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Abstract

This review article describes recent literature on asset allocation,

covering both static and dynamic models. The article focuses on the

bond-stock decision and on the implications of return predictability.

In the static setting, investors are assumed to be Bayesian, and the

role of various prior beliefs and specifications of the likelihood are

explored. In the dynamic setting, recursive utility is assumed, and

attention is paid to obtaining analytical results when possible.

Results under both full- and limited-information assumptions are

discussed.
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1. INTRODUCTION

The study of portfolio allocation has played a central role in financial economics, from its

very beginnings as a discipline. This field of study has attracted (and continues to attract)

the attention that it does because it is both highly practical and amenable to the application

of sophisticated mathematics.

This study reviews the recent academic literature on asset allocation. Two important

simplifications are employed: First, the field has drawn a distinction between the study

of allocation to broad asset classes and allocation to individual assets within a class.

This article focuses on the former. In fact, the empirical applications in this article

assume an even more specific case, namely an investor who chooses between a broad

stock portfolio and a riskless asset. Second, the surveyed models assume, for the most

part, no financial frictions. That is, I assume that the investor does not face unhedgeable

labor income risk or barriers to trading in the assets, such as leverage or short-sale

constraints. This is not to deny the importance of other asset classes or of financial

frictions. Recent surveys on portfolio choice (encompassing portfolios of many assets)

include Cochrane (1999), Brandt (2009), and Avramov & Zhou (2010). Campbell

(2006) and Curcuru et al. (2009) survey work on asset allocation under realistic frictions

faced by households.

I focus on two broad classes of models: static models (in which the investor looks one

period ahead) and dynamic models (in which the investor looks multiple periods ahead and

takes his future behavior into account when making decisions). For static models, the

solution where investors have full information about asset returns has been known for

some time (Markowitz 1952), so the focus is on incorporating uncertainty about the return

process. In contrast, much has been learned in recent years about dynamic models, even in

the full-information case. A barrier to considering dynamic models is often their complex-

ity: For this reason, I devote space to analytical results. These results, besides being inter-

esting in their own right, can serve as a starting point for understanding the behavior of

models that can be solved numerically only.

Finally, in both the static and dynamic sections, I consider in detail the model in which

excess returns on stocks over short-term Treasury bills are in part predictable. A substantial

empirical literature devotes itself to the question of whether returns are predictable; the

asset allocation consequences of such predictability are striking and well-known in at least

a qualitative sense since Graham & Dodd (1934).

Ultimately, the goal of academic work on asset allocation is the conversion of the time

series of observable returns and other variables of interest into a single number: Given the

preferences and horizon of the investor, what fraction of her wealth should she put in

stock? The aim is to answer this question in a “scientific” way, namely by clearly specifying

the assumptions underlying the method and developing a consistent theory based on these

assumptions. The very specificity of the assumptions and the resulting advice can seem

dangerous, imputing more certainty to the models than the researcher can possibly possess.

Yet, only by being so highly specific, does the theory turn into something that can be clearly

debated and ultimately refuted in favor of an equally specific and hopefully better theory.

This development implies the use of mathematics to model the investment decision.

Throughout this article, the reader is encouraged to remember that the subject of the

modeling is an individual or household making a decision with significant consequences

for lifelong financial security.
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2. STATIC MODELS

2.1. The Basic Decision Problem

In this section, I consider the problem of an investor maximizing wealth as of time

T by allocating wealth between a risky and a riskless asset. The portfolio decision takes

place at a time T̂ < T. Let Rtþ1 denote the simple return on the risky asset between times

t and t þ 1 and Rf,tþ1 is the simple return on the riskless asset between t and t þ 1. Let Wt

denote the investor’s wealth at time t. The investor solves

max
z

E
T̂

W1"g
T

1" g

" #

, ð1Þ

where

WT ¼ W
T̂

z
YT

s¼T̂þ1

Rs þ (1" z)
YT

s¼T̂þ1

Rf ,s

0

@

1

A: ð2Þ

The parameter g is assumed to be positive, and g ¼ 1 should be interpreted as logarith-

mic utility. Note that the investor described above decides on the allocation z at time T̂ and

then does not trade. This is a buy-and-hold investor. The implicit weight on the risky

security can, and almost certainly will, change over time; however, the problem written as

above assumes that the investor does not rebalance back to the original weights. For now,

it is assumed that z can take on any value: Short sales and borrowing at the risk-free rate

are allowed. For the purposes of solving the model, I assume Rfs, for s between T̂ þ 1 and T,
is known to the investor at time T̂. Following much of the literature, I assume that the

investor’s utility takes a power form, implying that relative risk aversion is constant and

that asset allocation does not depend on wealth. The scale invariance of power utility has

broad empirical support in that interest rates have remained stationary despite the fact that

wealth has grown.

Define the continuously compounded excess return to be

yt ¼ logRt " logRft

and assume yt follows the process

ytþ1 ¼ aþ bxt þ utþ1, ð3Þ

and

xtþ1 ¼ yþ rxt þ vtþ1, ð4Þ

where

utþ1

vtþ1

! "
j yt, . . . , y1, xt, . . . , x0 & N(0,S), ð5Þ

and

S ¼
s2u suv
suv s2v

" #

: ð6Þ
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That is, ytþ1 has a predictable component xt that follows a first-order autoregressive

process. The errors are assumed to be serially uncorrelated, homoskedastic, and jointly

normally distributed. A substantial and long-standing empirical literature documents pre-

dictability in excess returns, in the sense that running regression (Equation 3) for observ-

able xt generates statistically significant coefficients: For example, see Fama & Schwert

(1977), Keim & Stambaugh (1986), Campbell & Shiller (1988), Fama & French (1989),

Cochrane (1992), Goetzmann & Jorion (1993), Hodrick (1992), Kothari & Shanken

(1997), Lettau & Ludvigson (2001), Lewellen (2004), Ang & Bekaert (2007), Boudoukh

et al. (2007). In what follows, I focus on the case where xt is the dividend yield because the

dividend yield and future expected excess returns are linked through a present value

identity (Campbell & Shiller 1988). Theory suggests, therefore, that if returns are pre-

dictable, the dividend yield should capture at least some of that predictability. The general

setting that I have laid out here largely follows that of Barberis (2000) but with some

important differences.

I assume the investor does not know the parameters of the system above. Rather, he is a

Bayesian, meaning that he has prior beliefs on the parameters, and after viewing the data,

makes inferences using the laws of probability (Berger 1985). Let b̂ be the ordinary least

squares (OLS) estimate of b in the regression (Equation 3). Bayesian analysis turns the

standard frequentist analysis on its head: Instead of asking for the distribution of the test

statistic b̂ (which depends on the data) as a function of the true parameter b, Bayesian
analysis asks for the distribution of the true parameter b as a function of the data (which

often comes down to a function of sufficient statistics, such as b̂).
For notational convenience, stack the coefficients from Equations 3 and 4 into a vector:

b ¼ ½a, b, y, r)> :

The investor starts out with prior beliefs p(b,S). Let L(D jb,S) denote the likelihood

function, where D is the data available up until and including time T̂. It follows from

Bayes’ rule that the posterior distribution is given by

p(b,S jD) ¼ L(D j b,S) p(b,S)
p(D)

,

where p(D) is an unconditional likelihood of the data in the sense that

p(D) ¼
Z

b,S
L(D j b,S) p(b,S) dbdS,

namely that p(D) integrates out b and S. It follows that

p(b,S jD) / L(D j b,S) p(b,S), ð7Þ

where / denotes “proportional to” because p(D) does not depend on b or S. The likeli-

hood function, given T̂ years of data, is equal to

L(D jS, b) ¼
ŶT"1

t¼0

ptþ1jt(ytþ1, xtþ1 j xt,S,b)p0(x0j b,S):, ð8Þ

where ptþ1jt(ytþ1, xtþ1 j xt,S, b) is given by a bivariate normal density function as described

in Equations 3–6 and p0(x0 j b,S) gives the initial condition of the time series. Given the

posterior, the predictive density for returns from time T̂ to T is defined as
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p(y
T̂þ1

, . . . yT jD) ¼
Z
p(y

T̂þ1
, . . . , yT j b,S, x

T̂
) p(b,S jD) db dS: ð9Þ

The predictive distribution (Equation 9) summarizes the agent’s beliefs about the return

distribution after viewing the data. The expectation in Equation 1 is taken with respect to

this distribution.

Howmight predictability influence an investor’s optimal allocation? Kandel & Stambaugh

(1996) find that optimal allocation for the single-period case can be approximated by

z * 1

g
E½yT ) þ

1
2 Var(yT )

Var(yT)
, ð10Þ

where the mean and the variance are taken under the investor’s subjective distribution of

returns (which is Equation 9 in the Bayesian case). Holding the variance constant, an upward

shift in the mean increases the allocation. This is not surprising given that the investor prefers

more, not less, wealth. This approximation is valid only for short horizons and small shocks.

