
Journal of Econometrics 186 (2015) 74–93

Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

What is the chance that the equity premium varies over time?
Evidence from regressions on the dividend-price ratioI

Jessica A. Wachter a,b,⇤, Missaka Warusawitharana c,1

a Department of Finance, The Wharton School, University of Pennsylvania, 2300 SH-DH, Philadelphia, PA, 19104, United States
b NBER, United States
c Division of Research and Statistics, Board of Governors of the Federal Reserve System, Mail Stop 97, 20th and Constitution Ave, Washington D.C., 20551,
United States

a r t i c l e i n f o

Article history:
Received 25 January 2012
Received in revised form
22 January 2014
Accepted 2 May 2014
Available online 11 July 2014

JEL classification:
C11
C22
G11
G17

Keywords:
Return predictability
Bayesian statistics
Model uncertainty

a b s t r a c t

We examine the evidence on excess stock return predictability in a Bayesian setting in which the investor
faces uncertainty about both the existence and strength of predictability. When we apply our methods
to the dividend-price ratio, we find that even investors who are quite skeptical about the existence of
predictability sharply modify their views in favor of predictability when confronted by the historical time
series of returns and predictor variables. Correctly taking into account the stochastic properties of the
regressor has a dramatic impact on inference, particularly over the 2000–2005 period.

© 2015 Published by Elsevier B.V.

1. Introduction

In this study, we evaluate the evidence in favor of excess stock
return predictability from the perspective of a Bayesian investor.
We focus on the case of a single predictor variable to highlight the
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complex statistical issues that come into play in this deceptively
simple problem.

The investor in ourmodel considers the evidence in favor of the
following linear model for excess returns:
rt+1 = ↵ + �xt + ut+1, (1)
where rt+1 denotes the return on a broad stock index in excess
of the riskfree rate, xt denotes a predictor variable, and ut+1 the
unpredictable component of the return. The investor also places a
finite probability on the following model:
rt+1 = ↵ + ut+1. (2)
Namely, the investor assigns a prior probability q to the state of
the world in which returns are predictable (because the prior on
� will be smooth, the chance of � = 0 in (1) is infinitesimal),
and a probability 1 � q to the state of the world in which returns
are completely unpredictable. In both cases, the parameters are
unknown. Thus our model allows for both parameter uncertainty
and ‘‘model uncertainty.’’2

2 However, note that our investor is Bayesian, rather than ambiguity
averse (e.g. Chen and Epstein, 2002). Our priors are equivalent to placing a
point mass on � = 0 in (1).
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Allowing for a non-zero probability on (2) is one way in which
we depart from previous studies. Previous Bayesian studies of re-
turn predictability allow for uncertainty in the parameters in (1),
but assume uninformative priors (Barberis, 2000; Brandt et al.,
2005; Johannes et al., 2002; Skoulakis, 2007; Stambaugh, 1999).
As Wachter (2010) shows, flat or nearly-flat priors imply a de-
gree of predictability that is hard to justify economically. Other
studies (Kandel and Stambaugh, 1996; Pastor and Stambaugh,
2009; Shanken and Tamayo, 2012;Wachter andWarusawitharana,
2009) investigate the impact of economically informed prior be-
liefs. These studies nonetheless assume that the investor places a
probability of one on the predictability of returns. However, an in-
vestor who thinks that (2) represents a compelling null hypothesis
will have a prior that places some weight on the possibility that
returns are not predictable at all.

Our work also relates to the Bayesian model selection methods
of Avramov (2002) and Cremers (2002). In these studies, the
investor has a prior probability over the full set of possible
linear models that make use of a given set of predictor variables.
Thus the setting of these papers is more complex than ours in
that many predictor variables are considered. However, these
papers also make the assumption that the predictor variables are
either non-stochastic, or that their shocks are uncorrelated with
shocks to returns. These assumptions are frequently satisfied in
a standard ordinary least squares regression, but rarely satisfied
in a predictive regression. In contrast, we are able to formulate
and solve the Bayesian investor’s problem when the regressor is
stochastic and correlated with returns.

When we apply our methods to the dividend-price ratio, we
find that an investor who believes that there is a 50% probability
of predictability prior to seeing the data updates to a 86% posterior
probability after viewing quarterly postwar data. We find average
certainty equivalent returns of 1% per year for an investor whose
prior probability in favor of predictability is just 20%. For an
investor who believes that there is a 50/50 chance of return
predictability, certainty equivalent returns are 1.72%.

We also empirically evaluate the effect of correctly incorporat-
ing the initial observation of the dividend-price ratio into the like-
lihood (the exact likelihood approach) versus the more common
conditional likelihood approach. In the conditional likelihood ap-
proach, the initial observation of the predictor variable is treated as
a known parameter rather than as a draw from the data generat-
ing process. We find that the unconditional risk premium is poorly
estimated when we condition on the first observation. However,
when this is treated as a draw from the data generating process,
the expected return is estimated reliably. Surprisingly, the poste-
rior mean of the unconditional risk premium is notably lower than
the sample average.

Finally, when we examine the evolution of posterior beliefs
over the postwar period, we find substantial differences between
the beliefs implied by our approach, which treats the regressor
as stochastic and realistically captures the relation between the
regressor and returns, and beliefs implied by assuming non-
stochastic regressors. In particular, our approach implies that the
belief in the predictability of returns rises dramatically over the
2000–2005 period while approaches assuming fixed regressors
imply a decline. We also evaluate out-of-sample performance over
the postwar period, and show that our method leads to superior
performance bothwhen comparedwith a strategy basedon sample
averages, and when compared with a strategy implied by OLS
regression.

The remainder of the paper is organized as follows. Section 2
describes our statistical method and contrasts it with alternative
approaches. Section 3 describes our empirical results. Section 4
concludes.

2. Statistical method

2.1. Data generating processes

Let rt+1 denote continuously compounded excess returns on
a stock index from time t to t + 1 and xt the value of a (scalar)
predictor variable. We assume that this predictor variable follows
the process

xt+1 = ✓ + ⇢xt + vt+1. (3)

Stock returns can be predictable, in which case they follow the
process (1), or unpredictable, inwhich case they follow the process
(2).3 In either case, errors are serially uncorrelated, homoskedastic,
and jointly normal:

ut+1
vt+1

�
| rt , . . . , r1, xt , . . . , x0 ⇠ N (0, ⌃) , (4)

and

⌃ =
"

� 2
u �uv

�uv � 2
v

#

. (5)

As we show below, the correlation between innovations to returns
and innovations to the predictor variable implies that (3) affects
inference about returns, even when there is no predictability.

