for the market;
the right shows results for the value premium. The scales on the left and the right may differ.
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for some drift term µFt , a (row) vector of diffusion terms σF t , and terms Jj (Ft )
Ft−

that denote percent change in price due to the rare event. Note that Jj (Ft )
Ft−

=
Jj (Gt )
Gt−

, because dividends themselves do not jump in this model; only the price-
dividend ratio does.

The instantaneous expected return is defined as the expected percent price
appreciation, plus the dividend yield. In the notation above,

rm
t =µFt +

1
Ft

∑

j=1,2

λj tEνj
[Jt (Ft )]

︸ ︷︷ ︸
expected price appreciation

+
Dt

Ft

.

︸︷︷︸
dividend yield

(21)

Using this characterization of returns, we can calculate the equity premium.

Theorem 5. The the instantaneous equity premium relative to the risk-free
rate is

rm
t −rt =φγσ 2 −

∑

j=1,2

λj tEνj

[(
e
bµj Zjt −1

)Jj (Gt )
Gt

]

︸ ︷︷ ︸
static rare-event premium

−
∑

j=1,2

λj t

1
Gt

∂G

∂λj

bλj
σ 2

λj

︸ ︷︷ ︸
λ-premium

.

(22)

Theorem 5 divides the equity premium into three components: The first is
the standard term arising from the consumption CAPM (Breeden 1979). The
second component is the sum of the premiums directly attributable to disasters
(j =1) and to booms (j =2). These are covariances between state prices and
market returns during rare events, multiplied by probabilities that the rare events
occur.7 We call this second term the static rare-event premium because it is
there regardless of whether the probabilities of rare events are constant or time
varying.8

The third component in (22) represents the compensation the investor
requires for bearing the risk of changes in the rare-event probabilities.
Accordingly, we call this the λ-premium. This term can also be divided
into the compensation for time-varying disaster probability (the λ1-premium)
and compensation for time-varying boom probability (the λ2-premium). The
following corollary shows that all terms in (22) are positive. A closely related
result is that the increases in both the disaster and the boom probabilities
increase the equity premium, as indicated in Table 1 and discussed in what
follows.9

7 These terms take the form of uncentered second moments, but they are indeed covariances; this is because the
jump occurs instantaneously and so the expected change in the variable is negligible.

8 Note, however, that if we assumed time-additive utility, this static premium would also disappear because it
arises from shocks to the consumption distribution, not to consumption itself.

9 While Table 1 shows that there is no effect of µ1t and µ2t on risk premiums, there is in fact a second-order effect
that arises from changes in duration of the claims. This size of this effect is negligible in our calibration.
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Corollary 6. 1. The static disaster and boom premiums are positive.
2. The premiums for time-varying disaster and boom probabilities (the

λj -premiums) are also positive.

Proof. For the first result, recall that bµj
<0 for j =1,2 (Theorem 1). First,

consider disasters (j =1). Note Z1t <0, so ebµ1 Z1t −1>0. Furthermore, because
Gt is increasing in µ1t (Corollary 4), J1(Gt )<0. It follows that the static
disaster premium is positive. Now consider booms (j =2). Because Z2t >0,
ebµ2 Z2t −1<0. Because Gt is increasing in µ2t , J2(Gt )>0. Therefore, the
static boom premium is also positive.

For the second result, first consider disasters (j =1). Recall that bλ1 >0
(Theorem 1). Further, ∂G/∂λ1 <0 (Corollary 4). For booms (j =2), each of
these quantities takes the opposite sign. The result follows. !

The static premiums are positive because marginal utilities and valuations
move in opposite directions during rare events: during disasters, marginal utility
is high, but valuations are low, and during booms, the opposite is true. Thus,
disasters and booms have a direct positive impact on the equity premium.

Exposure to disasters and booms also increases the equity premium indirectly
through the dynamic effect of time-varying probabilities.An increase in disaster
risk raises marginal utility and lowers valuations, likewise an increase in boom
risk lowers marginal utility and raises market valuations. Thus, exposure to
time-varying probabilities of rare events further increases the equity premium.

Figure 2 (top left panel) shows these terms as a function of the disaster
probability for the calibration discussed later in the paper. The dotted line
that is essentially at zero shows the CCAPM. The dash-dotted line shows the
static disaster premium; lying above it is the full static premium, including the
premium due to booms. Finally, the solid line is the full equity premium, which
includes the λ-premium. Whereas the λ-premium due to disasters is substantial,
the λ-premium due to booms is extremely small. We discuss this result further
in the next section.10

1.3.3 Observed returns in samples without rare events. We now consider
the average return the econometrician would observe in an sample without rare
events. To distinguish these average returns from true population returns, we
use the subscript nj (no jump).11 This average return is simply given by the

10 This figure also shows that the static boom premium is small. This is not a general result; it arises in our calibration
because booms are smaller than disasters. While booms have a smaller effect on marginal utility, and thus on
state prices, they have a larger effect on asset prices because of Jensen’s inequality. If the leverage parameter
φ and risk aversion are equal, and booms and disasters are symmetric, then the static premiums would be of
the same size. On the other hand, the λ-premium due to booms is smaller than for disasters, even under these
conditions.

11 This “ideal” average return is what one would obtain by averaging over an infinite number of samples that do
not contain rare events.
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Figure 2
Risk premiums as a function of disaster probability
Panel A shows population risk premiums as functions of the disaster probability with the boom probability fixed
at its mean. The vertical line represents the mean of the disaster probability. Panel B shows what the average
realized excess return would be in a sample without rare events.

drift rate in the price, plus the dividend yield:

rm
nj,t =µFt +

Dt

Ft

. (23)

The expression for these average realized returns follows from Theorem 5.

Corollary 7. The average excess market return in a sample without rare
events is given by

rm
nj,t −rt =φγσ 2 −

∑

j=1,2

λj tEνj

[
e
bµj Zjt

Jj (Gt )
Gt

]

︸ ︷︷ ︸
observed static rare-event premium

−
∑

j=1,2

λj t

1
Gt

∂G

∂λj

bλj
σ 2

λj

︸ ︷︷ ︸
λ-premium

.

(24)

As in the true risk premium, there are components of the observed premium
attributable to disasters (j =1) and to booms (j =2). The premium for time-
varying λ risk takes the same form for both the observed and true premium
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cases, because rare-event risk varies whether or not a rare event occurs. It is
the static premium, or the premium due to the rare event itself, that differs. It
follows immediately from (24) (and indeed, it can be inferred from the definition
(23)) that the observed static premium for disasters is higher than the true static
premium, whereas the observed static premium for booms is lower. In fact, for
booms, the observed static premium is negative.

Corollary 8. The observed static disaster premium in a sample without jumps
is positive. The observed static boom premium in a sample without jumps is
negative.

Proof. The result follows from (24), from e
bµj Zjt >0, and from J1(Gt )<0

and J2(Gt )>0 (because prices are increasing in µjt ). !
We now return to a question raised in the Introduction: why does the average

excess return associated with booms switch signs depending on whether booms
are present in the sample? Consider first the samples without booms. The
intuition in the introduction was based on no-arbitrage. This intuition is reflected
in the very simple proof of Corollary 8. First, the relevant component of
state prices e

bµj Zjt is positive, regardless of parameter values (this reflects the
absence of arbitrage in the model). Second, during booms, asset prices rise. The
observed (static) boom premium is equal to the negative of the percent change
in asset prices multiplied by the relevant component of the state price. In other
words, the observed premium due to booms must be negative to compensate
for the positive returns when booms are realized; otherwise no-arbitrage would
be violated. This effect is mitigated by risk aversion. The greater is γ , the closer
to zero is the observed premium.12 Of course, as shown in Corollary 6, the true
premium due to booms arises from the covariance of state prices with asset
prices and must be positive. This risk premium is realized by the investor when
the boom actually occurs.

We can see the difference between booms and disasters by contrasting the
left panels in Figure 2 with those of Figure 3. Figure 2 shows risk premiums as
a function of disaster probability; Figure 3 shows risk premiums as a function
of boom probability, and hence better highlights the role of booms. In Figure 2
there is very little difference between true risk premiums and observed risk
premiums in samples without rare events. In Figure 3, true and observed risk
premiums are qualitatively different. The true boom premium is positive and
increasing in the boom probability, whereas the observed boom premium is
negative and decreasing in the probability.

12 More precisely, what matters is γ −1, or more generally, the difference between γ and the inverse of the EIS. The
reason is that the rare events change the consumption distribution rather than consumption itself. The relevant
notion of risk neutrality is thus time-additive utility, in which the agent is indifferent over the timing of the
resolution of uncertainty.
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Figure 3
Risk premiums as a function of boom probability
Panel A shows population risk premiums as functions of the boom probability with the disaster probability fixed
at its mean. The vertical line represents the mean of the boom probability. Panel B shows what the average
realized excess return would be in a sample without rare events.

Before leaving the section on risk premiums, we note the importance of
asymmetry in the price of boom versus disaster risk. The discussion above
pertains to just the static part of the premium, not the λ-premium. If the λ-
premium for booms were large enough it could reduce, or even override our
results on the observed static premium. However, the λ-premium for booms,
unlike that for disasters, is negligible. There are two reasons for this. One is
that the price of risk for λ2t is small in magnitude compared to the price of
risk for λ1t , that is, bλ1 >−bλ2 . The other is that changes in the probability of
booms have a smaller effect on prices, as explained in the discussion following
Theorem 3.

To summarize, this section shows that, although the true premiums for both
disaster and boom risk are positive, the observed premium for disaster risk is
positive whereas the observed premium for boom risk is negative. These results
are directly relevant for the cross-section because, as we will see, value and
growth claims differ based on their exposure to these risks.
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1.4 Growth and value sectors
We now turn to the pricing of assets that differ in their exposure to the sources
of uncertainty in the economy. See Appendix B.5 for proofs not given below.

1.4.1 The value sector. It makes intuitive sense that firms and industries
will differ in their ability to directly profit from technological progress. For
simplicity, we define a sector that does not directly benefit from a boom, but is
otherwise identical to the market.Asecond sector, one that captures the benefits
of the boom, is simply defined as what remains in the market portfolio after we
subtract the first sector.

Consider an asset with cash flows following the process

dDv
t

Dv
t

=µv
Dtdt +φσdBCt , (25)

where µv
Dt = µ̄D +φµ1t . We use the superscript v to denote “value.” As we will

show, this asset will have a lower ratio of price to fundamentals than the market
as a whole. This is the defining characteristic of value in the data.13

Corollary 9. The price-dividend ratio for value is below that of the market.

Dividend growth for the market is weakly greater than dividend growth for
value in every state of the world, and strictly greater in some states of the
world. It follows that the price-dividend ratio, which is the present discounted
value of future dividends scaled by current dividends, is lower for value than
for the market.

Pricing for the value claim is directly analogous to that of the market
(Theorem 3). The price of the claim to the dividend stream (25) is given by

Fv
(
Dv

t ,µt ,λt

)
=
∫ ∞

0
Hv
(
Dv

t ,µt ,λt ,τ
)
dτ, (26)

where

Hv
(
Dv

t ,µt ,λt ,τ
)

=Dv
t exp

{
av

φ(τ )+bv
φµ(τ )⊤µt +bv

φλ(τ )⊤λt

}
. (27)

The price-dividend ratio for the value claim is therefore

Gv(µt,λt )=
∫ ∞

0
exp

{
av

φ(τ )+bv
φµ(τ )⊤µt +bv

φλ
(τ )⊤λt

}
dτ, (28)

with av
φ(τ ), bv

φµ(τ ), and bv
φλ(τ ) given in Appendix B.5. We highlight an

important difference between these terms and their counterparts for the market

13 Our assumptions imply that observed dividend growth is only higher for the growth sector if a rare boom actually
occurs. Thus, our model is consistent with the results of Chen (2012), who finds relatively small differences in
the measured dividend growth rate on growth stocks as compared to value stocks.
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portfolio. The sensitivity of the price to booms is given by

bv
φµ2

(τ )=− 1
κµ2

(
1−e−κµ2 τ

)
. (29)

The analogous term for the market is bφµ2 (τ )= φ−1
κµ2

(
1−e−κµ2 τ

)
. From (29), we

see that the price of the value claim fluctuates with booms, even though the
cash-flow process does not itself depend on booms. The reason is that, when
a boom occurs, the risk-free rate rises because the representative agent has a
greater desire to borrow. This causes asset prices to fall. This effect is present
for the aggregate market, but it is dominated by the expected cash flow effect.
For the value claim, this is the only effect booms have on prices.

Naturally, the difference in bv
φµ2

(τ ) carries over to bv
φλ2

(τ ), which reflects
how the price responds to changes in the probability of a boom. An increase
in the probability of a boom decreases the price of the value claim because the
risk premium effect and combined cash-flow and risk-free rate effect work in
the same direction.

Corollary 10. The price-dividend ratio for the value claim Gv(µt,λt ) is
increasing in µ1t , decreasing in µ2t , and decreasing in the probability of a
rare event λj t , for j =1,2.

