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1 Introduction

Among the myriad facts that characterize the cross-section of stock returns, the value

premium stands out both for its empirical robustness and the problem it poses for theory.

The value premium is the finding that stocks with high book-to-market ratios (value)

have higher expected returns than stocks with low book-to-market ratios (growth). By

itself, this finding would not constitute a puzzle, for it could be that value firms are more

risky. Such firms would then have high expected returns in equilibrium, which would

simultaneously explain both their high realized returns and their low valuations. The

problem with this otherwise appealing explanation is that value stocks are not riskier

according to conventional measures. Over the postwar period, which is long enough to

measure second moments, value stocks have lower covariance with the market, and lower

standard deviations. And while one could argue that neither definition of risk is appropriate

in a complex world, the challenge still remains to find a measure of risk that does not, in

equilibrium, essentially amount to covariance or standard deviation. Over a decade of

theoretical research on the value premium demonstrates that this is a significant challenge

indeed.

This paper proposes an explanation of the value premium that is not risk-based but

rather based on rare events. We introduce a representative-agent asset pricing model in

which the endowment is subject to positive and negative events that are much larger than

what would be expected under a normal distribution. One of our theoretical contributions

is to show an asymmetry in how disasters and booms affect average returns. The possibility

of a disaster raises risk premia. While realized returns are lower in samples with disasters

than in those without, these two types of samples are similar in that, in both of them,

an econometrician would calculate a positive disaster premium. The possibility of a boom

also raises risk premia, because it too is a source of risk. Samples with and without booms

look different, however. The econometrician would calculate a positive boom premium in

the first type of sample but a negative boom premium in the second. We use this simple
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theoretical observation to account for the value premium. In our model, the growth sector

consists of stocks that capture the benefits of a large consumption boom. We show that a

a value premium will be observed if booms were expected but did not occur.

What is the source of the asymmetry between disasters and booms? Why, in other

words, is the measured premium for bearing boom risk positive in population but negative

in samples without rare events? Consider first the case of a risk-neutral investor, and

assume (reasonably) that asset prices rise in booms and fall in disasters. In order to hold

an asset exposed to disasters, the risk-neutral investor must be compensated by higher

realized returns in the event a disaster does not occur. Likewise, when holding an asset

exposed to booms, he is willing to tolerate lower returns in the event the boom does

not occur. If returns were also higher when booms did not occur, no-arbitrage would be

violated.

Now consider the more realistic case of a risk-averse investor. This investor requires a

premium to hold assets exposed to disasters. We would thus expect such assets to have

higher returns, even in samples that contain the “correct” number of disasters. In samples

that, ex post, have no disasters, we would expect these assets to have yet higher returns

because of the no-arbitrage effect discussed in the previous paragraph. As a result, the

econometrician would measure a positive disaster premium in both types of samples: the

true premium is positive, and the observed premium in no-disaster samples is also positive.

As in the case of disasters, the risk-averse investor requires a positive risk premium

to hold assets exposed to booms. However, by no-arbitrage, these assets must have lower

returns in samples where booms do not occur. How can these two statements be reconciled?

It must be that the higher returns due to the risk premium come about when the boom itself

is realized. Samples with and without booms look qualitatively different: assets exposed

to booms have higher true expected returns, but, on average, lower realized returns when

booms do not occur.

This reasoning explains why one should expect to observe a negative premium for boom

risk in samples without rare events. However, it says nothing about the magnitude of the
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effect. To obtain quantitatively relevant results, a second mechanism is important. In our

model, we make the standard assumption of constant relative risk aversion (CRRA), which

leads to stationary rates of return. This standard assumption also implies that boom risk

has a lower price than disaster risk. Because any risk premium for booms works against our

main mechanism, this second source of asymmetry between disasters and booms combines

with the first to produce an economically significant value premium.

Specifically, in our calibrated model, the average excess market return is 5%. However,

the average return on growth stocks is only 3%, while the average return on value stocks

is 6%. Moreover, our model also explains why value stocks will have strong abnormal

performance, and growth poor abnormal performance relative to the CAPM. The relative

abnormal performance of value stocks implied by our model is 5%, as it is in the data.

Indeed, our model naturally explains aspects of the data on value and growth that have

posed a challenge to previous general equilibrium models. Namely:

1. Growth stocks have higher variance and covariance with the market despite having

lower observed returns.

2. Growth stocks have yet higher covariances with the market, and greater returns than

value stocks, during periods of high market valuations (for example, the late 1990s).

3. The value-minus-growth return, unlike the market excess return, cannot be predicted

by the price-dividend ratio. It can however be predicted by the value spread.

Moreover, while a full explanation of skewness puzzles is outside the scope of this study,

our model does imply that high valuation stocks have high skewness and low expected

returns, as in the data. Our model also implies that assets with high “upside” betas and

low “downside” betas also have low excess returns, as in the data.

In explaining these facts, we tie our hands by assuming that value and growth cash

flows have the same exposure to disaster risk. While differential exposure is plausible and

in the spirit of the model, we assume it away to focus on our main mechanism. Moreover,
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we assume that booms affect consumption as well as dividends; this implies boom risk is

priced, and this works against us in finding a value premium.

Finally, because of the presence of disasters, the model explains a high equity premium

and equity volatility, along with low volatility of consumption growth. The model achieves

this with a risk aversion coefficient of three. Low risk aversion helps in explaining the value

puzzle in our setting; if risk aversion were too high, growth would carry a higher premium

in population, and we would not be able to match low observed returns over the sample.

The model generates realistic volatility through the mechanism of time-varying disaster and

boom risk, combined with recursive preferences. Without this mechanism, equity claims

would have counterfactually low volatility during normal times.

Thus far the literature has focused on one-sided rare events, namely disasters, to explain

the equity premium. We show however, that the presence of booms has a large affect on the

cross-section if some assets are exposed to them and some are not. That is, by introducing

booms as well as disasters, one can explain not only the equity premium puzzle but the

value puzzle as well.

Relation to the prior literature

In our focus on the underlying dynamics separating value and growth, our model follows a

substantial literature that explicitly models the cash flow dynamics of firms, or sectors, and

how these relate to risk premia in the cross-section (Ai and Kiku (2013), Ai, Croce, and Li

(2013), Berk, Green, and Naik (1999), Carlson, Fisher, and Giammarino (2004), Gârleanu,

Kogan, and Panageas (2012), Gomes, Kogan, and Zhang (2003), Kogan, Papanikolaou, and

Stoffman (2013), Novy-Marx (2010), Zhang (2005)). These papers show how endogenous

investment dynamics can lead to a value premium. Ultimately, however, the value premium

arises in these models because of greater risk. Thus these models do not explain the

observed pattern in variances and covariances. A second branch of the literature relates

cash flow dynamics of portfolios, as opposed to underlying firms, to risk premia (Bansal,

Dittmar, and Lundblad (2005), Da (2009), Hansen, Heaton, and Li (2008), Kiku (2006)).
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This literature finds that dividends on the value portfolio are more correlated with a long-

run component of consumption than dividends and returns on the growth portfolio. In

the context of a model where risk to this long-run component is priced (Bansal and Yaron

(2004)) this covariance leads to a higher premium for value. However, for this long-run

component to be an important source of risk in equilibrium, it also must be present in

the market portfolio, and it must be an important source of variation in these returns

themselves. Again, this would seem to imply, counterfactually, that the covariance with

the market return and volatility of returns would be greater for value than for growth.

Moreover, if the long-run component of consumption growth is an important source of

risk in the market portfolio, consumption growth should be forecastable by stock prices;

however, it is not (Beeler and Campbell (2012)).

To capture the disconnect between risk and return in the cross-section, shocks associated

with growth stocks should have a low price of risk. As shown by Lettau and Wachter

(2007), Santos and Veronesi (2010) and Binsbergen, Brandt, and Koijen (2012), achieving

this pricing poses a challenge for general equilibrium models.1 Kogan and Papanikolaou

(2013) endogenously generate a cross-section of firms through differences in investment

opportunities, but, like Lettau and Wachter, they assume an exogenous stochastic discount

factor. Papanikolaou (2011) does present an equilibrium model in which investment shocks

have a negative price of risk. This is achieved by assuming that the representative agent

has a preference for late resolution of uncertainty. While helpful for explaining the cross-

section, this assumption implies an equity premium that is counterfactually low. In our

model, growth stocks are exposed to a source of risk that with a price that is (endogenously)

small. Nonetheless, our model has a reasonable equity premium.

1Campbell and Vuolteenaho (2004) and Lettau and Wachter (2007) consider the role of duration in

generating a value premium when discount rate shocks carry a zero or negative price. Campbell and

Vuolteenaho use a partial-equilibrium ICAPM while Lettau and Wachter exogenously specify the stochastic

discount factor. McQuade (2013) shows that stochastic volatility in production can generate a value

premium, depending on how the risk of volatility is priced.
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Our model features rare disasters, as do models of Rietz (1988), Longstaff and Piazzesi

(2004), Veronesi (2004) and Barro (2006). Time-variation in disaster risk is the primary

driver of stock market volatility, and in this our paper is similar to Gabaix (2012), Gourio

(2012) and Wachter (2013). These papers do not study rare booms. Our rare booms are

similar to technological innovations, modeled by Pástor and Veronesi (2009), and Jovanovic

and Rousseau (2003).2 Bekaert and Engstrom (2013) also assume a two-sided risk structure,

but propose a model of the representative agent motivated by habit formation. These

papers do not address the cross-section of stock returns however.

The remainder of the paper is organized as follows. Section 2 describes and solves the

model. Section 3 discusses the model’s quantitative implications for risk and return of value

and growth firms. Section 4 looks at further implications of our model’s mechanism, and

how these fare in the data. Section 5 concludes.

2 Model

2.1 Endowment and preferences

We assume an endowment economy with an infinitely-lived representative agent. Aggregate

consumption (the endowment) follows a diffusion process with time-varying drift:

dCt
Ct

= µCt dt+ σdBCt, (1)

where BCt is a standard Brownian motion. The drift of the consumption process is given

by

µCt = µ̄C + µ1t + µ2t, (2)

2Pástor and Veronesi (2009) show how the transition from idiosyncratic to systematic risk can explain

time series patterns of returns in innovative firms around technological revolutions. In the present paper, we

assume for simplicity that the risk of the technology is systematic from the start. Jovanovic and Rousseau

(2003) show how technological revolutions can have long-lived effects, in that the firms that capitalize on

such revolutions continue to have high market capitalization in a manner consistent with our model.

6



where

dµjt = −κµjµjtdt+ ZjtdNjt, (3)

for j = 1, 2. Rare events are captured by the Poisson variables Njt. Absent rare events, the

drift rate of consumption is µ̄C and the volatility is σc. This model allows for consumption

to adjust smoothly as in the data (see Nakamura, Steinsson, Barro, and Ursúa (2013)), but

yet to undergo periods of extreme growth rates in either direction.

We assume Z1t < 0 and Z2t > 0. Namely, the N1t represents disasters, while N2t

represents booms. Separating disasters and booms in this way will prove useful in the

theoretical results that follow. Let ν1 denote the (time-invariant) disaster distribution and

ν2 the boom distribution. We write Eνj to denote expectations taken over the distribution

νj.

We let λjt denote the intensity of Njt. We will refer to λjt as the probability of rare

event j in what follows; given our calibration, the intensity is a good approximation of the

annual probability. We assume λjt follows the process

dλjt = κλj(λ̄j − λjt) dt+ σλj
√
λjt dBλjt, j = 1, 2, (4)

where the Bλjt are independent Brownian motions that are each independent of BCt. For

convenience, we now define some vector notation: let λt = [λ1t, λ2t]
>, µt = [µ1t, µ2t]

>,

Bλt = [Bλ1t, Bλ2t]
> and Bt = [BCt, B

>
λt]
>.

We assume the continuous-time analogue of the utility function defined by Epstein and

Zin (1989) and Weil (1990), that generalizes power utility to allow for preferences over the

timing of the resolution of uncertainty. The continuous-time version is formulated by Duffie

and Epstein (1992). We assume that the elasticity of intertemporal substitution (EIS) is

equal to one. That is, the utility function Vt for the representative agent is defined using

the following recursion:

Vt = Et

∫ ∞
t

f(Cs, Vs) ds, (5)

where

f(Ct, Vt) = β(1− γ)Vt

(
logCt −

1

1− γ
log((1− γ)Vt)

)
. (6)
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The parameter γ represents relative risk aversion and β the rate of time preference. The

assumption of EIS equal to 1 leads to exact expressions that are available in closed-form

up to ordinary differential equations.3

2.2 The state-price density

We start by establishing how the various sources of risk are priced in the economy. We

use the notation Jj(·) to denote how a process changes in response to a rare event of type

j. For example, for the state-price density πt, Jj(πt) = πt − πt− if a type-j jump occurs

at time t. In our complete-markets endowment economy, the state-price density represents

the marginal utility of the representative agent.

Theorem 1. The state-price density πt follows the process

dπt
πt−

= µπtdt+ σπtdBt +
∑
j=1,2

Jj(πt)
πt−

dNjt, (7)

where

σπt =
[
−γσ, bλ1σλ1

√
λ1t, bλ2σλ2

√
λ2t

]
, (8)

and

Jj(πt)
πt

= ebµjZjt − 1 (9)

bµj =
1− γ
κµj + β

, (10)

bλj =
1

σ2
λj

(
β + κλj −

√(
β + κλj

)2 − 2Eνj
[
ebµjZjt − 1

]
σ2
λj

)
, (11)

for j = 1, 2. Moreover, for γ > 1, bλ1 > 0, bλ2 < 0, and bµj < 0 for j = 1, 2.

Proof. See Appendix B.2.

3Using log-linearization, Eraker and Shaliastovich (2008) and Benzoni, Collin-Dufresne, and Goldstein

(2011) find approximate solutions to related continuous-time jump-diffusion models when the EIS is not

equal to one.
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Equations 9 and 10 together imply that marginal utility jumps up in a disaster and

down in a boom, with the upward jump larger than the downward jump for the same size

shock Zjt. Equation 8 shows that changes in the rare event probabilities λjt also affect

marginal utility: marginal utility rises when the probability of a disaster rises, and falls

when the probability of a boom rises. All else equal, marginal utility rises more in the case

of a disaster than it falls in the case of a boom.

Because the EIS is equal to 1, and because only expected consumption (not realized

consumption) is subject to jumps, the riskfree rate in this economy is standard.

Corollary 2. Let rt denote the instantaneous risk-free rate in this economy. Then

rt = β + µCt − γσ2. (12)

Proof. See Appendix B.2

Note that only µ1t and µ2t effect the riskfree rate, not the rare event probabilities.

Looking ahead, Table 1 summarizes the effects of state variables on prices and returns. We

derive these results in the sections that follow.

2.3 The aggregate market

Here, we derive results for the price-dividend ratio and the equity premium on the aggregate

market. Unless otherwise stated, proofs can be found in Appendix B.4.

Let Dt denote the dividend on the aggregate market. Assume that dividends follow the

process

dDt

Dt

= µDt dt+ φσ dBCt, (13)

where

µDt = µ̄D + φµ1t + φµ2t.

This structure allows dividends to respond by a greater amount than consumption to booms

and disasters. For simplicity, we assume that the same parameter φ governs the dividend
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response to normal shocks, booms and disasters. This φ is analogous to leverage as in Abel

(1999), and we will refer to it as leverage in what follows.

Valuation

Our first result gives the formula for the price of the aggregate market. By no-arbitrage,

F (Dt, µt, λt) = Et

∫ ∞
t

πs
πt
Ds ds,

where πs is the state-price density. Valuing the market amounts to calculating the expec-

tation on the right-hand side.