When the process (3) is stationary, i.e. ⇢ is between �1 and 1,
the predictor variable has an unconditional mean of

µx = ✓

1 � ⇢
(6)

and a variance of

� 2
x = � 2

v

1 � ⇢2 . (7)

These follow from taking unconditional means and variances on
either side of (3). Note that these are population values conditional
on knowing the parameters. Given these, the population R2 is
defined as

Population R2 = �2� 2
x

�2� 2
x + � 2

u
.

2.2. Prior beliefs

The investor faces uncertainty both about the model (i.e.
whether returns are predictable or not), and about the parameters
of the model. We represent this uncertainty through a hierarchical
prior. There is a probability q that investors face the distribution
given by (1), (3) and (4).We denote this state of theworldH1. There
is a probability 1 � q that investors face the distribution given by
(2)–(4). We denote this state of the world H0. As we will show, the
stochastic properties of x have relevance in both cases.

The prior information on the parameters is conditional on Hi.
Let

b0 = [↵, ✓ , ⇢]>

3 The model we adopt for stock return predictability is assumed by Kandel and
Stambaugh (1996), Campbell andViceira (1999), Stambaugh (1999), Barberis (2000)
and many subsequent studies. The idea that the price-dividend ratio can predict
returns is motivated by present-value models of prices (see Campbell and Shiller,
1988). We have examined the possibility of adding lagged returns on the right
hand side of both the return and the predictor variable regression; however the
coefficients are insignificant.
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and

b1 = [↵, �, ✓ , ⇢]>.

Note that p(b1, ⌃ |H1) can also be written as p(�, b0, ⌃ |H1).4 We
set the prior on b0 and ⌃ so that

p(b0, ⌃ |H0) = p(b0, ⌃ |H1) = p(b0, ⌃).

We assume the investor has uninformative beliefs on these pa-
rameters. We follow the approach of Stambaugh (1999) and Zell-
ner (1996), and derive a limiting Jeffreys prior as explained in
Appendix A. As Appendix A shows, this limiting prior takes the
form

p(b0, ⌃) /
⇢
�x�u|⌃ |� 5

2 ⇢ 2 (�1, 1)
0 otherwise.

(8)

Eq. (8) implies that the process for xt is stationary and that the
mean (6) and variance (7) are well defined. Stationarity of xt is a
standard assumption in the return predictability literature. Stud-
ies that rely on ordinary least squares make this assumption at
least implicitly, since without it standard asymptotic arguments
fail. Other recent studies (e.g. Cochrane, 2008; Van Binsbergen and
Koijen, 2010) explicitly assume stationarity. In Section 3.6, we dis-
cuss how this assumption affects our results.

The parameter that distinguishesH0 fromH1 is� . One approach
would be to write down a prior distribution for � unconditional
on the remaining parameters. However, there are advantages to
forming priors on � jointly with priors on other parameters. For
example, a high variance of xt might lower one’s prior on � , while
a large residual variance of rt might raise it. Rather than placing
a prior on � directly, we follow Wachter and Warusawitharana
(2009) and place a prior on the population R2. To implement this
prior on the R2, we place a prior on ‘‘normalized’’ � , that is �
adjusted for the variance of x and the variance of u. Let

⌘ = ��1
u �x�

denote normalized � . We assume that prior beliefs on ⌘ are given
by

⌘|H1 ⇠ N(0, � 2
⌘ ). (9)

The population R2 is closely related to ⌘:

Population R2 = �2� 2
x

�2� 2
x + � 2

u
= ⌘2

⌘2 + 1
. (10)

Eq. (10) provides a mapping between a prior distribution on ⌘ and
a prior distribution on the population R2. Given an ⌘ draw, an R2

draw can be computed using (10).
A prior on ⌘ implies a hierarchical prior on � . The prior for ⌘,

(9), implies

�|↵, ✓ , ⇢, ⌃ ⇠ N(0, � 2
� ), (11)

where

�� = �⌘�
�1
x �u.

Because �x is a function of ⇢ and �v , the prior on � is also implicitly
a function of these parameters. The parameter �⌘ indexes the de-
gree to which the prior is informative. As �⌘ ! 1, the prior over
� becomes uninformative; all values of � are viewed as equally
likely. As �⌘ ! 0, the prior converges to p(b0, ⌃) multiplied by

4 Formally we could write down p(b1, ⌃ |H0) by assuming p(�|b0, ⌃,H0) is a
point mass at zero.

a point mass at 0, implying a dogmatic view in no predictability.
Combining (11) with (8) implies the joint prior under H1:
p(b1, ⌃ |H1) = p(�|b0, ⌃,H1)p(b0|H1)

/ 1
q
2⇡� 2

⌘

� 2
x |⌃ |� 5

2 exp
⇢
�1

2
�2 �� 2

⌘ ��2
x � 2

u
��1
�

. (12)

Jeffreys invariance theory provides an independent justification
for modeling priors on � as (11). Stambaugh (1999) shows that the
limiting Jeffreys prior for b1 and ⌃ equals

p(b1, ⌃ |H1) / � 2
x |⌃ |� 5

2 . (13)
This prior corresponds to the limit of (12) as �⌘ approaches
infinity. Modeling the prior for � as depending on �x not only
has a convenient interpretation in terms of the distribution of
the R2, but also implies that an infinite prior variance represents
ignorance as defined by Jeffreys (1961). Note that a prior on � that
is independent of �x would not have this property.

Fig. 1 shows the resulting distribution for the population R2 for
various values of �⌘ . Panel A shows the distribution conditional
on H1 while Panel B shows the unconditional distribution. More
precisely, for any value k, Panel A shows the prior probability that
the R2 exceeds k, conditional on the existence of predictability. For
large values of �⌘ , e.g. 100, the prior probability that the R2 exceeds
k across the relevant range of values for the R2 is close to one. The
lower the value of �⌘ , the less variability in � around its mean of
zero, and the lower the probability that the R2 exceeds k for any
value of k. Panel B shows the unconditional probability that the R2

exceeds k for any value of k, assuming that the prior probability
of predictability, q, is equal to 0.5. By the definition of conditional
probability:
p(R2 > k) = p(R2 > k|H1)q.
Therefore Panel B takes the values in Panel A and scales themdown
by 0.5.