Proof. See Corollaries B.12 and B.13. !
Figure 1 compares the coefficients on value with those for the market. We

see that the response of the value claim to disasters and to changes in the
disaster probability are almost indistinguishable. The response for booms is
quite different. The function bv

φµ2
(τ ) is negative and decreasing in τ , rather

than positive and increasing as it is for the market. It is also about half the
magnitude of the market coefficient, because the risk-free rate effect alone
is small compared with the (combined) cash-flow and risk-free effect for the
market. We see this also when considering the response of the price of the
value claim to changes in the boom probability. Again, bv

φλ2
(τ ) is negative and

decreasing, and small in magnitude when compared with the corresponding
function for the market.

These results lead directly to formulas for the risk premium on the value
claim.

Corollary 11. 1. The value sector premium relative to the risk-free rate
is

rv
t −rt =φγσ 2 −

∑

j=1,2

λj tEνj

[(
e
bµj Zjt −1

)Jj (Gv
t )

Gv
t

]

−
∑

j=1,2

λj t

1
Gv

t

∂Gv

∂λj

bλj
σ 2

λj . (30)
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2. The observed premium on the value sector in a sample without rare
events is

rv
nj,t −rt =φγσ 2 −

∑

j=1,2

λj tEνj

[
e
bµj Zjt

Jj (Gv
t )

Gv
t

]

−
∑

j=1,2

λj t

1
Gv

t

∂Gv

∂λj

bλj
σ 2

λj . (31)

Proof. The result follows from Lemma B.6 and (26). See the proof of
Theorem 5 for more detail. !

Corollary 12. 1. The static boom premium for the value sector is
negative (it is positive for the market).

2. The λ2-premium is negative (it is positive for the market).
3. The observed static boom premium for the value sector is positive (it is

negative for the market).
Other components of the risk premium and observed risk premium on value

take the same sign as the market.

Proof. The result follows from Corollary 11 and the reasoning in the proof
of Corollary 6. !

We show the components of the value sector premium next to the market as a
function of disaster probability (Figure 2) and as a function of boom probability
(Figure 3). The difference is most apparent when we consider risk premiums as
a function of the boom probability. For the market portfolio, the static observed
boom premium is negative in samples without rare events. For the value sector,
the static observed boom premium is slightly positive. This reflects the intuition
in the Introduction: when investors are expecting booms and they do not occur,
the observed returns on assets exposed to booms will be lower than on assets
not exposed to booms (or assets that fall in price when booms occur).

1.4.2 The growth sector. Given this definition of the value sector, the growth
sector is defined as the residual. Define D

g
t to be the dividend on the growth

claim and F
g
t the price. By definition, D

g
t =Dt −Dv

t , and by no-arbitrage,

F
g
t =Ft −Fv

t . (32)

Figure 4 shows dividends (panel A) and prices (panel B) for value and for the
market in a typical simulation that contains a boom. The dividend on value is
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Figure 4
Sample simulation path of asset dividends and prices
This figure shows results from a time series simulated from the model that includes a boom. The top figure shows
dividends (initialized at one), and the bottom panel shows prices. The solid line marks the onset of the boom.

normalized to that of the market at the start of the simulation. When a boom
occurs, a wedge opens up between the market dividend and the value dividend.
This wedge is the dividend on the growth claim.
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Figure 4, panel B, shows the price of a claim to the value sector, the market,
and the growth sector. Though the growth sector pays no dividends prior to the
boom, it has a positive price because investors anticipate the possibility of future
dividends. When a boom occurs, the price of the growth claim immediately
rises, the value of the aggregate market also rises, but by less, and the price of
the value claim falls slightly. After the boom, the price of the growth claim and
the overall market remain high relative to value, reflecting permanently higher
dividends.14

We can use the basic accounting identity (32) to derive properties of the
growth claim.

Corollary 13. The dividend-price ratio for the growth sector is below the
dividend-price ratio for the value sector.

Proof. It follows from the definition of the growth dividend and from the
accounting identity (32) that

D
g
t

F
g
t

=
Dt −Dv

t

Ft −Fv
t

=
Dt −Dv

t

DtGt −Dv
t G

v
t

=
1

Gv
t

Dt −Dv
t

Dt
Gt
Gv

t
−Dv

t

. (33)

Note that 1/Gv
t is the dividend-price ratio on the value claim. Because value

has a lower price-dividend ratio than the market as a whole (Corollary 9), Gt
Gv

t
>

1. Furthermore, Dt >Dv
t . Therefore, (Dt −Dv

t )/(Dt
Gt
Gv

t
−Dv

t )<1. The result
follows. !

Corollary 14. The price of the growth sector is increasing in µ1, decreasing
in λ1, and increasing in µ2 and λ2.

It is not surprising that the price of the growth claim is increasing in the
probability and expected size of a boom. Less obvious is the fact that growth
is also exposed to the risk of a disaster. Prior to a boom, growth has no cash
flows to fall in the case of disaster. However, after a boom takes place, the cash
flows that accrue to growth fall by the same percentage amount in the event of
disaster as the rest of the dividends in the economy. Anticipating this, investors
price the effect of a disaster into growth stocks before the boom occurs.

14 The figure also shows prices of all claims rising after the boom; this is because aggregate dividends are growing.
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Finally, a concern one might have with this model is whether the size of
the value sector relative to the market is nonstationary. It might seem that the
value sector would grow ever smaller as a proportion of the market. This would
be a problem, as the size of the value sector in the data does not appear to be
trending downward.

It turns out that there is a simple way to avoid the problem of nonstationarity.
At each time t , we assume that a new value sector is created so that the dividend
on the value claim is equal to the dividend of the market.15 The price of this value
sector at each time t is still the no-arbitrage value of the dividend stream (25),
and so is equal to (26) with Dv

t =Dt in the first argument.16 Because the price-
dividend ratios on value and on the market are stationary, this normalization
yields a stationary value sector. The calculation of returns is invariant to this
normalization, as shown in Appendix C.

The key property of the growth claim that emerges from this section is that it
is a levered bet on large booms. Relative to the market as a whole, the growth
claim is small. However, it bears the entire risk of a boom.

2. Quantitative Results

2.1 Data
This section describes our data sources. We will compare our rare events in the
model to tail events in the data, using international consumption data described
in detail in Barro and Ursúa (2008). These data contain annual observations on
real, per capita consumption for 43 countries; start dates vary from early in the
19th century to the middle of the 20th century.

Our aggregate market data come from CRSP. We define the market return
to be the gross return on the value-weighted CRSP index. Dividend growth
is computed from the dividends on this index. The price-dividend ratio is
price divided by the previous 12 months of dividends to remove the effect
of seasonality in dividend payments (in computing this dividend stream, we
assume that dividends on the market are not reinvested). We compute market
returns and dividend growth in real terms by adjusting for inflation using
changes in the consumer price index (also available from CRSP). For the
government bill rate, we use real returns on the three-month Treasury bill.
We also use real, per capita, expenditures on nondurables and services for the
United States, available from the Bureau of Economic Analysis. These data are

15 To be precise, the dividends on the value sector evolve according to

dDv
s

Dv
s

=µv
Dsdt +φσdBCs , s ≥ t (34)

with boundary condition Dv
t =Dt .

16 Note that Figure 4 shows the time path of prices without redefining value’s dividends; it is therefore what cash
flows and price appreciation look like from the point of view of the owner of each of the claims.

1134

 at U
niversity of Pennsylvania on M

ay 20, 2016
http://rfs.oxfordjournals.org/

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/


Rare Booms and Disasters in a Multisector Endowment Economy

annual, begin in 1947, and end in 2010. Focusing on postwar data allows for
a clean comparison between U.S. data and hypothetical samples in which no
rare events take place.

Data on value and growth portfolios are from Kenneth French’s Web site.
CRSP stocks are sorted annually into deciles based on their book-to-market
ratios. Our growth claim is an extreme example of a growth stock; it is purely a
claim to positive extreme events and nothing else. In the data, it is more likely
that growth stocks are a combination of this claim and the value claim. To avoid
modeling complicated share dynamics, we identify the growth claim with the
decile that has the lowest book-to-market ratio, while the value claim consists
of a portfolio (with weights defined by market equity) of the remaining nine
deciles. A standard definition of the value spread is the log book-to-market
ratio of the value portfolio minus the log book-to-market ratio of the growth
portfolio (Cohen, Polk, and Vuolteenaho 2003). In our endowment economy,
book value can be thought of as the dividend. However, the dividend on the
growth claim is identically equal to zero (though of course this claim has future
dividends), and for this reason, there is no direct analog of the value spread.
We therefore compute the value spread in the model as the log dividend-price
ratio on the value portfolio minus the log dividend-price ratio on the aggregate
market. For comparability, we use the log book-to-market ratio on value minus
the log book-to-market ratio on the market in the data. The predictability results
that we report are nearly the same when we use the more standard definition.

2.2 Calibration
The parameter set consists of the normal-times parameters µ̄C , σ and µ̄D ,
leverage φ, the preference parameters β and γ , the parameters determining
the duration of disasters and booms (κµ1 and κµ2 respectively), the parameters
determining the disaster and boom processes (λ̄j , κλj

, and σλj
for j =1,2) and

finally the distributions of the disasters and booms themselves. Some of these
parameters define latent processes, for which direct measurement is difficult.
The fact that these processes relate to rare events makes the problem even
harder.

For this reason, we proceed by dividing the parameters into groups and
impose reasonable restrictions on the parameter space. First, the mean and
standard deviation of consumption growth during normal times are clearly
determined by µ̄C and σ . We can immediately eliminate two free parameters
by setting these equal to their values in the postwar data (see Tables 2 and 3).

Second, to discipline our calibration, we assume that consumption growth
after a disaster reverts to normal at the same rate as consumption growth
following a boom, namely, κµ1 =κµ2 . Further, we assume that the rare-event
processes are symmetric. That is, we assume that the average probability of a
boom equals that of a disaster (λ̄1 = λ̄2), and that the processes have the same
mean reversion and volatility parameters (κλ1 =κλ2 and σλ1 =σλ2 ).
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Table 2
Parameter values
Panel A: Basic parameters

Average growth in consumption (normal times) µ̄C (%) 1.96
Average growth in dividend (normal times) µ̄D (%) 3.03
Volatility of consumption growth (normal times) σ (%) 1.45
Leverage φ 3.5
Rate of time preference β 0.003
Relative risk aversion γ 3.0

Panel B: Disaster parameters

Average probability of disaster λ̄1 (%) 2.86
Mean reversion in disaster probability κλ1 0.11
Volatility parameter for disasters σλ1 0.081
Mean reversion in expected consumption growth κµ1 1.00
Minimum consumption disaster (%) 10
Power law parameter for consumption disaster 6.27

Panel C: Boom parameters

Average probability of boom λ̄2 (%) 2.86
Mean reversion in boom probability κλ2 0.11
Volatility parameter for booms σλ2 0.081
Mean reversion in expected consumption growth κµ2 1.00
Minimum consumption boom (%) 5
Power law parameter for consumption booms 15.00

Parameter values for the main calibration are expressed in annual terms.

Third, we calibrate the average disaster probability and the disaster
distribution to international consumption data. Barro and Ursúa (2008) estimate
that the probability of a rare disaster in OECD countries is 2.86%.17 We use
this number as our average disaster probability, λ̄1. Following Barro and Jin
(2011), we assume a power law distribution for rare events (see Gabaix 2009
for a discussion of the properties of power law distributions). Using maximum
likelihood, Barro and Jin estimate a tail parameter of 6.27. They also argue
that the distribution of disasters is better characterized by a double power law,
with a lower exponent for larger disasters. Incorporating this more complicated
specification would lead to a fatter tail and a higher equity premium and
volatility. Thus, our parameter choice is conservative.18 Following Barro and
Ursúa (2008), we assume a 10% minimum disaster size.

The power law distribution for booms is quite difficult to observe directly.
We could use international data on consumption growth, and in fact such data
provide plenty of evidence of extreme positive growth rates. However, one
could reasonably ask whether these data are directly applicable to a developed

17 We calibrate the size of the disasters to the full set of countries and the average probability to the OECD
subsample. In both cases, we choose the more conservative measure, because the OECD subsample has rarer,
but more severe, disasters.