Theorem 3. Let F (Dt, µt, λt) denote the value of the market portfolio. Then

F (Dt, µt, λt) =

∫ ∞
0

H (Dt, µt, λt, τ) dτ, (14)

where

H(Dt, µt, λt, τ) = Dt exp
{
aφ(τ) + bφµ(τ)>µt + bφλ(τ)>λt

}
, (15)

bφµj(τ) =
φ− 1

κµj

(
1− e−κµj τ

)
, j = 1, 2 (16)

and the remaining terms satisfy

dbφλj
dτ

=
1

2
σ2
λj
bφλj(τ)2 +

(
bλjσ

2
λj
− κλj

)
bφλj(τ) + Eνj

[
ebµjZjt

(
ebφµj (τ)Zjt − 1

)]
(17)

daφ
dτ

= µ̄D − µ̄C − β + γσ2 (1− φ) + bφλ(τ)>
(
κλ ∗ λ̄

)
, (18)

with boundary conditions bφλj(0) = aφ(0) = 0. Furthermore, the price-dividend ratio on the

market portfolio is given by

G(µt, λt) =

∫ ∞
0

exp
{
aφ(τ) + bφµ(τ)>µt + bφλ(τ)>λt

}
dτ. (19)

Here and in what follows, bφµ(τ) = [bφµ1(τ), bφµ2(τ)]> and bφλ(τ) = [bφλ1(τ), bφλ2(τ)]>.

Equation 14 expresses the value of the aggregate market as an integral of prices of zero-

coupon equity claims. H gives the values of these claims as functions of the disaster and
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boom terms µ1t, µ2t, the probabilities of a disaster and boom λ1t, λ2t and the time τ until

the dividend is paid.

These individual dividend prices (and, by extension the price of the market as a whole)

have interpretations based on the primitive parameters. As (16) shows, prices are increasing

in µ1t and µ2t. There is a tradeoff between the effect of expected consumption growth on

future cash flows and on the riskfree rate. Because leverage φ is greater than the EIS

(namely, 1), the cash flow effect dominates and the valuation of the market falls during

disasters and rises during booms. Moreover, the more persistent is the process (the lower

is κµj), the greater is the effect of a change in µjt on prices.4

The probability of rare events also affect prices, but the intuition is more subtle. The

functions bφλ1(τ) and bφλ2(τ) would be identically zero without the last term in the ODE

(17). It is this term that determines the sign of bφλj(τ), and thus how prices respond to

changes in probabilities. We can decompose this last term as follows:

Eνj

[
ebµjZjt

(
ebφµj (τ)Zjt − 1

)]
=

− Eνj
[(
ebµjZjt − 1

) (
1− ebφµj (τ)Zjt

)]
︸ ︷︷ ︸

Risk premium effect

+ Eνj

[
ebφµj (τ)Zjt − 1

]
︸ ︷︷ ︸

Cash flow and riskfree rate effect

. (20)

The first term in (20) is one component of the equity premium, namely, the static rare-event

premium (we discuss this terminology in the next section).5 Because an increase in the

discount rate lowers the price-dividend ratio, this risk premium appears with a negative

sign. The second term is the expected price response if the rare event occurs, representing

the combined effect of changes in expected future cash flows and riskfree rates. Thus the

response of equity values to a change in the rare event probability is determined by a risk

premium effect, and a (joint) cash flow and riskfree rate effect.

These effects have different implications depending on whether the rare event is a dis-

aster or boom. First consider disasters (j = 1). When the risk of a disaster increases, the

4The derivative of (16) with respect to κµj is proportional to (κµjτ + 1)e−κµj τ − 1 which is negative,

because eκµj τ > κµjτ + 1.
5More precisely, this is the static rare-event premium for zero-coupon equity with maturity τ .

11



equity premium increases (the first term in (20) is negative). Expectations of future cash

flows and riskfree rates decrease, with the cash flow effect dominating (the second term in

(20) is also negative). Thus an increase in the disaster probability lowers valuations. Now

consider booms (j = 2). When the probability of a boom increases, the equity premium

increases (the first term in (20) is again negative). Expectations of future cash flows and

riskfree rates increase with the cash flow effect dominating (the second term in (20) is

positive). An increase in the probability of a boom increases the price because the the cash

flow/riskfree rate effect outweighs the risk premium effect.

The following corollary summarizes these results:

Corollary 4. The price-dividend ratio G(µt, λt) is increasing in µjt (for j = 1, 2), decreas-

ing in λ1t and increasing in λ2t.

Proof. The result for µjt follows immediately from the form of the function. The result for

λjt follows from Corollary B.10.

The left panel of Figure 1 shows these coefficients as functions of τ for the calibration

we discuss below. We see that bφµj(τ) are positive and increasing for j = 1, 2, and that they

converge to their limits relatively quickly. This reflects the fact that disasters and booms

are relatively short-lived in our calibration. We also see that bφλ1(τ) is negative while

bφλ2(τ) is positive. Both take a longer time to converge because rare event probabilities are

more persistent than the rare events themselves. Also interesting is the fact that bφλ2(τ) is

so much smaller than bφλ1(τ).6 This occurs because the cash-flow/riskfree rate effect and

the risk premium effect operate in the same direction for disasters but in opposite directions

for booms.

6While we assume in our calibration that booms are somewhat smaller than disasters, this is a generic

result that holds even when booms and disasters are the same size.
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The equity premium

We now turn to the equity premium. For our quantitative results, we will average excess

returns in a simulation, where returns are calculated over a finite time interval that matches

the data. However, we can gain intuition by examining instantaneous (annualized) returns.

By Ito’s Lemma, we can write the price process for the aggregate market as

dFt
Ft−

= µFt dt+ σFt dBt +
∑
j=1,2

Jj(Ft)
Ft−

dNjt,

for some drift term µFt, a (row) vector of diffusion terms σFt, and terms
Jj(Ft)
Ft−

that denote

percent change in price due to the rare event. Note that
Jj(Ft)
Ft−

=
Jj(Gt)
Gt−

, because dividends

themselves do not jump in this model; only the price-dividend ratio does.

The instantaneous expected return is defined as the expected percent price appreciation,

plus the dividend yield. In the notation above,

rmt = µFt +
1

Ft

∑
j=1,2

λjtEνj [Jt(Ft)]︸ ︷︷ ︸
expected price appreciation

+
Dt

Ft
.︸︷︷︸

dividend yield

(21)

Using this characterization of returns, we can calculate the equity premium.

Theorem 5. The the instantaneous equity premium relative to the risk-free rate rt is

rmt − rt = φγσ2 −
∑
j=1,2

λjtEνj

[(
ebµjZjt − 1

) Jj(Gt)

Gt

]
︸ ︷︷ ︸

static rare-event premium

−
∑
j=1,2

λjt
1

Gt

∂G

∂λj
bλjσ

2
λj︸ ︷︷ ︸

λ-premium

. (22)

Theorem 5 divides the equity premium into three components. The first is the standard

term arising from the consumption CAPM (Breenden (1979)). The second component is the

sum of the premia directly attributable to disasters (j = 1) and to booms (j = 2). These

are covariances between state prices and market returns during rare events, multiplied

by probabilities that the rare events occur.7 We call this second term the static rare

7These terms take the form of uncentered second moments, but they are indeed covariances; this is

because the jump occurs instantaneously and so the conditional expected change in the variable is negligible.
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event premium because it is there regardless of whether the probabilities of rare events are

constant or time-varying.8

The third component in (22) represents the compensation the investor requires for

bearing the risk of changes in the rare event probabilities. Accordingly, we call this the

λ-premium. This term can also be divided into the compensation for time-varying disaster

probability (the λ1-premium) and compensation for time-varying boom probability (the

λ2-premium). The following corollary shows that all terms in (22) are positive. A closely

related result is that the increases in both the disaster and the boom probability increase

the equity premium, as indicated in Table 1 and discussed in what follows.9

Corollary 6. 1. The static disaster and boom premiums are positive.

2. The premiums for time-varying disaster and boom probabilities (the λj-premiums) are

also positive.

Proof For Result 1, recall that bµj < 0 for j = 1, 2 (Theorem 1). First consider disasters

(j = 1). Note Z1t < 0, so ebµ1Z1t − 1 > 0. Furthermore, because Gt is increasing in µ1t

(Corollary 4), J1(Gt) < 0. It follows that the static disaster premium is positive. Now

consider booms (j = 2). Because Z2t > 0, ebµ2Z2t − 1 < 0. Because Gt is increasing in µ2t,

J2(Gt) > 0. Therefore the static boom premium is also positive.

To show the second statement, first consider disasters (j = 1). Recall that bλ1 > 0

(Theorem 1). Further, ∂G/∂λ1 < 0 (Corollary 4). For booms (j = 2), each of these

quantities takes the opposite sign. The result follows.

8However, the term “static premium” is somewhat of a misnomer, since even the direct effect of rare

events on the price-dividend ratio is a dynamic one. In a model with time-additive utility, only the instan-

taneous co-movement with consumption would matter for risk premia, not changes to the consumption

distribution. Thus there would only be the CCAPM term under our assumptions.
9While Table 1 shows that there is no effect of µ1t and µ2t on risk premia, there is in fact a second-

order effect that arises from changes in duration of the claims. This size of this effect is negligible in our

calibration.
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The static premia are positive because marginal utilities and valuations move in opposite

directions during rare events: during disasters, marginal utility is high, but valuations are

low while during booms the opposite is true. Thus disasters and booms have a direct

positive impact on the equity premium.

Exposure to disasters and booms also increases the equity premium indirectly through

the dynamic effect of time-varying probabilities. An increase in disaster risk raises marginal

utility and lowers valuations, likewise an increase in boom risk lowers marginal utility and

raises market valuations. Thus exposure to time-varying probabilities of rare events further

increases the equity premium.

Figure 2 (top left panel) shows these terms as a function of the disaster probability

for the calibration discussed later in the paper. The dotted line that is essentially at zero

shows the CCAPM. The dash-dotted line shows the static disaster premium; lying above it

is the full static premium, that includes the premium due to booms. Finally, the solid line

is the full equity premium, which includes the λ-premium. While the λ-premium due to

disasters is substantial, the λ-premium due to booms is extremely small. We discuss this

result further in the next section.10

Observed returns in samples without rare events

We now consider the average return the econometrician would observe in an sample without

rare events. To distinguish these average returns from true population returns, we use the

subscript nj (no jump).11 This average return is simply given by the drift rate in the price,

10This figure also shows that the static boom premium is small. This is not a general result; it arises in

our calibration because booms are smaller than disasters. While booms have a smaller effect on marginal

utility and thus on state prices, they have a larger effect on asset prices because of Jensen’s inequality. If

the leverage parameter φ and risk aversion are equal, and booms and disasters are symmetric, then these

terms would be of the same size. On the other hand, the λ-premium due to booms is smaller than for

disasters, even under these conditions.
11This “ideal” average return is what one would obtain by averaging over an infinite number of samples

which do not contain rare events.
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plus the dividend yield:

rmnj,t = µFt +
Dt

Ft
. (23)

The expression for these average realized returns follows from Theorem 5.

Corollary 7. The average excess market return in a sample without rare events is given

by

rmnj,t − rt = φγσ2 −
∑
j=1,2

λjtEνj

[
ebµjZjt

Jj(Gt)

Gt

]
︸ ︷︷ ︸
observed static rare-event premium

−
∑
j=1,2

λjt
1

Gt

∂G

∂λj
bλjσ

2
λj︸ ︷︷ ︸

λ-premium

. (24)

As in the true risk premium, there are components of the observed premium attributable

to disasters (j = 1) and to booms (j = 2). The premium for time-varying λ risk takes the

same form for both the observed and true premium cases, because rare-event risk varies

whether a rare event occurs or not. It is the static premium, or the premium due to the

rare event itself, that differs.12 It follows immediately from (24) (and indeed, it can be

inferred from the definition (23)), that the observed static premium for disasters is higher

than the true static premium, while the observed static premium for booms is lower. In

fact, for booms it will be sufficiently lower so that the observed static premium is negative:

Corollary 8. The observed static disaster premium in a sample without jumps is positive.

The observed static boom premium in a sample without jumps is negative.

Proof The result follows from (24), from ebµjZjt > 0 and from J1(Gt) < 0 and J2(Gt) > 0

(because prices are increasing in µjt).

We now return to a question raised the introduction: why does the average excess return

associated with booms switch signs depending on whether booms are present in the sample?

12We refer to these as the observed premiums to distinguish them from the true risk premiums (note

that, unlike true risk premiums, they do not in fact represent a return for risk). The terminology “observed

static disaster premium” and “observed static boom premium” is used for convenience, not to suggest that

these terms can in fact be observed separately from other parts of the expected excess return in actual

data.
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Consider first the samples without booms. The intuition in the introduction was based on

no-arbitrage. This intuition is reflected in the very simple proof of Corollary 8. First, the

relevant component of state prices ebµjZjt is positive, regardless of parameter values (this

reflects the absence of arbitrage in the model). Second, during booms, asset prices rise.

The observed (static) boom premium is equal to the negative of the percent change in

asset prices multiplied by the relevant component of the state price. In other words, the

observed premium due to booms must be negative to compensate for the positive returns

when booms are realized; otherwise no-arbitrage would be violated. This effect is mitigated

by risk aversion. The greater is γ, the closer to zero is the observed premium.13 Of course,

as shown in Corollary 6, the true premium due to booms arises from the covariance of state

prices with asset prices and must be positive. This risk premium is realized by the investor

when the boom actually occurs.

We can see the difference between booms and disasters by contrasting the left panels

in Figure 2 with those of Figure 3. Figure 2 shows risk premia as a function of disaster

probability; Figure 3 shows risk premia as a function of boom probability, and hence better

highlights the role of booms. In Figure 2 there is very little difference between true risk

premia and observed risk premia in samples without rare events. In Figure 3, true and

observed risk premia are qualitatively different. The true boom premium is positive, and

increasing in the boom probability, while the observed boom premium is negative, and

decreasing in the probability.

Before leaving the section on risk premia, we note the importance of the asymmetry in

the price of boom versus disaster risk. The discussion above pertains to just the static part

of the premium, not the λ-premium.14 If the λ-premium for booms were large enough it

13More precisely, what matters γ − 1, or more generally, the difference between γ and the inverse of

the EIS. The reason is that the rare events change the consumption distribution rather than consumption

itself. The relevant notion of risk neutrality is thus time-additive utility, in which the agent is indifferent

over the timing of the resolution of uncertainty. In this case, γ = 1 and indeed the static rare-events premia

reduce to price changes.
14This raises the question of why we bother making the rare event probabilities vary at all, since the
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could reduce, or even over-ride our results on the observed static premium. However, the

λ-premium for booms, unlike that for disasters, is negligible. There are two reasons for

this. One is that the price of risk for λ2t is small in magnitude compared to the price of

risk for λ1t, that is bλ1 > −bλ2 . The other is that changes in the probability of boom have

a smaller affect on prices, as explained in the discussion following Theorem 3.

To summarize, this section shows that, while the true premia for both disaster and

boom risk are positive, the observed premium for disaster risk is positive while the observed

premium for boom risk is negative. These results are directly relevant for the cross-section

because, as we will see, value and growth claims differ based on their exposure to these

risks.

2.4 Growth and value sectors

We now turn to the pricing of assets that differ in their exposure to the sources of uncer-

tainty in the economy. See Appendix B.5 for proofs not given below.

The value sector

It makes intuitive sense that firms and industries will differ in their ability to directly profit

from technological progress. For simplicity, we define a sector that does not directly benefit

from a boom, but is otherwise identical to the market. A second sector, one that captures

the benefits of the boom, is simply defined as what remains in the market portfolio after

we subtract the first sector.

Consider an asset with cash flows following the process

dDv
t

Dv
t

= µvDtdt+ φσdBCt, (25)

where µvDt = µ̄D + φµ1t. We use the superscript v to denote “value”. As we will show, this

main effect in the model does not depend on these terms. The answer is given in the introduction: if

the rare event probabilities were constant, than equity volatility would be essentially zero except when

disasters were to take place.
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asset will have a lower ratio of price to fundamentals than the market as a whole. This is

the defining characteristic of value in the data.15

Corollary 9. The price-dividend ratio for value is below that of the market.