However, it is useful as a first step to understanding the portfolio allocation.

2.2. The Conditional Bayesian Model

The initial condition p0(x0 j b,S) in Equation 8 is problematic. Kandel & Stambaugh

(1996) show that if this term were to disappear, the system (Equations 3–6) would take

the form of a classical multivariate regression model (Zellner 1971, ch. 8).1 Assuming the

standard noninformative prior for regression,

p(b,S) /jS j"3=2, ð11Þ

the posterior distribution for all the parameters could then be obtained in closed form.

Indeed, conditional on S, b would be normally distributed around its OLS estimate b̂.
However, p0(x0 j b,S) is there, and something must be done about it. One approach is to

let it stay and specify what it should be. I refer to the resulting set of assumptions and

results as the “exact Bayesian model” (described Section 2.3). Another approach is to

assume x0 conveys no prior information. Thus,

p(b,S j x0) ¼ p(b,S): ð12Þ

Because the prior is now conditional on x0, the likelihood can condition on x0 as well.

The posterior is, of course, conditional on x0 because it is conditional on all the data. That

is, the assumption in Equation 12 allows Equation 7 to be replaced by

p(b,S jD) / Lc(D j b,S, x0) p(b,S j x0),

where Lc is the likelihood conditional on x0:

Lc(D jS, b, x0) ¼
YT"1

t¼0

ptþ1jt(ytþ1,xtþ1 j xt,S, b): ð13Þ

1However, it still would not be a classical regression model. An assumption of classical regression is that the
dependent variable is either nonstochastic or independent of the disturbance term ut at all leads and lags (Zellner
1971, ch. 3). As emphasized in Stambaugh (1999), the independence assumption fails in predictive regressions.
Under the assumptions of classical regression, Gelman et al. (1996) show that the likelihood function for the
regressor is irrelevant to the agent’s decision problem (and so, therefore, is the initial condition).
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I refer to this as the “conditional Bayesian model.” I comment further on the assumption in

Equation 12 below.

This conditional Bayesian model is used by Barberis (2000) to study asset allocation

for buy-and-hold investors. For comparison, Barberis also solves the model in the full-

information case, namely when the investor knows the parameters in Equations 3–6.

Figure 1 shows the resulting optimal allocation for a risk aversion of 5 at various horizons

and values of the dividend yield: the full-information case (Figure 1a) and the results from

the conditional Bayesian model (Figure 1b).

A striking feature of Figure 1b is the degree to which portfolio weights respond to

changes in the dividend yield. That is, the investor aggressively engages in market timing,

with the dividend yield as the signal of how much to allocate to equities. For an investor

with a one-year horizon, the optimal allocation is approximately 80% when the dividend

yield is at its mean. When the dividend yield is at one or two standard deviations above

the long-run mean, the investor has all her wealth in stocks. When the dividend yield is at

one standard deviation below the long-run mean, the optimal allocation falls to 20%. The

optimal allocation is bounded above and below because the power utility investor would

never risk wealth below zero. Because the distribution for returns is unbounded from

above, this investor would never hold a negative position in stock. The investor would also

0 2 4 6 8 10
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Horizon (years)

A
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Figure 1

Static allocation as a function of horizon assuming return predictability: (a) when there is no parameter uncertainty and
(b) incorporating parameter uncertainty. The solid line corresponds to the optimal (buy-and-hold) allocation when the dividend
yield is at its sample mean (3.75%). The dash-dotted lines correspond to the allocations when the dividend yield is one standard
deviation above or below its mean (2.91% and 4.59%, respectively). The dotted lines correspond to the allocations when the
dividend yield is two standard deviations above or below its mean (2.06% and 5.43%, respectively). The agent has power utility
over terminal wealth with relative risk aversion equal to 5. Some lines may lie on top of each other. The allocations weakly
increase as a function of the dividend yield except at very long horizons in panel b. The model is estimated over monthly data
from 1952 to 1995. This figure is adapted from Barberis (2000, figure 3).
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never hold a levered position in stock, for this too implies a positive probability of negative

wealth, because returns could be as low as "100%. Note that these endogenous bounds

on the optimal portfolio illustrate errors in the approximation given in Equation 10, which

contains no such bounds.

What about the case where the investor incorporates estimation risk into her decision

making? One may think that estimation risk would make a substantial difference because,

as Barberis (2000) reports, the evidence for predictability at a monthly horizon is of only

borderline significance in the relevant sample. However, the results incorporating estima-

tion risk are quite similar to those that do not at short horizons. Indeed, differences start to

become noticeable only at buy-and-hold horizons of five years or more. (Although such

long buy-and-hold horizons may characterize the behavior of some investors, from the

normative perspective of this article, such infrequent trading seems extreme.) Thus, for the

statistical model for stock returns above, parameter uncertainty resulting from the regres-

sion is small compared with the measured uncertainty of holding stocks.2

Figure 1 also reveals that the optimal allocation is increasing in the horizon in the case

of full information as well as for all but the longest horizons in the parameter uncertainty

case [see Stambaugh (1999) for an explanation of the reversed relation between holdings

and the dividend yield at the longest horizons]. Because innovations to the dividend yield

are negatively correlated with innovations to returns, stocks when measured at long hori-

zons are less risky than stocks measured at short horizons [mean reversion in stock returns

is pointed out in earlier work of Poterba & Summers (1988)]. The implications of mean-

reversion for long-horizon investors are also the subject of Siegel (1994).

2.3. The Exact Bayesian Model

The results above implicitly assume Equation 12, namely that prior beliefs are independent

of the initial observation x0. This assumption enables the use of the conditional likelihood,

which combined with the prior (Equation 11) leads to closed-form expressions for the

posterior distributions of the parameters. Although Equation 12 is convenient, how realis-

tic is it? Under Equation 12, the agent believes that the value of x0 conveys no information

about the parameters of the process for x or y. For instance, the initial value of the dividend
yield would tell you nothing about, say, the average dividend yield. There is nothing

mathematically incorrect about specifying such prior beliefs; the agent can, in principal,

believe anything so long as it does not entail a logical inconsistency or require a peek ahead

at the data. However, such beliefs do not seem reasonable. For instance, the logic of these

beliefs would allow the agent to exclude an arbitrary amount of the data from consider-

ation, just by making the prior parameters independent of these data.

The question of whether to allow the initial condition appears to be of a technical

nature, but it has unexpectedly deep implications for Bayesian estimation and for the

portfolio-allocation decision. Stambaugh (1999) describes these implications. Stambaugh

also shows that OLS estimation of the coefficient b implies results are upward biased.

2Note that the effect of the dividend yield attenuates at longer horizons both when parameter uncertainty is taken
into account and when it is not. This occurs because the dividend yield is mean-reverting and because the investor
cannot rebalance as the dividend yield reverts to its mean. In the limit, an investor with an infinite horizon (who cares
about wealth at the end of the horizon) would care only about the unconditional distribution of returns and not
about the current value of the dividend yield. Because the dividend yield is so persistent, the effect attenuates very
slowly as a function of the horizon.
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As mentioned above, the posterior mean of b implied by the conditional Bayesian

model is also given by the OLS estimate b̂ and thus is also biased, despite the fact that

Bayesian estimation explicitly takes the finite-sample properties of the regression into

account. The bias in the posterior mean of b may be an indication that all is not right

with this model.

Without Equation 12, the conditional likelihood (Equation 13) is no longer correct and

the so-called exact likelihood (Equation 8) must be used. Immediately, a decision must be

made about the distribution of the initial observation x0. Stambaugh (1999) assumes that

x0 is drawn from the stationary distribution of Equation 4. If r is between "1 and 1, this

stationary distribution exists and is given by

x0 & N
y

1" r
,

s2v
1" r2

# $
ð14Þ

(Hamilton 1994, p. 53). The relevant likelihood function is therefore Equation 8, where p0
is the normal density given by Equation 14.

The use of the unconditional likelihood requires that r be between "1 and 1.

Stambaugh (1999) therefore modifies the assumption in Equation 11 as follows:

p(b,S) /jS j"3=2, r 2 ("1, 1): ð15Þ

Stambaugh also considers the alternative prior specification:

p(b,S) / (1" r2)"1jS j "5=2, r 2 ("1, 1): ð16Þ

What is the rationale for Equation 16 or, for that matter, for Equations 15 or 11? The

prior of Equation 11 is standard in regression models. Its appeal is best understood by the

fact that it embodies three conditions: (a) b and S should be independent in the prior;(b)
for the elements of b, ignorance is best represented by a uniform distribution (which, in the

limit, becomes a constant as in Equation 11); and (c)

p(S) /jS j"3=2, ð17Þ

which generalizes the assumption that, for a single system, the log of the standard deviation

should have a flat distribution on "1 and 1. Jeffreys (1961, p. 48) proposes these rules

for cases when there is no theoretical guidance on the values of the parameters. An

additional appeal of Equation 11 (discussed above) is that, when combined with the

likelihood (Equation 13), explicit expressions for the posterior distributions of the param-

eters can be obtained.