18 A potential concern is that the consumption data on disasters and booms are international, while our stock market
data are from the United States. However, many of the facts that we seek to explain have been reported as robust
features of the international data (e.g. Campbell 2003; Fama and French 1992). We view the international data as
a means to discipline the choice of distribution of the rare events, as the data from the United States are extremely
limited in this regard.
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Table 3
Log consumption and dividend growth moments

Panel A: Consumption growth

No-jump simulations All simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

Mean 1.95 1.65 1.95 2.26 −0.31 1.65 2.70 1.50
Standard Deviation 1.45 1.22 1.44 1.66 1.47 3.16 7.52 4.24
Skewness −0.37 −0.50 0.00 0.48 −4.56 −1.63 2.21 −4.80
Kurtosis 3.22 2.20 2.80 3.87 2.85 10.33 28.09 55.34

Panel B: Dividend growth

No-jump simulations All simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

Mean 1.67 1.84 2.91 3.98 −5.01 1.86 5.52 1.31
Standard Deviation 6.46 4.28 5.04 5.82 5.15 11.05 26.33 14.84
Skewness 0.10 −0.50 0.00 0.48 −4.56 −1.63 2.21 −4.80
Kurtosis 4.66 2.20 2.80 3.87 2.85 10.33 28.09 55.34

Data moments are calculated using annual data from 1947 to 2010. Population moments are calculated from
simulating data from the model at a monthly frequency for 600,000 years and then aggregating monthly growth
rates to an annual frequency. We also simulate 100,000 60-year samples and report the 5th, 50th and 95th
percentile for each statistic, both from the full set of simulations and for the subset of samples for which no rare
events occurred.

country like the United States. We thus turn to asset markets and, in particular,
to the size of the growth sector. The size of the growth sector in the model is
sensitive to the thickness of the tail of the power law distribution, a thicker
tail implying a larger growth sector. We can therefore infer tail thickness by
matching the size of the growth sector in the model to the size of the growth
sector in the data.19

As discussed in Section 2.1, we identify the growth sector in the model with
the lowest book-to-market decile in the data. We use an annual growth rate of
5% as our minimum jump size. This would be an unusually high observation
for an annual growth rate, so it is a reasonable choice for the starting point
of the upper tail of the consumption growth distribution. Given this minimum
jump size, we require the model to match the relative book-to-market ratio of
value (deciles 2–9) as compared with the market as a whole.20 Given our other
parameter choices, this implies a power law parameter of 15, corresponding to
a thinner tail than for disasters. As we later discuss, the value premium is quite
insensitive to the choice of this parameter.

Despite the fact that we use asset market data to infer our distribution for
booms, we still want to compare these booms to those we see in international
data. The disaster distribution and the boom distribution in the model and in the
data are reported in Figures 5 and 6. To focus on the tails of the distribution, we

19 See David and Veronesi (2013) for the use of asset prices to estimate high growth states that may not have been
realized in sample.

20 In the model, the “book” values of the market and of value are the same. Requiring the model to match relative
market valuations produces very similar answers.
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Figure 5
Tails of the one-year consumption growth rate distribution
This figure shows histograms of one-year consumption growth rates. The right panel considers growth rates
above 15%. The left panel considers growth rates below −15%. The frequency is calculated by the number of
observations within a range, divided by the total number of observations in the sample. Panel A shows results
from simulated data from the model. Panel B shows results from the data. Data are from Barro and Ursúa (2008).
For the consumption booms, we exclude observations between 1944 and 1953.

consider consumption changes of greater than 15% for one-year consumption
growth rates and consumption changes of greater than 45% for consumption
growth rates that are cumulative across five years. These figures show that,
except for small disasters at the five-year horizon, our assumptions imply less
extreme distributions than the data.21 In particular, our model implies fewer,
and smaller, booms than observed in the international data.

The remaining parameters are the dividend process parameters µD , and φ,
preference parameters β and γ , and rare-event parameters κλ1 =κλ2 and σλ1 =
σλ2 . We choose these parameters to minimize the distance between the mean
value of various statistics in a sample without rare events and the corresponding
statistic in the postwar data. We also impose some reasonable economic limits
on the parameter choices from this search.

21 It is the case that our power law distributions are unbounded, thus placing some probability on events that are
greater in magnitude than what has occurred in the data. Truncating the distributions has little effect on the
results.
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Figure 6
Tails of the five-year consumption growth rate distribution
This figure shows histograms of five-year consumption growth rates. The right panel considers growth rates
above 45%. The left panel considers growth rates below -45%. Panel A shows results from simulated data from
the model. Panel B shows results from the data. Data are from Barro and Ursúa (2008). For the consumption
booms, we exclude five-year periods beginning between 1940 and 1948.

The first requirement is that the solution to the agent’s problem exists. It
follows from Theorem 1, that parameters must satisfy

1
2σ 2

λ1

(
κλ1 +β

)2 ≥Eν1

[
ebµ1 Z1 −1

]
(35)

(see also Appendix A). Equation 35 is a joint restriction on the size of a disaster,
on the agent’s risk aversion, on the discount rate of the agent, and on the
persistence and volatility of the disaster probability process.22 Our second
requirement is that the discount rate β be greater than zero. Because of positive
consumption growth and a elasticity of intertemporal substitution equal to 1,

22 Why, intuitively, is there such a constraint? Note that utility is a solution to a recursive equation; the above
discussion reflects the fact that there is no guarantee in general that a solution to this recursion exists. In this
particular case, it appears that the problematic region of the parameter space is one in which there is a lot of
uncertainty that is resolved very slowly. A sufficiently slow resolution of uncertainty could lead to infinitely
negative utility for our recursive utility agent.
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matching the low risk-free rate of 1.25 will be a challenge. We discuss this
aspect of the model’s fit in more detail in a later section. We choose a small
positive number for the lower bound of β, and our minimization procedure
selects this as optimal on account of the risk-free rate.

Our third requirement is that leverage (φ) be reasonable. High leverage helps
the model match the equity premium and volatility, but allowing these data
points to determine φ might lead to a value that is unreasonably high. Cash-flow
data, on the other hand, does not clearly pin down a value of φ.23 We choose
φ =3.5, in line with values considered in the literature (for example, Bansal
and Yaron 2004 assume a value of 3.0, and Backus, Chernov, and Martin 2011
assume a value of 5.1). Given that high values of φ are helpful for the moments
of equity returns, lower values of φ will result in an inferior fit.24

The restrictions above imply that we have three free parameters remaining.
We search over values ofµD ,γ ,κλ1 as other parameters are determined by these.
We seek to match average dividend growth, the equity premium, the volatility
of the market return, the average price-dividend ratio, and the persistence of
the value spread.25 We measure the model’s fit by simulating 1,500 60-year
samples and taking only those without rare events. We minimize the sum of
squared differences between the mean across samples and the data moment,
normalizing by the variance across samples. The criterion function is minimized
for average dividend growth µD =3%, risk aversion γ =3, and mean reversion
κλ1 =0.11. Value spread moments are reported in Table 4, and aggregate market
moments are reported in Table 5. With these parameters, the probability of not
observing a boom in a 60-year period is about 20%. Thus, there is no need
to assume that the postwar period is exceptional in that a boom has not been
observed.26

23 The ratio of dividend to consumption volatility during normal times implies a value of 4.7 (this assumes, however,
that dividends are perfectly correlated with consumption in the data). Using the decline in earnings relative to the
decline in consumption during the Great Depression leads to an even higher number, as earnings fell by nearly
100% (Longstaff and Piazzesi 2004); however, this decline might have reasonably been expected by market
participants to be temporary, while our model, for simplicity, assumes such declines are permanent.

24 We have simulated from a calibration in which the normal-times standard deviation of dividend growth is twice
that of consumption (rather than 3.5 times, as in our benchmark calibration), but where everything else is the
same. The results are very similar to what is reported here, not surprisingly, because it is the risk of rare events,
rather than the normal-times consumption risk, that drives our results. Lowering φ itself does lead to somewhat
lower observed equity and value premiums, but the difference is not large. Aφ of three implies an equity premium
of 5.1% (as compared with 5.4 in our main calibration) and an observed value premium of 2.6% (as compared
with 2.7 in our main calibration).

25 Attempting to match the very high persistence of the price-dividend ratio leads to unstable results.

26 Asness, Moskowitz, and Pedersen (2013) report the existence of a value premium in international equities (Fama
and French 1992 also report an international value premium, but over a shorter sample). The data on individual
stocks in Asness, Moskowitz, and Pedersen (2013) come from the United States, the United Kingdom, and Japan.
Given that a large boom would have worldwide implications, impacting at least the major developed markets,
adding data from the United Kingdom and from Japan does not necessarily help us in observing the correct
number or size of the booms. The other data they consider are international equity indices. Our model is a natural
fit for explaining these data as well, since the stock markets of some countries might be expected to outperform
in the event of a large global boom; these would be “growth” according to their measure and would have lower
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Table 4
Value spread moments

No-jump simulations All simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

exp(E[log(value spread)]) 1.23 1.18 1.21 1.27 1.18 1.23 1.34 1.24
σ (log(value spread)) 0.08 0.02 0.04 0.07 0.03 0.07 0.16 0.10
Value spread autocorrelation 0.79 0.57 0.78 0.90 0.39 0.69 0.89 0.71

Data moments are calculated using annual data from 1947 to 2010. Population moments are calculated from
simulating monthly data from the model for 600,000 years and then aggregating to an annual frequency. We also
simulate 100,000 60-year samples and report the 5th, 50th and 95th percentile for each statistic, both from the full
set of simulations and for the subset of samples for which no rare events occurred. The value spread is defined as
the log of the book-to-market ratio for the value sector minus the book-to-market ratio for the aggregate market
in the data, and as log price-dividend ratio for the aggregate market minus the log price-dividend ratio for the
value sector in the model. In the data, the growth portfolio is the lowest book-to-market decile. The remaining
nine deciles comprise the value portfolio.

2.3 Simulation results
To evaluate the quantitative success of the model, we simulate monthly data for
600,000 years, and also simulate 100,000 60-year samples. For each sample,
we initialize the λj t processes using a draw from the stationary distribution.27

Given a simulated series of the state variables, we obtain price-dividend ratios
and one-period dividend growth rates on the market and on value. Using
these, we simulate returns as described in Appendix C. In the tables, we report
population values for each statistic, percentile values from the small-sample
simulations, and percentile value for the subset of small-sample simulations
that do not contain rare events. It is this subset of simulations that is the most
interesting comparison for postwar data.

2.3.1 The aggregate market. Table 3 reports moments of log growth rates
of consumption and dividends. There is little skewness or kurtosis in postwar
annual consumption data. Postwar dividend growth exhibits somewhat more
skewness and kurtosis. The simulated paths of consumption and dividends
for the no-jump samples are, by definition, normal, and the results reflect
this. However, the full set of simulations does show significant nonnormality;
the median kurtosis is seven for consumption and dividend growth. Kurtosis
exhibits a substantial small-sample bias. The last column of the table reports
the population value of this measure, which is 55.

Table 5 reports simulation results for the aggregate market. The model is
capable of explaining most of the equity premium: the median value among
the simulations with no disaster risk is 5.4%; in the data it is 7.2%. Moreover,
the data value is below the 95th percentile of the values drawn from the model,
indicating that the data value does not reject the model at the 10% level.

observed returns. This would also explain the links between the value effects from the international equity indices
and the individual equities.

27 The stationary distribution for λj t is gamma with shape parameter 2κj λ̄j /σ2
λj

and scale parameter σ2
λj

/(2κj )

(Cox, Ingersoll, and Ross 1985).
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Table 5
Aggregate market moments

No-jump simulations All simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

E[Rb] 1.25 1.65 1.95 2.10 −0.12 1.62 2.57 1.49
σ (Rb) 2.75 0.13 0.25 0.50 0.38 2.43 5.76 3.24
E[Rm −Rb] 7.25 3.66 5.44 7.94 2.88 5.97 10.28 6.27
σ (Rm) 17.8 10.4 14.5 20.1 13.1 20.5 31.9 22.3
Sharpe ratio 0.41 0.27 0.38 0.51 0.14 0.30 0.46 0.28
exp(E[p−d]) 32.5 25.0 30.7 34.4 20.0 28.6 34.3 27.8
σ (p−d) 0.43 0.10 0.19 0.34 0.14 0.27 0.50 0.35
AR1(p−d) 0.92 0.57 0.78 0.91 0.53 0.78 0.91 0.85

Data moments are calculated using annual data from 1947 to 2010. Population moments are calculated from
simulating monthly data from the model for 600,000 years and then aggregating to an annual frequency. We also
simulate 100,000 60-year samples and report the 5th, 50th and 95th percentile for each statistic, both from the full
set of simulations and for the subset of samples for which no rare events occurred. Rb denotes the government
bond return, Rm denotes the return on the aggregate market, and p−d denotes the log price-dividend ratio.

The model can also explain high return volatility, and low volatility of the
government bond yield. Note that we define disasters as large deviations in
expected consumption growth. Observed consumption growth is smooth, and
it takes several years for disasters to unfold. Thus, the critique of Constantinides
(2008), Julliard and Ghosh (2012) and Mehra and Prescott (1988) concerning
the instantaneous nature of disasters in many models of rare events does not
apply here.