Dividend growth for the market is weakly greater than dividend growth for value in

every state of the world, and strictly greater in some states of the world. It follows that

the price-dividend ratio, which is the present discounted value of future dividends scaled

by current dividends, is lower for value than for the market.

Pricing for the value claim is directly analogous to that of the market (Theorem 3).

The price of the claim to the dividend stream (25) is given by

F v (Dv
t , µt, λt) =

∫ ∞
0

Hv (Dv
t , µt, λt, τ) dτ, (26)

where

Hv (Dv
t , µt, λt, τ) = Dv

t exp
{
avφ(τ) + bvφµ(τ)>µt + bvφλ(τ)>λt

}
. (27)

The price-dividend ratio for the value claim is therefore

Gv(µt, λt) =

∫ ∞
0

exp
{
avφ(τ) + bvφµ(τ)>µt + bvφλ(τ)>λt

}
dτ, (28)

with avφ(τ), bvφµ(τ), and bvφλ(τ) given in Appendix B.5. We highlight an important difference

between these terms and their counterparts for the market portfolio. The sensitivity of the

price to booms is given by

bvφµ2
(τ) = − 1

κµ2

(
1− e−κµ2τ

)
. (29)

The analogous term for the market is bφµ2(τ) = φ−1
κµ2

(1− e−κµ2τ ). From (29), we see that

the price of the value claim fluctuates with booms, even though the cash flow process does

not itself depend on booms. The reason is that, when a boom occurs, the riskfree rate rises

15Our assumptions imply that observed dividend growth is only higher for the growth sector if a rare

boom actually occurs. Thus our model is consistent with the results of Chen (2012), who finds relatively

small differences in the measured growth rate on growth stocks as compared to value stocks.
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because the representative agent has a greater desire to borrow. This causes asset prices

to fall. This effect is present for the aggregate market, but it is dominated by the expected

cash flow effect. For the value claim, this is the only effect booms have on prices.

Naturally, the difference in bvφµ2
(τ) carries over to bvφλ2

(τ), which reflects how the price

responds to changes in the probability of a boom. An increase in the probability of a boom

decreases the price of the value claim because the risk premium effect and combined cash

flow and riskfree rate effect work in the same direction.

Corollary 10. The price-dividend ratio for the value claim Gv(µt, λt) is increasing in µ1t,

decreasing in µ2t, and decreasing in the probability of a rare event λjt, for j = 1, 2.

Proof. See Corollaries B.12 and B.13.

Figure 1 compares the coefficients on value with those for the market. We see that

the response of the value claim to disasters and to changes in the disaster probability are

almost indistinguishable. The response for booms is quite different. The function bvφµ2
(τ)

is negative and decreasing in τ , rather than positive and increasing as it is for the market.

It is also about half the magnitude of the market coefficient, because the riskfree rate effect

alone is small compared with the (combined) cash flow and riskfree effect for the market.

We see this also when considering the response of the price of the value claim to changes in

the boom probability. Again, bvφλ2
(τ) is negative and decreasing, and small in magnitude

when compared with the corresponding function for the market.

These results lead directly to formulas for the risk premium on the value claim.

Corollary 11. 1. The value sector premium relative to the risk-free rate rt is

rvt − rt = φγσ2 −
∑
j=1,2

λjtEνj

[(
ebµjZjt − 1

) Jj(Gv
t )

Gv
t

]
−
∑
j=1,2

λjt
1

Gv
t

∂Gv

∂λj
bλjσ

2
λj. (30)

2. The observed premium on the value sector in a sample without rare events is

rvnj,t − rt = φγσ2 −
∑
j=1,2

λjtEνj

[
ebµjZjt

Jj(Gv
t )

Gv
t

]
−
∑
j=1,2

λjt
1

Gv
t

∂Gv

∂λj
bλjσ

2
λj. (31)
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Proof. The result follows from Lemma B.6 and (26). See the proof of Theorem 5 for more

detail.

Corollary 12. 1. The static boom premium for the value sector is negative (it is positive

for the market).

2. The λ2-premium is negative (it is positive for the market).

3. The observed static boom premium for the value sector is positive (it is negative for

the market).

Other components of the risk premium and observed risk premium on value take the

same sign as the market.

Proof. The result follows from Corollary 11 and the same reasoning used to show Corol-

lary 6.

We show the components of the value sector premium next to the market as a function

of disaster probability (Figure 2) and as a function of boom probability (Figure 3). The

difference is most apparent when we consider risk premiums as a function of the boom

probability. For the market portfolio, the static observed boom premium is negative in

samples without rare events. For the value sector, the static observed boom premium

is slightly positive. This reflects the intuition in the introduction: when investors are

expecting booms and they do not occur, the observed returns on assets exposed to booms

will be lower than on assets not exposed to booms (or assets that fall in price when booms

occur). We can see this directly by comparing the left and right figures in Panel B of

Figure 3.

The growth sector

Given this definition of the value sector, the growth sector is defined as the residual. Define

Dg
t to be the dividend on the growth claim and F g

t the price. By definition, Dg
t = Dt−Dv

t ,
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and by no-arbitrage,

F g
t = Ft − F v

t . (32)

Figure 4 shows dividends (Panel A) and prices (Panel B) for value and for the market in

a typical simulation that contains a boom. The dividend on value is normalized to that of

the market at the start of the simulation. When a boom occurs, a wedge opens up between

the market dividend and the value dividend. This wedge is the dividend on the growth

claim.

Figure 4, Panel B shows the price of a claim to the value sector, the market, and the

growth sector. Though the growth sector pays no dividends prior to the boom, it has a

positive price because investors anticipate the possibility of future dividends. When a boom

occurs, the price of the growth claim immediately rises, the value of the aggregate market

also rises, but by less, and the price of the value claim falls slightly. After the boom, the

price of the growth claim and the overall market remain high relative to value, reflecting

permanently higher dividends.16

We can use the basic accounting identity (32) to derive properties of the growth claim:

Corollary 13. The dividend-price ratio for the growth sector is below the dividend-price

ratio for the value sector.

Proof. It follows from the definition of the growth dividend and from the accounting identity

(32) that

Dg
t

F g
t

=
Dt −Dv

t

Ft − F v
t

=
Dt −Dv

t

DtGt −Dv
tG

v
t

=
1

Gv
t

Dt −Dv
t

Dt
Gt
Gvt
−Dv

t

. (33)

Note that 1/Gv
t is the dividend-price ratio on the value claim. Because value has a lower

16The figure also shows prices of all claims rising after the boom; this is because aggregate dividends are

growing.
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price-dividend ratio than the market as a whole (Corollary 9), Gt
Gvt

> 1. Furthermore,

Dt > Dv
t . Therefore, (Dt −Dv

t )/(Dt
Gt
Gvt
−Dv

t ) < 1. The result follows.

Corollary 14. The price of the growth sector is increasing in µ1, decreasing in λ1, and

increasing in µ2 and λ2.

It is not surprising that the price of the growth claim is increasing in the probability and

expected size of a boom. Less obvious is the fact that growth is also exposed to the risk of a

disaster. Prior to a boom, growth has no cash flows to fall in the case of disaster. However,

after a boom takes place, the cash flows that accrue to growth fall by the same percentage

amount in the event of disaster as the rest of the dividends in the economy. Anticipating

this, investors price the effect of a disaster into growth stocks before the boom occurs.

Finally, a concern one might have with this model is whether the size of the value sector

relative to the market is non-stationary. It might seem that the value sector would grow

ever smaller as a proportion of the market. This would be a problem, as the size of the

value sector in the data does not apear to be trending downward.

It turns out that there is a simple way to avoid the problem of non-stationarity. At

each time t, we assume that a new value sector is created so that the dividend on the value

claim is equal to the dividend of the market.17 The price of this value sector at each time

t is still the no-arbitrage value of the dividend stream (25), and so is equal to (26) with

Dv
t = Dt in the first argument.18 Because the price-dividend ratios on value and on the

market are stationary, this normalization yields a stationary value sector. The calculation

of returns is invariant to this normalization, as shown in Appendix C.

The key property of the growth claim that emerges from this section is that it is a

17To be precise, the dividends on the value sector evolve according to

dDv
s

Dv
s

= µvDsdt+ φσdBCs, s ≥ t (34)

with boundary condition Dv
t = Dt.

18Note that Figure 4 shows the time path of prices without redefining value’s dividends; it is therefore

what cash flows and price appreciation look like from the point of view of the owner of each of the claims.
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levered bet on large booms. Relative to the market as a whole, growth has low value.

However, it bears the entire risk of a boom.

3 Quantitative results

3.1 Data

This section describes our data sources. We will compare our rare events in the model to

tail events in the data, using international consumption data described in detail in Barro

and Ursúa (2008). These data contain annual observations on real, per capita consumption

for 43 countries; start dates vary from early in the 19th century to the middle of the 20th

century.

Our aggregate market data come from CRSP. We define the market return to be the

gross return on the value-weighted CRSP index. Dividend growth is computed from the

dividends on this index. The price-dividend ratio is price divided by the previous 12 months

of dividends to remove the effect of seasonality in dividend payments (in computing this

dividend stream, we assume that dividends on the market are not reinvested). We compute

market returns and dividend growth in real terms by adjusting for inflation using changes

in the consumer price index (also available from CRSP). For the government bill rate, we

use real returns on the 3-month Treasury Bill. We also use real, per capital expenditures

on non-durables and services for the U.S., available from the Bureau of Economic Analysis.

These data are annual, begin in 1947, and end in 2010. Focusing on post-war data allows

for a clean comparison between U.S. data and hypothetical samples in which no rare events

take place.

Data on value and growth portfolio are from Ken French’s website. CRSP stocks are

sorted annually into deciles based on their book-to-market ratios. Our growth claim is an

extreme example of a growth stock; it is purely a claim to positive extreme events and

nothing else. In the data, it is more likely that growth stocks are a combination of this
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claim and the value claim. To avoid modeling complicated share dynamics, we identify

the growth claim with the decile that has the lowest book-to-market ratio, while the value

claim consists of a portfolio (with weights defined by market equity) of the remaining nine

deciles. A standard definition of the value spread is the log book-to-market ratio of the

value portfolio minus the log book-to-market ratio of the growth portfolio (Cohen, Polk,

and Vuolteenaho (2003)). In our endowment economy, book value can be thought of as the

dividend. However, the dividend on the growth claim is identically equal to zero (though

of course this claim has future non-zero dividends), and for this reason, there is no direct

analogue of the value spread. We therefore compute the value spread in the model as the

log dividend-price ratio on the value portfolio minus the log dividend-price ratio on the

aggregate market. For comparability, we use the log book-to-market ratio on value minus

the log book-to-market ratio on the market in the data. Where our non-standard definition

might be an issue is our predictability results; we have checked that these results are robust

to the more standard data definition.

3.2 Calibration

The parameter set consists of the normal-times parameters µ̄C , σ and µ̄D, leverage φ,

the preference parameters β and γ, the parameters determining the duration of disasters

and booms (κµ1 and κµ2 respectively), the parameters determining the disaster and boom

processes (λ̄j, κλj , and σλj for j = 1, 2) and finally the distributions of the disasters

and booms themselves. Some of these parameters define latent processes for which direct

measurement is difficult. The fact that these processes relate to rare events makes the

problem even harder.

For this reason, we proceed by dividing the parameters into groups and impose rea-

sonable restrictions on the parameter space. First, the mean and standard deviation of

consumption growth during normal times are clearly determined by µ̄C and σ. We can

immediately eliminate two free parameters by setting these equal to their values in the
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postwar data (see Tables 2 and 3).

Second, to discipline to our calibration, we assume that consumption growth after a

disaster reverts to normal at the same rate as consumption growth following a boom,

namely, κµ1 = κµ2 . Further, we assume that the rare event processes are symmetric. That

is, we assume that the average probability of a boom equals that of a disaster (λ̄1 = λ̄2),

and that the processes have the same mean reversion and volatility parameters (κλ1 = κλ2

and σλ1 = σλ2).

Third, we calibrate the average disaster probability and the disaster distribution to

international consumption data. Barro and Ursúa (2008) estimate that the probability of

a rare disaster in OECD countries is 2.86%.19 We use this number as our average disaster

probability, λ̄1. Following Barro and Jin (2011), we assume a power law distribution for

rare events (see Gabaix (2009) for a discussion of the properties of power law distributions).

Using maximum likelihood, Barro and Jin estimate a tail parameter of 6.27. They also

argue that the distribution of disasters is better characterized by a double power law, with

a lower exponent for larger disasters. Incorporating this more complicated specification

would lead to a fatter tail and a higher equity premium and volatility. Thus our parameter

choice is conservative.20 Following Barro and Ursúa (2008), we assume a 10% minimum

disaster size.

The power law distribution for booms is quite difficult to observe directly. We could

use international data on consumption growth, and in fact such data provide plenty of

evidence of extreme positive growth rates. However, one could reasonably ask whether

19We calibrate the size of the disasters to the full set of countries and the average probability to the

OECD subsample. In both cases, we are choosing the more conservative measure, because the OECD

sub-sample has rarer, but more severe disasters.
20One concern is that the consumption data on disasters and booms is international, while our stock

market data is from the U.S. However, many of the facts that we seek to explain have been reported as

robust features of the international data (e.g. Campbell (2003), Fama and French (1992)). We view the

international data as disciplining the choice of distribution of the rare events, as the data from the U.S. is

extremely limited in this regard.
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these data are directly applicable to a developed country like the United States. We thus

turn to asset markets, and in particular, to the size of the growth sector. The size of the

growth sector in the model turns out to be sensitive to the thickness of the tail of the power

law distribution, a thicker tail implying a larger growth sector. We can therefore infer tail

thickness by matching the size of the growth sector in the model to the size of the growth

sector in the data.21

As discussed in Section 3.1, we identify the growth sector in the model with the lowest

book-to-market decile in the data. We use an annual growth rate of 5% as our minimum

jump size. This would be an unusually high observation for an annual growth rate, so it

is a reasonable choice for the starting point of the upper tail of the consumption growth

distribution. Given this minimum jump size, we require the model to match the relative

book-to-market ratio of value (deciles 2–9) as compared with the market as a whole.22 Given

our other parameter choices, this implies a power law parameter of 15, corresponding to a

thinner tail than for disasters. As we later discuss, it turns out that the value premium is

quite insensitive to the choice of this parameter.

Despite the fact that we use asset market data to infer our distribution for booms, we

still want to compare these booms to those we see in international data. The disaster dis-

tribution and the boom distribution in the model and in the data are reported in Figures 5

and 6. To focus on the tails of the distribution, we consider consumption changes of greater

than 15% for one-year consumption growth rates and consumption changes of greater than

45% for consumption growth rates that are cumulative across five years. These figures

show that, except for small disasters at the five-year horizon, our assumptions imply less

extreme distributions than the data.23 In particular, our model implies fewer, and smaller,

21See, e.g., David and Veronesi (2013) for the use of asset prices to estimate high growth states that may

not have been realized in sample.
22In the model, the “book” values of the market and of value are the same. Requiring the model to

match relative market valuations produces very similar answers.
23It is the case that our power law distributions are unbounded, thus allowing for small but positive

weight on events that are greater in magnitude than what has occurred in the data. We have checked that
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booms than observed in the international data.

The remaining parameters are the dividend process parameters µD, and φ, preference

parameters β and γ, and rare event parameters κλ1 = κλ2 and σλ1 = σλ2 . We choose these

parameters to minimize the the distance between the mean value of various statistics in a

sample without rare events and the corresponding statistic in the postwar data. We also

impose some reasonable economic limits on the parameter choices from this search.

The first requirement is that the solution to the agent’s problem exists. It follows from

Theorem 1, that parameters must satisfy

1

2σ2
λ1

(κλ1 + β)2 ≥ Eν1

[
ebµ1Z1 − 1

]
(35)

(see also Appendix A). Equation 35 is a joint restriction on the size of a disaster, on the

agent’s risk aversion, on the discount rate of the agent, and on the persistence and volatility

of the disaster probability process.24 Our second requirement is that the discount rate β be

greater than zero. Because of positive consumption growth and a elasticity of intertemporal

substitution equal to 1, matching the low riskfree rate of 1.25 will be a challenge. We discuss

this aspect of the model’s fit in more detail in a later section. We choose a small positive

number for the lower bound of β, and our minimization procedure selects this as optimal

on account of the riskfree rate.