2.3. Likelihood

2.3.1. Likelihood under H1
Under H1, returns and the predictor variable follow the

joint process given in (1) and (3). It is convenient to group
contemporaneous observations on returns and on the state
variable into a matrix Y and lagged observations on the state
variable and a constant into a matrix X . Let

Y =
2

64
r1 x1
...

...
rT xT

3

75 X =
2

64
1 x0
...

...
1 xT�1

3

75 ,

and let
z = vec(Y )

Z1 = I2 ⌦ X .

In the above, the vec operator stacks the elements of the matrix
columnwise. Define D = {X, Y }. It follows that the likelihood
conditional on H1 and on the first observation x0 takes the form
of
p(D|b1, ⌃, x0,H1)

= |2⇡⌃ |� T
2 exp

⇢
�1

2
(z � Z1b1)>

�
⌃�1 ⌦ IT

�
(z � Z1b1)

�
(14)

(see Zellner, 1996).
The likelihood function (14) conditions on the first observation

of the predictor variable, x0. Stambaugh (1999) argues for treating
x0 and x1, . . . , xT symmetrically: as random draws from the data
generating process. If the process for xt is stationary and has run for
a substantial period of time, then results in Hamilton (1994, p. 265)
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Fig. 1. Prior distribution of the R2. Notes: The figure shows the prior probability
that the R2 is greater than k for various k. This equals oneminus the cumulative prior
distribution on the R2. Panel A shows the distribution conditional on predictability
and Panel B shows the full distribution assuming that the prior probability of
predictability is q = 0.5. The parameter �⌘ determines the prior standard deviation
of � according to the formula �� = �⌘�

�1
x �u , where �x is the standard deviation of

the predictor variable and �u is the standard deviation of the shock to returns.

imply that x0 is a draw from a normal distribution with mean µx
and standard deviation �x. Combining the likelihood of the first
observation with the likelihood of the remaining T observations
produces

p(D|b1, ⌃,H1) = |2⇡� 2
x |� 1

2 |2⇡⌃ |� T
2 exp

⇢
�1

2
(x0 � µx)

2 ��2
x

� 1
2
(z � Z1b1)>

�
⌃�1 ⌦ IT

�
(z � Z1b1)

�
. (15)

Following Box and Tiao (1973), we refer to (14) as the conditional
likelihood and (15) as the exact likelihood.

2.3.2. Likelihood under H0
Under H0, returns and the predictor variable follow the

processes given in (2) and (3). Let

Z0 =


◆T 0T⇥2

0T⇥1 X

�
,

where ◆T is the T⇥1 vector of ones. Then the conditional likelihood
can be written as

p(D|b0, ⌃, x0,H0) = |2⇡⌃ |� T
2

⇥ exp
⇢
�1

2
(z � Z0b0)>

�
⌃�1 ⌦ IT

�
(z � Z0b0)

�
. (16)

The conditional likelihood takes the same form as in the seemingly
unrelated regression model (see Tomohiro and Zellner, 2010).
Using similar reasoning as in the H1 case, the exact likelihood is
given by

p(D|b0, ⌃,H0) = |2⇡� 2
x |� 1

2 |2⇡⌃ |� T
2 exp

⇢
�1

2
(x0 � µx)

2 ��2
x

� 1
2
(z � Z0b0)>

�
⌃�1 ⌦ IT

�
(z � Z0b0)

�
. (17)

As above, we refer to (16) as the conditional likelihood and (17) as
the exact likelihood.

2.4. Posterior distribution

The investor updates his prior beliefs to form the posterior dis-
tribution upon seeing the data. As we discuss below, this poste-
rior requires the computation of two quantities: the posterior of
the parameters conditional on the absence or presence of return
predictability, and the posterior probability that returns are pre-
dictable. Given these two quantities, we can simulate from the pos-
terior distribution.

To compute the posteriors, we apply Bayes’ rule conditional on
the model:

p(bi, ⌃ |Hi,D) / p(D|bi, ⌃,Hi)p(bi, ⌃ |Hi), i = 0, 1. (18)

Because �x is a nonlinear function of the underlying parameters,
the posterior distributions conditional on H0 and H1 are nonstan-
dard and must by computed numerically. We can sample from
these distributions quickly and accurately using the Metropo-
lis–Hastings algorithm (see Chib and Greenberg, 1995; Johannes
and Polson, 2006). See Appendix B for details.

Let q̄ denote the posterior probability that excess returns are
predictable. By definition,

q̄ = p(H1|D).

It follows from Bayes’ rule, that

q̄ = B10q
B10q + (1 � q)

, (19)

where

B10 = p(D|H1)

p(D|H0)
(20)

is the Bayes factor for the alternative hypothesis of predictability
against the null of no predictability. The Bayes factor is a likelihood
ratio in that it is the likelihood of return predictability divided by
the likelihood of no predictability. However, it differs from the
standard likelihood ratio in that the likelihoods p(D|Hi) are not
conditional on the values of the parameters. These likelihoods are
given by

p(D|Hi) =
Z

p(D|bi, ⌃,Hi)p(bi, ⌃ |Hi) dbi d⌃, i = 0, 1. (21)

To form these likelihoods, the likelihoods conditional on parame-
ters (the likelihood functions generally used in classical statistics)
are integrated over the prior distribution of the parameters. Under
our distributions, these integrals cannot be computed analytically.
However, the Bayes factor (20) can be computed directly using the
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generalized Savage–Dickey density ratio (Dickey, 1971; Verdinelli
and Wasserman, 1995). Details can be found in Appendix C.

Putting these two pieces together, we draw from the posterior
parameter distribution by drawing from p(b1, ⌃ |D,H1) with
probability q̄ and from p(b0, ⌃ |D,H0) with probability 1 � q̄.

2.5. The exogenous regressor approach

Our likelihood and prior involves not only the process for
returns conditional on the lagged predictor, but the process for
the predictor variable itself. A common alternative is to form a
likelihood function from the return equation only. That is, the
likelihood function is taken to be:

p(R | X, ↵,�, �u,H1)

= �
2⇡� 2

u
�� T

2 exp

(

�1
2

T�1X

t=0

(rt+1 � ↵ � �xt)2��2
u

)

, (22)

for R = [r1, . . . , rT ]>. This is combined with a prior over ↵, � and
�u only.