This discussion would seem to favor the prior given in Equation 15 (because theory now

requires a stationary process) in combination with the exact likelihood. However, applying

these rules does not constitute the only approach. Jeffreys (1961) proposes an alternative

means of defining ignorance: Inference should be invariant to one-to-one changes in the

parameter space. This criterion is appealing in the case of the predictive model (Equations

3–6) in which the particular parametrization appears arbitrary. The exact form of Jeffreys

prior depends on the sample size T and is derived by Uhlig (1994). Stambaugh (1999)

derives an approximate Jeffreys prior that becomes exact as the sample size approaches

infinity. This approximate Jeffreys prior is equal to Equation 16. Relative to the flat prior

for r (Equation 15), more weight is placed on values of r close to "1 and 1.
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Table 1 shows the implications of these specification choices for the posterior mean of

the regressive coefficient b and the autocorrelation r.3 For the conditional likelihood

and prior (Equation 11), the posterior mean of beta equals the OLS regression coef-

ficient (which is biased upward). When values of r are restricted to be between "1 and 1,

the posterior mean of b is slightly higher. By contrast, when the exact likelihood is used, the

posterior mean of b is lower and the difference is substantial, regardless of whether the

uniform prior or the Jeffreys prior is used.

To understand these differences in posterior means, consider the following approximate

relation (Stambaugh 1999):

E½b jD) * b̂þ E
suv
s2v

jD
! "

E½r jD) " r̂ð Þ: ð18Þ

Because suv is negative, positive differences between the posterior mean of r and r̂ trans-

late into negative differences between b and b̂. Equation 18 is the Bayesian version of the

observation that the upward bias in b̂ originates from the downward bias in r̂. OLS

estimates the persistence to be lower than what it is in population: This bias arises from

the need to estimate both the sample mean and the regression coefficient at the same time;

the observations revert more quickly to the sample estimate of the mean than the true mean

(Andrews 1993). Because of the negative correlation, OLS also estimates the predictive

coefficient to be too high. Intuition for this result is as follows: If r is above the OLS

estimate r̂, then r̂ is “too low,” i.e., in the sample, shocks to the predictor variable tend to

be followed more often by shocks of a different sign than would be expected by chance.

Because shocks to the predictor and the return variables are negatively correlated, this

implies that shocks to the predictor variable tend to be followed by shocks to returns of

the same sign. This implies that b̂ will be “too high.”

Compared with the uniform prior over "1 to 1, the prior that restricts r to be

between –1 and 1 lowers (slightly) the posterior mean of r because it rules out draws of r
that are greater than one. For this reason it raises (slightly) the posterior mean of b even

Table 1 Posterior means of b and r under various combinations of the likelihood and the

prior*

Posterior means

Specification b r

Conditional likelihood; p(b,S) /jS j"3=2,r 2 ("1,1) 0.437 0.9800

Conditional likelihood; p(b,S) /jS j"3=2,r 2 ("1, 1) 0.441 0.9798

Exact likelihood; p(b,S) /jS j"3=2, r 2 ("1, 1) 0.375 0.9828

Exact likelihood; p(b,S) / (1" r2)"1s2v jS j"5=2, r 2 ("1, 1) 0.276 0.9872

*Results are from Stambaugh (1999, figure 1). The predictor variable is the dividend-price ratio. Data are monthly

from 1952 to 1996. The conditional likelihood refers to Equation 13; the exact likelihood refers to Equation 8 with

initial condition given by Equation 14.

3The specifications involving the exact likelihood or the Jeffreys prior do not admit closed-form solutions for the
posterior distribution. Nonetheless, the posterior can be constructed using the Metropolis-Hastings algorithm (see
Chib & Greenberg 1995, section 5). See Johannes & Polson (2006) for further discussion of sampling methods for
solving Bayesian portfolio choice problems.
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above the OLS value. This result is analogous to the fact that imposing stationarity in a

frequentist framework implies additional evidence in favor of predictability (Lewellen

2004, Campbell & Yogo 2006, Campbell 2008, Cochrane 2008). Introducing the exact

likelihood leads to an estimate of r that is higher that r̂. This result (which is sample

dependent) arises from two sources of evidence on r: the evidence from the covariance

between xt and xtþ1 and the evidence from the difference between x0 and the sample mean.

If x0 is relatively far from the sample mean, the posterior of r shifts toward higher values.

This implies that r̂ is lower than r and, therefore, that b̂ is higher than b. Introducing the

Jeffreys prior in combination with the exact likelihood further shifts r back toward 1; this

raises r relative to r̂ and lowers b relative to b̂. The net bias reduction resulting from these

modifications is smaller than standard frequentist-based estimates of the bias. Whether this

is good, bad, or merely neutral depends on one’s perspective (Sims & Uhlig 1991).

Table 2 shows the implications for expected returns and asset allocation by reporting

these values at various levels of the dividend yield. Comparing the first and last rows of

each panel shows that Bayesian estimation with the conditional likelihood and prior

(Equation 11) have implications that are virtually identical to ignoring parameter uncer-

tainty and using the OLS estimates. For the exact likelihood and prior (Equation 15), both

the expected returns and allocations are less variable, as one would expect given the lower

posterior mean of b. Surprisingly, not only are the expected returns less variable, but they

are also substantially lower for both values of the dividend yield, leading to lower alloca-

tions as well. In fact, the average excess stock return is different in the various cases

(Wachter & Warusawitharana 2009b). As explained in that paper, differences in estimates

of average excess stock returns arise from differences in estimates of the mean of the

Table 2 Expected returns and optimal allocations under various combinations of the likelihood and prior (monthly

horizon)*

Current dividend yield

Specification 3% 4% 5%

Panel A: Expected excess returns (in percent)

Conditional likelihood; p(b,S) /jS j"3=2, r 2 ("1,1) 2.0 7.3 12.5

Exact likelihood; p(b,S) /jS j"3=2, r 2 ("1, 1) 1.0 5.5 10.0

Exact likelihood; p(b,S) / (1" r2)"1s2v jS j"5=2, r 2 ("1, 1) 1.9 5.2 8.5

Conditional MLEs as true parameters 2.0 7.3 12.5

Panel B: Stock allocation (in percent)

Conditional likelihood; p(b,S) /jS j"3=2, r 2 ("1,1) 22 61 97

Exact likelihood; p(b,S) /jS j"3=2, r 2 ("1, 1) 15 46 79

Exact likelihood; p(b,S) / (1" r2)"1s2v jS j"5=2, r 2 ("1, 1) 21 45 68

Conditional MLEs as true parameters 22 60 98

*Results are from Stambaugh (1999, tables 3, 4). The predictor variable is the dividend-price ratio. Data are monthly from 1952 to 1996. The

conditional likelihood refers to Equation 13; the exact likelihood refers to Equation 8 with initial condition given by Equation 14. The table

assumes that the investor has a horizon of one month and has constant relative risk aversion equal to 7.
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predictor variable. Over this sample, the conditional maximum likelihood estimate of the

dividend yield is below the exact maximum likelihood estimate. Therefore, shocks to the

predictor variable over the sample period must have been negative on average; it follows

that shocks to excess returns must have been positive on average. Accordingly, the poste-

rior mean of returns is below the sample mean.

2.4. Informative Priors

Introducing a Jeffreys prior and the exact likelihood has the effect of making portfolio

choice less sensitive to the dividend yield, as compared with the conditional Bayesian

model. However, the agent still engages in market timing to a large degree. As Wachter &

Warusawitharana (2009a) show, the priors described above may assign an unrealistically

high probability to high R2 statistics in the regression equation. These authors also argue

that economic theory points toward low levels of the R2, should predictability exist at all.