Our third requirement is that leverage (φ) not be “too high”. High leverage helps the

model match the equity premium and volatility, but allowing these data points to determine

φ might lead to a value that is unreasonably high. Cash flow data, on the other hand, does

not clearly pin down a value of φ.25 We choose φ = 3.5, in line with values considered in

the literature (for example, Bansal and Yaron (2004) assume a value of 3.0, while Backus,

truncating the distributions has little effect on the results.
24Why, intuitively, is there such a constraint? Note that utility is a solution to a recursive equation;

the above discussion reflects the fact that there is no guarantee in general that a solution to this recursion

exists. In this particular case, it appears that the problematic region of the parameter space is one in which

there is a lot of uncertainty that is resolved very slowly. A sufficiently slow resolution of uncertainty could

lead to infinitely negative utility for our recursive utility agent.
25The ratio of dividend to consumption volatility during normal times implies a value of 4.7 (this assumes,
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Chernov, and Martin (2011) assume a value of 5.1). Given that high values of φ are helpful

for the moments of equity returns, lower values of φ will result in an inferior fit.26

The restrictions above imply that we have three free parameters remaining. We search

over µD, γ, κλ1 as other parameters are determined by these. The moments we use are

average dividend growth, the equity premium, the volatility of the market return, the

average price-dividend ratio and the persistence of the value spread.27 We measure the

model’s fit by simulating 1500 60-year samples and taking only those without rare events.

We minimize the sum of squared differences between the mean across samples and the data

moment, normalizing by the variance across samples. The criterion function is minimized

for average dividend growth µD = 3%, risk aversion γ = 3 and mean reversion κλ1 =

0.11. Value spread moments are reported in Table 4, while aggregate market moments are

reported in Table 5. With these parameters, the probability of not observing a boom in a

60-year period is about 20%. Thus there is no need to assume that the post-war period is

exceptional in that a boom has not been observed.28

however, that dividends are perfectly correlated with consumption in the data). Using the decline in

earnings relative to the decline in consumption during the Great Depression leads to an even higher

number, as earnings fell by nearly 100% (Longstaff and Piazzesi (2004)); however, this decline might have

reasonably been expected by market participants to be temporary, while our model, for simplicity, assumes

such declines are permanent.
26We have simulated from a calibration in which the normal-times standard deviation of dividend growth

is twice that of consumption (rather than 3.5 times, as in our benchmark calibration), but where everything

else is the same. The results are very similar to what is reported here, not surprisingly, because it is the

risk of rare events, rather than the normal-times consumption risk, that drives our results. Lowering φ

itself does lead to somewhat lower observed equity and value premia, but the difference is not large. A φ

of 3 implies an equity premium of 5.1% (as compared with 5.4 in our main calibration) and an observed

value premium of 2.6% (as compared with 2.7 in our main calibration).
27Attempting to match the very high persistence of the price-dividend ratio leads to unstable results.
28Asness, Moskowitz, and Pedersen (2013) report the existence of a value premium in international

equities (Fama and French (1992) also report an international value premium, but over a shorter sample).

The data on individual stocks in Asness et al. come from the U.S., the U.K. and Japan. Given that a large

boom would have worldwide implications, impacting at the least the major developed markets, adding
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3.3 Simulation results

To evaluate the quantitative succes of the model, we simulate monthly data for 600,000

years, and also simulate 100,000 60-year samples. For each sample, we initialize the λjt

processes using a draw from the stationary distribution.29 Given a simulated series of

the state variables, we obtain price-dividend ratios and one-period dividend growth rates

on the market and on value. Using these quantities we simulate returns as described in

Appendix C. In the tables, we report population values for each statistic, percentile values

from the small-sample simulations, and percentile value for the subset of small-sample

simulations that do not contain rare events. It is this subset of simulations that is the most

interesting comparison for postwar data.

3.3.1 The aggregate market

Table 3 reports moments of log growth rates of consumption and dividends. There is lit-

tle skewness or kurtosis in postwar annual consumption data. Postwar dividend growth

exhibits somewhat more skewness and kurtosis. The simulated paths of consumption and

dividends for the no-jump samples are, by definition, normal, and the results reflect this.

However, the full set of simulations does show significant non-normality; the median kur-

tosis is seven for consumption and dividend growth. Kurtosis exhibits a substantial small-

sample bias. The last column of the table reports the population value of this measure,

which is 55.

Table 5 reports simulation results for the aggregate market. The model is capable of

data from the U.K. and from Japan does not necessarily help us in observing the correct number or size

of the booms. Other data they consider are international equity indices. Our model is a natural fit for

explaining these data as well, since the stock markets of some countries might be expected to outperform

in the event of a large global boom; these would be “growth” according to their measure and would have

lower observed returns. This would also explain the links between the value effects from the international

equity indices and the individual equities.
29The stationary distribution for λjt is Gamma with shape parameter 2κj λ̄j/σ

2
λj

and scale parameter

σ2
λj
/(2κj) (Cox, Ingersoll, and Ross (1985)).
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explaining most of the equity premium: the median value among the simulations with no

disaster risk is 5.4%; in the data it is 7.2%. Moreover, the data value is below the 95th

percentile of the values drawn from the model, indicating that the data value does not reject

the model at the 10% level. The model can also explain high return volatility, and low

volatility of the government bond yield. Note that we define disasters as large deviations

in expected consumption growth. Observed consumption growth is smooth, and it takes

several years for disasters to unfold. Thus the critique of Constantinides (2008), Julliard

and Ghosh (2012) and Mehra and Prescott (1988) concerning the instantaneous nature of

disasters in many models of rare events does not apply here.

Before moving on to the cross-section, we note two limitations to the model’s fit to

the data. First, the average government bond yield in the model is higher than in the

data (1.95% vs. 1.25%). This fit could be improved by allowing a fraction of the disaster

to hit consumption immediately (or a larger fraction than in the present calibration to

hit within the first three months). This effect would be straightforward to implement

but would substantially complicate the notation and exposition without changing any of

the underlying economics. Moreover, Treasury bill returns may in part reflect liquidity

at the very short end of the yield curve (Longstaff (2000)); the model does a better job

of explaining the return on the one-year bond.30 Second, while the model can account

for a substantial fraction of the volatility of the price-dividend ratio (the volatility puzzle,

reviewed in Campbell (2003)), it cannot explain all of it, at least if we take the view that the

postwar series is a sample without rare events. This is a drawback that the model shares

with other models attempting to explain aggregate prices using time-varying moments (see

the discussion in Bansal, Kiku, and Yaron (2012) and Beeler and Campbell (2012)) but

parsimoniously-modeled preferences. It arises from strong general equilibrium effects: time-

varying moments imply cash flow, riskfree rate, and risk premium effects, and one of these

30The model predicts a near-zero volatility for returns on this bill in samples without disasters. This is

not a limitation, since the volatility in returns in the data is due to inflation, which is not captured in the

model.
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generally acts as an offset to the other two, limiting the effect time-varying moments have

on prices. Some behavior of asset prices (i.e. the “bubble” in the late 1990s) may be beyond

the reach of this type of model. Certainly this is a fruitful area for further research.

3.3.2 Unconditional moments of value and growth portfolios

Tables 6 reports cross-sectional moments in the model. As a “tight” data comparison,

we take the growth portfolio as the bottom decile formed by sorting on book-to-market

and the value portfolio as the remaining nine deciles. This comparison has the advantage

that, in both the model and in the data, the two portfolios considered sum to the market.

However, we also report excess returns for more traditional measures of value and growth

in Table 8.

Table 6 shows that our model can account for an observed value premium of 2.74%, a

substantial fraction of the data value of 4.28%. This value corresponds to the median in

simulations without rare events. The population value premium is negative, as shown in

Section 2. Yet even looking across the full set of simulations implies that it is not unlikely

to observe a value premium in any particular sample.

Table 6 also shows that value stocks have lower standard deviations than growth stocks

and higher Sharpe ratios. Both of these results hold across the full set of simulations,

as well as in the samples without rare events. Both of these affects are strongly present

in the data. The reason the model can capture these effects is that the observed high

average return on value stocks does not represent a return for bearing risk. As explained in

Section 2, because investors are willing to accept a lower return on growth in most periods,

in return for an occasional very high payout.

Perhaps surprisingly, the model’s predictions for the observed value premium are largely

insensitive to the size of booms. In Figure 7, we show the observed value premium for

different specifications of the boom distribution. In Panel A, we vary the probability

of the boom and in Panel B we vary the size of the tail parameter for the power law

distribution. The observed value premium is indeed increasing in the probability of a boom:
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if the probability of a boom were zero, then so would be the observed value premium.31

Conversely, a high probability of a boom leads to a high observed value premium. In

contrast, Panel B shows that the observed value premium is quite flat as a function of

thickness of the tail. Lower values of the tail parameter imply thicker tails. At extremely

low values expected dividend growth is high enough so that prices fail to converge (see

Assumption 2 in Appendix A). Within the range of 3 to nearly 100, there is little noticeable

change in the observed value premium.

Why is it that the observed value premium is so insensitive to the shape of the boom

distribution? The reason lies with the two opposing forces described in Section 2. On the

one hand, the greater the probability of large booms, the riskier growth stocks become, and

the more negative is the true value premium in population. On the other hand, the greater

the probability of large booms, the lower is the return on growth stocks a risk neutral

investor is willing to accept in samples without booms. These two effects roughly cancel.

Table 6 also shows that our model can explain the relative alphas and betas for value

and growth stocks. Growth stocks have a high covariance with the market, because they

are a levered bet on the occurrence of booms. Shocks to the probability of a boom move the

market price and the growth price in the same direction. The same is true when a boom

actually occurs. Given that growth stocks have higher betas and lower average returns than

value stocks, it is of course not surprising that they have negative alphas. In fact, they

have negative alphas in population as well as in samples without rare events, because a

large part of their risk comes from changes to the probability of a boom, and the premium

associated with this risk is low. Thus, unlike previous models of the value premium, our

model is able to explain the patterns in betas on growth and value in the data.

31We examine the sensitivity across a range from 0.6% probability to 5%. Below this 0.6%, the growth

sector is extremely small and return moments are unstable.
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3.3.3 Return predictability

In a recent survey, Cochrane (2011) notes that time-varying risk premia are a common

feature across asset classes. However, variables that predict excess returns in one asset

class often fail in another, suggesting that more than one economic mechanism lies behind

this common predictability.32 For example, the price-dividend ratio is a significant predictor

of aggregate market returns, but fails to predict the value-minus-growth return. On the

other hand, the value spread predicts the value-minus-growth return, but it is less successful

than the price-dividend ratio at predicting the aggregate market return.

Panel A of Table 7 shows the results of regressing the aggregate market portfolio return

on the price-dividend ratio in actual and simulated data. The model can reproduce the

finding that the price-dividend ratio predicts excess returns. This result arises primarily

from the fact that a high value of the disaster probability implies a higher equity premium

and a lower price-dividend ratio. It is also the case that a high value of the boom probability

implies a lower return in samples that, ex post, have no booms, as well as a higher price-

dividend ratio. Coefficients and R2 statistics are smaller in a sample with rare events than

without: this is both because more of the variance of stock returns arises from the greater

variance of expected dividend growth during disasters and because the effect of the boom

probability reverses (high premia are associated with high valuations) in the full set of

samples. We can see the effect of small-sample bias (Stambaugh (1999)) by comparing the

population R2 with the median from the full set of simulations.

In the data, the market return can also be predicted by the value spread, though with

substantially smaller t-statistics and R2 values (Panel B of Table 7). The model also

captures the sign and the relative magnitude of this predictability. Compared with the

price-dividend ratio, the value spread is driven more by the time-varying probability of

a boom and less by the probability of a disaster. This explains why risk premia on the

market portfolio, which is mainly driven by the disaster probability, are not captured as

32Lettau and Wachter (2011) show that if a single factor drives risk premia, then population values of

predictive coefficients should be proportional across asset classes.
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well by the value spread.

Panel C of Table 7 shows that, in contrast to the market portfolio, the value-minus-

growth return cannot be predicted by the price-dividend ratio. The data coefficient is

positive and insignificant. This fact represents a challenge for models that seek to simul-

taneously explain market returns and returns in the cross-section since the forces that

explain time-variation in the equity premium also lead to time-variation in the value pre-

mium (e.g. Lettau and Wachter (2011), Santos and Veronesi (2010)); this reasoning would

lead the coefficient to be negative.33 The present model does, however, predict a positive

coefficient. A high value of the price-dividend ratio on the market mostly reflects a low

probability of a disaster, but also in part a high probability of a boom. If a boom was

expected but did not occur, then average realized returns on value will be high relative to

growth (compare the left and right columns of Panel B, Figure 3).34

One might think that the reason that the value-minus-growth return cannot be predicted

by the price-dividend ratio is that it is not very predictable. This is, however, not the case.

Panel D of Table 7 shows that, as in the data, the value spread predicts the value-minus-

growth return with a positive sign in samples without jumps. The median R2 value at a

1-year horizon is 10%, compared with a data value of 10%. At a 5-year horizon, the value

in the model is 34%, it is 21% in the data. The intuition is the same as for the value-

minus-growth regression on the price-dividend ratio. A high value spread indicates a high

probability of a boom. If we isolate such periods that, ex post, do not have rare events,

growth will have a low return relative to value. The R2 values are much higher than for

the price-dividend ratio because the value spread is primarily driven by the probability of a

33Roussanov (2014) also notes that the conditional mean of the value-minus-growth portfolio does not

vary in the way that univariate models of time-varying risk aversion would predict.
34The coefficient is positive in population as well, though it is very small. This arises from a tradeoff

between the effect of the boom probability which gives a negative coefficient (compare the left and right

columns of Panel A in Figure 3), and the effect of disaster probability which predicts a positive one (same

comparison, but in Figure 2),. Value has a slightly lower exposure to disaster probability because of its

shorter duration.
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boom, while the price-dividend ratio is only driven by this probability to a small extent.35

To summarize, the joint predictive properties of the price-dividend ratio and the value

spread would be quite difficult to explain with a model in which single factor drives risk

premia; they therefore constitute independent evidence of a multiple-factor structure of the

kind presented here.

4 Further implications

4.1 When does growth outperform value?

Our model predicts that in samples when booms are not realized, value stocks will on

average exhibit greater returns than growth stocks. The model also predicts that there will

be periods when growth will outperform value, namely when booms are realized or when

there are positive shocks to the probability of a boom. Both would be expected to occur

during times of substantial technological innovation. How does this prediction fare in the

data? In this section we examine the performance of value and growth during a period

that is indisputably characterized by these shocks, namely the late 1990s.

Table 8 shows statistics for portfolios formed by sorting stocks into quintiles on the basis

of the book-to-market ratio. We examine results for the full CRSP universe, as well as for

the top size quintile. As is well known, value outperforms growth by a substantial margin

over the postwar sample. However, from 1995-2000, the greatest performance belongs to

the lowest book-to-market quintile. Not only do growth stocks exhibit higher returns during

this period, they also have even higher betas than usual. This is evidence in favor of a the

principal mechanism in the model: that growth stocks are more exposed to boom risk than

value stocks.

This exercise naturally raises the question of the differential performance of value and

35In population, the effect works in the opposite direction because high values of the boom probability

predict low returns on value relative to growth. The resulting R2 coefficients are very small. For the set of

all simulations, the mean coefficient is again positive because of small-sample bias.
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growth during disasters, and during periods when the probability of a disaster increases.

To keep this paper of manageable length, we have not introduced differential exposure of

value and growth dividends to disasters. Considering varying exposure to these shocks,

however, would be within the spirit of the model. We therefore look at the differential

exposure and performance of value and growth during disaster periods.