This approach is appealingly simple, but is it valid? In fact (22)
is not a valid likelihood function under reasonable conditions. The
reason is that, unless xt is strictly exogenous, conditioning on the
entire time series of xt , as in (22), implies a different distribution
for rt+1 than conditioning on xt alone. Namely, conditional on
the future values of x, rt+1 is not normally distributed with mean
↵ + �xt and variance �u:

p(rt+1|xt+1, xt , ↵,�, �u,H1) 6= p(rt+1|xt , ↵,�, �u,H1).

The value of xt+1 conveys information about the shock vt+1,
which in turn conveys information about ut+1 (because they are
correlated), and ut+1 conveys information about rt+1.

Is there perhaps some other way to justify using the right hand
side of (22) as a likelihood? The true (conditional) likelihood arises
from taking the product of terms

p(D|x0, b1, ⌃,H1) =
T�1Y

t=0

p(rt+1, xt+1|rt , xt , b1, ⌃,H1).
5

One could separate out the terms in the product as follows

T�1Y

t=0

p(rt+1|xt , ↵,�, �u)p(xt+1|rt+1, xt , b1, ⌃). (23)

However, the second term in (23) depends on ↵, � and �u. It is
not, therefore, a constantwhen one applies Bayes’ rule to inference
about these parameters. Using the right hand side of (22) thus
requires either incorrect conditioning on the time path of x, or an
incorrect computation of the posterior.

At the root of the problem is the fact that the similarity
between the likelihood in the linear regression model in the time
series setting and under OLS is only apparent. In a time series
setting, it is not valid to condition on the entire time path of the
‘‘independent’’ variable. The differences ultimately come down to
the interpretation of the term ut . In a standard OLS setting, ut is an
error, and is thus uncorrelated with the independent variable at all
leads and lags. In a time series setting, it is not an error, but rather
a shock, and this independence does not hold.6

Of course, there is a special case in which it is correct to con-
dition on the time path of xt . This is when the errors ut and vt

5 Note this likelihood function still conditions on x0, and so is the conditional
rather than the exact likelihood.
6 This point is also emphasized by Stambaugh (1999).

are known to be uncorrelated at all leads and lags. In this case, xt
is strictly exogenous. This is an unrealistic assumption in a time
series setting, particularly for the dividend-price ratio (or other
scaled measures of market value), because future returns are by
definition likely to be correlated with past prices. Indeed, the cor-
relation between ut and vt is close to �1. While strict exogeneity
could be enforced in the prior, it is clearly counterfactual. Fortu-
nately it is not necessary: our analysis shows how inference can
proceed without it. In what follows, we will compare our results
to what would happen if xt were taken to be strictly exogenous,
which, for simplicity, we refer to as the non-stochastic regressor ap-
proach.

3. Results

3.1. Data

We use data from the Center for Research on Security Prices
(CRSP). We compute excess stock returns by subtracting the
continuously compounded 3-month Treasury bill return from
the continuously compounded return on the value-weighted
CRSP index at a quarterly frequency. Following a large empirical
literature on return predictability, we focus on the dividend-price
ratio as the regressor because the present-value relation between
prices and returns suggests that it should capture variables that
predict stock returns. The dividend-price ratio is computed by
dividing the dividend payout over the previous 12 months with
the current price of the stock index. The use of 12 months of
data accounts for seasonalities in dividend payments. We use the
logarithmof the dividend-price ratio as the predictor variable. Data
are quarterly from 1952 to 2009.7

3.2. Bayes factors and posterior means

Table 1 reports Bayes factors for various priors. Four values of
�⌘ are considered: 0.051, 0.087, 0.148 and 100. These translate
into values of P(R2 > .01|H1) (the prior probability that the R2

exceeds 0.01) equal to 0.05, 0.25, 0.50 and 0.99 respectively. These
R2s should be interpreted in terms of regressions performed at
a quarterly frequency. Bayes factors are reported for the exact
likelihood, and, to evaluate the importance of including the initial
term, the conditional likelihood as well.

Table 1 shows that the Bayes factor is hump-shaped in P(R2 >
0.01|H1). For small values, the Bayes factor is close to one. For large
values, the Bayes factor is close to zero. Both results can be un-
derstood using the formula for the Bayes factor in (20) and for the
likelihoods p(D | Hi) in (21). For low values of this probability, the
investor imposes a very tight prior on the R2. Therefore the
hypotheses that returns are predictable and that returns are un-
predictable are nearly the same. It follows from (21) that the like-
lihoods of the data under these two scenarios are nearly the same
and that the Bayes factor is nearly one. This is intuitive: when two
hypotheses are close, a great deal of data are required to distinguish
one from the other.

The fact that the Bayes factor approaches zero as P(R2 > .01|
H1) continues to increase is less intuitive. The reduction in Bayes
factors implies that, as the investor allows a greater range of val-
ues for the R2, the posterior probability that returns are predictable
approaches zero. This effect is known as Bartlett’s paradox, and
was first noted by Bartlett (1957) in the context of distinguish-
ing between uniform distributions. As Kass and Raftery (1995) dis-
cuss, Bartlett’s paradox makes it crucial to formulate an informa-
tive prior on the parameters that differ between H0 and H1. We

7 We obtain very similar results at annual and monthly frequencies.
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Table 1

Bayes factors and conditional posterior means.

P(R2 > 0.01|H1) Bayes factor Posterior means
� ⇢ µr µx

Panel A: Exact likelihood

0 Undefined 0 0.997 3.45 �3.25
0.05 4.13 1.07 0.989 3.77 �3.35
0.25 6.48 1.65 0.985 3.85 �3.38
0.50 6.13 1.91 0.983 3.88 �3.39
0.99 0.01 2.06 0.982 3.90 �3.40

Panel B: Conditional likelihood

0 Undefined 0 0.998 4.48 �6.83
0.05 2.00 0.74 0.993 3.70 �5.28
0.25 2.71 1.36 0.988 3.39 �4.79
0.50 2.56 1.66 0.985 3.11 �4.78
0.99 0.01 1.80 0.984 2.15 �5.03