Let

s2x ¼ s2v
1" r2

, ð19Þ

and note that Equation 19 is the unconditional variance of xt. The population R2 for the

regression given in Equation 3 is defined to be the ratio of the variance of the predictable

component of the return to the total variance. It follows from Equation 19 that the R2 is

equal to

R2 ¼ b2s2x
b2s2x þ s2u

: ð20Þ

Wachter & Warusawitharana (2009a) consider a class of priors that translate into

distributions on the population R2. Specifically, they define a “normalized” b:

! ¼ s"1
u sxb:

They also assume that the prior distribution for ! equals

! & N(0, s2! ): ð21Þ

The population R2 can be rewritten in terms of !:

R2 ¼ !2

!2 þ 1
: ð22Þ

Equation 22 provides a mapping between a prior distribution on ! and a prior distribution

on the population R2. The prior distribution for ! implies a conditional prior for b.
Namely,

b j a, y, r,S & N(0, s2!s
"2
x s2u): ð23Þ

Because sx is implicitly a function of r and sv, the prior on b is also a function of these

parameters. The approximate Jeffreys prior for the remaining parameters is given by

p(a, y, r,S) / sxsu jS j"
5
2: ð24Þ
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Equations 23–24 form a class of prior distributions indexed by !. For s! ¼ 0, the prior

dogmatically specifies that there can be no predictability: b is identically equal to zero. For

s! ¼ 1, the prior is uninformative and is in fact equal to the approximate Jeffreys prior in

Stambaugh (1999). Because of the relation between ! and the R2, a prior on ! translates

directly into a prior on the R2. An appeal of this approach is its scale-invariance: It is hard

to imagine putting an economically meaningful prior on b without knowing something

about the variance of the predictor variable x.
Figure 2 illustrates the implications of different values of s! for the prior distribution on

the R2. On the one hand, the prior with s! ¼ 0 implies a dogmatic view that there can be no

predictability, which is why the R2 is a point mass at zero. On the other hand, with s! ¼ 100

(which well approximates the Jeffreys prior), the R2 is nearly flat over the single-digit

range, dipping down in a region close to 1. Figure 2 shows that uninformative beliefs imply

not only that high values of the population R2 are possible, but also that they are extremely

likely. The prior assigns a probability of nearly 100% to the R2 exceeding any given value,

except for values that are an infinitesimal distance from one.

The literature has considered other specifications for informative priors. Kandel &

Stambaugh (1996), for example, construct priors assuming that the investor has seen, in

addition to the actual data, a hypothetical prior sample of the data such that the sample

means, variances, and covariances of returns and predictor variables are the same in the

0   0.01 0.02 0.03 0.5 1   
0

0.2

0.4

0.6

0.8

1

k

P
(R

2 >
k)

//

ση =0

ση =0.04

ση =0.08

ση =5

ση =10

ση =100

Figure 2

The prior probability that the R2 exceeds a value k implied by various prior beliefs. Prior beliefs are indexed by s! , the prior
standard deviation of the normalized coefficient on the predictor variable. The dogmatic prior is given by s! ¼ 0; the diffuse prior
by s! ¼ 1. Intermediate priors express some skepticism over return predictability. Note that left portion of the x-axis of the
graph is scaled differently from the right portion.
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hypothetical prior sample as in the actual sample. However, in the hypothetical sample, the

R2 is exactly equal to zero (see also Avramov 2002, 2004). Cremers (2002) constructs

informative priors assuming the investor knows sample moments of the predictive variable.

These constructions raise the question of how the investor knows the sample moments of

returns and predictive variables (note that it is not sufficient for the investor to make a guess

that is close to the sample values). If it is by seeing the data, the prior and the posterior are

equal and the problem reduces to the full-information case. An alternative is to assume that

the investor has somehow intuited the correct values. According to this latter (somewhat

awkward) interpretation, to be consistent these moments would have to be treated as

constants (namely conditioned on) throughout the analysis, which they are not.

Figure 2 suggests that priors of the form (Equations 23 and 24) with small s! have more

reasonable economic properties than uninformative priors. Wachter & Warusawitharana

(2009a) investigate the quantitative implications of these priors for portfolio allocation.

Not surprisingly, because the posterior mean of b shrinks toward zero, the portfolio

allocation under these priors exhibits less dependence on the dividend yield.

Several papers critique the evidence in favor of predictability based on out-of-sample

performance: Bossaerts & Hillion (1999) find no evidence of out-of-sample return pre-

dictability using a number of predictors, whereas Goyal & Welch (2008) find that pre-

dictive regressions often perform worse than using the sample mean when it comes to

predicting returns. For the researcher, these studies raise the question of how the Bayesian

asset allocation strategies perform out of sample. Note, however, that from the point of

view of the Bayesian investor, such additional information is irrelevant. The predictive

distribution for returns, as generated from the likelihood and the prior, is the sole determi-

nant of the portfolio strategy.

Wachter &Warusawitharana (2009a) examine the out-of-sample performance implied by

various priors. They show that asset allocation, using the results of OLS regression without

taking parameter uncertainty into account, indeed delivers worse out-of-sample performance

than a strategy implied by a dogmatic belief in no predictability. Relative to the OLS bench-

mark, the strategy implied by the uninformative Jeffreys prior (16) performs better, but still

worse than the no-predictability prior. Across various specifications, the best-performing prior

is an intermediate one, representing some weight on the data and some weight on an econom-

ically reasonable view that, if predictability should exist, theR2 should be relatively small.

Campbell & Thompson (2008) adopt a second approach to improving out-of-sample

performance. They show that the out-of-sample performance improves when weak eco-

nomic restrictions are imposed on the return forecasts, thereby requiring that the expected

excess return be positive and that the predictor variable has the theoretically expected sign.

The Campbell and Thompson paper is non-Bayesian, but it would not be difficult to

incorporate these prior views into a Bayesian setting.

2.5. Additional Sources of Uncertainty

One of the objectives of adopting Bayesian decision theory into the asset allocation prob-

lem is to better capture the uncertainty faced by investors. However, despite the uncertain

nature of the predictive relation, estimation risk appears to play a minor role in the

empirical findings. The disconnect between these results and our intuition may be due to

the fact that assuming the model given by Equations 3–6 still, to a large degree, understates

the uncertainty actually faced by investors. Although investors do not know the parameters
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of the system, they know that returns and predictor variables obey such a system. With the

available data, this information is enough to estimate the parameters precisely. In reality,

investors do not know that returns obey such a system. That is, whereas Equation 3 is

unrestrictive in the sense that one could always regress returns on the lagged dividend yield,

the system itself is restrictive. For instance, it requires not only that utþ1 is an error in the

traditional regression sense of being uncorrelated with the right-hand-side variable, but also

that it is a shock, namely independent of any variable known at time t. The possibility of

other likelihood functions is something that would occur to real-world investors.

Pastor & Stambaugh (2009a, 2009b) confront this problem by assuming that returns

obey a predictive system:

ytþ1 ¼ mt þ utþ1

xtþ1 ¼ (I " A)Ex þ Axt þ vtþ1

mtþ1 ¼ (1" r)Er þ rmt þwtþ1,

ð25Þ

where u, v, andw are iid (across time) and jointly normally distributed. Here, m (unobserved)

is the true expected excess return, and the agent learns about m by observing x and y. Under
this predictive system, one could still regress ytþ1 on the observable xt. However, the error in

the regression would be correlated with time-t variables. Pastor & Stambaugh find that this

distinction between mt and xt , and particularly the fact that the autocorrelation of x need not

equal the autocorrelation of m, has important consequences for investors.

One could expand the uncertainty faced by investors in other ways. Recent studies

(Avramov 2002, Cremers 2002, Wachter &Warusawitharana 2009b) explore the possibil-

ity that an investor assigns some prior probability to alternative models. Although this

represents a form of “model uncertainty,” the agent is still Bayesian in the sense that he

assigns probabilities. One could go further and assume that there are some forms of

uncertainty that investors simply cannot quantify. Gilboa & Schmeidler (1989) define a

set of axioms on preferences that distinguish between risk (in which the agent assigns

probabilities to states of nature) and uncertainty (in which probabilities are not assigned).

They show that aversion to uncertainty leads investors to maximize the minimum over the

set of priors that may be true. Uncertainty aversion, also called ambiguity aversion, has

been the subject of a fast-growing literature in recent years, much of which has focused on

asset allocation (see Chamberlain 1999, Chen & Epstein 2002, Chen et al. 2009, Garlappi

et al. 2007, Hansen 2007, Maenhout 2006).

This notion of additional uncertainty facing investors is likely to be a subject of contin-

ued active debate. As discussed above, there are a number of complementary approaches,

such as the predictive system, model uncertainty with probabilities over the models, and

model uncertainty such that the agent need not formulate probabilities over the models.

The contention of the previously discussed models is that periods of low valuation (e.g.,

when the dividend yield is high) represent, to some uncertain extent, a readily available

opportunity for the investor. However, another possibility is that the excess returns earned

by this market-timing strategy are a compensation for a type of risk that does not appear in

the sample, i.e., the risk of a rare event.4

4Yet another possibility is that the excess returns represent compensation for greater volatility. Shanken & Tamayo
(2005) evaluate this claim directly in a Bayesian setting and find little support for it. A large literature debates the
extent to which changes in volatility are linked to changes in expected returns; based on available evidence, however,
it does not appear that the fluctuations in expected returns captured by the dividend yield correspond to changes in
volatility. See Campbell (2003) for a discussion of this literature.
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In Wachter (2008), I show that predictability in excess returns can be captured by a

model with a representative investor with recursive preferences (see below), in which there

is a time-varying probability of a rare event. Times when this rare-event probability are

high correspond to times when the dividend yield is also high. Most of the time, the rare

event does not happen, implying higher than average realized returns. Occasionally, the

rare event does happen, in which case high dividend yields are followed by quite low

returns. The representative agent holds a constant weight in equities (as is required by

equilibrium) despite the fact that excess returns vary in a predictable fashion. Strategies

that attempt to time the market, according to this view, are risky, though this risk would be

difficult to detect in the available time series.