Panels C and D of Table 8 report the expected returns and betas to value and growth

portfolios during the Great Depression and the financial crisis of 2008 respectively.36 The

table shows that growth has a much lower beta than value during these periods, indicating

that value stocks are more exposed to crises than growth stocks. This is consistent with a

rare events model in which value stocks had greater crisis exposure.37

4.2 Downside and upside risk

Ang, Chen, and Xing (2006) define downside β to be the covariance divided by the variance,

where these moments are computed using only those observations when the market return

is below its mean. Likewise, upside β is the measure when the covariance and variance

are computed for observations when the market return is above its mean. They show that

stocks with higher downside βs have higher returns. Lettau, Maggiori, and Weber (2014)

show that this finding also holds across asset classes.

Ang, Chen, and Xing (2006) also define relative upside and relative downside β to be

the one-sided β measure minus the traditional β. They find that stocks with high relative

downside β have higher mean returns while stocks with high relative upside β have lower

mean returns. Because there are many sources of heterogeneity in stocks that are not

36Our dates are determined from the NBER peak-to-trough measure of the Great Recession.
37There are at least two problems with differential exposure to crises as the main explanation of the

value premium. First, if value stocks are more exposed to disasters than growth stocks, they will also have

greater exposure to the probabilities of disasters, and hence counterfactually high betas. This would be

less of a problem if this mechanism were paired with a mechanism like the one we emphasize that lowers

the betas on value stocks. Second, as Table 8 shows, the actual performance of value stocks, outside of the

bottom quintile, was not particularly poor during these periods.
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captured in the present study, these relative β results seem most relevant.

That there would be a relation between observed one-sided risk and rare events is not

obvious. Disasters and large booms represent extreme one-sided risks that are realized only

rarely. In contrast, the studies mentioned above focus on differential exposure to up- and

down-moves during normal market conditions. However, in the present model there is a

connection because exposure to rare events drives normal-times variation. An asset that

is more exposed to disaster risk will also tend to fall during market downturns, because

a downturn over a finite time interval is more likely to be caused by an increase in the

probability of a disaster than a decrease in the probability of a boom. This effect arises

from the link between the volatility of the rare event probabilities and their magnitudes.

Moreover, while changes in boom probabilities in general have a smaller effect on the market

return than disaster probabilities, upturns will be disproportionately caused by changes in

the boom probability.

Table 9 shows the model’s prediction for the relation between one-sided betas and

expected returns. In the model, value stocks have low relative upside betas, but high

relative downside betas while growth stocks are the opposite. Thus low relative upside

betas and high relative downside betas are associated with high returns, just as in the

data.

4.3 Skewness in the time series and cross-section

Our model predicts that positive skewness should be associated with low future returns,

both in the time series and the cross-section. Several recent papers argue that proxies for

disaster risk predict future returns (Kelly and Jiang (2014), Manela and Moreira (2013)).

Colacito, Ghysels, and Meng (2013) shows that skewness in analysts forecasts, which takes

on both negative and positive values, predicts returns with a negative sign. Like other

papers on disaster risk, this paper predicts that a greater risk of disaster should be associ-

ated with a higher equity premium. It also predicts, consistent with Colacito et al., that a
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higher chance of a boom will be associated with a lower premium, in a sample where booms

do not occur. Figure 8 shows the skewness conditional on the probability of disasters and

booms. Indeed, skewness is decreasing in the disaster probability and increasing in the

boom probability. Expected returns (in a sample without rare events) go in the opposite

direction.

Measuring skewness whether in the time series or the cross-section, is a challenge. Sev-

eral recent papers, however, are able to calculate ex ante return skewness using option prices

on individual stocks (Conrad, Dittmar, and Ghysels (2013), Chang, Christoffersen, and Ja-

cobs (2013)). These papers show that higher skewness is associated with lower returns in

the cross-section, another prediction of this paper. Conrad, Dittmar, and Ghysels (2013)

also finds that stocks with higher valuation ratios have higher skewness, again consistent

with the results in this paper. Conrad et al. show that stocks with higher book-to-market

ratios have lower coskewness, which is the relevant measure in this paper because booms

are market-wide. They also report that stocks with higher overall skewness have higher

price-to-earnings ratios. These facts are consistent with the finding in this paper that high

valuations are tied to the small probability of very high returns.

5 Conclusion

This paper has addressed the question of how growth stocks can have both low returns and

high risk, as measured by variance and covariance with the market portfolio. It does so

within a framework that is also consistent with what we know about the aggregate market

portfolio; namely the high equity premium, high stock market volatility, and time-variation

in the equity premium. The problem can be broken into two parts: why is the expected

return on growth lower, and why is the abnormal return relative to the CAPM negative?

This latter question is important, because one does not want to increase expected return

through a counterfactual mechanism.

This paper answers the first of these questions as follows: Growth stocks have, in pop-
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ulation, a slightly higher expected return. In finite samples, however, this return may be

measured as lower. The answer to the second question is different, because the abnor-

mal return relative to the CAPM appears both in population and small samples without

rare events. The abnormal return result arises because risk premia are determined by two

sources of risk, each of which is priced very differently by the representative agent. Co-

variance during disasters, and covariance with the changing disaster probability is assigned

a high price by the representative agent because marginal utility is low in these states.

However, growth stock returns are highly influenced by booms, and by the time-varying

probability of booms. Because marginal utility is low in boom states, the representative

agent requires little compensation for holding this risk. This two-factor structure is also

successful in accounting for the joint predictive properties of the market portfolio and of

the value-minus-growth return.

A number of extensions of the present framework are possible. In this paper, we have

specified the growth and the value claim in a stark manner. Extending our results to a

setting with richer firm dynamics would allow one to answer a broader set of questions.

Further, we have chosen a relatively simple specification for the latent variables driving the

economy. An open question is how the specification of these variables affects the observable

quantities. Finally, we abstract from differential exposure to disaster risk. We leave these

interesting topics to future research.
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Appendix

A Required conditions on the parameters

Assumption 1. (
κλj + β

)2 ≥ 2σ2
λj
Eνj

[
ebµjZj − 1

]
j = 1, 2.

Assumption 2.

(bλ2σ
2
λ2
− κλ2)2 ≥ 2σ2

λ2
Eν2

[
ebµ2Z2

(
e
φ−1
κµ2

Z2 − 1

)]
.

Assumption 3.

µ̄D − µ̄C − β + γσ2 (1− φ)−
∑
j=1,2

κλj λ̄j

σ2
λj

(
ζφj − κλj + bλjσ

2
λj

)
< 0,

where

ζφj =

√
(bλjσ

2
λj
− κλj)2 − 2Eνj

[
ebµjZj

(
e
φ−1
κµj

Zj − 1

)]
σ2
λj
.

Assumption 1 is required for the solution for the value function to exist. This restriction

rules out parameters that can lead to infinitely negative utility. Note that for booms,

(assuming relative risk aversion is greater than 1) this restriction is satisfied automatically

since the right hand side is negative.

Assumptions 2 and 3 guarantee convergence of prices, which are given by integrating

expected dividends into the infinite future. Assumption 2 ensures that bφλ2(τ) converges

as τ approaches infinity; namely that the effect of the boom on future dividends cannot

explode as the horizon increases.38 Assumption 3 states that the asymptotic slope of aφ(τ)

is negative. This is the dynamic analogue of the condition that the growth rate be less

than the discount rate in the static Gordon growth model. This condition pertains to the

38Note that no extra assumptions are required for the convergence of bφλ1
(τ) because Z1 < 0 and hence

e
φ−1
κµ1

Z1 < 1. Nor are extra assumptions required for the value function expression bvφλ2
(τ) to converge since

this condition replaces e
φ−1
κµ2

Z2 with e
− 1
κµ2

Z2 which is less than one.
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market portfolio. If it is satisfied, the analogous condition for the value claim is satisfied

automatically.39

B Proofs of Theorems

This Appendix contains a detailed solution of the model. Section B.1 describes notation.

Section B.2 describes the derivation of the value function and thus the state-price density

under Assumption 1. Section B.3 contains general results on pricing equities in a model

with jumps. This section does not require parametric assumptions on the processes for

dividends or state prices. Sections B.4 and (most of) B.5 give results under the parametric

assumptions in the main text.

B.1 Notation

• Definition of jump notation J (·):

Let Xt be a pure diffusion process, and let µjt, j = 1, 2 be defined as in (3). Consider

a scalar function h(µ1t, µ2t, Xt). Define

J1(h(µ1t, µ2t, Xt)) = h(µ1 + Z1, µ2, Xt)− h(µ1, µ2, Xt)

J2(h(µ1t, µ2t, Xt)) = h(µ1, µ2 + Z2, Xt)− h(µ1, µ2, Xt).

Further, define

J̄j(h(µ1t, µ2t, Xt)) = EνjJj(h(µ1t, µ2t, Xt))

for j = 1, 2, and

J̄ (h(µ1t, µ2t, Xt)) =
[
J̄1(h(µ1t, µ2t, Xt)), J̄2(h(µ1t, µ2t, Xt)

]>
.

39Specifically, define

ζvφ2
=

√
(bλ2

σ2
λ2
− κλ2

)2 − 2Eν2

[
ebµ2Z2

(
e
− 1
κµ2

Z2 − 1
)]
σ2
λ2

Then ζvφ2
> ζφ2 . It is also the case that ζvφ1

= ζφ1 .
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• We use the notation κµ to denote the column vector [κµ1 , κµ2 ]>, and similarly for

κλ, σλ and λ̄. Recall that we have already defined λt = [λ1t, λ2t]
>, µt = [µ1t, µ2t]

>,

Bλt = [Bλ1t, Bλ2t]
> and Bt = [BCt, B

>
λt]
>.

• We use x2 notation for a vector x to denote the square of each element in x. For

example, σ2
λ will denote the vector [σ2

λ1
, σ2

λ2
]>.

• We use the notation ∗ to denote element-by-element multiplication for vectors of the

same dimensionality.

• Partial derivatives with respect to a vector will be assumed to be row vectors. That

is, given a function h(µ), ∂h/∂µ = [∂h/∂µ1, ∂h/∂µ2] , and similarly for λ.

• Because the processes λ are independent, cross-partial derivatives do not enter into

the pricing equations. Thus, given a function h(λ), we use the notation ∂2h/∂λ2 to

denote the row vector [∂2h/∂λ2
1, ∂

2h/∂λ2
2].

B.2 The state-price density

As a first step to computing the state-price density, we compute continuation value Vt as

a function of aggregate wealth Wt and the state variables. As is often the case in models

involving square root processes, there are technically two possible solutions corresponding

to the choice of a solution to a quadratic equation. We select the solution such that, when

there is no rare event risk, utility is equivalent to the case when there are in fact no rare

events. Further discussion of this selection procedure is contained in Wachter (2013).

Lemma B.1. In equilibrium, continuation value Vt = J(Wt, µt, λt), where Wt is the wealth

of the representative agent, and J is given as follows:

J(Wt, µt, λt) =
W 1−γ
t

1− γ
I(µt, λt), (B.1)

where

I(µt, λt) = exp
{
a+ b>µµt + b>λ λt

}
, (B.2)
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for vectors bµ = [bµ1 , bµ2 ]> and bλ = [bλ1 , bλ2 ]>. The coefficients a, bµj and bλj for j = 1, 2

take the following form:

a =
1− γ
β

(
µ̄C −

1

2
γσ2

)
+ (1− γ) log β +

1

β
b>λ (κλ ∗ λ̄)

bµj =
1− γ
κµj + β

,

bλj =
1

σ2
λj

(
β + κλj −

√(
β + κλj

)2 − 2Eνj
[
ebµjZjt − 1

]
σ2
λj

)
.

Furthermore,

Wt

Ct
= β−1. (B.3)

where Ct is aggregate consumption.

Proof Let St denote the value of a claim to aggregate consumption, and conjecture that

the price-dividend ratio for the consumption claim is constant:

St
Ct

= l,

for some l. This relation implies that St satisfies

dSt
St

=
dCt
Ct

= µCt dt+ σ dBCt. (B.4)

Consider an agent who allocates wealth between the claim to aggregate consumption

and the riskfree asset. Let αt be the fraction of wealth in the consumption claim, and let

ct be the agent’s consumption. The wealth process is then given by

dWt =
(
Wtαt

(
µCt − rt + l−1

)
+Wtrt − ct

)
dt+WtαtσdBct,

where rt denotes the instantaneous riskfree rate. Optimal consumption and portfolio choice

must satisfy the following Hamilton-Jacobi-Bellman (HJB) equation:

sup
αt,ct

{
∂J

∂W

(
Wtαt

(
µCt − rt + l−1

)
+Wtrt − ct

)
+
∂J

∂λ

(
κλ ∗

(
λ̄− λt

))
− ∂J

∂µ
(κµ ∗ µt)

+
1

2

∂2J

∂W 2
W 2
t α

2
tσ

2 +
1

2

(
∂2J

∂λ2

)
(σ2

λ ∗ λt) + λ>t J̄ (J(Wt, µt, λt)) + f (ct, Jt)

}
= 0. (B.5)
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In equilibrium, αt = 1 and ct = Ct = Wtl
−1. Substituting these policy functions into

(B.5) implies

∂J

∂W
WtµCt +

∂J

∂λ

(
κλ ∗

(
λ̄− λt

))
− ∂J

∂µ
(κµ ∗ µt) +

1

2

∂2J

∂W 2
W 2
t σ

2

+
1

2

(
∂2J

∂λ2

)
(σ2

λ ∗ λt) + λ>t J̄ (J(Wt, µt, λt)) + f (Ct, Jt) = 0. (B.6)

From the envelope condition ∂f/∂C = ∂J/∂W , we obtain β = l−1, and prove (B.3). Given

that the consumption-wealth ratio equals β−1, it follows that

f(Ct, Vt) = f
(
Wtl

−1, J (Wt, µt, λt)
)

= βW 1−γ
t I (µt, λt)

(
log β − log I (µt, λt)

1− γ

)
, (B.7)

where, to derive (B.7), we conjecture (B.2). Substituting (B.7) and (B.1) into (B.6), we

find

µCt + (1− γ)−1I−1 ∂I

∂λ

(
κλ ∗

(
λ̄− λt

))
− (1− γ)−1I−1 ∂I

∂µ
(κµ ∗ µt)−

1

2
γσ2

+
1

2
(1− γ)−1I−1

(
∂2I

∂λ2

)
(σ2

λ ∗ λt) + (1− γ)−1λ>t J̄ (I(µt, λt))

+ β

(
log β − log I (µt, λt)

1− γ

)
= 0.

Note that µCt = µ̄C +µ1t +µ2t. Collecting coefficients on µjt results in linear equations

for bµj for j = 1, 2. Solving these equations yields

bµj =
1− γ
κµj + β

, j = 1, 2.

Collecting coefficients on λjt yields a quadratic equation for bµj for j = 1, 2. Given the root

selection procedure described at the start of this Appendix, the solutions are

bλj =
β + κλj
σ2
λj

−

√√√√(β + κλj
σ2
λj

)2

−
2Eνj

[
ebµjZjt − 1

]
σ2
λj

.

Collecting the constant terms implies

a =
1− γ
β

(
µ̄C −

1

2
γσ2

)
+ (1− γ) log β +

∑
j=1,2

bλj
κλj
β
λ̄j.

This verifies our conjecture on the form of I.
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Lemma B.2. State prices can be characterized as follows:

πt = exp

{∫ t

0

∂

∂V
f (Cs, Vs) ds

}
βγC−γt I(µt, λt) (B.8)

for I(µt, λt) given in Lemma B.1.

Proof Duffie and Skiadas (1994) show that the state-price density πt equals

πt = exp

{∫ t

0

∂

∂V
f (Cs, Vs) ds

}
∂

∂C
f (Ct, Vt) . (B.9)

From (6), we obtain

∂

∂C
f (Ct, Vt) = β (1− γ)

Vt
Ct
.