Panel C: Ordinary least squares

2.97 0.973 4.49 �3.54

Notes: The Bayes factor equals the probability of the data D given the predictability
model H1 divided by the probability of the data given the no-predictability model
H0: p(D|H1)/p(D|H0). Bayes factors are reported for various priors on the strength of
predictability under H1, indexed by P(R2 > 0.01|H1) (namely, the prior probability
that the population R2 exceeds 0.01, assuming H1). Posterior means are conditional
on H1 and are computed for the predictability coefficient � , the persistence of the
dividend-price ratio ⇢, themean of the continuously compounded excess returnµr ,
and the mean of the predictor variable µx . In Panel C, µr and µx equal the sample
means. Data are quarterly from 7/1/1952 to 3/31/2009.

can understand the paradox based on the form of the likelihoods
p(D | H1) and P(D | H0). These likelihoods involve integrating out
the parameters using the prior distribution. If the prior distribu-
tion on � is highly uninformative, the prior places a large amount
ofmass in extreme regions of the parameter space. In these regions,
the likelihood of the data conditional on the parameters will be
quite small. At the same time, the prior places a relatively small
amount of mass in the regions of the parameter space where the
likelihood of the data is large. Therefore P(D | H1) (the integral of
the likelihood under H1) is small relative to P(D | H0) (the integral
of the likelihood under H0).

Table 1 also shows that there are substantial differences
between the Bayes factors resulting from the exact versus the
conditional likelihood.8 The Bayes factors resulting from the exact
likelihood are larger than those resulting from the conditional
likelihood, thus implying a greater posterior probability of return
predictability. This difference reflects the fact that the posterior
mean of � , conditional on H1, is higher for the exact likelihood
than for the conditional likelihood, and the posterior mean of ⇢ is
lower.9

3.3. The long-run equity premium

For the predictability model, the expected excess return on
stocks (the equity premium) varies over time. In the long run,
however, the current value of xt becomes irrelevant. Under our

8 We are not the first to note the importance of the first observation in the time
series. See, for example, Poirier (1978).
9 The source of this negative relation is the negative correlation between shocks

to returns and shocks to the predictor variable. Suppose that a draw of � is below
its value predicted by ordinary least squares (OLS). This implies that the OLS value
for � is ‘‘too high’’, i.e. in the sample shocks to the predictor variable are followed by
shocks to returns of the same sign. Therefore shocks to the predictor variable tend
to be followed by shocks to the predictor variable that are of different signs. Thus
the OLS value for ⇢ is ‘‘too low’’. This explains why values of the posteriormean of ⇢
are higher for low values of P(R2 > 0.01|H1) (and hence low values of the posterior
mean of�) than for high values, and higher than the ordinary least squares estimate.

assumptions xt is stationary with mean µx, and therefore rt is also
stationary with mean
µr = E[↵ + �xt + ut+1|b1, ⌃] = ↵ + �µx.

This is a population value that conditions on the value of the pa-
rameters. For the no-predictability model, µr is simply equal to ↵.
We can think of µr as the average equity premium; the fact that
it is ‘‘too high’’ constitutes the equity premium puzzle (Mehra and
Prescott, 1985), and it is often computed by simply taking the sam-
ple average of excess returns.

The posterior expectation of µr under various specifications is
shown in Table 1. Because differences in the expected return arise
from differences in the posterior mean of the predictor variable x,
the table also reports the posterior mean of µx. The differences in
the long-run equity premium are striking. The sample average of
the (continuously compounded) excess return on stocks over this
period is 4.49%. However, assuming the exact likelihood implies
produces a range for this excess return between 3.45% and 3.90%
depending on the strength of the prior. Why is the equity premium
in these cases as much as a full percentage point lower?

To answer this question, it is helpful to look at the posterior
means of the predictor variable, reported in the next column of
Table 1. For the exact likelihood specification, the posterior mean
of the log dividend yield ranges from �3.25 to �3.40. The sample
mean is�3.54. It follows that the shocks vt over the sample period
must be negative on average. Because of the negative correlation
between shocks to the dividend price ratio and to expected returns,
the shocks ut must be positive on average. Therefore the posterior
mean lies below the sample mean.

Continuing with the exact likelihood case, the posterior mean
of µx is highest (and hence furthest from the sample mean) in the
no-predictability model, and becomes lower as the prior becomes
less dogmatic. Excess returns follow this pattern in reverse, namely
they are lowest (and furthest from the sample mean) for the no-
predictability model and highest for the predictability model with
the least dogmatic prior. This effect may arise from the persistence
⇢. The more dogmatic the prior, the closer the posterior mean
of the persistence is to one. The more persistent the process, the
more likely the positive shocks are to accumulate, and the more
the sample mean is likely to deviate from the true posterior mean.

The results are very different when the conditional likelihood is
used, as shown in Panel B. For the no-predictability model, µr = ↵
is equal to the sample mean. However, as long as there is some
predictability, estimation of µr depends on µx, which is unstable
due to the presence of 1� ⇢ in the denominator. It is striking that,
in contrast to our main specification, the conditional likelihood
specification has great difficulty in pinning down the mean of
expected excess stock returns.

3.4. The posterior distribution

We now examine the posterior probability that excess returns
are predictable. For convenience, we present results for our main
specification that uses the exact likelihood. As a first step, we
examine the posterior distribution for the R2.

The posterior distribution of the R2

Fig. 2 displays the prior and posterior distribution of the R2. For
now we assume that prior beliefs are given by P(R2 > 1% | H1) =
0.50 and q = 0.5; below we examine robustness to changes in
these values. Panel A shows P(R2 > k) as a function of k for both the
prior and the posterior; this corresponds to 1minus the cumulative
density function of the R2.10 Panel A demonstrates a rightward shift

10 This figure shows the unconditional posterior probability that the R2 exceeds k;
that is, it does not condition on the existence of predictability.
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Fig. 2. Posterior Distribution of the R2. Notes: Panel A shows the prior and posterior probabilities that the R2 will be greater than k for various k. Panel B shows the prior
and posterior density functions of the R2. Priors are such that P(R2 > 0.01|H1) (the probability that the R2 exceeds 1% conditional on predictability) equals 0.5 and q (the
prior probability of predictability) also equals 0.5. Data are quarterly from 7/1/1952 to 3/31/2009.

for the posterior for values of k below (roughly) 2%.While the prior
implies P(R2 > 1%) = 0.25, the posterior implies P(R2 > 1%)
close to 0.50. Thus, after observing the data, an investor revises his
beliefs on the existence and strength of predictability substantially
upward.