3. DYNAMIC MODELS

I now consider the investor who has a horizon beyond one period and, at each time point,

faces a consumption and portfolio choice decision. I start with a general specification that

allows for multiple risk assets and state variables. Let Ct denote the investor’s consumption

at time t, zt the N +1 vector of allocations to risky assets, and Wt the investor’s wealth.

Samuelson (1969) models this problem as

max
c,z

E
XT

t¼0

e"bt C
1"g
t

1" g
ð26Þ

subject to the budget constraint

Wtþ1 ¼ (Wt " Ct)Rf ,tþ1 þWtz
>
t (Rtþ1 " Rf ,tþ1) ð27Þ

and terminal conditionWT , 0. Here e"btC1"g
t

1"g
represents period utility (for simplicity, I have

assumed that the investor does not have a bequest motive). An alternative is to consider the

problem without the utility flow from consumption, namely the investor maximizes W1"g
T

1"g
.

This is not as realistic, but it is sometimes a helpful simplification. Another helpful sim-

plification is to take the limit of Equation 26 as T goes to infinity.

The problem above can be solved by backward induction using the Bellman equation

(see Duffie 1996, ch. 3). Let Xt denote an n+1 vector of state variables that determine the

distribution of returns. Let t ¼ T"t denote the horizon. Define the value function as the

remaining utility:

J(Wt,Xt, t) ¼ max
c,z

E
Xt

s¼0

e"bsu(ctþs):

Then it follows that J can be defined through backward induction as

J(Wt,Xt, t) ¼ u(ct)þ e"bEt½ J(Wtþ1,Xtþ1, t" 1)) ð28Þ

with the boundary condition J(W,X, 0) ¼ u(W). See Brandt (2009) for further discussion

of the value function and its properties.

Although Equation 28 reduces the multiperiod problem (Equation 26) to a series of one-

period problems, these one-period problems may look quite different from the problem con-

sidered in Section 2 because of the interaction between the state variables X and wealth W.

Indeed, when there is no X (so returns are iid), Samuelson (1969) shows that Equation 26
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reduces to a series of one-period problems. In this article, however, I am primarily inter-

ested in the case where returns are not iid. Merton (1973) characterizes the solution to this

general problem. For technical reasons that are discussed below, it is easier to do this if one

assumes that time is continuous.

3.1. Return Distribution and the Value Function

Let Bt denote a d+1 vector of independent Brownian motions. Let

l(X) ¼ ½l1(X), . . . , lN(X))>

denote the N+1 vector of instantaneous excess returns and

s(X) ¼ ½s1(X)> , . . . , sN(X)> )>

denote the N+d matrix of loadings on the Brownian motions. Assume that the price

process for asset i, i ¼ 1, . . . , N is given by

dP(i)
t

P(i)
t

¼ (li(Xt)þ rf (Xt))dt þ si(Xt) dBt, ð29Þ

where rf ¼ logRf . I assume Xt follows a Markov process:

dXt ¼ b(Xt) dt þ a(Xt) dBt: ð30Þ

Assumptions in Equations 29 and 30 imply that the current value of the state variables

at time t fully determine the investment opportunities that are available to the investor.

That is, they determine the investment opportunity set.

Merton (1971) shows that under the assumptions above, wealth follows the process

dWt ¼ Wtz
>
t l(Xt)þWtrf (Xt)" Ct

% &
dt þWtz

>
t s(Xt) dBt: ð31Þ

Merton (1973) derives a partial differential equation characterizing the value function J.
Moreover, he shows that the first-order condition with respect to z leads to the following

characterization of z in terms of derivatives of J:

z ¼ " JW
JWWW

(ss>)"1
l" 1

JWWW
(ss>)"1

sa> JXW , ð32Þ

where JW, JWW, and JXW refer to first and second partial derivatives of J. Here and in

what follows, I eliminate time subscripts and function arguments when not required

for clarity. I show in the Appendix (section below) that the value function takes the

form

J(W,X, t) ¼ I(X, t)1"gW1"g

1" g
: ð33Þ

Applying Equation 33, it follows that the allocation can be rewritten as

z ¼ 1

g
(ss>)"1

lþ 1" g
g

(ss>)"1
sa>

I>X
I
: ð34Þ

Equation 34 (and, more generally, Equation 32) provides a gateway to understanding

portfolio choice in this rich dynamic context. There are two terms in Equation 34, only one
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of which depends on the process for X. Note that in the discrete-time setting when one

period remains, the value function depends only on wealth, not on X. The same is true in

continuous time; in the limit, as the horizon approaches 0, the value function’s dependence

on X also approaches zero. Therefore, as the horizon approaches 0, only the first term

remains. As a result, Merton (1973) refers to this term as what the investor would choose

if he behaved myopically, namely if, similar to the discrete-time investor with one period

left, he took into account only the very immediate future and did not look beyond.

Given that myopic demand captures, in a limiting sense, the desired allocation of a one-

period investor, how does it compare with the results derived in Section 2? Consider for

simplicity the case of a single risky asset. In this case, l corresponds to the (instantaneous)

expected excess return on the asset and ss> to the (instantaneous) variance. Indeed, Ito’s

Lemma implies that for an asset with price Pt

d logPt ¼ lþ rf "
1

2
ss>

# $
dt þ s dBt,

so that, assuming units are the same, Et½ytþ1) * l" 1
2 ss

> and Vart½ytþ1) * ss>. Myopic

demand therefore closely resembles Equation 10. The main difference is that Equation 10

is approximate, whereas Equation 34 is exact. Recall that in the setting of Section 2 (indeed

in any discrete-time setting) power preferences rule out levered positions or short positions

in the stock at any horizon. However, when trading is continuous, the agent can exit these

positions in time to avoid negative wealth. This property, which is not without controversy,

plays a key role in making the continuous-time model tractable.

Myopic demand, then, is the continuous-time analog of the static portfolio choice

described in Section 2. In contrast, the second term in Equation 34 is completely new. As

Merton (1973) shows, this term represents the agent’s efforts to hedge future changes in the

investment opportunity set. There are two offsetting motives: On the one hand, the inves-

tor would like more wealth in states with superior investment opportunities, all the better

to take advantage of them. On the other hand, the investor would like more wealth in

states with poorer investment opportunities, so as to lessen the overall risk to long-term

wealth. The former is a substitution effect; the latter is an income effect.

To see how these motives are represented by Equation 34, consider the case with a

single state variable. Note that the sign of JX equals the sign of IX. Define an increase in X
to indicate an improvement in investment opportunities if and only if it increases the

agent’s utility, namely if and only if JX > 0. [Merton (1973) discusses hedging motives in

terms of the consumption-wealth ratio rather than the value function. I explore the link to

the consumption-wealth ratio in what follows.] If an asset positively covaries with the

stock, hedging demand is negative so long as g is greater than 1 and positive so long as g is
less than 1. In effect, the agent with g > 1 reduces his investment to an asset that pays off in

states with superior investment opportunities (the income effect dominates), whereas the

agent with g < 1 increases his investment to such an asset (the substitution effect domi-

nates). Logarithmic utility (g ¼ 1) corresponds to the knife-edge case when these effects

cancel each other out.

To go further, it is necessary to learn more about the function I(X,t). This function

depends on the parameters in Equations 29 and 30, so it will embody an empirical statement

about the distribution of returns. Applying the theory above to estimated processes for

returns is one way the literature has built on the insights in Merton (1973). A second source

of innovation is in the type of utility function considered (see next section).
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3.2. Recursive Utility

One limitation of the assumption in Equation 26 is its implication that an identical param-

eter, g, controls both the agent’s attitudes toward the smoothness of consumption over time

and the agent’s attitudes toward the smoothness of consumption over states, namely her

attitudes toward risk. Building on the work of Kreps & Porteus (1978), Epstein & Zin

(1989, 1991) and Weil (1990) develop a class of utility functions that retains the attractive

scale invariance of power utility but that allows for a separation between the concepts of

risk aversion and the willingness to substitute over time. Such a separation implies that the

agent has preferences over the timing of the resolution of uncertainty, which may itself be

attractive. The resulting utility function lies outside out of the expected-utility framework

in the sense that the utility cannot be written explicitly as an expectation of future con-

sumption. Rather, utility is defined recursively.5

I use the continuous-time formulation of the Epstein & Zin (1989) utility function

developed by Duffie & Epstein (1992a, 1992b). Let Vt denote the remaining utility.