Before moving on to the cross-section, we note two limitations to the model’s
fit to the data. First, the average government bond yield in the model is higher
than in the data (1.95% vs. 1.25%). This fit could be improved by allowing some
of the disaster-related decline in consumption to take place immediately. This
modification would be straightforward to implement but would substantially
complicate the notation and exposition without changing any of the underlying
economics. Moreover, Treasury-bill returns may in part reflect liquidity at the
very short end of the yield curve (Longstaff 2000); the model does a better job
of explaining the return on the one-year bond.28 Second, while the model can
account for a substantial fraction of the volatility of the price-dividend ratio
(the volatility puzzle, reviewed in Campbell 2003), it cannot explain all of it,
at least if we take the view that the postwar series is a sample without rare
events. This is a drawback that the model shares with other models attempting
to explain aggregate prices using time-varying moments (see the discussion in
Bansal, Kiku, andYaron 2012 and Beeler and Campbell 2012) but parsimonious
preferences. It arises from strong general equilibrium effects: time-varying
moments imply cash flow, risk-free rate, and risk premium effects, and one of
these generally acts as an offset to the other two, limiting the effect time-varying
moments have on prices. Some behavior of asset prices (i.e.,the “bubble” in

28 The model predicts a near-zero volatility for returns on this bill in samples without disasters. This is not a
limitation, since volatility in returns in the data is due to inflation, which is not present in the model.
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Table 6
Cross-sectional moments

No-jump simulations All simulations
Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

E[Rv −Rb] 7.95 4.34 6.06 8.52 2.59 5.26 8.28 5.34
E[Rg −Rb] 6.62 1.04 3.37 6.41 1.10 7.90 24.79 9.97
E[Rv −Rg ] 1.34 1.26 2.74 4.03 −19.55 −2.42 3.46 −4.63
σ (Rv ) 17.0 9.7 13.5 18.7 11.3 17.4 25.2 18.1
σ (Rg ) 21.0 16.6 22.8 32.6 21.8 41.8 117.3 64.0
σ (Rv −Rg ) 11.7 10.7 14.6 19.9 13.1 35.1 116.1 60.7
Sharpe ratio, value 0.48 0.34 0.45 0.60 0.13 0.31 0.51 0.29
Sharpe ratio, growth 0.32 0.05 0.15 0.24 0.04 0.18 0.29 0.16
Sharpe ratio, value-growth 0.11 0.07 0.19 0.33 −0.20 −0.07 0.25 −0.08
Alpha, value 1.26 0.79 1.08 1.50 −0.22 0.86 2.82 1.23
Alpha, growth −1.26 −5.96 −4.32 −3.10 −9.62 −3.17 1.36 −4.28
Alpha, value-growth 2.53 3.97 5.41 7.33 −1.53 4.07 12.29 5.51
Beta, value 0.92 0.86 0.92 0.96 0.26 0.83 0.96 0.66
Beta, growth 1.09 1.21 1.41 1.63 1.23 1.69 3.64 2.27
Beta, value-growth −0.16 −0.75 −0.49 −0.25 −3.32 −0.87 −0.28 −1.62

Data moments are calculated using annual data from 1947 to 2010. Population moments are calculated from
simulating monthly data from the model for 600,000 years and then aggregating to an annual frequency. We also
simulate 100,000 60-year samples and report the 5th, 50th and 95th percentile for each statistic, both from the
full set of simulations and for the subset of samples for which no rare events occurred. Rv denotes the gross
return on the value sector, Rg denotes the gross return on the growth sector, alpha denotes the loading of the
constant term of the CAPM regression, and beta denotes the loading on the market equity excess return of the
CAPM regression. In the data, the growth portfolio is the lowest book-to-market decile. The remaining nine
deciles comprise the value portfolio.

the late 1990s) may be beyond the reach of this type of model. This is a fruitful
area for further research.

2.3.2 Unconditional moments of value and growth portfolios. Tables 6
reports cross-sectional moments in the model. As a tight data comparison, we
take the growth portfolio as the bottom decile formed by sorting on book-to-
market and the value portfolio as the remaining nine deciles. This comparison
has the advantage that, in both the model and in the data, the two portfolios
considered sum to the market. However, we also report excess returns for more
traditional measures of value and growth in Table 8.

Table 6 shows that our model can account for an observed value premium of
2.74%, a substantial fraction of the data value of 4.28%. This value corresponds
to the median in simulations without rare events. The population value premium
is negative, as shown in Section 1. Yet even looking across the full set of
simulations implies that it is not unlikely to observe a value premium in any
particular sample.

Table 6 also shows that value stocks have lower standard deviations than
growth stocks and higher Sharpe ratios. Both of these results hold across the
full set of simulations, as well as in the samples without rare events. Both of
these affects are strongly present in the data. The reason the model can capture
these effects is that the observed high average return on value stocks does not
represent a return for bearing risk. As explained in Section 1, because investors
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Figure 7
Sensitivity of the observed value premium to parameter choices
Panel A reports the observed value premium (defined as the average difference between the return on the value
sector and the return on the growth sector across simulations with no rare events) as a function of the average
probability of a boom. All other parameters are unchanged. Panel B reports the average value premium across
simulations with no rare events as a function of the power law parameter α. Lower values of α correspond to
thicker tails.

are willing to accept a lower return on growth in most periods, in return for an
occasional very high payout.

Perhaps surprisingly, the model’s predictions for the observed value premium
are largely insensitive to the size of booms. In Figure 7, we show the observed
value premium for different specifications of the boom distribution. In panel A,
we vary the probability of the boom, and in panel B we vary the size of the
tail parameter for the power law distribution. The observed value premium is
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indeed increasing in the probability of a boom: if the probability of a boom
were zero, then so would be the observed value premium.29 Conversely, a high
probability of a boom leads to a high observed value premium. In contrast,
panel B shows that the observed value premium is quite flat as a function of
thickness of the tail. Lower values of the tail parameter imply thicker tails. At
extremely low values expected dividend growth is high enough so that prices
fail to converge (see Assumption 2 in Appendix A). Within the range of 3 to
nearly 100, there is little noticeable change in the observed value premium.

Why is it that the observed value premium is so insensitive to the shape of
the boom distribution? The reason lies in the two opposing forces described
in Section 1. On the one hand, the greater the probability of large booms, the
riskier growth stocks become, and the more negative is the true value premium
in population. On the other hand, the greater the probability of large booms, the
lower is the return on growth stocks a risk neutral investor is willing to accept
in samples without booms. These two effects roughly cancel.

Table 6 also shows that our model can explain the relative alphas and betas
for value and growth stocks. Growth stocks have a high covariance with the
market, because they are a levered bet on the occurrence of booms. Shocks
to the probability of a boom move the market price and the growth price in
the same direction. The same is true when a boom actually occurs. Given that
growth stocks have higher betas and lower average returns than value stocks,
it is of course not surprising that they have negative alphas. In fact, they have
negative alphas in population, as well as in samples without rare events, because
a large part of their risk comes from changes to the probability of a boom, and
the premium associated with this risk is low. Thus, unlike previous models of
the value premium, our model is able to explain the patterns in betas on growth
and value in the data.

2.3.3 Return predictability. In a recent survey, Cochrane (2011) notes
that time-varying risk premiums are a common feature across asset classes.
However, variables that predict excess returns in one asset class often fail
in another, suggesting that more than one economic mechanism lies behind
this common predictability.30 For example, the price-dividend ratio is a
significant predictor of aggregate market returns, but fails to predict the
value-minus-growth return. On the other hand, the value spread predicts the
value-minus-growth return, but it is less successful than the price-dividend ratio
at predicting the aggregate market return.

Panel A of Table 7 shows the results of regressing the aggregate market
portfolio return on the price-dividend ratio in actual and simulated data. The

29 We examine the sensitivity across a range from 0.6% probability to 5%. Below this 0.6%, the growth sector is
extremely small and return moments are unstable.

30 Lettau and Wachter (2011) show that if a single factor drives risk premiums, then population values of predictive
coefficients should be proportional across asset classes.
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Table 7
Long-horizon regressions of aggregate market and value-minus-growth returns on the price-dividend
ratio and the value spread

1-year horizon 3-year horizon 5-year horizon

Data NJ All Pop. Data NJ All Pop. Data NJ All Pop.

Panel A: Market returns on the price-dividend ratio

Coef. −0.12 −0.28 −0.17 −0.09 −0.29 −0.67 −0.42 −0.23 −0.41 −0.91 −0.60 −0.35
t-stat [−2.41] [−3.37] [−3.37]
R2 0.09 0.15 0.07 0.02 0.22 0.33 0.16 0.05 0.27 0.43 0.22 0.07

Panel B: Market returns on the value spread

Coef. −0.50 −0.76 −0.33 −0.06 −1.18 −1.88 −0.86 −0.17 −1.28 −2.61 −1.26 −0.25
t-stat [−1.86] [−2.28] [−3.13]
R2 0.05 0.05 0.02 0.001 0.12 0.12 0.06 0.002 0.09 0.16 0.08 0.003

Panel C: Value-minus-growth returns on the price-dividend ratio

Coef. 0.01 0.11 0.06 0.01 0.05 0.27 0.16 0.02 0.09 0.38 0.24 0.02
t-stat [0.37] [0.51] [0.76]
R2 0.00 0.03 0.02 1×10−4 0.01 0.07 0.05 2×10−4 0.02 0.10 0.07 2×10−4

Panel D: Value-minus-growth returns on the value spread

Coef. 0.46 1.18 0.47 0.01 1.13 2.87 1.23 0.03 1.48 3.95 1.81 0.05
t-stat [2.52] [2.44] [2.37]
R2 0.10 0.10 0.03 1×10−5 0.19 0.25 0.08 5×10−5 0.21 0.34 0.12 7×10−5

Coefficients and R2 statistics from predictive regressions in annual (overlapping) postwar data and in the model.
In panels A and B the excess market return is regressed against the price-dividend ratio and the value spread,
respectively. Panels C and D repeat this exercise with the value-minus-growth return. The value spread is defined
as the log book-to-market ratio of the value sector minus log book-to-market ratio of the aggregate market. For
the data coefficients, we report t-statistics constructed using Newey-West standard errors. Population moments
(Pop.) are calculated from simulating monthly data from the model for 600,000 years and then aggregating to
an annual frequency. We also simulate 100,000 60-year samples and report the average value for each statistic,
both from the full set of simulations (All) and for the subset of samples for which no rare events occurred (NJ).

model can reproduce the finding that the price-dividend ratio predicts excess
returns. This result arises primarily from the fact that a high value of the disaster
probability implies a higher equity premium and a lower price-dividend ratio. It
is also the case that a high value of the boom probability implies a lower return in
samples that, ex post, have no booms, as well as a higher price-dividend ratio.
Coefficients and R2 statistics are smaller in a sample with rare events than
without: this is both because more of the variance of stock returns arises from
the greater variance of expected dividend growth during disasters and because
the effect of the boom probability reverses (high premiums are associated with
high valuations) in the full set of samples. We can see the effect of small-sample
bias (Stambaugh 1999) by comparing the population R2 with the median from
the full set of simulations.

In the data, the market return can also be predicted by the value spread, though
with substantially smaller t-statistics and R2 values (panel B of Table 7). The
model also captures the sign and the relative magnitude of this predictability.
Compared with the price-dividend ratio, the value spread is driven more
by the time-varying probability of a boom and less by the probability of a
disaster. This explains why risk premiums on the market portfolio, which is
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mainly driven by the disaster probability, are not captured as well by the value
spread.

Panel C of Table 7 shows that, in contrast to the market portfolio, the value-
minus-growth return cannot be predicted by the price-dividend ratio. The data
coefficient is positive and insignificant. This fact represents a challenge for
models that seek to simultaneously explain market returns and returns in the
cross-section since the forces that explain time variation in the equity premium
also lead to time variation in the value premium (e.g. Lettau and Wachter 2011;
Santos and Veronesi 2010); this reasoning would lead the coefficient to be
negative.31 The present model does, however, predict a positive coefficient.
A high value of the price-dividend ratio on the market mostly reflects a low
probability of a disaster, but also in part a high probability of a boom. If a boom
was expected but did not occur, then the average realized returns on value will
be high relative to growth (compare the left and right columns of panel B,
Figure 3).32

One might think that the reason that the value-minus-growth return cannot
be predicted by the price-dividend ratio is that it is not very predictable. This,
however, is not the case. panel D of Table 7 shows that, as in the data, the value
spread predicts the value-minus-growth return with a positive sign in samples
without jumps. The median R2 value at a one-year horizon is 10%, compared
with a data value of 10%. At a five-year horizon, the value in the model is 34%,
it is 21% in the data. The intuition is the same as for the value-minus-growth
regression on the price-dividend ratio. A high value spread indicates a high
probability of a boom. If we isolate such periods that, ex post, do not have
rare events, growth will have a low return relative to value. The R2 values
are much higher than for the price-dividend ratio because, unlike the price-
dividend ratio, the value spread is primarily driven by the probability of a
boom.33

To summarize, the joint predictive properties of the price-dividend ratio and
the value spread would be quite difficult to explain with a model in which
a single factor drives risk premiums; they therefore constitute independent
evidence of a multiple-factor structure of the kind presented here.

31 Roussanov (2014) also notes that the conditional mean of the value-minus-growth portfolio does not vary in the
way that univariate models of time-varying risk aversion would predict.

32 The coefficient is positive in population as well, though it is very small. This reflects trade-off between the effect
of the boom probability which gives a negative coefficient (compare the left and right columns of panel A in
Figure 3), and the effect of disaster probability, which predicts a positive one (same comparison, but in Figure 2).
Value has a slightly lower exposure to disaster probability because of its shorter duration.