Lemma B.1 shows that, in equilibrium, Vt = J (β−1Ct, µt, λt), where the form of J is given

in (B.1). It follows that

∂

∂C
f (Ct, Vt) = βγC−γt I(µt, λt). (B.10)

Equation B.8 then follows from (B.9).

Proof of Theorem 1 We apply Ito’s Lemma to (B.8) to find

dπt
πt−

= µπtdt+ σπtdBt +
∑
j=1,2

Jj(πt)
πt−

dNjt,

where

σπt =
[
−γσ, bλ1σλ1

√
λ1t, bλ2σλ2

√
λ2t

]
, (B.11)

and

Jj(πt)
πt

= ebµjZjt − 1, for j = 1, 2. (B.12)

Moreover, from Lemma B.1, it follows that a, bµj and bλj take the form described. It follows

immediately that bµj < 0. Because Z1 < 0 and bµ1 < 0, Eν1

[
ebµ1Z1t − 1

]
> 0. Therefore,√

(β + κλ1)2 − 2Eν1 [ebµ1Z1t − 1]σ2
λ1
< β + κλ1 .

It follows that bλ1 > 0. Because Z2 > 0 and bµ2 < 0, Eν2

[
ebµ2Z2t − 1

]
< 0. Therefore,√

(β + κλ2)2 − 2Eν2 [ebµ2Z2t − 1]σ2
λ2
> β + κλ2

and bλ2 < 0.
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Proof of Corollary 2 The riskfree rate is obtained by taking the derivative of (B.5) with

respect to αt, evaluating at the equilibrium value of αt = 1 and setting it equal to 0.

Lemma B.3. The drift of the state-price density is given by

µπt = −rt − λ>t
J̄ (πt)

πt
(B.13)

= −β − µCt + γσ2 −
∑
j=1,2

λjtEνj
[
ebµjZjt − 1

]
. (B.14)

Proof Statement (B.13) follows from the absence of arbitrage. Statement (B.14) follows

from Theorem 1, specifically,

λ>t
J̄ (πt)

πt
=
∑
j=1,2

λjtEνj
[
ebµjZjt − 1

]
,

and from the expression for rt in Corollary 2.

B.3 General equity pricing results

We first establish a no-arbitrage restriction on the price today of a single dividend payment

in τ periods.

Lemma B.4. Let Ht = H (Dt, µt, λt, τ) denote the time-t price of a single future dividend

payment at time t+ τ :

H(Dt, µt, λt, τ) = Et

[
πt+τ
πt

Dt+τ

]
. (B.15)

Then,

dHt

Ht

= µH(τ),tdt+ σH(τ),tdBt +
∑
j=1,2

Jj(Ht)

Ht

dNjt (B.16)

for scalar processes µH(τ),t and (row) vector processes σH(τ),t. Moreover,

µπt + µH(τ),t + σπtσ
>
H(τ),t +

1

πtHt

λ>t J̄ (πtHt) = 0. (B.17)

Proof Equation B.16 is a result of Ito’s Lemma and the Markov property of the state

variables and dividends (which implies that H is indeed a function as stated). No-arbitrage

implies

πtH(Dt, λt, µt, T − t) = Et [πsH(Ds, λs, µs, T − s)] for s > t. (B.18)
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For the remainder of the argument, we simplify notation by writing µHt = µH(τ),t and

σHt = σH(τ),t. Ito’s Lemma applied to πtHt implies

πtHt = π0H0 +

∫ t

0

πsHs

(
µHs + µπs + σπsσ

>
Hs

)
ds+

∫ t

0

πsHs(σHs + σπs)dBs

+
∑
j=1,2

∑
0<sij≤t

(
πsijHsij − πs−ijHs−ij

)
, (B.19)

where sij = inf{s : Njs = i} (namely, the time that the ith type-j jump occurs). Adding

and subtracting the jump compensation term from (B.19) yields:

πtHt = π0H0 +

∫ t

0

πsHs

(
µHs + µπs + σπsσ

>
Hs +

∑
j=1,2

λj
J̄j(πsHs)

πsHs

)
ds︸ ︷︷ ︸

(1)

+

∫ t

0

πsHs(σHs + σπs)dBs︸ ︷︷ ︸
(2)

+
∑
j=1,2

 ∑
0<sij≤t

(
πsijHsij − πs−ijHs−ij

)
−
∫ t

0

πsHsλjJ̄j(πsHs)ds


︸ ︷︷ ︸

(3)

. (B.20)

Equation B.18 implies that πtHt is a martingale. Moreover, the terms labeled (2) and (3)

on the right hand side of (B.20) have zero expectation. Therefore the term labeled (1)

must also equal zero in expectation. The process πtHt is strictly positive, and given that

the equation must hold for all t, the integrand must equal zero.

We now prove an extension of Lemma B.4 that holds for the integral of functions H(·, τ)

over τ .

Lemma B.5. Define

F (Dt, µt, λt) =

∫ ∞
0

H(Dt, µt, λt, τ) dτ,

assuming this indefinite integral exists. Then

dFt
Ft−

= µFt dt+ σFt dBt +
∑
j=1,2

Jj(Ft)
Ft−

dNjt, (B.21)

48



for a scalar process µFt and a 1× 3 vector process σFt, satisfying

µπt + µFt +
Dt

Ft
+ σπtσ

>
Ft + λ>t

J̄ (πtFt)

πtFt
= 0. (B.22)

Proof First note that (B.21) follows from Ito’s Lemma. We will show (B.22) using the

corresponding result for H, Lemma B.4.40 By applying Ito’s Lemma applied to both F

and H, we find

F (Dt, µt, λt)σFt =

∫ ∞
0

H(Dt, µt, λt, τ)σH(τ),t dτ,

and

J̄ (πtF (Dt, µt, λt)) =

∫ ∞
0

J̄ (πtH(Dt, µt, λt, τ)) dτ.

Moreover, because H is a function of τ but F is not,

F (Dt, µt, λt)µFt =

∫ ∞
0

(
H(Dt, λt, µt, τ)µH(τ),t −

∂

∂τ
H(Dt, µtλt, τ)

)
dτ. (B.23)

Equation B.23 can be rigorously derived by applying Ito’s Lemma to F , and differentiating

under the integral sign. Namely,

F (Dt, µt, λt)µFt =

∫ ∞
0

(
Ht(τ)µDt +

∑
j=1,2

∂

∂λj
Ht(τ)(λ̄j − λj) +

∑
j=1,2

∂

∂µj
Ht(τ)µj +

1

2

∑
j=1,2

∂2

∂λ2
j

Ht(τ)

)
dτ,

where Ht(τ) = H(Dt, µt, λt, τ). We then observe that µH(τ),t is equal to the integrand, plus

∂
∂τ
H(Dt, µtλt, τ).

Finally,

−
∫ ∞

0

∂

∂τ
H(Dt, µt, λt, τ) dτ = H(Dt, µt, λt, 0) = Dt.

The first equality holds because Ht(τ) must equal zero in the limit as τ approaches infinity;

otherwise the indefinite integral would not exist as assumed. The second equality follows

from no-arbitrage. Equation B.22 then follows from Lemma B.4.

Consider the instantaneous expected return described in Section 2.3. Because we only

need to assume a Markov structure, we will use superscript D to denote the fact that

40It is also possible to show (B.22) directly along the same lines as Lemma B.4.
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we are describing returns on a general dividend claim, as opposed to, say, the market

portfolio. The following lemma contains a convenient and general characterization of the

risk premium in economies with jumps.

Lemma B.6. Let rDt denote the instantaneous expected return

rDt = µFt +
Dt

Ft
+ λ>t

J̄ (Ft)

Ft
. (B.24)

Then

rDt − rt = −σπtσ>Ft −
∑
j=1,2

λjtEνj

[
Jj(Ft)
Ft

Jj(πt)
πt

]
. (B.25)

Proof We start with the result in Lemma B.5, substituting in for µπt using (B.13):

−rt − λ>t
J̄ (πt)

πt︸ ︷︷ ︸
µπt

+µFt +
Dt

Ft
+ σπtσ

>
Ft + λ>t

J̄ (πtFt)

πtFt
= 0.

We then substitute in for µFt +
Dt
Ft

using the definition of rDt , (B.24), and add and subtract

λ>t
J̄ (Ft)
Ft

to find

rDt − rt + σπtσ
>
Ft − λ>t

(
J̄ (πt)

πt
+
J̄ (Ft)

Ft
− J̄ (πtFt)

πtFt

)
= 0 (B.26)

Finally note that by definition of J ,

Eνj

[
Jj(Ft)
Ft

Jj(πt)
πt

]
=
J̄j(Ftπt)
Ftπt

− J̄j(Ft)
Ft

− J̄j(πt)
πt

, for j = 1, 2.

The result follows.

B.4 Pricing the aggregate market

We now specialize to the case of the market portfolio as defined in the main text.

Lemma B.7. Assume dividends follow the process (13) with the state-price density de-

scribed in Appendix B.2. The function H, defined in (B.15), takes an exponential form:

H(Dt, µt, λt, τ) = Dt exp
{
aφ(τ) + bφµ(τ)>µt + bφλ(τ)>λt

}
, (B.27)
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where bφµ = [bφµ1 , bφµ2 ]> and bφλ = [bφλ1 , bφλ2 ]> and

bφµj(τ) =
φ− 1

κµj
(1− e−κµj τ ), (B.28)

dbφλj
dτ

=
1

2
σ2
λj
bφλj(τ)2 +

(
bλjσ

2
λj
− κλj

)
bφλj(τ) + Eνj

[
ebµjZjt

(
ebφµj (τ)Zjt − 1

)]
, (B.29)

daφ
dτ

= µ̄D − µ̄C − β + γσ2 (1− φ) + bφλ(τ)>(κλ ∗ λ̄). (B.30)

The boundary conditions are bφλj (0) = aφ (0) = 0.

Proof First note that the boundary conditions follow from H(Dt, µt, λt, 0) = Dt. As ear-

lier, we write Ht = H(Dt, µt, λt, τ) to simplify notation. To prove the remaining statements,

we conjecture the exponential form (B.27). Recall that

dHt

Ht

= µH(τ),tdt+ σH(τ),tdBt +
∑
j=1,2

Jj(Ht)

Ht

dNjt

as in Lemma B.4. Ito’s Lemma applied to (B.27) implies

J̄j(πtHt)

πtHt

= Eνj

[
e(bµj+bµjφ(τ))Zjt − 1

]
, (B.31)

µH(τ),t =
1

H

(
∂H

∂D
µDtDt +

∂H

∂λ
(κλ ∗

(
λ̄− λt

)
)− ∂H

∂µ
(κµ ∗ µt)

− ∂H

∂τ
+

1

2

(
∂2H

∂λ2

)
(σ2

λ ∗ λt)
)

= µDt + bφλ(τ)>
(
κλ ∗

(
λ̄− λt

))
− bφµ(τ)> (κµ ∗ µt)

−
(
daφ
dτ

+ λ>t
dbφλ
dτ

+ µ>t
dbφµ
dτ

)
+

1

2

(
bφλ(τ)2

)> (
σ2
λ ∗ λt

)
, (B.32)

and

σH(τ),t =
1

H

(
∂H

∂D
[Dtφσ, 0, 0] +

∂H

∂λ1

[0, σλ1

√
λ1t, 0] +

∂H

∂λ2

[0, 0, σλ2

√
λ2t]

)
=
[
φσ, bφλ1(τ)σλ1

√
λ1t, bφλ2(τ)σλ2

√
λ2t

]
. (B.33)
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We now apply Lemma B.4, substituting (B.31–B.33), along with state-price density expres-

sions (8) and (B.14) into the no-arbitrage condition (B.17) to find

µDt + bφλ(τ)>
(
κλ ∗

(
λ̄− λt

))
− bφµ(τ)> (κµ ∗ µt) +

1

2

(
bφλ(τ)2

)> (
σ2
λ ∗ λt

)
−γφσ2+bφλ(τ)>

(
bλ ∗ σ2

λ ∗ λt
)
−β−µCt+γσ2(1−φ)+

∑
j=1,2

λjtEνj

[
e(bµj+bφµj (τ))Zjt − ebµjZjt

]
−
(
daφ
dτ

+ λ>t
dbφλ
dτ

+ µ>t
dbφµ
dτ

)
= 0.

Matching the terms multiplying µj implies

dbφµj
dτ

= −κµjbφjµ + (φ− 1) ;

Equation B.28 then follows from the boundary condition. Matching the terms multiplying

λj implies (B.29) and matching the constant terms implies (B.30). This also verifies the

conjectured form for H.

Under our assumptions, the solutions bφλj(τ) have finite limits.

Lemma B.8.

lim
τ→∞

bφλj(τ) = − 1

σ2
λj

(
ζφj − κλj + bλjσ

2
λj

)
, (B.34)

where

ζφj =

√√√√(bλjσ
2
λj
− κλj)2 − 2Eνj

[
e

(
bµj+φ−1

κµj

)
Zj − ebµjZj

]
σ2
λj
. (B.35)

Moreover, limτ→∞ bφλ1(τ) < 0 and limτ→∞ bφλ2(τ) > 0.

Proof Let b̄φλj denote the limit, should it exist. In the limit, small changes in τ do not

change bφλj(τ). Taking the limit of both sides of (17) implies that b̄φλj must satisfy the

quadratic equation

0 =
1

2
σ2
λj
b̄2
φλj

+ (bλjσ
2
λj
− κλj)b̄φλj + Eνj

[
e

(
bµj+φ−1

κµj

)
Zjt − ebµjZjt

]
.
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Equation B.34 gives a solution to this equation.41

To prove that the limits have the signs given in the Lemma, note that Z1 < 0 implies

that

Eν1

[
e

(
bµ1+φ−1

κµ1

)
Z1 − ebµ1Z1

]
< 0.

Therefore,

ζφ1 > |bλ1σ
2
λ1
− κλ1|.

Therefore, by (B.34) for j = 1, limτ→∞ bφλ1(τ) < 0

Now, note that Z2 > 0 implies that

Eν2

[
e

(
bµ2+φ−1

κµ2

)
Z2 − ebµ2Z2

]
> 0.

Therefore,

ζφ2 < |bλ2σ
2
λ2
− κλ2|

(Assumption 2 implies that ζφ2 is real-valued). Moreover, bλ2 < 0 (Theorem 1), so

0 < ζφ2 < κλ2 − bλ2σ
2
λ2
.

Therefore, by (B.34) for j = 2, limτ→∞ bφλ2(τ) > 0.

While we cannot solve for bφλj(τ) in closed form, we can obtain closed-form solutions

for the related problem of instantaneous disasters. The difference between the equations

is that the last term in (B.29) becomes a constant, rather than a decreasing function of

τ . We can use what we know about the instantaneous-disaster case to put bounds on the

solution for our current case. These bounds allow us to establish monotonicity.

Lemma B.9. Fix τ ∗ > 0. Let b∗φλj(τ) be the solution to

db∗φλj
dτ

=
1

2
σ2
λj
b∗φλj(τ)2 +

(
bλjσ

2
λj
− κλj

)
b∗φλj(τ) + Eνj

[
ebµjZjt

(
ebφµj (τ∗)Zjt − 1

)]
(B.36)

41We use the same procedure to select which of the two solutions of the quadratic to use as we used in

Appendix B.2. That is, we chose the one in which rare events do not affect prices if there are in fact no

rare events. We have verified that (B.34) does indeed correspond to the limit when the ordinary differential

equation (17) is solved numerically.
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with boundary condition b∗φλj(0) = 0. Then b∗φλ1
(τ) < bφλ1(τ) < 0 and b∗φλ2

(τ) > bφλ2(τ) > 0

for τ such that 0 < τ < τ ∗.

Proof. Consider j = 1. It follows from (B.29) and the boundary condition that

dbφλ1

dτ

∣∣∣∣
τ=0

= 0

d2bφλ1

dτ 2

∣∣∣∣
τ=0

< 0

It follows from (B.36) that
db∗φλ1

dτ

∣∣∣∣
τ=0

< 0.