Following Duffie and Epstein, I use the notation V to denote the utility process and the

notation J to denote optimized utility as a function of wealth, the state variables, and the

horizon. At the optimum, Vt ¼ J(Wt,Xt,T " t). Duffie and Epstein specify Vt as follows:

Vt ¼ Et

Z T

t
f (Cs,Vs) ds, ð35Þ

where

f (C,V) ¼

b

1" 1

c

%
(1" g)V

&
C
%
(1" g)V

&" 1

1"g

 !1" 1
c

" 1

0

B@

1

CA c 6¼ 1

b((1" g)V) logC" 1

1" g
log((1" g)V)

0

@

1

A c ¼ 1:

8
>>>>>>>>><

>>>>>>>>>:

ð36Þ

Duffie & Epstein (1992a) show that the parameter c > 0 can be interpreted as the

elasticity of intertemporal substitution (EIS) and g > 0 can be interpreted as relative risk

aversion. When g ¼ 1/c, power preferences given in Equation 26 are recovered (note that

the resulting formulation of Vt may not take the same form as Equation 26 but will imply

the same underlying preferences and therefore the same choices).

Results in Duffie & Epstein (1992a) show that the first-order condition for portfolio

allocation (Equation 32) and the first-order condition for consumption fc ¼ Jw derived by

Merton (1973) are valid in this more general setting. Below, I use these results to charac-

terize optimal consumption and investment behavior, considering the case of c 6¼ 1 and

c ¼ 1 separately.6

5Kihlstrom (2009) develops an alternative approach to separating the inverse of the elasticity of substitution and risk
aversion within an expected-utility framework.
6Interesting questions of existence and uniqueness of solutions are beyond the scope of this study. Schroder &
Skiadas (1999) provide such results assuming bounded investment opportunities and a utility function that generalizes
the recursive utility case considered here. Wachter (2002) proves existence in the return predictability case (Section 3.3)
under power utility with risk aversion greater than 1. Dybvig & Huang (1988) and Dybvig et al. (1999) provide further
existence results under power utility.
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3.2.1. Characterizing the solution when the EIS does not equal 1. As shown in the Appen-

dix (see below), so long as c 6¼ 1, the form of the value function (Equation 33), and

therefore the form of optimal allocation (Equation 34), still holds. Myopic demand takes

the same form as under power utility: It is determined by g alone. The parameter g also

determines whether the income or substitution effect dominates in the portfolio decision.

These results support the interpretation of g as risk aversion in this more general model.

It is also instructive to consider the consumption policy. Define a functionH as follows:

H(X, t) ¼ b"cI(X, t)"(1"c): ð37Þ

It follows from the first-order condition for consumption (fc ¼ JW) that the wealth-

consumption ratio is equal to H:

Wt

Ct
¼ H(Xt,T " t): ð38Þ

It follows from Equation 37 that

IX
I
¼ " 1

1" c
HX

H
: ð39Þ

Recall that the sign of IX equals the sign of JX, the derivative of the value function

with respect to the state variables. As in the asset allocation decision, there are two

effects that changes in investment opportunities could have on consumption behavior.

On the one hand, an improvement could lead investors to consume less out of wealth, to

better take advantage of the opportunities (the substitution effect). On the other, an

improvement raises wealth in the long run, allowing the investor to consume more today

(the income effect). Equation 39 shows that, for investors who are relatively willing to

substitute intertemporally (c>1), consumption falls relative to wealth when investment

opportunities rise (the substitution effect dominates). For investors who are relatively

unwilling to substitute intertemporally (c<1), consumption rises (the income effect

dominates). These results support the interpretation of c as the elasticity of intertemporal

substitution.

Substituting into the Bellman, Equation 53 leads to the following differential equation

for H:

1

1" c
Ht

H
" 1

1" c
HX

H
bþ 1

2

1

g
l> ss>% &"1l" 1" g

1" c
1

g
HX

H
as> ss>% &"1l

þ rf þ
1

2

1

1" c
1" g
1" c

þ 1

0

@

1

Atr a>
H >

X

H

HX

H
a

0

@

1

A" 1

2

1

1" c
tr a>HXXa
% & 1

H

þ 1

2

1" g
1" c

0

@

1

A
2

1

g
HX

H
as> ss>% &"1sa>

H>
X

H

" 1

1" c
H"1 " b 1" 1

c

0

@

1

A
"1

¼ 0,

ð40Þ

with boundary conditionH(X, 0)¼ 0. Equation 40 is useful in considering the special cases

below.
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Constant investment opportunities. In the special case of constant investment opportuni-

ties, portfolio choice is myopic (as explained above). The wealth-consumption ratio can

also be derived in closed form. The differential equation for H (which is now a function of

t alone) is given by

1

1" c
H0 þ 1

2

1

g
l> ss>% &"1lþ rf " b 1" 1

c

# $"1
 !

H " 1

1" c
¼ 0: ð41Þ

The solution is

H(t) ¼ 1

k(1" c)
1" e"k(1"c)t

' (
, ð42Þ

where

k ¼ 1

2

1

g
l> ss>% &"1lþ rf " b 1" 1

c

# $"1

:

The first two terms in k provide a measure of the quality of investment opportunities.

For c > 1,H(t) is increasing in k. This follows from the fact thatH(0) ¼ 0 and thatH0(t) is
increasing in k for any (fixed) t > 0. As such, the greater the investment opportunities are,

the less the investor consumes out of wealth. Note that the discount rate enters k with a

negative sign: Whereas an increase in investment opportunities causes the investor to

consume less out of wealth, an increase in the discount rate causes the investor to consume

more. For c < 1, H(t) is decreasing in k. The greater the investment opportunities are, the

more the investor consumes out of wealth. Also, an increase in investment opportunities

and an increase in the discount both lead the investor to consume more and save less as a

percentage of wealth.

Power utility and complete markets. In this setting without trading restrictions, markets

are complete if and only if the diffusion terms for asset prices span the diffusion terms

for X. The term as> (ss>)"1
represents the projection of the diffusion terms for X on the

diffusion terms for P(i); therefore, markets are complete if and only if

as>(ss>)"1
s ¼ a,

namely if the projection recovers the diffusion terms on X. Further note that, because

tr(AB) ¼ tr(BA) for conforming matrices,

tr(a>H >
X HXa) ¼ tr(HXaa

>H>
X ) ¼ HXaa

>H >
X :

Therefore, Equation 40 reduces to the much simpler

Ht "HXbþ 1

2

g" 1

g2
l>(ss>)"1

lH þ g" 1

g
HXas>(ss>)"1

l

þ g" 1

g
rfH " 1

2
tr(a>HXXa)" 1þ 1

g
bH ¼ 0:

ð43Þ

Equation 43 has a solution of the form

H(X, t) ¼
Z t

0
F(X, s) ds ð44Þ
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with F(X, 0) ¼ 1. To see this, note that it follows from integration by parts that
Z t

0

@F

@s
ds ¼ F(X, t)" F(X, 0) ¼ Ht " 1:

Substituting in, I find that F satisfies

@F

@t
" FXbþ 1

2

g" 1

g2
l>

%
ss>&"1lF þ g" 1

g
FXas>%ss>&"1l

þ g" 1

g
rf F " 1

2
tr
%
a>FXXa

&
þ 1

g
bF ¼ 0:

ð45Þ

It is no accident that the differential equation simplifies under the case of power utility

and complete markets. This is the case when the conceptually simpler martingale method

of Cox & Huang (1989), Karatzas et al. (1987), and Pliska (1986) is straightforward to

apply (for an example, see Wachter 2002). Although this method can be extended to

incomplete markets (He & Pearson 1991, Cuoco 1997) and to recursive utility (Duffie &

Skiadas 1994, Schroder & Skiadas 1999, Skiadas 2007), it is less straightforward in these

cases.

3.2.2. Characterizing the solution when the EIS equals 1. In the case of c ¼ 1, the value

function takes the form

J(W,X, t) ¼ W(1"g)(1"e"bt)G(X, t)1"g

1" g
:

The differential equation forG is given in the Appendix (see below). Equation 32 still holds

(see Duffie & Epstein 1992a), implying that the portfolio allocation is given by

z ¼ 1

1" (1" g)(1" e"bt)
ss>% &"1lþ 1" g

1" (1" g)(1" e"bt)
ss>% &"1sa>

G >
X

G
: ð46Þ

As in the case of c 6¼ 1, the portfolio allocation separates into two terms, the first of which

can be interpreted as myopic demand (because it does not depend on future investment

opportunities) and the second as hedging demand.