33 In population, the effect works in the opposite direction because high values of the boom probability predict low
returns on value relative to growth. The resultant R2 coefficients are very small. For the set of all simulations,
the mean coefficient is again positive because of small-sample bias.
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Table 8
Data on portfolios formed on the book-to-market ratio

All stocks Top size quintile

G V G V
1 2 3 4 5 1 2 3 4 5

Panel A: 1947–2010

E[Ri −Rf ] 6.08 6.71 8.04 8.61 10.36 6.22 6.46 7.26 7.32 8.36
se (0.59) (0.55) (0.52) (0.54) (0.62) (0.57) (0.54) (0.52) (0.55) (0.62)
σ [Ri −Rf ] 16.26 15.12 14.47 14.96 17.20 15.85 14.94 14.48 15.16 17.32
βi 1.06 1.02 0.95 0.96 1.05 1.02 0.99 0.91 0.93 0.99
se (0.02) (0.01) (0.02) (0.02) (0.03) (0.02) (0.01) (0.02) (0.02) (0.03)
% of total market 40.84 22.24 17.03 12.22 7.66 33.85 16.86 12.37 8.01 4.33

Panel B: 1995–2000

E[Ri −Rf ] 16.15 15.07 14.63 15.50 13.00 17.84 16.13 14.80 16.09 12.03
se (2.04) (1.82) (1.77) (1.60) (1.40) (2.01) (1.88) (1.93) (1.91) (1.73)
σ [Ri −Rf ] 17.27 15.41 15.03 13.60 11.88 17.04 15.98 16.36 16.18 14.68
βi 1.09 1.10 1.04 0.89 0.78 1.09 1.12 1.10 0.95 0.85
se (0.08) (0.04) (0.06) (0.05) (0.04) (0.08) (0.03) (0.06) (0.09) (0.07)
% of total market 47.53 21.66 14.69 9.33 6.80 40.21 16.75 10.31 5.76 3.92

Panel C: 1929–1932

E[Ri −Rf ] −21.79 −20.99 −28.65 −21.52 −26.35 −21.48 −19.26 −28.72 −29.79 −16.94
se (5.77) (5.71) (7.14) (8.82) (9.12) (5.77) (5.70) (7.47) (8.79) (8.74)
σ [Ri −Rf ] 39.98 39.58 49.44 61.08 63.21 39.99 39.48 51.79 60.89 60.58
βi 0.95 0.94 1.15 1.38 1.44 0.95 0.93 1.19 1.36 1.23
se (0.04) (0.03) (0.06) (0.13) (0.12) (0.04) (0.03) (0.07) (0.11) (0.17)
% of total market 46.62 24.56 18.22 8.40 2.20 42.72 20.30 14.50 6.01 0.89

Panel D: January 2008–June 2009

E[Ri −Rf ] −19.57 −26.92 −29.31 −35.29 −23.61 −19.25 −27.88 −32.22 −39.58 −20.84
se (5.69) (5.03) (6.28) (6.64) (7.64) (5.49) (4.59) (6.15) (6.71) (7.23)
σ [Ri −Rf ] 24.13 21.36 26.64 28.17 32.40 23.29 19.49 26.07 28.47 30.66
βi 0.91 0.82 1.01 1.07 1.20 0.87 0.73 0.97 1.06 1.10
se (0.06) (0.03) (0.07) (0.05) (0.12) (0.06) (0.04) (0.09) (0.06) (0.13)
% 37.02 26.05 16.32 13.82 6.79 30.19 20.63 12.17 10.13 3.96

Statistics for portfolio excess returns formed by sorting stocks by the ratio of book equity to market equity during
various subperiods of the data. The panel reports means and βs with respect to to the value-weighted CRSP
market portfolio. Data are at a monthly frequency. We multiply excess returns by 1,200 to obtain annual percent
returns. Excess returns are measured relative to the 30-day Treasury bill. The left panel reports results from the
full set of equities, and the right panel looks only at the top size quintile.

3. Further Implications

3.1 When does growth outperform value?
Our model predicts that in samples when booms are not realized, value stocks
will on average exhibit greater returns than will growth stocks. The model
also predicts that there will be periods when growth will outperform value,
namely, when booms are realized or when there are positive shocks to the
probability of a boom. Both would be expected to occur during times of
substantial technological innovation. How does this prediction fare in the data?
In this section we examine the performance of value and growth during a period
that is indisputably characterized by these shocks, namely, the late 1990s.

Table 8 shows statistics for portfolios formed by sorting stocks into quintiles
on the basis of the book-to-market ratio. We examine results for the full CRSP
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universe, as well as for the top size quintile.As is well known, value outperforms
growth by a substantial margin over the postwar sample. However, from 1995-
2000, the greatest performance belongs to the lowest book-to-market quintile.
Not only do growth stocks exhibit higher returns during this period, they also
have even higher betas than usual. This is evidence in favor of a the principal
mechanism in the model: that growth stocks are more exposed to boom risk
than are value stocks.

This exercise naturally raises the question of the differential performance of
value and growth during disasters, and during periods when the probability of
a disaster increases. To keep this paper to a manageable length, we have not
introduced differential exposure of value and growth dividends to disasters.
Considering varying exposure to these shocks, however, would be within
the spirit of the model. We therefore look at the differential exposure and
performance of value and growth during disaster periods.

Panels C and D of Table 8 report the expected returns and betas to value and
growth portfolios during the Great Depression and the financial crisis of 2008,
respectively.34 The table shows that growth has a much lower beta than value
during these periods, indicating that value stocks are more exposed to crises
than growth stocks. This is consistent with a rare-events model in which value
stocks had greater crisis exposure.35

3.2 Downside and upside risk
Ang, Chen, and Xing (2006) define downside β as the covariance divided by the
variance, where these moments are computed using only those observations at
which the market return is below its mean. Likewise, upside β is the measure
when the covariance and variance are computed for observations when the
market return is above its mean. They show that stocks with higher downside
βs have higher returns. Lettau, Maggiori, and Weber (2014) show that this
finding also holds across asset classes.

Ang, Chen, and Xing (2006) also define relative upside and relative downside
β to be the one-sided β measure minus the traditional β. They find that stocks
with high relative downside β have higher mean returns, whereas stocks with
high relative upside β have lower mean returns. Because there are many sources
of heterogeneity in stocks that are not captured in the present study, these
relative β results seem most relevant.

That there would be a relation between observed one-sided risk and rare
events is not obvious. Disasters and large booms represent extreme one-sided

34 Our dates are determined from the NBER peak-to-trough measure of the Great Recession.

35 There are problems with differential exposure to crises as the main explanation of the value premium. First, if
value stocks are more exposed to disasters than are growth stocks, they will also have greater exposure to the
probabilities of disasters, and hence counterfactually high betas. This would be less of a problem if this mechanism
were paired with a mechanism like the one we emphasize that lowers the betas on value stocks. Second, as Table 8
shows, the actual performance of value stocks, outside of the bottom quintile, was not particularly poor during
these periods.
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Table 9
Upside and downside betas in the model

E[R−Rb] (%) relative β+ relative β−

Value 6.06 −0.0024 0.0062
Growth 3.37 0.0686 −0.0634

This table reports the relative upside and downside betas for the value and growth portfolios in the model, along
with the average returns on these portfolios. The first column reports the average annual excess returns for value

and growth, and the second row reports the relative upside betas, β+
i −βi , where β+

i = cov(Ri,Rm|Rm>µm)
var(Rm|Rm>µm) , µm is

the average return on the aggregate market within each simulation, and βi is the regular CAPM beta for value and

growth portfolio. The third column reports the relative downside betas, β−
i −β, where β−

i = cov(Ri,Rm|Rm<µm)
var(Rm|Rm<µm) .

We simulate 100,000 60-year samples and report the median values from the subset of samples for which no rare
events occurred.

risks that are realized only rarely. In contrast, the studies mentioned above
focus on differential exposure to up- and down-moves during normal market
conditions. However, in the present model there is a connection because
exposure to rare events drives normal-times variation. An asset that is more
exposed to disaster risk will also tend to fall during market downturns, because
a downturn over a finite time interval is more likely to be caused by an increase
in the probability of a disaster than a decrease in the probability of a boom. This
effect arises from the link between the volatility of the rare-event probabilities
and their magnitudes. Moreover, while changes in boom probabilities in general
have a smaller effect on the market return than disaster probabilities, upturns
will be disproportionately caused by changes in the boom probability.

Table 9 shows the model’s prediction for the relation between one-sided
betas and expected returns. In the model, value stocks have low relative upside
betas, but high relative downside betas while growth stocks have the opposite.
Thus, low relative upside betas and high relative downside betas are associated
with high returns, just as in the data.

3.3 Skewness in the time series and cross-section
Our model predicts that positive skewness should be associated with low future
returns, both in the time series and in the cross-section. Several recent papers
argue that proxies for disaster risk predict future returns (Kelly and Jiang 2014;
Manela and Moreira 2013). Colacito, Ghysels, and Meng (2013) shows that
skewness in analysts’ forecasts, which takes on both negative and positive
values, predicts returns with a negative sign. Like other papers on disaster
risk, this paper predicts that a greater risk of disaster should be associated with
a higher equity premium. It also predicts, consistent with Colacito, Ghysels,
and Meng (2013), that a higher chance of a boom will be associated with a
lower premium, in a sample in which booms do not occur. Figure 8 shows
the skewness conditional on the probability of disasters and booms. Indeed,
skewness is decreasing in the disaster probability and increasing in the boom
probability. Expected returns (in a sample without rare events) go in the opposite
direction.
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Figure 8
Consumption growth skewness
This figure shows consumption growth skewness conditional on different rare-event probabilities. The left plots
the skewness at different disaster probability λ1, with the boom probability equals to its mean. The right plots
the skewness at different boom probability λ2, with the disaster probability equals to its mean. We calculate
skewness by simulating 500,000 years of consumption growth at a monthly frequency for each value of the rare
event probabilities. We aggregate the monthly consumption growth to an annual frequency and calculate the
skewness over the sample.

Measuring skewness, whether in the time series or the cross-section, is
a challenge. Several recent papers, however, are able to calculate ex ante
return skewness using option prices on individual stocks (Conrad, Dittmar, and
Ghysels 2013; Chang, Christoffersen, and Jacobs 2013). These papers show that
higher skewness is associated with lower returns in the cross-section, another
prediction of this paper. Conrad, Dittmar, and Ghysels (2013) also finds that
stocks with higher valuation ratios have higher skewness, again consistent with
the results in this paper. Conrad, Dittmar, and Ghysels (2013) show that stocks
with higher book-to-market ratios have lower coskewness, which is the relevant
measure in this paper because booms are market-wide. They also report that
stocks with higher overall skewness have higher price-to-earnings ratios. These
facts are consistent with the finding in this paper that high valuations are tied
to the small probability of very high returns.

4. Conclusion

This paper has addressed the question of how growth stocks can have both low
returns and high risk, as measured by variance and covariance with the market
portfolio. It does so within a framework that is also consistent with what we
know about the aggregate market portfolio; namely, the high equity premium,
high stock market volatility, and time-variation in the equity premium. The
problem can be broken into two parts: why is the expected return on growth
lower, and why is the abnormal return relative to the CAPM negative? This
latter question is important, because one does not want to increase expected
return through a counterfactual mechanism.

This paper answers the first of these questions as follows: growth stocks have,
in population, a slightly higher expected return. In finite samples, however,
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this return may be measured as lower. The answer to the second question is
different, because the abnormal return relative to the CAPM appears both in
population and small samples without rare events. The abnormal return result
arises because risk premiums are determined by two sources of risk, each of
which is priced very differently by the representative agent. Covariance during
disasters, and covariance with the changing disaster probability is assigned a
high price by the representative agent because marginal utility is low in these
states. However, growth stock returns are highly influenced by booms, and
by the time-varying probability of booms. Because marginal utility is low in
boom states, the representative agent requires little compensation for holding
this risk. This two-factor structure is also successful in accounting for the joint
predictive properties of the market portfolio and of the value-minus-growth
return.

A number of extensions of the present framework are possible. In this
paper, we have specified the growth and the value claim in a stark manner.
Extending our results to a setting with richer firm dynamics would allow one to
answer a broader set of questions. Further, we have chosen a relatively simple
specification for the latent variables driving the economy. An open question
is how the specification of these variables affects the observable quantities.
Finally, we abstract from differential exposure to disaster risk. We leave these
interesting topics to future research.

Appendix

A. Required Conditions on the Parameters

Assumption 1.
(
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)2

≥2σ 2
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Assumption 1 is required for the solution for the value function to exist. This restriction rules
out parameters that can lead to infinitely negative utility. Note that for booms (assuming relative
risk aversion is greater than 1), this restriction is satisfied automatically since the right-hand side
is negative.

Assumptions 2 and 3 guarantee convergence of prices, which are given by integrating expected
dividends into the infinite future. Assumption 2 ensures that bφλ2 (τ ) converges as τ approaches
infinity, namely, that the effect of the boom on future dividends cannot explode as the horizon
increases.36 Assumption 3 states that the asymptotic slope of aφ (τ ) is negative. This is the dynamic
analog of the condition that the growth rate be less than the discount rate in the static Gordon growth
model. This condition pertains to the market portfolio. If it is satisfied, the analogous condition for
the value claim is satisfied automatically.37

B. Proofs of Theorems

This Appendix contains a detailed solution of the model. Appendix B.1 describes notation.
Appendix B.2 describes the derivation of the value function and thus the state-price density under
Assumption 1. Appendix B.3 contains the general results on pricing equities in a model with jumps.
This section does not require parametric assumptions on the processes for dividends or state prices.
Appendix B.4 and (most of) B.5 give results under the parametric assumptions in the main text.