Therefore, because bφλ1(0) = b∗φλ1
(0) = 0, there exists τ > 0 but sufficiently small such that

b∗φλ1
(τ) < bφλ1(τ) < 0 for τ < τ .

Assume, by contradiction, that there exists a τ < τ ∗ such that bφλ1(τ) ≤ b∗φλ1
(τ).

Because bφλ1(τ) and b∗φλ1
(τ) are smooth functions, there exists a τ̂ < τ ∗ such that b∗φλ1

(τ̂) =

bφλ1(τ̂) and such that b∗φλ1
(τ) − bφλ1(τ) is increasing in a neighborhood of τ̂ . However,

because bφµ1(τ ∗)Z1t < bφµ1(τ̂)Z1t, it follows from (B.36) and (B.29) that

db∗φλ1

dτ

∣∣∣∣
τ=τ̂

<
dbφλ1

dτ

∣∣∣∣
τ=τ̂

,

which is a contradiction. Similar reasoning shows that bφλ1(τ) < 0 and the results for

j = 2.42

Corollary B.10. The function bφλ1(τ) is negative and decreasing. The function bφλ2(τ) is

positive and increasing.

Proof. The results bφλ1(τ) < 0 and bφλ2(τ) > 0 are shown in the Lemma above. Consider

j = 1 and fix τ ∗ > 0. Define b∗φλ1
(τ) as in Lemma B.9. Because db∗φλ1

/dτ < 0 (see Wachter

(2013)), it follows from (B.36) that

1

2
σ2
λ1
b∗φλ1

(τ)2 +
(
bλ1σ

2
λ1
− κλ1

)
b∗φλ1

(τ) + Eν1

[
ebµ1Z1t

(
ebφµ1

(τ∗)Z1t − 1
)]
< 0. (B.37)

42For j = 2, we need Assumption 2 to guarantee that the function exists and is well-behaved.
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This inequality must hold for the entire range of values b∗φλ1
(τ) for τ between 0 and infinity.

That is,

1

2
σ2
λ1
x2 +

(
bλ1σ

2
λ1
− κλ1

)
x+ Eν1

[
ebµ1Z1t

(
ebφµ1

(τ∗)Z1t − 1
)]
< 0 x ∈ (inf b∗φλ1

(τ), 0).

Moreover, by Lemma B.9,

inf b∗φλ1
(τ) < b∗φλ1

(τ ∗) < bφλ1(τ ∗).

Thus

1

2
σ2
λ1
bφλ1(τ ∗)2 +

(
bλ1σ

2
λ1
− κλ1

)
b∗φλ1

(τ ∗) + Eν1

[
ebµ1Z1t

(
ebφµ1

(τ∗)Z1t − 1
)]
< 0,

It follows from (B.29) that the left-hand side is equal to dbφλ1/dτ |τ=τ∗ , and therefore that

bφλ1(τ) is a decreasing function of τ . The result follows because τ ∗ is arbitrary. The same

reasoning works for j = 2.

The following lemma shows that the integral determining the price of the market con-

verges. The logic is the similar to that driving the convergence of a geometric sum.

Lemma B.11.

lim
τ̄→∞

∫ τ̄

0

H(D,µ, λ, τ) dτ <∞

for all D > 0, vectors λ with both elements ≥ 0 and all µjt.

Proof Define b̄φλ2 to be the limit defined in Lemma B.8, and b̄φµ2 to be the limit of

bφµ2(τ) (the existence of this limit follows immediately from the form of the function). By

Corollary B.10,

H(D,µ, λ, τ) ≤ Deb̄φλ2
λ2t+b̄φµ2

µ2teaφ(τ),

and thus it suffices to show that

lim
τ̄→∞

∫ τ̄

0

eaφ(τ) dτ <∞.

Note that by (18),

aφ(τ) =
(
µ̄D − µ̄C − β + γσ2 (1− φ)

)
τ +

∑
j=1,2

κλj λ̄j

∫ τ

0

bφλj(u) du.

55



Now define

āφ = µ̄D − µ̄C − β + γσ2 (1− φ) + b̄φλ2κλ2λ̄2.

It follows from the fact that bφλ2(τ) > 0 and is increasing (Corollary B.10) that

aφ(τ) ≤ āφτ + κλ1λ̄1

∫ τ

0

bφλ1(u) du.

Because bφλ1(τ) is decreasing, by Assumption 3 and by the equations for the limits in

Lemma B.8, there exists a τ0 such that

āφ + bφλ1(τ0)κλ1λ̄1 < 0.

Write ∫ τ̄

0

eaφ(τ) dτ ≤
∫ τ̄

0

eāφτ+
∫ τ
0 bφλ1

(u)κλ1
λ̄1 du dτ

= eāφτ0+
∫ τ0
0 bφλ1

(u)κλ1
λ̄1 du

∫ τ̄

0

e
āφ(τ−τ0)+κλ1

λ̄1

∫ τ
τ0
bφλ1

(u) du
dτ

≤ eāφτ0+
∫ τ0
0 bφλ1

(u)κλ1
λ̄1 du

∫ τ̄

0

eāφ(τ−τ0)+κλ1
λ̄1bφλ1

(τ0)(τ−τ0) dτ,

where the last line follows from the monotonicity of bφλ1(τ). Convergence as τ̄ →∞ follows

from the properties of the exponential function.

Proof of Theorem 3 Note that, by no-arbitrage,

F (Dt, µt, λt) = Et

∫ ∞
t

πs
πt
Ds ds,

assuming the right-hand side is well-defined. It follows from Lemma B.7 thatH(Dt, µt, λt, τ) =

Et

[
πt+τ
πt
Dτ

]
takes the required form. Lemma B.11 shows that the indefinite integral of these

terms exists, and therefore we can write

F (Dt, µt, λt) =

∫ ∞
0

H (Dt, µt, λt, τ) dτ.

The equation for the price-dividend ratio follows immediately from dividing this equation

by Dt.
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Proof of Theorem 5 We use the general formula for the risk premium, given in Lemma B.6:

rmt − rt = −σπtσ>Ft −
∑
j=1,2

λjtEνj

[
Jj(Ft)
Ft

Jj(πt)
πt

]
.

It follows from F (Dt, µt, λt) = DtG(µt, λt) and Theorem 3 that

σFt =

[
φσ,

1

G

∂G

∂λ1

σλ1

√
λ1t,

1

G

∂G

∂λ2

σλ2

√
λ2t

]
.

Because dividends do not jump,

Jj(Ft)
Ft−

=
Jj(Gt)

Gt−
.

Substituting in from (B.11) and (B.12) leads to the equation for the equity premium:

rmt − rt = φγσ2 −
∑
j=1,2

λjtEνj

[(
ebµjZjt − 1

) Jj(Gt)

Gt

]
−
∑
j=1,2

λjt
1

Gt

∂G

∂λj
bλjσ

2
λj
.

B.5 Pricing results for value and growth

We first show that the price-dividend ratio for value lies below that of the market. This

result does not depend on our specific assumptions about the dividend process.

Proof of Corollary 9 Consider an asset with dividend stream given by

dDv
s

Dv
s

= µvDsdt+ φσdBCs,

and µvDs = µ̄D + φµ1s, for s ≥ t, and normalize Dv
t to Dt, the dividend on the market.

Comparing the evolution of Dv
s with Ds (given in (13)), it follows that

Dv
s ≤ Ds for s ≥ t, (B.38)

with a positive probability that the inequality is strict. Therefore, because state prices are

strictly positive,

Et

∫ ∞
t

πs
πt
Dv
s ds < Et

∫ ∞
t

πs
πt
Ds ds.

57



Dividing by Dt implies

Et

∫ ∞
t

πs
πt

Dv
s

Dt

ds < E

∫ ∞
t

πs
πt

Ds

Dt

ds.

Because Dv
t = Dt, the left-hand side is the price-dividend ratio on the value claim. By the

same reason, the right-hand side is the price-dividend ratio on the market.

This result does not require that we define the value claim at time t as an asset having

the same dividend as the market. Normalizing the dividends to be equal is a technical

step within the proof, not an assumption. The price-dividend ratio on the value claim is

determined only by future growth in dividends and in the state-price density, not the level

of current dividends.

It is convenient to state the pricing equations for the value claim. This result follows

from an argument directly analogous to that of Theorem 3.

Corollary B.12. Let F v(Dt, µt, λt) denote the price of the value sector, namely the claim

to cash flows satisfying (25), where Dt is the current dividend.

F v (Dt, µt, λt) =

∫ ∞
0

Hv (Dt, µt, λt, τ) dτ. (B.39)

where

Hv(Dt, µt, λt, τ) = Dt exp
{
avφ(τ) + bvφµ(τ)>µt + bvφλ(τ)>λt

}
, (B.40)

bvφµ1
(τ) =

φ− 1

κµ1

(
1− e−κµ1τ

)
(B.41)

bvφµ2
(τ) = − 1

κµ2

(
1− e−κµ2τ

)
, (B.42)

while bvφλj(τ) (for j = 1, 2) and aφ(τ) satisfy

dbvφλj
dτ

=
1

2
σ2
λj
bvφλj(τ)2 +

(
bλjσ

2
λj
− κλj

)
bvφλj(τ) + Eνj

[
ebµjZjt

(
e
bvφµj

(τ)Zjt − 1
)]
, (B.43)

davφ
dτ

= µ̄D − µ̄C − β + γσ2 (1− φ) + bvφλj(τ)>(κλ ∗ λ̄) (B.44)

with boundary conditions bvφλj(0) = avφ(0) = 0. Furthermore, the price-dividend ratio on the

value sector is given by

Gv(µt, λt) =

∫ ∞
0

exp
(
avφ(τ) + bvφµ(τ)>µt + bvφλ(τ)>λt

)
dτ. (B.45)
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Corollary B.13. The functions bvφλj(τ) are negative and decreasing.

Proof. See Lemma B.9 and Corollary B.10.

We now show that price of the growth claim is increasing in µ1 and µ2, decreasing in

λ1 and increasing in λ2 (Corollary 14 in the main text), using the corresponding results for

the market and the value sector.

Proof of Corollary 14 It follows from the definition of the growth sector price,

F g
t = Ft − F v

t ,

that

∂F g
t

∂µjt
=

∂Ft
∂µjt

− ∂F v
t

∂µjt
(B.46)

and

∂F g
t

∂λjt
=
∂Ft
∂λjt

− ∂F v
t

∂λjt
.

It follows from Corollary 4 that ∂Ft
∂µ2t

> 0 and from Corollary 10 that
∂F vt
∂µ2t

< 0, and similarly

for derivatives with respect to λ2t. Therefore, the price of the growth sector is increasing

in µ2t and λ2t.

Now consider j = 1. Theorem 3 and Corollary B.12 imply that we can rewrite (B.46)

as

∂F g
t

∂µjt
=

∫ ∞
0

bφµ1(τ)H(Dt, µt, λt, τ) dτ −
∫ ∞

0

bvφµ1
(τ)Hv(Dv

t , µt, λt, τ) dτ.

Moreover, bφµ1(τ) = bvφµ1
(τ). Because the dividend at time t+τ on value is less than or equal

to the dividend on the market, and strictly less with positive probability, H(Dt, µt, λt, τ) >

Hv(Dv
t , µt, λt, τ). The result follows. The same argument works for the derivative with

respect to λ1t.
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C Return simulation

This section describes how we simulate returns on the market and the value and growth

sectors, given a simulated series of state variables and one-period observations on dividend

growth. We simulate at a monthly frequency, which is sufficiently fine to capture the joint

distribution of consumption, dividends, and the state variables.

Consider an asset with price process Ft and dividend Dt. The realized return between

time t and t+ ∆t is given by

Rt,t+∆t =
Ft+∆t +

∫ t+∆t

t
Ds ds

Ft

(see Duffie (2001, Chapter 6.L)). Consider an asset that pays a positive dividend at each

point in time (namely, the market or value claim). Using the approximation Dt+∆t∆t ≈∫ t+∆t

t
Ds ds, we can compute returns as

Rt,t+∆t ≈
Ft+∆t +Dt+∆t∆t

Ft

=

Ft+∆t

Dt+∆t
+ ∆t

Ft
Dt

Dt+∆t

Dt

=
G(µt+∆t, λt+∆t) + ∆t

G(µt, λt)

Dt+∆t

Dt

, (C.1)

where G is the price-dividend ratio on the asset. The price-dividend ratio series is obtained

from the simulated series of state variables using (19) for the market and (28) for value.

Note that this definition of the return makes it unnecessary to have information on either

the level of dividends or the level of prices. Thus this definition is invariant to whether

value is redefined to have the same dividend at time t as the market.

Because the growth sector does not pay a dividend every period, we cannot use (C.1) to

compute its return. However, its return is implied by the fact that the market is a portfolio

of value and growth. Let Rm
t,t+∆t denote the market return and Rv

t,t+∆t denote the return

on the value sector, each computed using the relevant quantities in (C.1). Furthermore,

recall that F v
t is the price of the value sector at time t and Ft is the price of the market.

60



Then,

Rm
t,t+∆t ≈

F v
t

Ft
Rv
t,t+∆t +

(
1− F v

t

Ft

)
Rg
t,t+∆t. (C.2)

This equation is approximate rather than exact because the model is formulated in contin-

uous time. Solving for the growth return in (C.2) yields

Rg
t,t+∆t =

1

1− F vt
Ft

(
Rm
t,t+∆t −

F v
t

Ft
Rv
t,t+∆t

)
. (C.3)

We now assume that the time-t dividend on value and on the market are the same. It

follows that

F v
t

Ft
=
Gv(µt, λt)

G(µt, λt)
. (C.4)

Growth returns can then be computed using the state variable series and returns on value

and the market using (C.3) and (C.4).
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in an empirical model of consumption disasters, American Economic Journal: Macroe-

conomics 5, 35–74.

Novy-Marx, Robert, 2010, Operating Leverage, Review of Finance 15, 103–134.

Papanikolaou, Dimitris, 2011, Investment Shocks and Asset Prices, Journal of Political

Economy 119, 639–685.
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Figure 1: Solution for the price-dividend ratio

Panel A: Expected growth rates
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Panel B: Rare event probabilities
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Notes: Panel A shows the coefficients multiplying µ1 and µ2 (the disaster and boom components

in expected consumption growth, respectively) in the price-dividend ratio. Panel B shows the

coefficients multiplying λ1t (the probability of a disaster) and λ2t (the probability of a boom).

The left panel shows results for the market; the right shows results for the value premium. The

scales on the left and the right may differ.



Figure 2: Risk premiums as a function of disaster probability
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Panel B: In a sample without rare events
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Notes: Panel A shows population risk premia as functions of the disaster probability with the boom

probability fixed at its mean. The vertical line represents the mean of the disaster probability.

Panel B shows what the average realized excess return would be in a sample without rare events.



Figure 3: Risk premiums as a function of boom probability
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Notes: Panel A shows population risk premia as functions of the boom probability with the disaster

probability fixed at its mean. The vertical line represents the mean of the boom probability.

Panel B shows what the average realized excess return would be in a sample without rare events.



Figure 4: Sample simulation path of asset dividends and prices
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Notes: This figure shows results from a time series simulated from the model that includes

a boom. The top figure shows dividends (initialized at one), while the bottom panel shows

prices. The solid line marks the onset of the boom.



Figure 5: Tails of the one-year consumption growth rate distribution
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Note: This figure shows histograms of one-year consumption growth rates. The right panel

considers growth rates above 15%. The left panel considers growth rates below -15%. The

frequency is calculated by the number of observations within a range, divided by the total

number of observations in the sample. Panel A shows results from simulated data from the

model. Panel B shows results from the data. Data are from Barro and Ursúa (2008). For

the consumption booms, we exclude observations between 1944 and 1953.



Figure 6: Tails of the five-year consumption growth rate distribution
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Notes: This figure shows histograms of five-year consumption growth rates. The right

panel considers growth rates above 45%. The left panel considers growth rates below -45%.