Panel B shows the probability density function of the R2. The
prior places the highest density on low values of the R2. The
posterior however places high density in the region around 2% and
has lower density than the prior for R2 values close to zero. The
evidence in favor of predictability, with amoderate R2, is sufficient
to overcome the investor’s initial skepticism.

The posterior probability of return predictability
Table 2 shows how various statistics on the posterior distri-

bution vary as the prior distribution changes. Panel A presents
the posterior probabilities of predictability as a function of the
investor’s prior about the existence of predictability, q, and the
prior belief on the strength of predictability. The posterior prob-
ability is increasing in q and hump-shaped in the strength of the
prior, reflecting the fact that the Bayes factors are hump-shaped
in the strength of the prior. An investor with moderate beliefs
about the probability that returns are predictable revises these be-
liefs sharply upward. For example, an investor with q = 0.5 and
P(R2 > .01|H1) = 0.50 concludes that the posterior likelihood of
predictability equals 0.86. This result is robust to a wide range of
choices for P(R2 > .01|H1). As the table shows, P(R2 > .01|H1) =
0.25 implies a posterior probability of 0.87. The posterior probabil-
ity falls off dramatically for P(R2 > .01|H1) = 0.99; for these very
diffuse priors (which imply what might be considered an econom-
ically unreasonable amount of predictability), the Bayes factors are
close to zero.11 Panels B and C show reasonably high means of the
� and the R2, except for the most diffuse prior.

11 See this discussion in Section 3.2 on Bartlett’s paradox.

Table 2

Posterior statistics.
P(R2 > 0.01|H1) Prior probability of return predictability q

0.20 0.50 0.80 0.99

Panel A: Posterior probability of predictability q̄

0.05 0.51 0.80 0.94 1.00
0.25 0.62 0.87 0.96 1.00
0.50 0.61 0.86 0.96 1.00
0.99 0.00 0.01 0.05 0.54

Panel B: Posterior mean of predictive coefficient �

0.05 0.55 0.86 1.01 1.07
0.25 1.02 1.43 1.59 1.65
0.50 1.16 1.64 1.84 1.91
0.99 0.01 0.02 0.09 1.12

Panel C: Posterior mean of R2 (in percentages)

0.05 0.30 0.48 0.56 0.59
0.25 0.59 0.83 0.92 0.95
0.50 0.68 0.97 1.08 1.12
0.99 0.00 0.01 0.06 0.68

Panel D: Difference in CER between optimal and no-predictability
strategies

0.05 0.38 0.84 1.10 1.20
0.25 0.85 1.45 1.71 1.81
0.50 1.00 1.72 2.03 2.15
0.99 0.00 0.00 0.02 1.67

Notes: The table reports statistics of the posterior distribution averaged over the
models H1 (predictability) and H0 (no predictability). The parameter q denotes the
prior probability of H1. Statistics are reported for various value of q and for priors
on the strength of predictability under H1, indexed by P(R2 > 0.01|H1) (namely,
the prior probability that the population R2 exceeds 0.01, assuming H1). CER stands
for certainty equivalent return and is annualized by multiplying by four. Data are
quarterly from 7/1/1952 to 3/31/2009.

Certainty equivalent returns
We now measure the economic significance of the predictabil-

ity evidence using certainty equivalent returns. We assume an
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investor who maximizes

E

"
W 1��

T+1

1 � �

����D

#

for � = 5, whereWT+1 = WT (werT+1+rf ,T + (1�w)erf ,T ), and w is
theweight on the risky asset. The expectation is takenwith respect
to the predictive distribution

p(rT+1 | D) = q̄p(rT+1 | D,H1) + (1 � q̄)p(rT+1 | D,H0),

where

p(rT+1 | D,Hi) =
Z

p(rT+1 | xT , bi, ⌃,Hi)p(bi, ⌃ | D,Hi) dbi d⌃

for i = 0, 1. A draw rT+1 from the distribution p(rT+1 | xT , b1, ⌃)
is given by (1) with probability q̄ and (2) with probability 1 � q̄.

For any portfolio weight w, we can compute the certainty
equivalent return (CER) as solving

exp {(1 � � )CER}
1 � �

= E


(werT+1+rf ,T + (1 � w)erf ,T )1��

1 � �

����D
�

. (24)

Following Kandel and Stambaugh (1996), we measure utility loss
as the difference between certainty equivalent returns from fol-
lowing the optimal strategy and from following a sub-optimal
strategy. We define the sub-optimal strategy as the strategy that
the investorwould follow if he believes that there is no predictabil-
ity. Note, however, that the expectation in (24) is computed with
respect to the same distribution for both the optimal and sub-
optimal strategy.

Panel D of Table 2 shows the difference in certainty equivalent
returns as described above. These differences are averaged over
the posterior distribution for x to create a difference that is not
conditional on any specific value. The data indicate economically
meaningful economic losses from failing to time the market.
Panel D shows that, for example, an investor with a prior on � such
that P(R2 > .01|H1) = 0.50 and a 50% prior belief in the existence
of return predictability would suffer a certainty equivalent loss of
1.72% (in annual terms) from failing to time the market. Higher
values of q imply greater certainty equivalent losses.

3.5. Evolution of the posterior distribution over time

We next describe the evolution of the posterior distribution
over time. This distribution exhibits surprising behavior over the
2000–2005 period. This behavior is a direct result of the stochastic
properties of the predictor variable xt . Unless stated otherwise, the
results in this section are for the benchmark specification, namely,
the priors given in Section 2.2 combined with the exact likelihood.
The prior probability that the R2 exceeds 1% (conditional on pre-
dictability) and the prior probability of predictability are assumed
to be 0.5.

Starting in 1972, we compute the posterior distribution con-
ditional on having observed data up to and including that year.
We start in 1972 because this allows for twenty years of data
for the first observation. The posterior is computed by simulating
500,000draws anddropping the first 100,000. To save on computa-
tion time, we update the posterior every year. For reference, Fig. 3
shows the time series of the log dividend-price ratio. As we will
see, much of the behavior of the posterior distribution can be un-
derstood based on the time series of this ratio.