B.1 Notation
• Definition of jump notation J (·):

Let Xt be a pure diffusion process, and let µjt , j =1,2 be defined as in (3). Consider a
scalar function h(µ1t ,µ2t ,Xt ). Define

J1(h(µ1t ,µ2t ,Xt ))=h(µ1 +Z1,µ2,Xt )−h(µ1,µ2,Xt ),

J2(h(µ1t ,µ2t ,Xt ))=h(µ1,µ2 +Z2,Xt )−h(µ1,µ2,Xt ).

Further, define
J̄j (h(µ1t ,µ2t ,Xt ))=Eνj

Jj (h(µ1t ,µ2t ,Xt ))

for j =1,2, and

J̄ (h(µ1t ,µ2t ,Xt ))=
[
J̄1(h(µ1t ,µ2t ,Xt )), J̄2(h(µ1t ,µ2t ,Xt )

]⊤
.

• We use the notation κµ to denote the column vector [κµ1 ,κµ2 ]⊤, and similarly for κλ, σλ, and
λ̄. Recall that we have already defined λt =[λ1t ,λ2t ]⊤, µt =[µ1t ,µ2t ]⊤, Bλt =[Bλ1t ,Bλ2t ]⊤,
and Bt =[BCt ,B

⊤
λt ]

⊤.
• We use x2 notation for a vector x to denote the square of each element in x. For example,

σ 2
λ will denote the vector [σ 2

λ1
,σ 2

λ2
]⊤.

36 Note that no extra assumptions are required for the convergence of bφλ1 (τ ) because Z1 <0 and hence e

φ−1
κµ1

Z1
<

1. Also no extra assumptions are required for the value function expression bv
φλ2

(τ ) to converge since this

condition replaces e

φ−1
κµ2

Z2 with e
− 1

κµ2
Z2 , which is less than one.

37 Specifically, define

ζ v
φ2

=

√√√√(bλ2 σ2
λ2

−κλ2 )2 −2Eν2

[

e
bµ2 Z2

(

e
− 1

κµ2
Z2 −1

)]

σ2
λ2

Then ζ v
φ2

>ζφ2 . It is also the case that ζ v
φ1

=ζφ1 .
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• We use the notation ∗ to denote element-by-element multiplication for vectors of the same
dimensionality.

• Partial derivatives with respect to a vector will be assumed to be row vectors. That is, given
a function h(µ), ∂h/∂µ=[∂h/∂µ1,∂h/∂µ2], and similarly for λ.

• Because the processes λ are independent, cross-partial derivatives do not enter into the
pricing equations. Thus, given a function h(λ), we use the notation ∂2h/∂λ2 to denote the
row vector [∂2h/∂λ2

1,∂
2h/∂λ2

2].

B.2 The State-Price Density
As a first step to computing the state-price density, we compute continuation value Vt as a function
of aggregate wealth Wt and the state variables. As is often the case in models involving square root
processes, there are technically two possible solutions corresponding to the choice of a solution
to a quadratic equation. We select the solution such that, when there is no rare event risk, utility
is equivalent to the case when there are in fact no rare events. Further discussion of this selection
procedure is contained in Wachter (2013).

Lemma B.1. In equilibrium, continuation value Vt =J (Wt ,µt ,λt ), where Wt is the wealth of the
representative agent, and J is given as follows:

J (Wt ,µt ,λt )=
W

1−γ
t

1−γ
I (µt ,λt ), (B.1)

where
I (µt ,λt )=exp

{
a+b⊤

µ µt +b⊤
λ λt

}
, (B.2)

for vectors bµ =[bµ1 ,bµ2 ]⊤ and bλ =[bλ1 ,bλ2 ]⊤. The coefficients a, bµj
, and bλj

for j =1,2 take
the following form:

a =
1−γ

β

(
µ̄C − 1

2
γ σ 2

)
+(1−γ )logβ +

1
β

b⊤
λ (κλ ∗ λ̄),

bµj
=

1−γ

κµj
+β

,

bλj
=

1

σ 2
λj

(

β +κλj
−
√(

β +κλj

)2
−2Eνj

[
e
bµj Zjt −1

]
σ 2

λj

)

.

Furthermore,
Wt

Ct
=β−1, (B.3)

where Ct is aggregate consumption.

Proof. Let St denote the value of a claim to aggregate consumption, and conjecture that the
price-dividend ratio for the consumption claim is constant:

St

Ct
= l,

for some l. This relation implies that St satisfies

dSt

St
=

dCt

Ct
=µCt dt +σ dBCt . (B.4)
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Consider an agent who allocates wealth between the claim to aggregate consumption and the
risk-free asset. Let αt be the fraction of wealth in the consumption claim, and let ct be the agent’s
consumption. The wealth process is then given by

dWt =
(
Wtαt

(
µCt −rt + l−1

)
+Wtrt −ct

)
dt +WtαtσdBct ,

where rt denotes the instantaneous risk-free rate. Optimal consumption and portfolio choice must
satisfy the following Hamilton-Jacobi-Bellman (HJB) equation:

sup
αt ,ct

{
∂J

∂W

(
Wtαt

(
µCt −rt + l−1

)
+Wtrt −ct

)
+

∂J

∂λ

(
κλ ∗

(
λ̄−λt

))
− ∂J

∂µ

(
κµ ∗µt

)

+
1
2

∂2J

∂W 2 W 2
t α2

t σ
2 +

1
2

(
∂2J

∂λ2

)
(σ 2

λ ∗λt )+λ⊤
t J̄ (J (Wt ,µt ,λt ))+f (ct ,Jt )

}
=0. (B.5)

In equilibrium, αt =1 and ct =Ct =Wt l
−1. Substituting these policy functions into (B.5) implies

∂J

∂W
WtµCt +

∂J

∂λ

(
κλ ∗

(
λ̄−λt

))
− ∂J

∂µ

(
κµ ∗µt

)
+

1
2

∂2J

∂W 2 W 2
t σ 2

+
1
2

(
∂2J

∂λ2

)
(σ 2

λ ∗λt )+λ⊤
t J̄ (J (Wt ,µt ,λt ))+f (Ct ,Jt )=0. (B.6)

From the envelope condition ∂f/∂C =∂J/∂W , we obtain β = l−1, and prove (B.3). Given that the
consumption-wealth ratio equals β−1, it follows that

f (Ct ,Vt )=f
(
Wt l

−1,J (Wt ,µt ,λt )
)

=βW
1−γ
t I (µt ,λt )

(
logβ− logI (µt ,λt )

1−γ

)
, (B.7)

where, to derive (B.7), we conjecture (B.1). Substituting (B.7) and (B.1) into (B.6), we find

µCt +(1−γ )−1I−1 ∂I

∂λ

(
κλ ∗

(
λ̄−λt

))
−(1−γ )−1I−1 ∂I

∂µ

(
κµ ∗µt

)
− 1

2
γ σ 2

+
1
2

(1−γ )−1I−1
(

∂2I

∂λ2

)
(σ 2

λ ∗λt )+(1−γ )−1λ⊤
t I−1J̄ (I (µt ,λt ))

+β

(
logβ− logI (µt ,λt )

1−γ

)
=0.

Note that µCt = µ̄C +µ1t +µ2t . Collecting coefficients on µjt results in linear equations for bµj
for j =1,2. Solving these equations yields

bµj
=

1−γ

κµj
+β

, j =1,2.
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Collecting coefficients onλj t yields a quadratic equation forbµj
for j =1,2. Given the root selection

procedure described at the start of this Appendix, the solutions are

bλj
=

β +κλj

σ 2
λj

−

√√√√√

⎛

⎝
β +κλj

σ 2
λj

⎞

⎠
2

−
2Eνj

[
e
bµj Zjt −1

]

σ 2
λj

.

Collecting the constant terms implies

a =
1−γ

β

(
µ̄C − 1

2
γ σ 2

)
+(1−γ )logβ +

∑

j=1,2

bλj

κλj

β
λ̄j .

This verifies our conjecture on the form of I . !

Lemma B.2. State prices can be characterized as follows:

πt =exp
{∫ t

0

∂

∂V
f (Cs,Vs )ds

}
βγ C

−γ
t I (µt ,λt ) (B.8)

for I (µt ,λt ) given in Lemma B.1.

Proof. Duffie and Skiadas (1994) show that the state-price density πt equals

πt =exp
{∫ t

0

∂

∂V
f (Cs,Vs )ds

}
∂

∂C
f (Ct ,Vt ). (B.9)

From (6), we obtain
∂

∂C
f (Ct ,Vt )=β (1−γ )

Vt

Ct
.

Lemma B.1 shows that, in equilibrium, Vt =J
(
β−1Ct ,µt ,λt

)
, where the form of J is given in

(B.1). It follows that
∂

∂C
f (Ct ,Vt )=βγ C

−γ
t I (µt ,λt ). (B.10)

Equation B.8 then follows from (B.9). !
Proof of Theorem 1. We apply Ito’s lemma to (B.8) to find

dπt

πt−
=µπ t dt +σπ t dBt +

∑

j=1,2

Jj (πt )
πt−

dNjt ,

where
σπ t =

[
−γ σ, bλ1σλ1

√
λ1t , bλ2σλ2

√
λ2t

]
, (B.11)

and
Jj (πt )

πt
=e

bµj Zjt −1, for j =1,2. (B.12)

Moreover, from Lemma B.1, it follows that a, bµj
, and bλj

take the form described. It follows

immediately that bµj
<0. Because Z1 <0 and bµ1 <0, Eν1

[
ebµ1 Z1t −1

]
>0. Therefore,

√
(
β +κλ1

)2 −2Eν1

[
ebµ1 Z1t −1

]
σ 2

λ1
<β +κλ1 .

It follows that bλ1 >0. Because Z2 >0 and bµ2 <0, Eν2

[
ebµ2 Z2t −1

]
<0. Therefore,

√
(
β +κλ2

)2 −2Eν2

[
ebµ2 Z2t −1

]
σ 2

λ2
>β +κλ2

and bλ2 <0. !
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Proof of Corollary 2. The risk-free rate is obtained by taking the derivative of (B.5) with respect
to αt , evaluating at the equilibrium value of αt =1 and setting it equal to 0. !

Lemma B.3. The drift of the state-price density is given by

µπ t =−rt −λ⊤
t

J̄ (πt )
πt

(B.13)

=−β−µCt +γ σ 2 −
∑

j=1,2

λj tEνj

[
e
bµj Zjt −1

]
. (B.14)

Proof. Statement (B.13) follows from the absence of arbitrage. Statement (B.14) follows from
Theorem 1, specifically,

λ⊤
t

J̄ (πt )
πt

=
∑

j=1,2

λj tEνj

[
e
bµj Zjt −1

]
,

and from the expression for rt in Corollary 2. !

B.3 General Equity Pricing Results
We first establish a no-arbitrage restriction on the price today of a single dividend payment in τ

periods.

Lemma B.4. Let Ht =H (Dt ,µt ,λt ,τ ) denote the time-t price of a single future dividend
payment at time t +τ :

H (Dt ,µt ,λt ,τ )=Et

[
πt+τ

πt
Dt+τ

]
. (B.15)

Then,
dHt

Ht
=µH (τ ),t dt +σH (τ ),t dBt +

∑

j=1,2

Jj (Ht )
Ht

dNjt (B.16)

for scalar processes µH (τ ),t and (row) vector processes σH (τ ),t . Moreover,

µπ t +µH (τ ),t +σπ tσ
⊤
H (τ ),t +

1
πtHt

λ⊤
t J̄ (πtHt )=0. (B.17)

Proof. Equation B.16 is a result of Ito’s lemma and the Markov property of the state variables
and dividends (which implies that H is indeed a function as stated). No-arbitrage implies

πtH (Dt ,λt ,µt ,T − t)=Et [πsH (Ds,λs ,µs,T −s)] for s >t. (B.18)

For the remainder of the argument, we simplify the notation by writing µHt =µH (τ ),t and σHt =
σH (τ ),t . Ito’s lemma applied to πtHt implies

πtHt =π0H0 +
∫ t

0
πsHs

(
µHs +µπs +σπsσ

⊤
Hs

)
ds+

∫ t

0
πsHs (σHs +σπs )dBs

+
∑

j=1,2

∑

0<sij ≤t

(
πsij

Hsij
−π

s−
ij

H
s−
ij

)
, (B.19)
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where sij =inf {s :Njs = i} (namely, the time that the ith type-j jump occurs).Adding and subtracting
the jump compensation term from (B.19) yields:

πtHt =π0H0 +
∫ t

0
πsHs

⎛

⎝µHs +µπs +σπsσ
⊤
Hs +

∑

j=1,2

λj
J̄j (πsHs )

πsHs

⎞

⎠ds

︸ ︷︷ ︸
(1)

+
∫ t

0
πsHs (σHs +σπs )dBs

︸ ︷︷ ︸
(2)

+
∑

j=1,2

⎛

⎝
∑

0<sij ≤t

(
πsij

Hsij
−π

s−
ij

H
s−
ij

)
−
∫ t

0
πsHsλj J̄j (πsHs )ds

⎞

⎠

︸ ︷︷ ︸
(3)

. (B.20)

Equation B.18 implies that πtHt is a martingale. Moreover, the terms labeled (2) and (3) on the
right-hand side of (B.20) have zero expectation. Therefore, the term labeled (1) must also equal
zero in expectation. The process πtHt is strictly positive, and given that the equation must hold
for all t , the integrand must equal zero. !