Panel A shows results from simulated data from the model. Panel B shows results from

the data. Data are from Barro and Ursúa (2008). For the consumption booms, we exclude

five-year periods beginning between 1940 and 1948.



Figure 7: Sensitivity of the observed value premium to parameter choices

Panel A: Value premium as a function of average boom probability (λ̄2)
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Panel B: Value premium as a function of the power law tail parameter (α)
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Notes: Panel A reports the observed value premium (defined as the average difference be-

tween the return on the value sector and the return on the growth sector across simulations

with no rare events) as a function of the average probability of a boom. All other param-

eters are unchanged. Panel B reports the average value premium across simulations with

no rare events as a function of the power law parameter α. Lower values of α correspond

to thicker tails.



Figure 8: Consumption growth skewness
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Notes: This figure shows the consumption growth skewness conditional on different rare

event probability. The one on the left plots the skewness at different disaster probability

λ1, with the boom probability equals to its mean. The one on the right plots the skewness

at different boom probability λ2, with the disaster probability equals to its mean. We

calculate skewness by simulating 500,000 years of consumption growth at a monthly

frequency for each value of the rare event probabilities. We aggregate the monthly

consumption growth to an annual frequency and calculate the skewness over the sample.



Table 1: Effects of shocks on prices and returns

High λ1 High λ2 Low µ1 High µ2

Riskfree rate 0 0 − +

Market price-dividend ratio − + − +

Value price-dividend ratio − − − −

Population equity premium + + 0 0

Population risk premium for value + − 0 0

Average excess market return in samples without rare events + − 0 0

Average excess value return in samples without rare events + + 0 0

Notes: Signs of the effect of shocks to each state variable on the riskfree rate, price div-

idend ratios, and risk premia. “High λ1” refers to an increase in the disaster probability.

“High λ2” refers to an increase in the boom probability. “Low µ1” refers to a decrease in

the component of expected consumption growth due to disasters. “High µ2” refers to an

increase in the component of expected consumption growth due to booms. The true and

observed risk premia are all relative to the riskfree rate. The observed premia refers to the

expected excess return that would be observed in a sample without rare events.



Table 2: Parameter values

Panel A: Basic parameters

Average growth in consumption (normal times) µ̄C (%) 1.96

Average growth in dividend (normal times) µ̄D (%) 3.03

Volatility of consumption growth (normal times) σ (%) 1.45

Leverage φ 3.5

Rate of time preference β 0.003

Relative risk aversion γ 3.0

Panel B: Disaster parameters

Average probability of disaster λ̄1 (%) 2.86

Mean reversion in disaster probability κλ1 0.11

Volatility parameter for disasters σλ1 0.081

Mean reversion in expected consumption growth κµ1 1.00

Minimum consumption disaster (%) 10

Power law parameter for consumption disaster 6.27

Panel C: Boom parameters

Average probability of boom λ̄2 (%) 2.86

Mean reversion in boom probability κλ2 0.11

Volatility parameter for booms σλ2 0.081

Mean reversion in expected consumption growth κµ2 1.00

Minimum consumption boom (%) 5

Power law parameter for consumption booms 15.00

Notes: Parameter values for the main calibration, expressed in annual terms.



Table 3: Log consumption and dividend growth moments

Panel A: Consumption growth

No-Jump Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

mean 1.95 1.65 1.95 2.26 −0.31 1.65 2.70 1.50

standard deviation 1.45 1.22 1.44 1.66 1.47 3.16 7.52 4.24

skewness −0.37 −0.50 0.00 0.48 −4.56 −1.63 2.21 −4.80

kurtosis 3.22 2.20 2.80 3.87 2.85 10.33 28.09 55.34

Panel B: Dividend growth

No-Jump Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

mean 1.67 1.84 2.91 3.98 −5.01 1.86 5.52 1.31

standard deviation 6.46 4.28 5.04 5.82 5.15 11.05 26.33 14.84

skewness 0.10 −0.50 0.00 0.48 −4.56 −1.63 2.21 −4.80

kurtosis 4.66 2.20 2.80 3.87 2.85 10.33 28.09 55.34

Notes: Data moments are calculated using annual data from 1947 to 2010. Population

moments are calculated from simulating data from the model at a monthly frequency for

600,000 years and then aggregating monthly growth rates to an annual frequency. We also

simulate 100,000 60-year samples and report the 5th-, 50th- and 95th-percentile for each

statistic both from the full set of simulations and for the subset of samples for which no

rare events occur.



Table 4: Value spread moments

No-Jump Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

exp(E[log(value spread)]) 1.23 1.18 1.21 1.27 1.18 1.23 1.34 1.24

σ(log(value spread)) 0.08 0.02 0.04 0.07 0.03 0.07 0.16 0.10

Value spread autocorrelation 0.79 0.57 0.78 0.90 0.39 0.69 0.89 0.71

Notes: Data moments are calculated using annual data from 1947 to 2010. Population

moments are calculated from simulating monthly data from the model for 600,000 years

and then aggregating to an annual frequency. We also simulate 100,000 60-year samples

and report the 5th-, 50th- and 95th-percentile for each statistic both from the full set of

simulations and for the subset of samples for which no rare events occur. The value spread

is defined as the log of the book-to-market ratio for the value sector minus the book-to-

market ratio for the aggregate market in the data, and as log price-dividend ratio for the

aggregate market minus the log price-dividend ratio for the value sector in the model. In

the data, the growth portfolio is the lowest book-to-market decile. The remaining nine

deciles comprise the value portfolio.



Table 5: Aggregate market moments

No-Jump Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

E[Rb] 1.25 1.65 1.95 2.10 -0.12 1.62 2.57 1.49

σ(Rb) 2.75 0.13 0.25 0.50 0.38 2.43 5.76 3.24

E[Rm −Rb] 7.25 3.66 5.44 7.94 2.88 5.97 10.28 6.27

σ(Rm) 17.8 10.4 14.5 20.1 13.1 20.5 31.9 22.3

Sharpe ratio 0.41 0.27 0.38 0.51 0.14 0.30 0.46 0.28

exp(E[p− d]) 32.5 25.0 30.7 34.4 20.0 28.6 34.3 27.8

σ(p− d) 0.43 0.10 0.19 0.34 0.14 0.27 0.50 0.35

AR1(p− d) 0.92 0.57 0.78 0.91 0.53 0.78 0.91 0.85

Notes: Data moments are calculated using annual data from 1947 to 2010. Population

moments are calculated from simulating monthly data from the model for 600,000 years

and then aggregating to an annual frequency. We also simulate 100,000 60-year samples

and report the 5th-, 50th- and 95th-percentile for each statistic both from the full set of

simulations and for the subset of samples for which no rare events occur. Rb denotes the

government bond return, Rm denotes the return on the aggregate market and p−d denotes

the log price-dividend ratio.



Table 6: Cross-sectional moments

No-Jump Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

E[Rv −Rb] 7.95 4.34 6.06 8.52 2.59 5.26 8.28 5.34

E[Rg −Rb] 6.62 1.04 3.37 6.41 1.10 7.90 24.79 9.97

E[Rv −Rg] 1.34 1.26 2.74 4.03 -19.55 -2.42 3.46 -4.63

σ(Rv) 17.0 9.7 13.5 18.7 11.3 17.4 25.2 18.1

σ(Rg) 21.0 16.6 22.8 32.6 21.8 41.8 117.3 64.0

σ(Rv −Rg) 11.7 10.7 14.6 19.9 13.1 35.1 116.1 60.7

Sharpe ratio, value 0.48 0.34 0.45 0.60 0.13 0.31 0.51 0.29

Sharpe ratio, growth 0.32 0.05 0.15 0.24 0.04 0.18 0.29 0.16

Sharpe ratio, value-growth 0.11 0.07 0.19 0.33 -0.20 -0.07 0.25 -0.08

alpha, value 1.26 0.79 1.08 1.50 -0.22 0.86 2.82 1.23

alpha, growth -1.26 -5.96 -4.32 -3.10 -9.62 -3.17 1.36 -4.28

alpha, value-growth 2.53 3.97 5.41 7.33 -1.53 4.07 12.29 5.51

beta, value 0.92 0.86 0.92 0.96 0.26 0.83 0.96 0.66

beta, growth 1.09 1.21 1.41 1.63 1.23 1.69 3.64 2.27

beta, value-growth -0.16 -0.75 -0.49 -0.25 -3.32 -0.87 -0.28 -1.62

Notes: Data moments are calculated using annual data from 1947 to 2010. Population

moments are calculated from simulating monthly data from the model for 600,000 years

and then aggregating to an annual frequency. We also simulate 100,000 60-year samples

and report the 5th-, 50th- and 95th-percentile for each statistic both from the full set of

simulations and for the subset of samples for which no rare events occur. Rv denotes the

gross return on the value sector, Rg denotes the gross return on the growth sector, alpha

denotes the loading of the constant term of the CAPM regression and beta denotes the

loading on the market equity excess return of the CAPM regression. In the data, the

growth portfolio is the lowest book-to-market decile. The remaining nine deciles comprise

the value portfolio.



Table 7: Long-horizon regressions of aggregate market and value-minus-growth returns on

the price-dividend ratio and the value spread

1-year Horizon 3-year Horizon 5-year Horizon

Data NJ All Pop. Data NJ All Pop. Data NJ All Pop.

Panel A: Market returns on the price-dividend ratio

Coef. −0.12 −0.28 −0.17 −0.09 −0.29 −0.67 −0.42 −0.23 −0.41 −0.91 −0.60 −0.35

t-stat [−2.41] [−3.37] [−3.37]

R2 0.09 0.15 0.07 0.02 0.22 0.33 0.16 0.05 0.27 0.43 0.22 0.07

Panel B: Market returns on the value spread

Coef. −0.50 −0.76 −0.33 −0.06 −1.18 −1.88 −0.86 −0.17 −1.28 −2.61 −1.26 −0.25

t-stat [−1.86] [−2.28] [−3.13]

R2 0.05 0.05 0.02 0.001 0.12 0.12 0.06 0.002 0.09 0.16 0.08 0.003

Panel C: Value-minus-growth returns on the price-dividend ratio

Coef. 0.01 0.11 0.06 0.01 0.05 0.27 0.16 0.02 0.09 0.38 0.24 0.02

t-stat [0.37] [0.51] [0.76]

R2 0.00 0.03 0.02 1×10−4 0.01 0.07 0.05 2×10−4 0.02 0.10 0.07 2×10−4

Panel D: Value-minus-growth returns on the value spread

Coef. 0.46 1.18 0.47 0.01 1.13 2.87 1.23 0.03 1.48 3.95 1.81 0.05

t-stat [2.52] [2.44] [2.37]

R2 0.10 0.10 0.03 1×10−5 0.19 0.25 0.08 5×10−5 0.21 0.34 0.12 7×10−5

Notes: Coefficients and R2-statistics from predictive regressions in annual (overlapping) postwar

data and in the model. In Panels A and B the excess market return is regressed against the

price-dividend ratio and the value spread respectively. Panels C and D repeat this exercise with

the value-minus-growth return. The value spread is defined as the log book-to-market ratio of the

value sector minus log book-to-market ratio of the aggregate market. For the data coefficients, we

report t-statistics constructed using Newey-West standard errors. Population moments (Pop.) are

calculated from simulating monthly data from the model for 600,000 years and then aggregating

to an annual frequency. We also simulate 100,000 60-year samples and report the average value

for each statistic both from the full set of simulations (All) and for the subset of samples for which

no rare events occur (NJ).



Table 8: Data on portfolios formed on the book-to-market ratio

All stocks Top size quintile

G V G V

1 2 3 4 5 1 2 3 4 5

Panel A: 1947 – 2010

E[Ri −Rf ] 6.08 6.71 8.04 8.61 10.36 6.22 6.46 7.26 7.32 8.36

se (0.59) (0.55) (0.52) (0.54) (0.62) (0.57) (0.54) (0.52) (0.55) (0.62)

σ[Ri −Rf ] 16.26 15.12 14.47 14.96 17.20 15.85 14.94 14.48 15.16 17.32

βi 1.06 1.02 0.95 0.96 1.05 1.02 0.99 0.91 0.93 0.99

se (0.02) (0.01) (0.02) (0.02) (0.03) (0.02) (0.01) (0.02) (0.02) (0.03)

% of total market 40.84 22.24 17.03 12.22 7.66 33.85 16.86 12.37 8.01 4.33

Panel B: 1995 – 2000

E[Ri −Rf ] 16.15 15.07 14.63 15.50 13.00 17.84 16.13 14.80 16.09 12.03

se (2.04) (1.82) (1.77) (1.60) (1.40) (2.01) (1.88) (1.93) (1.91) (1.73)

σ[Ri −Rf ] 17.27 15.41 15.03 13.60 11.88 17.04 15.98 16.36 16.18 14.68

βi 1.09 1.10 1.04 0.89 0.78 1.09 1.12 1.10 0.95 0.85

se (0.08) (0.04) (0.06) (0.05) (0.04) (0.08) (0.03) (0.06) (0.09) (0.07)

% of total market 47.53 21.66 14.69 9.33 6.80 40.21 16.75 10.31 5.76 3.92

Panel C: 1929 – 1932

E[Ri −Rf ] -21.79 -20.99 -28.65 -21.52 -26.35 -21.48 -19.26 -28.72 -29.79 -16.94

se (5.77) (5.71) (7.14) (8.82) (9.12) (5.77) (5.70) (7.47) (8.79) (8.74)

σ[Ri −Rf ] 39.98 39.58 49.44 61.08 63.21 39.99 39.48 51.79 60.89 60.58

βi 0.95 0.94 1.15 1.38 1.44 0.95 0.93 1.19 1.36 1.23

se (0.04) (0.03) (0.06) (0.13) (0.12) (0.04) (0.03) (0.07) (0.11) (0.17)

% of total market 46.62 24.56 18.22 8.40 2.20 42.72 20.30 14.50 6.01 0.89

Panel D: January 2008 - June 2009

E[Ri −Rf ] -19.57 -26.92 -29.31 -35.29 -23.61 -19.25 -27.88 -32.22 -39.58 -20.84

se (5.69) (5.03) (6.28) (6.64) (7.64) (5.49) (4.59) (6.15) (6.71) (7.23)

σ[Ri −Rf ] 24.13 21.36 26.64 28.17 32.40 23.29 19.49 26.07 28.47 30.66

βi 0.91 0.82 1.01 1.07 1.20 0.87 0.73 0.97 1.06 1.10

se (0.06) (0.03) (0.07) (0.05) (0.12) (0.06) (0.04) (0.09) (0.06) (0.13)

% 37.02 26.05 16.32 13.82 6.79 30.19 20.63 12.17 10.13 3.96

Notes: Statistics for portfolio excess returns formed by sorting stocks by the ratio of book equity to market

equity during various subperiods of the data. The panel reports means and βs with respect to to the

value-weighted CRSP market portfolio. Data are at a monthly frequency. We multiply excess returns by

1200 to obtain annual percent returns. Excess returns are measured relative to the 30-day Tbill. The left

panel reports results from the full set of equities, while the right panel looks only at the top size quintile.



Table 9: Upside and downside betas in the model

E[R−Rb] (%) relative β+ relative β−

Value 6.06 -0.0024 0.0062

Growth 3.37 0.0686 -0.0634

Notes: This table reports the relative upside and downside betas for the value and growth port-

folios in the model, along with the average returns on these portfolios. The first column reports

the average annual excess returns for value and growth, the second row reports the relative upside

betas, β+
i − βi, where β+

i = cov(Ri−Rm|Rm>µm)
var(Rm|Rm>µm) , µm is the average return on the aggregate market

within each simulation, and βi is the regular CAPM beta for value and growth portfolio. The

third column reports the relative downside betas, β−i − β, where β−i = cov(Ri−Rm|Rm<µm)
var(Rm|Rm<µm) . We

simulate 100,000 60-year samples and report the median values from the subset of samples for

which no rare events occur.