Myopic demand is horizon dependent when c ¼ 1. When the horizon is large (as t!1),

myopic demand approaches the myopic demand in Equation 34, namely it is determined

by g only. However, for finite horizons, myopic demand is determined by a weighted

average of c"1 (¼1) and g, with the horizon determining the weights:

1" (1" g)(1" e"bt) ¼ e"bt þ g(1" e"bt):

The first-order condition fc ¼ JW applied to Equation 46 implies that the wealth-

consumption ratio is given by W
C ¼ 1"e"bt

b . Unlike in the c 6¼ 1 case, the wealth-consumption

ratio does not depend on investment opportunities. Unit EIS corresponds to the knife-edge

case where the substitution and income effects cancel each other out, as far as consumption

behavior is concerned. In the limiting case of an infinite horizon, the wealth-consumption

ratio is constant and equal to b"1.

3.3. Time-Varying Risk Premia

I now consider a special case of price dynamics in which there is a single risky asset and a

single state variable Xt. This example is meant to be illustrative; the solution technique can
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be extended to other forms of affine dynamics (see Schroder & Skiadas 1999, Liu 2007).

Specifically, assume rf, s, and a ¼ sX are constants, and let

l(X) ¼
%
ss>&1

2X

b(X) ¼ "k(X"X):

This specification implies that the expected excess return on the stock is time varying

and depends linearly on a variable Xt that follows a mean-reverting process. It is therefore

the continuous-time equivalent of the process assumed in Section 2 [Wachter (2002) makes

this explicit]. Note that Xt is the Sharpe ratio on the risky asset.

3.3.1. When are exact solutions available? More explicit solutions for the value func-

tion, and therefore for portfolio and consumption choices, are available in two special

cases of the above analysis: (a) when the c is equal to 1 (b) when power utility obtains

(g ¼1/c) and markets are complete. Schroder & Skiadas (1999) (who also assume

complete markets) and Campbell et al. (2004) (who also assume an infinite horizon)

consider the first case. Here I further consider this case, allowing markets to be incom-

plete and the horizon to be finite. The second case is the subject of Wachter (2002). In

a related contribution, Kim & Omberg (1996) show that one can also obtain closed-

form solutions for portfolio choice when the investor maximizes power utility over

terminal wealth.

Indeed, when c ¼ 1, the value function is given by Equation 60, with G taking the

form

G(X, t) ¼ exp A(1)
1 (t)

X2

2
þ A(1)

2 (t)Xþ A(1)
3 (t)

) *
ð47Þ

and where A(1)
i satisfy a system of ordinary differential equations with boundary conditions

Að1Þ
i (0) ¼ 0. For power-utility and complete markets, the wealth-consumption ratio H(X, t)

is given by Equation 44, where

F(X, t) ¼ exp A(2)
1 (t)

X2

2
þ A(2)

2 (t)Xþ A(2)
3 (t)

) *
: ð48Þ

Substituting into Equation 45 results in a set of ordinary differential equation for A(2)i with

boundary conditions A(2)
i ¼ 0.

3.3.2. An approximate-solution technique. The affine dynamics above lend themselves to

an approximate-solution technique developed by Campbell & Viceira (1999) based on

earlier work by Campbell (1993). Campbell and Viceira propose log-linearizing the budget

constraint around the mean consumption-wealth ratio. They then derive an approximate

analytical solution to the above problem, assuming an infinite horizon. So long as the

consumption-wealth ratio is not too variable (i.e., the EIS is not far from 1), the approxi-

mation error will be small.

Chacko & Viceira (2005) show how to implement this approximation in a continuous-

time setting. Consider the differential question for the wealth-consumption ratio (Equation

40). Following Chacko and Viceira, I assume that the horizon is infinite, and look for a

stationary solution, namely a solution withHt ¼ 0. Let h¼ logH and consider a first-order

approximation of e"h around the mean of "h:
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e"h * eE½"h) þ
%
"h"E½"h)

&
eE½"h): ð49Þ

Let h1 ¼ eE½"h) and h0 ¼ h1(1" logh1). Then Equation 49 implies

H"1 * h0 " h1logH: ð50Þ

Substitute Equation 50 and Ht ¼ 1 into Equation 40 implies

" 1

1" c
HX

H
bþ 1

2

1

g
l>

%
ss>&"1l" 1" g

1" c
1

g
HX

H
as>%ss>&"1l

þrf þ
1

2

1

1" c

#
1" g
1" c

þ 1

$
tr

#
a>

H >
X

H

HX

H
a

$
" 1

2

1

1" c
tr
%
a>HXXa

& 1

H

þ 1

2

#
1" g
1" c

$2 1

g
HX

H
as>%ss>&"1sa>

H >
X

H

" 1

1" c
(h0 " h1 logH)" b

#
1" 1

c

$"1

* 0:

ð51Þ

Observe that this differential equation is similar in form to the one for the value

function in the c ¼ 1 case (given by Equation 65). In fact, it is simpler in that there is no

time dependence. It follows that the approximation method can be implemented in any

setting where the c¼ 1 yields an exact solution. Under the above assumptions on the asset-

return process and state-variable processes,

H(X,t) * exp A(3)
1

X2

2
þ A(3)

2 Xþ A(3)
3

) *
,

where A(3)
i can be determined by matching coefficients. Campbell & Viceira (1999) use this

approximation to show that, in the infinite-horizon problem, portfolio decisions are

driven, almost entirely, by risk aversion g.

3.3.3. Numerical results. When calibrated to reasonable values, what do these dynamic

considerations add to the asset allocation problem? In what follows, I present results from

Wachter (2002); the near-perfect negative correlation between the dividend yield and the

stock return makes it reasonable to assume that markets are complete. I calibrate this

model using the same parameters as used by Barberis (2000) and assume a risk aversion

of 5, so the results are quantitatively comparable to those discussed in Section 2.7 Similar

results are found using alternative specifications and methods (e.g., Brennan et al. 1997,

Brandt 1999, Balduzzi & Lynch 1999).

Figure 3 shows the optimal allocation as a function of horizon for various levels of the

dividend yield. As in the static case, there are substantial horizon and market timing

effects. However, in this case, rather than decreasing (slowly) in the horizon, the degree to

which the allocation varies with the dividend yield is even more marked for long-term

investors than for short-term investors. This greater dependence results from hedging

demand. Because the dividend yield (proportional to X) is negatively correlated with stock

returns, hedging demand leads the investor to allocate more money to stocks for g > 1.

7Wachter (2002) provides details on how the discrete-time results are used to calibrate the continuous-time model.
However, that paper calibrates the model mistakenly assuming that the process in Barberis (2000) applies to the net
return on equities rather than the excess return. These results correct that mistake.
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The greater the dividend yield is, the more the investor cares about this hedge, which is

why hedging demand makes market timing more extreme. Unlike the simpler horizon

effect in Section 2, this effect reverses for g < 1. The long-horizon investor with g < 1 holds

less in stock than does the short-horizon investor.

3.4. Parameter Uncertainty and Learning in Dynamic Models

So far in this section I have assumed that the investor has full knowledge of the parameters.

I now consider the case of parameter uncertainty in dynamic models. One obvious differ-

ence between the dynamic and static settings is that the degree to which parameters are

uncertain varies over time; that is, the agent learns more about the distribution as time goes

on. Less obviously, learning introduces hedging demands for investors with risk aversion

not equal to one. Awell-studied special case is when returns are iid and the investor learns

about the average excess return (see the discussion in Pastor & Veronesi 2009). Given the

assumption of iid returns, it is natural to assume that only the mean is uncertain as, in a

continuous-time setting, the volatility can be estimated with effectively infinite precision

(Merton 1980). Moreover, as the time horizon shortens, the role of uncertainty around the

mean goes to zero (Detemple 1986, Gennotte 1986). The estimated mean will differ from

the true mean; however, the uncertainty around this estimated mean has no effect on the

0 2 4 6 8 10
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Figure 3

Dynamic allocation as a function of horizon assuming return predictability and that the investor can
trade continuously. The solid line corresponds to the optimal allocation when the dividend yield is at
its sample mean (3.75%). The dash-dotted lines correspond to the allocations when the dividend yield
is one standard deviation above or below its mean (2.91% and 4.59%, respectively). The dotted lines
correspond to the allocations when the dividend yield is two standard deviations above or below its
mean (2.06% and 5.43%, respectively). The agent has power utility over consumption (lines with
circles) or over terminal wealth (lines without circles) with risk aversion equal to five. Note that the
allocations increase as a function of the dividend yield. The model is estimated over monthly data from
1952 to 1995.
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allocation. Given this limiting result in continuous time, it is perhaps not surprising that

estimation risk should have little effect at short horizons as shown in Section 2.

What does have an effect, and a large one, is learning. Hedging demand induced by

learning is negative and can be substantial (Brennan 1998). The reason is that the investor’s

estimate of the average return (effectively a state variable) is positively correlated with

realized returns. When a positive shock to prices occurs, the investor updates his beliefs

about the average return, estimating it to be higher than before. Thus, stocks are less

attractive to an investor with g > 1 (see Equation 34).