Fig. 4 shows the posterior probability of predictability (q̄) in
Panel A (assuming a prior probability of 0.5). The solid line corre-
sponds to our benchmark specification. This line is above 90% for

Fig. 3. The log dividend-price ratio. Notes: The figure shows quarterly observations
on the log of the dividend-price ratio, computed by dividing the dividend payout
over the previous 12 months by the current price. Prices and dividends are for the
CRSP value-weighted index.

most of the sample (it is actually at its lowest value at the end of
the sample). In the 2000–2005 period, the probability is not distin-
guishable from one. This is surprising: intuitionwould suggest that
the period in which the dividend-price ratio was falling far below
its long-run mean (and during which returns were high regard-
less) would correspond to an exceptionally low posterior proba-
bility of predictability, not a high one. Indeed, it is surprising that
data could ever lead the investor to a nearly 100% certainty about
the predictability model.

Panel B, which shows log Bayes factors, gives another perspec-
tive on this result. Between 2000 and 2005, the Bayes factor in fa-
vor of predictability rises to values that dwarf any others during
the sample. The posterior probability takes these Bayes factors and
maps them to the [0, 1] interval, so values as high as those shown in
the figure are translated to posterior probabilities extremely close
to one. Why is it that the Bayes factors rise so high?

An answer is suggested by the time series behavior of � and
⇢, shown in Fig. 5. The solid lines show the posterior distributions
of � and ⇢.12 The dashed line shows OLS estimates. The posterior
for � lies below the OLS estimate for most of the period, while
the posterior for ⇢ lies above the OLS estimator for most of the
period. An exception occurs in 2001, when the positions reverse.
The posterior for� lies above theOLS estimate and the posterior for
⇢ lies below it. Note that the OLS estimate of � is biased upwards
and the OLS estimate of ⇢ is biased downwards, so this switch is
especially surprising.

The fact that the posterior ⇢ rises to meet the OLS ⇢, and
even exceeds it, indicates that the model interprets the rise of the
dividend-price ratio as occurring because of an unusual sequence
of negative shocks vt . Namely, negative shocks are more likely to
occur after negative shocks during this period. This implies that
positive shocks to ut are also more likely to follow negative shocks
vt than theywould in population, so OLSwill in fact underestimate
the true � (or it will overestimate the true � by less than usual).

This result is similar in spirit to that found in the frequentist
analysis of Lewellen (2004) and Campbell and Yogo (2006) (see
also the discussion in the survey, Campbell, 2008). It is also an
example of how information about shocks that are correlated with
errors from a forecasting model can help improve forecasts, as in
Faust and Wright (2011). Fig. 4 shows that the consequences of

12 For the argument below, it makes the most sense, strictly speaking, to examine
the posterior distribution of � conditional on the predictability model. However,
because the posterior probability of this model is so close to one, this conditional
posterior� is nearly indistinguishable from the unconditional posterior� . The same
is true for posterior ⇢. Therefore, for simplicity, we focus on the unconditional
posterior.
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Fig. 4. The Bayes factor and posterior probability of return predictability. Notes:
Panel A shows the posterior probability of H1 (the predictability model), assuming
a prior probability of 0.5. Panel B shows the log Bayes factor, equal to the log
probability of the data given the predictabilitymodelH1 minus the log probability of
the data given the no-predictabilitymodelH0. Both panels assume P(R2 > 0.01|H1)
(namely, the prior probability that the population R2 exceeds 0.01, given H1) equals
0.5. The Bayes factor and the posterior probability are computed using quarterly
data beginning in 7/1/1952 and ending at the time shown on the x-axis. The solid
line shows results for the benchmark specification. The dashed line shows results
for the case of a non-stochastic regressor.

this result for model selection are quite large. This is because the
no-predictabilitymodel implies, of course, that � is zero. However,
given that OLS finds a positive � , for the no-predictability model to
be true, it must be the case that negative shocks to the dividend-
price ratio were followed by negative shocks to returns. This is
extremely unlikely, given the time series evidence and a stationary
predictor variable. Thus the evidence comes to strongly favor the
predictability model.

Comparison with the non-stochastic regressor approach
This chain of inference requires knowledge of the behavior

of shocks to the predictor variable. The non-stochastic regressor
approach described in Section 2.5 eliminates such knowledge and
leads to completely different inference over this time period. To fix
ideas, we implement this approach using the standard assumption
of a conjugate prior distribution. However, our findings do not
depend on this assumption, as we discuss in Section 3.6.

We assume the following prior distribution on the return
parameters:

[↵, �]> | � 2
u ,H1 ⇠ N

�
0, g�1� 2

u (X>X)�1� (25)

� 2
u |H1 ⇠ IW (N0 � 2, s0), (26)

Fig. 5. Posterior means of � and ⇢ over time. Notes: Panel A shows the posterior
mean of � under the benchmark specification (solid line) and the OLS estimate of
� (dashed line) using data beginning in 7/1/1952 and ending at the time shown
on the x-axis. Panel B shows analogous results for ⇢, the autoregressive coefficient
on the dividend-price ratio. The posterior distributions are computed assuming
q (the prior probability that returns are predictable) equal to 0.50, and assuming
P(R2 > 0.01|H1) (the prior probability that the population R2 exceeds 0.01, given
H1) also equal to 0.5.

where IW denotes the inverse Wishart distribution, and g�1, N0
and s0 are parameters of the prior distribution.13 Note that prior
for � conditional on �u is

� | � 2
u ,H1 ⇠ N(0, g�1� 2

u T �̂�2
x ),

where �̂ 2
x denotes the sample variance of x:

�̂ 2
x = 1

T

T�1X

t=0

 

xt � 1
T

T�1X

s=0

xs

!2

.

This allows us to construct these priors so that they are of com-
parable informativeness to our benchmark priors in Section 2.2 by
setting

g�1T = � 2
⌘ .

The prior in (25) and (26) is equivalent to the g-prior of Zell-
ner (1986), and is similar to specifications employed by Fernan-
dez et al. (2001), Chipman et al. (2001), Avramov (2002), Cremers
(2002), Wright (2008) and Stock and Watson (2012). As explained
in Section 2.5, the likelihood function in the non-stochastic regres-
sor case is given by (22).