We now prove an extension of Lemma B.4 that holds for the integral of functions H (·,τ ) over
τ .

Lemma B.5. Define

F (Dt ,µt ,λt )=
∫ ∞

0
H (Dt ,µt ,λt ,τ )dτ,

assuming this indefinite integral exists. Then

dFt

Ft−
=µFt dt +σF t dBt +

∑

j=1,2

Jj (Ft )
Ft−

dNjt , (B.21)

for a scalar process µFt and a 1×3 vector process σF t , satisfying

µπ t +µFt +
Dt

Ft
+σπ tσ

⊤
F t +λ⊤

t

J̄ (πt Ft )
πt Ft

=0. (B.22)

Proof. First note that (B.21) follows from Ito’s lemma. We will show (B.22) using the
corresponding result for H , Lemma B.4.38 By applying Ito’s lemma applied to both F and H , we
find

F (Dt ,µt ,λt )σF t =
∫ ∞

0
H (Dt ,µt ,λt ,τ )σH (τ ),t dτ,

and

J̄ (πt F (Dt ,µt ,λt ))=
∫ ∞

0
J̄ (πtH (Dt ,µt ,λt ,τ ))dτ.

38 It is also possible to show (B.22) directly along the same lines as Lemma B.4.
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Moreover, because H is a function of τ , but F is not,

F (Dt ,µt ,λt )µFt =
∫ ∞

0

(
H (Dt ,λt ,µt ,τ )µH (τ ),t −

∂

∂τ
H (Dt ,µtλt ,τ )

)
dτ. (B.23)

Equation B.23 can be rigorously derived by applying Ito’s lemma to F , and differentiating under
the integral sign. Namely,

F (Dt ,µt ,λt )µFt =
∫ ∞

0

⎛

⎝Ht (τ )µDt +
∑

j=1,2

∂

∂λj
Ht (τ )(λ̄j −λj )

+
∑

j=1,2

∂

∂µj
Ht (τ )µj +

1
2

∑

j=1,2

∂2

∂λ2
j

Ht (τ )

⎞

⎠dτ,

where Ht (τ )=H (Dt ,µt ,λt ,τ ). We then observe that µH (τ ),t is equal to the integrand, plus
∂
∂τ H (Dt ,µtλt ,τ ).

Finally,

−
∫ ∞

0

∂

∂τ
H (Dt ,µt ,λt ,τ )dτ =H (Dt ,µt ,λt ,0)=Dt .

The first equality holds because Ht (τ ) must equal zero in the limit as τ approaches infinity;
otherwise, the indefinite integral would not exist as assumed. The second equality follows from
no-arbitrage. Equation B.22 then follows from Lemma B.4. !

Consider the instantaneous expected return described in Section 1.3. Because we only need to
assume a Markov structure, we will use the superscript D to denote the fact that we are describing
returns on a general dividend claim, as opposed to, say, the market portfolio. The following lemma
contains a convenient and general characterization of the risk premium in economies with jumps.

Lemma B.6. Let rD
t denote the instantaneous expected return

rD
t =µFt +

Dt

Ft
+λ⊤

t

J̄ (Ft )
Ft

. (B.24)

Then

rD
t −rt =−σπ tσ

⊤
F t −

∑

j=1,2

λj tEνj

[Jj (Ft )
Ft

Jj (πt )
πt

]
. (B.25)

Proof. We start with the result in Lemma B.5, substituting in for µπ t using (B.13):

−rt −λ⊤
t

J̄ (πt )
πt︸ ︷︷ ︸

µπ t

+µFt +
Dt

Ft
+σπ tσ

⊤
F t +λ⊤

t

J̄ (πt Ft )
πt Ft

=0.

We then substitute in for µFt + Dt
Ft

using the definition of rD
t , (B.24), and add and subtract λ⊤

t
J̄ (Ft )

Ft
to find

rD
t −rt +σπ tσ

⊤
F t −λ⊤

t

(
J̄ (πt )

πt
+

J̄ (Ft )
Ft

− J̄ (πt Ft )
πt Ft

)

=0. (B.26)

Finally note that by definition of J ,

Eνj

[Jj (Ft )
Ft

Jj (πt )
πt

]
=

J̄j (Ftπt )
Ftπt

− J̄j (Ft )
Ft

− J̄j (πt )
πt

,for j =1,2.

The result follows. !
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B.4 Pricing the Aggregate Market
We now specialize to the case of the market portfolio as defined in the main text.

Lemma B.7. Assume dividends follow the process (13) with the state-price density described
in Appendix B.2. The function H , defined in (B.15), takes an exponential form:

H (Dt ,µt ,λt ,τ )=Dt exp
{
aφ (τ )+bφµ(τ )⊤µt +bφλ(τ )⊤λt

}
, (B.27)

where bφµ =[bφµ1 , bφµ2 ]⊤ and bφλ =[bφλ1 , bφλ2 ]⊤ and

bφµj
(τ )=

φ−1
κµj

(1−e
−κµj τ

), (B.28)

dbφλj

dτ
=

1
2
σ 2

λj
bφλj

(τ )2 +
(
bλj

σ 2
λj

−κλj

)
bφλj

(τ )+Eνj

[
e
bµj Zjt

(
e
bφµj

(τ )Zjt −1
)]

, (B.29)

daφ

dτ
= µ̄D −µ̄C −β +γ σ 2 (1−φ)+bφλ(τ )⊤(κλ ∗ λ̄). (B.30)

The boundary conditions are bφλj
(0)=aφ (0)=0.

Proof. First note that the boundary conditions follow from H (Dt ,µt ,λt ,0)=Dt . As earlier, we
write Ht =H (Dt ,µt ,λt ,τ ) to simplify notation. To prove the remaining statements, we conjecture
the exponential form (B.27). Recall that

dHt

Ht
=µH (τ ),t dt +σH (τ ),t dBt +

∑

j=1,2

Jj (Ht )
Ht

dNjt

as in Lemma B.4. Ito’s lemma applied to (B.27) implies

J̄j (πtHt )
πtHt

=Eνj

[

e

(
bµj +bµj φ (τ )

)
Zjt −1

]

, (B.31)

µH (τ ),t =
1
H

(
∂H

∂D
µDtDt +

∂H

∂λ
(κλ ∗

(
λ̄−λt

)
)− ∂H

∂µ
(κµ ∗µt )−

∂H

∂τ
+

1
2

(
∂2H

∂λ2

)
(σ 2

λ ∗λt )
)

=µDt +bφλ(τ )⊤
(
κλ ∗

(
λ̄−λt

))
−bφµ(τ )⊤

(
κµ ∗µt

)

−
(

daφ

dτ
+λ⊤

t

dbφλ

dτ
+µ⊤

t

dbφµ

dτ

)
+

1
2

(
bφλ(τ )2

)⊤(
σ 2

λ ∗λt

)
, (B.32)

and

σH (τ ),t =
1
H

(
∂H

∂D

[
Dtφσ, 0, 0

]
+

∂H

∂λ1

[
0, σλ1

√
λ1t , 0

]
+

∂H

∂λ2

[
0, 0, σλ2

√
λ2t

])

=
[
φσ, bφλ1 (τ )σλ1

√
λ1t , bφλ2 (τ )σλ2

√
λ2t

]
. (B.33)

We now apply Lemma B.4, substituting (B.31–B.33), along with state-price density expressions
(8) and (B.14) into the no-arbitrage condition (B.17) to find

µDt +bφλ(τ )⊤
(
κλ ∗

(
λ̄−λt

))
−bφµ(τ )⊤

(
κµ ∗µt

)
+

1
2

(
bφλ(τ )2

)⊤(
σ 2

λ ∗λt

)

+bφλ(τ )⊤
(
bλ ∗σ 2

λ ∗λt

)
−β−µCt +γ σ 2(1−φ)+

∑

j=1,2

λj tEνj

[

e

(
bµj +bφµj

(τ )
)

Zjt −e
bµj Zjt

]

−
(

daφ

dτ
+λ⊤

t

dbφλ

dτ
+µ⊤

t

dbφµ

dτ

)
=0.
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Matching the terms multiplying µj implies

dbφµj

dτ
=−κµj

bφj µ +(φ−1);

Equation B.28 then follows from the boundary condition. Matching the terms multiplying λj

implies (B.29) and matching the constant terms implies (B.30). This also verifies the conjectured
form for H . !

Under our assumptions, the solutions bφλj
(τ ) have finite limits.

Lemma B.8.
lim

τ→∞
bφλj

(τ )=− 1

σ 2
λj

(
ζφj

−κλj
+bλj

σ 2
λj

)
, (B.34)

where

ζφj
=

√√√√√(bλj
σ 2

λj
−κλj

)2 −2Eνj

⎡

⎣e

(
bµj + φ−1

κµj

)
Zj −e

bµj Zj

⎤

⎦σ 2
λj

. (B.35)

Moreover, limτ→∞bφλ1 (τ )<0 and limτ→∞bφλ2 (τ )>0.

Proof. Let b̄φλj
denote the limit, should it exist. In the limit, small changes in τ do not change

bφλj
(τ ). Taking the limit of both sides of (17) implies that b̄φλj

must satisfy the quadratic equation

0=
1
2
σ 2

λj
b̄2

φλj
+(bλj

σ 2
λj

−κλj
)b̄φλj

+Eνj

⎡

⎣e

(
bµj + φ−1

κµj

)
Zjt −e

bµj Zjt

⎤

⎦.

Equation B.34 gives a solution to this equation.39

To prove that the limits have the signs given in the lemma, note that Z1 <0 implies that

Eν1

[

e

(
bµ1 + φ−1

κµ1

)
Z1 −ebµ1 Z1

]

<0.

Therefore,
ζφ1 > |bλ1σ 2

λ1
−κλ1 |.

Therefore, by (B.34) for j =1, limτ→∞bφλ1 (τ )<0.
Now, note that Z2 >0 implies that

Eν2

[

e

(
bµ2 + φ−1

κµ2

)
Z2 −ebµ2 Z2

]

>0.

Therefore,
ζφ2 < |bλ2σ 2

λ2
−κλ2 |.

(Assumption 2 implies that ζφ2 is real-valued.) Moreover, bλ2 <0 (Theorem 1), so

0<ζφ2 <κλ2 −bλ2σ 2
λ2

.

Therefore, by (B.34) for j =2, limτ→∞bφλ2 (τ )>0. !

39 We use the same procedure to select which of the two solutions of the quadratic to use as we used inAppendix B.2.
That is, we chose the one in which rare events do not affect prices if there are in fact no rare events. We have
verified that (B.34) does indeed correspond to the limit when the ordinary differential equation (17) is solved
numerically.
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While we cannot solve for bφλj
(τ ) in closed form, we can obtain closed-form solutions for

the related problem of instantaneous disasters. The difference between the equations is that the
last term in (B.29) becomes a constant, rather than a decreasing function of τ . We can use what
we know about the instantaneous-disaster case to put bounds on the solution for our current case.
These bounds allow us to establish monotonicity.

Lemma B.9. Fix τ ∗ >0. Let bφλj
∗(τ ) be the solution to

db∗
φλj

dτ
=

1
2
σ 2

λj
b∗

φλj
(τ )2 +

(
bλj

σ 2
λj

−κλj

)
b∗

φλj
(τ )+Eνj

[
e
bµj Zjt

(
e
bφµj

(τ∗)Zjt −1
)]

(B.36)

with boundary condition bφλj
∗(0)=0. Then b∗

φλ1
(τ )<bφλ1 (τ )<0 and b∗

φλ2
(τ )>bφλ2 (τ )>0 for

τ such that 0<τ <τ ∗.

Proof. Consider j =1. It follows from (B.29) and the boundary condition that

dbφλ1

dτ

∣∣∣∣
τ=0

= 0,

d2bφλ1

dτ 2

∣∣∣∣∣
τ=0

< 0.

It follows from (B.36) that
db∗

φλ1

dτ

∣∣∣∣∣
τ=0

<0.

Therefore, because bφλ1 (0)=b∗
φλ1

(0)=0, there exists τ >0 but sufficiently small such that
b∗

φλ1
(τ )<bφλ1 (τ )<0 for τ <τ .

Assume, by contradiction, that there exists a τ <τ ∗ such thatbφλ1 (τ )≤b∗
φλ1

(τ ). Becausebφλ1 (τ )
and b∗

φλ1
(τ ) are smooth functions, there exists a τ̂ <τ ∗ such that b∗

φλ1
(τ̂ )=bφλ1 (τ̂ ) and such

that b∗
φλ1

(τ )−bφλ1 (τ ) is increasing in a neighborhood of τ̂ . However, because bφµ1 (τ ∗)Z1t <

bφµ1 (τ̂ )Z1t , it follows from (B.36) and (B.29) that

db∗
φλ1

dτ

∣∣∣∣∣
τ=τ̂

<
dbφλ1

dτ

∣∣∣∣
τ=τ̂

,

which is a contradiction. Similar reasoning shows that bφλ1 (τ )<0 and the results for j =2.40 !

Corollary B.10. The function bφλ1 (τ ) is negative and decreasing. The function bφλ2 (τ ) is
positive and increasing.