Uncertainty about parameters other than the mean is harder to address because it does

not lend itself to closed-form solutions. Studies, therefore, have explored this question

using numerical methods. Xia (2001) allows the investor to be uncertain about the degree

of predictability (the coefficient b in Equation 3) and assumes the other parameters are

known. She decomposes hedging demand into the component to hedge learning about b
and the component to hedge changes inXt. Learning-induced hedging demand decreases in

the difference between the dividend yield and its mean. Moreover, it switches in sign:

It is positive when the dividend yield is below its long-run mean, zero when it is at the

long-run mean, and negative when it is above the long-run mean. As Xia (2001) shows,

these properties make the overall allocation less variable compared to the no-learning case.

However, the allocation is still more variable than implied by the myopic strategy.

Brandt et al. (2005) and Skoulakis (2007) undertake solving the asset allocation prob-

lem when there is uncertainty about the full set of parameters. The lack of closed-form

solutions and the high dimensionality of the problem make this a formidable technical

challenge. These studies show that, in addition to the effect noted by Xia (2001), uncer-

tainty about the mean (as in Brennan 1998) exerts an important influence, driving down

the average allocation relative to that discussed above. Although the net effect of hedging

demand is under dispute, the market-timing effect remains alive and well.

4. CONCLUDING REMARKS

In this study, I review the literature on static and dynamic asset allocation, with a focus on

the implications of return predictability for long-run investors. For both buy-and-hold and

dynamically trading investors, the optimal allocation to stocks is greater the longer the

horizon, given reasonable assumptions on preferences. This similarity should not obscure

some key differences. In the static case, the effect of any stationary variable on the alloca-

tion will diminish as the horizon grows. In the dynamic case, there is no reason for this to

happen, and indeed the opposite may be true. In effect, for investors who dynamically

trade, even short-term variables can have long-term implications.

This survey also highlights efforts to introduce parameter uncertainty into the agent’s

decision process. This, in theory, serves to pass on some of the uncertainty faced by the

econometrician to the agent; the agent now incorporates this estimation risk into his deci-

sions. Empirically, however, estimation risk appears to have very little effect, except at long

buy-and-hold horizons (at least for the specifications explored herein). This is not to say that

the perfect- and imperfect-information cases are identical. Indeed, learning can induce impor-

tant hedging demands in the dynamic setting. Furthermore, I show in the static setting that

the choice of prior and likelihood can have a large impact on the results. The notion of

uninformative priors is less than clear in a predictive regression setting. Moreover, economic

theory indicates a possible role for unapologetically informative priors that take this theory
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into account. Although these results do not arise from estimation risk per se, they do

incorporate the small-sample nature of the evidence into the decision problem. Our data on

financial markets is unavoidably finite; this should influence agents in economic models just

as it influences the economists doing the modeling. Despite the progress reported here, it is

fair to say that much work along these lines remains to be done.

APPENDIX: SOLVING FORTHE VALUE FUNCTION IN THE DYNAMIC
RECURSIVE UTILITY MODEL

In this Appendix, I use the more general form of the aggregator suggested by Duffie &

Epstein (1992a) for the c ¼ 1 case. The formulas in the text result from taking the limit

as x ! 0.

f (C,V) ¼

b
1" 1

c

%
(1" g)V

&
0

B@

 

C
%
(1" g)V

&" 1
1"g

!1"1
c

" 1

1

CA c 6¼ 1

b
%
x1"g þ (1" g)V

&
(logC" 1

1" g
log(x1"g þ (1" g)V)) c ¼ 1:

8
>>>>>>><

>>>>>>>:

ð52Þ

Duffie & Epstein (1992b) derive the continuous-time Bellman equation:

"Jt þ JXbþ JW
%
Wz>lþWrf " C

&
þ 1

2
tr(S)þ f

%
C, J(X,W,t)

&
¼ 0, ð53Þ

where

S ¼
a

Wz> s

" #>
JXX JXW

JWX JWW

" #
a

Wz> s

" #
:

The first-order condition for consumption is

fC ¼ JW :

Substituting in from Equaiton 52, I find (with some abuse of notation), C as a function of

W, X, and t:

C(W,X, t) ¼ bcJ"c
W

%
(1" g)J

&1"gc
1"g c 6¼ 1

bJ"1
W

%
x1"g þ (1" g)J

&
c ¼ 1:

8
><

>:
ð54Þ

It follows from Equation 54 that

f (C,V) ¼

bc
#
1" 1

c

$"1

J1"c
W

%
(1" g)J

&
1"gc

1"g
" b

#
1" 1

c

$"1

(1" g)J c 6¼ 1

b
%
x1"g þ (1" g)J

&
log

'
bJ"1

W

%
x1"g þ (1" g)J

&(
"

b
1" g

%
x1"g þ (1" g)J

&
log

%
x1"g þ (1" g)J

&
c ¼ 1:

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð55Þ
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Furthermore, note that

CJW ¼ bcJ1"c
W

%
(1" g)J

&1" gc
1" g c 6¼ 1

b
%
x1"g þ (1" g)J

&
c ¼ 1:

8
><

>:
ð56Þ

For c 6¼ 1, substituting into Equation 53 from Equations 55, 56, and 32 implies

"Jt þ JXb " 1

2

J2W
JWW

l> ss>% &"1l" JW
JWW

J>XWas> (ss)"1l

þ JWWrf þ
1

2
tr(a> JXXa)"

1

2

1

JWW
J>XWas> (ss> )"1sa> JXW

" 1

1"c
bcJ1"c

W

%
(1" g)J

&1"gc
1"g " b

#
1" 1

c

("1
(1" g)J ¼ 0:

ð57Þ

The form of J (Equation 33), combined with Equation 37 implies

J(W,X, t) ¼ bcH(X, t)
% &"1"g

1"c: ð58Þ

Substituting Equation 58 into Equation 57 leads to Equation 40.

The remainder of this section assumes the c ¼ 1 case. Substituting into Equation 53

from Equations 55, 56, and 32 implies

"Jt þ J>X b" 1

2

J2W
JWW

l> ss>% &"1l" JW
JWW

J>XWas> ss>% &"1l

þJWWrf þ
1

2
tr a>JXXa
% &

" 1

2

1

JWW
J>XWas> ss>% &"1sa> JXW

"b(x1"g þ (1" g)J)þ b(x1"g þ (1" g)J) 1" 1

1" g

0

@

1

Alog(x1"g þ (1" g)J)

þb(x1"g þ (1" g)J)log bJ"1
W

% &
¼ 0:

ð59Þ

Guess

1

1" g
log(x1"g þ (1" g)J(W,X, t)) ¼ q(t)logW þ logG(X,t): ð60Þ

Derivatives of J can be found by implicitly differentiating on both sides of Equation 60:

Jt ¼
%
x1"g þ (1" g)J

&#
q0logW þGt

G

$

JW ¼
%
x1"g þ (1" g)J

&
q
1

W

JX ¼
%
x1"g þ (1" g)J

&GX

G
:

ð61Þ

Second derivatives follow from Equation 61:
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JWX ¼
%
x1"g þ (1" g)J

&
q(1" g)W"1 GX

G

JWW ¼
%
x1"g þ (1" g)J

&
W"2

%
" qþ q2(1" g)

&

JXX ¼
%
x1"g þ (1" g)J

&#
" g

GXG>
X

G2
þGXX

G

$
:

ð62Þ

Substituting Equations 60–62 into Equation 59 and dividing by x1"g þ (1" g)J leads to the

following:

"q0logW "Gt

G
þGX

G
bþ 1

2

q

1" q(1" g)
l>

%
ss>

&"1l

þ q(1" g)
1" q(1" g)

GX

G
as>

%
ss>

&"1l

þqrf þ
1

2
tr

#
" g

a>G>
XGXa

G2
þ a>GXXa

G

$
þ 1

2

q(1" g)2

1" q(1" g)
GX

G
as>

%
ss>

&"1sa>
G>

X

G

"b" bg(qlogW þ logG)þ b log(bq"1)þ blogW " b(1" g)(qlogW þ logG)¼ 0:

ð63Þ

Matching coefficients on log W implies that

"q0 þ b" bq ¼ 0,

with boundary condition q(0) ¼ 0. Therefore,

q(t) ¼ 1" e"bt: ð64Þ

The resulting differential equation for G is as follows:

"Gt

G
þGX

G
bþ 1

2

q

1" q(1" g)
l> (ss>)"1l

þ q(1" g)
1" q(1" g)

GX

G
as> (ss>)"1l

þqrf þ
1

2
tr

#
" g

a>G>
XGXa

>

G2
þ a>GXXa

G

$
þ 1

2

q(1" g)2

1" q(1" g)
GX

G
as>

%
ss>

&"1sa>
G>

X

G

T" b" bglogGþ blog(bq"1)" b(1" g)logG¼ 0:

ð65Þ
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