Proof. The results bφλ1 (τ )<0 and bφλ2 (τ )>0 are shown in the lemma above. Consider j =1
and fix τ ∗ >0. Define b∗

φλ1
(τ ) as in Lemma B.9. Because db∗

φλ1
/dτ <0 (see Wachter 2013), it

follows from (B.36) that

1
2
σ 2

λ1
b∗

φλ1
(τ )2 +

(
bλ1σ 2

λ1
−κλ1

)
b∗

φλ1
(τ )+Eν1

[
ebµ1 Z1t

(
e
bφµ1

(τ∗)Z1t −1
)]

<0. (B.37)

40 For j =2, we need Assumption 2 to guarantee that the function exists and is well behaved.
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This inequality must hold for the entire range of values b∗
φλ1

(τ ) for τ between 0 and infinity. That
is,

1
2
σ 2

λ1
x2 +

(
bλ1σ 2

λ1
−κλ1

)
x+Eν1

[
ebµ1 Z1t

(
e
bφµ1

(τ∗)Z1t −1
)]

<0 x ∈ (inf b∗
φλ1

(τ ),0).

Moreover, by Lemma B.9,

inf b∗
φλ1

(τ )<b∗
φλ1

(τ ∗)<bφλ1 (τ ∗).

Thus,
1
2
σ 2

λ1
b∗

φλ1
(τ ∗)2 +

(
bλ1σ 2

λ1
−κλ1

)
b∗

φλ1
(τ ∗)+Eν1

[
ebµ1 Z1t

(
e
bφµ1

(τ∗)Z1t −1
)]

<0.

It follows from (B.29) that the left-hand side is equal to dbφλ1/dτ
∣∣
τ=τ∗ , and therefore that bφλ1 (τ )

is a decreasing function of τ . The result follows because τ ∗ is arbitrary. The same reasoning works
for j =2. !

The following lemma shows that the integral determining the price of the market converges.
The logic is similar to that for convergence of a geometric sum.

Lemma B.11.

lim
τ̄→∞

∫ τ̄

0
H (D,µ,λ,τ )dτ <∞

for all D>0, vectors λ with both elements ≥0 and all µjt .

Proof. Define b̄φλ2 to be the limit defined in Lemma B.8, and b̄φµ2 to be the limit of bφµ2 (τ )
(the existence of this limit follows immediately from the form of the function). By Corollary B.10,

H (D,µ,λ,τ )≤De
b̄φλ2

λ2t +b̄φµ2
µ2t e

aφ (τ )
,

and thus it suffices to show that

lim
τ̄→∞

∫ τ̄

0
e
aφ (τ )

dτ <∞.

Note that by (18),

aφ (τ )=
(
µ̄D −µ̄C −β +γ σ 2 (1−φ)

)
τ +

∑

j=1,2

κλj
λ̄j

∫ τ

0
bφλj

(u)du.

Now define
āφ = µ̄D −µ̄C −β +γ σ 2 (1−φ)+ b̄φλ2κλ2 λ̄2.

It follows from the fact that bφλ2 (τ )>0 and is increasing (Corollary B.10) that

aφ (τ )≤ āφτ +κλ1 λ̄1

∫ τ

0
bφλ1 (u)du.

Because bφλ1 (τ ) is decreasing, by Assumption 3 and by the equations for the limits in Lemma B.8,
there exists a τ0 such that

āφ +bφλ1 (τ0)κλ1 λ̄1 <0.

Write
∫ τ̄

0
e
aφ (τ )

dτ ≤
∫ τ̄

0
e
āφτ+

∫ τ
0 bφλ1

(u)κλ1
λ̄1du

dτ

=e
āφτ0+

∫ τ0
0 bφλ1

(u)κλ1
λ̄1du

∫ τ̄

0
e
āφ (τ−τ0)+κλ1

λ̄1
∫ τ
τ0

bφλ1
(u)du

dτ

≤e
āφτ0+

∫ τ0
0 bφλ1

(u)κλ1
λ̄1du

∫ τ̄

0
e
āφ (τ−τ0)+κλ1

λ̄1bφλ1
(τ0)(τ−τ0)

dτ,

where the last line follows from the monotonicity of bφλ1 (τ ). Convergence as τ̄ →∞ follows from
the properties of the exponential function. !

1163

 at U
niversity of Pennsylvania on M

ay 20, 2016
http://rfs.oxfordjournals.org/

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/


The Review of Financial Studies / v 29 n 5 2016

Proof of Theorem 3. Note that, by no-arbitrage,

F (Dt ,µt ,λt )=Et

∫ ∞

t

πs

πt
Ds ds,

assuming the right-hand side is well-defined. It follows from Lemma B.7 that H (Dt ,µt ,λt ,τ )=

Et

[
πt+τ
πt

Dτ

]
takes the required form. Lemma B.11 shows that the indefinite integral of these terms

exists, and therefore we can write

F (Dt ,µt ,λt )=
∫ ∞

0
H (Dt ,µt ,λt ,τ )dτ.

The equation for the price-dividend ratio follows immediately from dividing this equation by Dt .!

Proof of Theorem 5. We use the general formula for the risk premium, given in Lemma B.6:

rm
t −rt =−σπ tσ

⊤
F t −

∑

j=1,2

λj tEνj

[Jj (Ft )
Ft

Jj (πt )
πt

]
.

It follows from F (Dt ,µt ,λt )=DtG(µt ,λt ) and Theorem 3 that

σF t =
[
φσ,

1
G

∂G

∂λ1
σλ1

√
λ1t ,

1
G

∂G

∂λ2
σλ2

√
λ2t

]
.

Because dividends do not jump,
Jj (Ft )
Ft−

=
Jj (Gt )
Gt−

.

Substituting in from (B.11) and (B.12) leads to the equation for the equity premium:

rm
t −rt =φγσ 2 −

∑

j=1,2

λj tEνj

[(
e
bµj Zjt −1

)Jj (Gt )
Gt

]
−
∑

j=1,2

λj t
1
Gt

∂G

∂λj
bλj

σ 2
λj

.

!

B.5 Pricing Results for Value and Growth
We first show that the price-dividend ratio for value lies below that of the market. This result does
not depend on our specific assumptions about the dividend process.

Proof of Corollary 9. Consider an asset with dividend stream given by

dDv
s

Dv
s

=µv
Dsdt +φσdBCs,

and µv
Ds = µ̄D +φµ1s , for s ≥ t , and normalize Dv

t to Dt , the dividend on the market. Comparing
the evolution of Dv

s with Ds (given in (13)), it follows that

Dv
s ≤Ds for s ≥ t, (B.38)

with a positive probability that the inequality is strict. Therefore, because state prices are strictly
positive,

Et

∫ ∞

t

πs

πt
Dv

s ds <Et

∫ ∞

t

πs

πt
Ds ds.

Dividing by Dt implies

Et

∫ ∞

t

πs

πt

Dv
s

Dt
ds <E

∫ ∞

t

πs

πt

Ds

Dt
ds.

Because Dv
t =Dt , the left-hand side is the price-dividend ratio on the value claim. By the same

reason, the right-hand side is the price-dividend ratio on the market. !
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This result does not require that we define the value claim at time t as an asset having the same
dividend as the market. Normalizing the dividends to be equal is a technical step within the proof,
not an assumption. The price-dividend ratio on the value claim is determined only by future growth
in dividends and in the state-price density, not by the level of current dividends.

It is convenient to state the pricing equations for the value claim. This result follows from an
argument directly analogous to that of Theorem 3.

Corollary B.12. Let Fv(Dt ,µt ,λt ) denote the price of the value sector, namely, the claim to
cash flows satisfying (25), where Dt is the current dividend.

Fv (Dt ,µt ,λt )=
∫ ∞

0
Hv (Dt ,µt ,λt ,τ )dτ, (B.39)

where
Hv(Dt ,µt ,λt ,τ )=Dt exp

{
av

φ (τ )+bv
φµ(τ )⊤µt +bv

φλ(τ )⊤λt

}
, (B.40)

bv
φµ1

(τ )=
φ−1
κµ1

(
1−e−κµ1 τ ), (B.41)

bv
φµ2

(τ )=− 1
κµ2

(
1−e−κµ2 τ ), (B.42)

while bv
φλj

(τ ) (for j =1,2) and aφ (τ ) satisfy

dbv
φλj

dτ
=

1
2
σ 2

λj
bv

φλj
(τ )2 +

(
bλj

σ 2
λj

−κλj

)
bv

φλj
(τ )+Eνj

[
e
bµj Zjt

(
e
bv
φµj

(τ )Zjt −1
)]

, (B.43)

dav
φ

dτ
= µ̄D −µ̄C −β +γ σ 2 (1−φ)+bv

φλj
(τ )⊤(κλ ∗ λ̄) (B.44)

with boundary conditions bv
φλj

(0)=av
φ (0)=0. Furthermore, the price-dividend ratio on the value

sector is given by

Gv(µt ,λt )=
∫ ∞

0
exp

(
av

φ (τ )+bv
φµ(τ )⊤µt +bv

φλ
(τ )⊤λt

)
dτ. (B.45)

Corollary B.13. The functions bv
φλj

(τ ) are negative and decreasing.

Proof. See Lemma B.9 and Corollary B.10. !
We now show that price of the growth claim is increasing in µ1 and µ2, decreasing in λ1 and

increasing in λ2 (Corollary 14 in the main text), using the corresponding results for the market and
the value sector.

Proof of Corollary 14. It follows from the definition of the growth sector price,

F
g
t =Ft −Fv

t ,

that
∂F

g
t

∂µjt
=

∂Ft

∂µjt
− ∂Fv

t

∂µjt
(B.46)

and
∂F

g
t

∂λj t
=

∂Ft

∂λj t
− ∂Fv

t

∂λj t
.

It follows from Corollary 4 that ∂Ft
∂µ2t

>0 and from Corollary 10 that
∂Fv

t
∂µ2t

<0, and similarly for
derivatives with respect to λ2t . Therefore, the price of the growth sector is increasing in µ2t and
λ2t .

1165

 at U
niversity of Pennsylvania on M

ay 20, 2016
http://rfs.oxfordjournals.org/

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/


The Review of Financial Studies / v 29 n 5 2016

Now consider j =1. Theorem 3 and Corollary B.12 imply that we can rewrite (B.46) as

∂F
g
t

∂µ1t
=
∫ ∞

0
bφµ1 (τ )H (Dt ,µt ,λt ,τ )dτ −

∫ ∞

0
bv

φµ1
(τ )Hv(Dv

t ,µt ,λt ,τ )dτ.

Moreover, bφµ1 (τ )=bv
φµ1

(τ ). Because the dividend at time t +τ on value is less than or equal
to the dividend on the market, and strictly less with positive probability, H (Dt ,µt ,λt ,τ )>
Hv(Dv

t ,µt ,λt ,τ ). The result follows. The same argument works for the derivative with respect to
λ1t . !

C. Return Simulation
This section describes how we simulate returns on the market and the value and growth sectors,
given a simulated series of state variables and one-period observations on dividend growth. We
simulate at a monthly frequency, which is sufficiently fine to capture the joint distribution of
consumption, dividends, and the state variables.

Consider an asset with price process Ft and dividend Dt . The realized return between time t

and t +-t is given by

Rt,t+-t =
Ft+-t +

∫ t+-t
t Ds ds

Ft

(see Duffie 2001, Chapter 6.L). Consider an asset that pays a positive dividend at each point in
time (namely, the market or value claim). Using the approximation Dt+-t-t ≈

∫ t+-t
t Ds ds, we can

compute returns as

Rt,t+-t ≈
Ft+-t +Dt+-t-t

Ft

=

Ft+-t
Dt+-t

+-t

Ft
Dt

Dt+-t

Dt

=
G(µt+-t ,λt+-t )+-t

G(µt ,λt )
Dt+-t

Dt
, (C.1)

where G is the price-dividend ratio on the asset. The price-dividend ratio series is obtained from
the simulated series of state variables using (19) for the market and (28) for value. Note that this
definition of the return makes it unnecessary to have information on either the level of dividends
or the level of prices. Thus, this definition is invariant to whether value is redefined to have the
same dividend at time t as the market.

Because the growth sector does not pay a dividend every period, we cannot use (C.1) to compute
its return. However, its return is implied by the fact that the market is a portfolio of value and
growth. Let Rm

t,t+-t denote the market return and Rv
t,t+-t denote the return on the value sector,

each computed using the relevant quantities in (C.1). Furthermore, recall that Fv
t is the price of

the value sector at time t and Ft is the price of the market. Then,

Rm
t,t+-t ≈

Fv
t

Ft
Rv

t,t+-t +
(

1− Fv
t

Ft

)
R

g
t,t+-t . (C.2)

This equation is approximate rather than exact because the model is formulated in continuous time.
Solving for the growth return in (C.2) yields

R
g
t,t+-t =

1

1− Fv
t

Ft

(
Rm

t,t+-t −
Fv

t

Ft
Rv

t,t+-t

)
. (C.3)

We now assume that the time-t dividend on value and on the market are the same. It follows that
Fv

t

Ft
=

Gv(µt ,λt )
G(µt ,λt )

. (C.4)
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Growth returns can then be computed using the state variable series and returns on value and the
market using (C.3) and (C.4).
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