13 We setN0 equal to 40 and s0 equal to the sumof squared errors over the sample,
multiplied by N0/T . The results are not sensitive to these choices. See Appendix E
for further interpretation of these prior beliefs.
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In our time-series setting, (25) relies on incorrect conditioning:
the investor must have foreknowledge of the entire time path of
the predictor variable. Thus, the approach described here builds in
the assumption of a non-stochastic regressor in two ways. First,
the terms involving the predictor variable do not appear in the
likelihood function. Second, it conditions on the entire time path
of xt in forming the prior distribution.14

Appendix E describes the computation of Bayes factors and pos-
terior probabilities in this case. The dashed line in Fig. 4 shows
the posterior probabilities and Bayes factors. Notably, the non-
stochastic case does not exhibit the large upward spike in Bayes
factors, nor do the posterior probabilities approach one in the
2000–2005 period. Rather, the posterior probabilities decline sub-
stantially in 1998–2000, and while they increase again after this,
they remain at a lower level than earlier in the sample. This be-
havior stems from the behavior of the OLS predictive coefficients
(Fig. 5),which followa similar pattern. The benchmark case in Fig. 4
combines this information with additional information contained
in the shocks vt , and therefore in ut .15 As explained in the para-
graphs above, this information makes it very unlikely that the no-
predictability model holds over the 2000–2005 period.16

3.6. The role of the prior and likelihood in determining Bayes factors

As Section 3.5 shows, whether one models the predictor vari-
able as stochastic or not has a large impact on inference. This sec-
tion delves more deeply into the reasons for this difference.

Clearly there are many differences between the stochastic
(benchmark) and non-stochastic case. Most fundamentally, the
benchmark case requires specifying a likelihood function for the
data on the predictor variable. This in turn requires a prior over the
parameters of this likelihood function. By modeling the predictor
as non-stochastic, one appears to avoid this step.

In specifying this prior, we assume that the predictor variable
is stationary. Without this assumption, we could not define a
prior over the R2 (because the variance is not well-defined) nor
would we have an exact likelihood function (there would be no
well-defined distribution for x0). As we discuss in Section 2.2,
this assumption is standard in the return predictability literature,
though it is not always stated explicitly. Thus in our setting
stationarity is a natural assumption. Here, we seek to understand
how it affects our results and why.

We first ask whether it matters if we use the exact or the con-
ditional likelihood. We do this by comparing our benchmark case
with one in which we use the conditional likelihood and keep all
else the same. Results are shown in Panel A of Fig. 6. Using the con-
ditional likelihood leads to lower Bayes factors, though the Bayes
factors still spike up over the 2000–2005 period. The information

14 An alternative approach would be to form a conjugate g-prior over a
multivariate system that includes the equation for the state variable. Under this
approach, terms involving the predictor variable would appear in the prior and
likelihood function. However, it would still involve incorrect conditioning in that
the entire path of xt would be used in forming the prior. This approach is described
in detail in Appendix D. Comparing the resulting posterior distribution with that
from the one-equation conjugate prior case reveals that they differ up to a degrees
of freedom adjustment arising from the need to estimate the correlation between
the two equations.
15 For the information in vt to matter, there must be a non-zero correlation
between u and v. As Appendix G shows, in the case of the yield spread, the
benchmark and non-stochastic cases look nearly identical in part because the
correlation between shocks to the yield spread and shocks to returns is low in
magnitude.
16 The effect is most dramatic over the 2000–2005 period, but holds to some
extent in other parts of the sample period as well. This is one of the reasons why
Bayes factors for the benchmark case lie above those for the non-stochastic case
throughout the sample.

from the first observation shifts the distribution of ⇢ toward lower
values because the mean of the predictor variable is sufficiently
close to the first observation that a high variance of the predic-
tor variable is not necessary to explain the data (a decrease in ⇢
decreases the unconditional variance of x). Because the distribu-
tion of ⇢ is shifted toward lower values, the distribution of � is
shifted toward higher values (see Section 3.2 and Table 1) leading
to higher Bayes factors. However, while the exact likelihood does
lead to higher Bayes factors, both sets of likelihood functions im-
ply similar time series patterns. Thus the use of the exact likelihood
function, by itself, is not the main driver of the difference between
the non-stochastic and benchmark case.

We next consider the effect of a prior on the R2 versus a prior
on � . In doing so, we wish to isolate the effect of the prior on � as
much as possible. We consider the following:

p(�|b0, ⌃,H1) ⇠ N(0, �̂ 2
� ), (27)

where

�̂� = �⌘�̂
�1
x �̂u. (28)

We compute �̂u as the standard deviation of the residual from
OLS regression of the predictive regression. We assume a standard
uninformative prior for the remaining parameters (Zellner, 1996):

p(b0, ⌃ |H1) = p(b0, ⌃ |H0) / |⌃ |� 3
2 , (29)

for ⇢ 2 (�1, 1), and zero otherwise. It follows that

p(b1, ⌃ |H1) / 1
q
2⇡�̂ 2

�

|⌃ |� 3
2 exp

⇢
�1

2
�2�̂�2

�

�
. (30)

We refer to this as the empirical Bayes prior because the data are
used to construct �̂� . This contrasts with the full Bayes prior that
forms our benchmark specification.

The prior over � implied by (27) and (28) is almost identical to
the conjugate-g prior used to explore the non-stochastic regressor
approach in Section 3.6.17 When we allow ⇢ to be above 1 and use
the conditional likelihood, the results are nearly identical to the
non-stochastic regressor case. This is not surprising: the prior over
� is nearly the same in both cases, and the likelihood function is
exactly the same. However, we can impose stationarity on the em-
pirical Bayes prior, which we cannot do in the non-stochastic case.
Thus we can make the empirical Bayes case more comparable to
our benchmark case. Panel B shows the results of this exercise:We
use the conditional likelihood, and compare the results of the full
Bayes (benchmark) and the empirical Bayes priors. For the empir-
ical Bayes priors, we assume ⇢ 2 (�1, 1). The results in Panel B
show that, while the use of empirical Bayes raises the Bayes fac-
tors somewhat, the effect is relatively small. Replacing full Bayes
with empirical Bayes partially cancels out the effect of replacing
the exact likelihood with the conditional likelihood, in this sample
at least. Thus the use of a prior over the R2 rather than a prior over
� plays at most a minor role in our results.

Finally, in the last panel, we consider the empirical Bayes prior
and conditional likelihood with and without stationary. Without
stationarity, we are in effect back to the non-stochastic regressor
case. We see that whether ⇢ is restricted to be less than one
makes a large difference in the results. As explained in the previous
section, the model interprets the rise in the dividend-price ratio
as occurring because of an unusual sequence of negative shocks.
Because of the negative correlation between the dividend-price

17 The distinction is whether �u is taken from the sample or conditioned on.
Because �u is estimated very precisely, this distinction makes little practical
difference.
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Fig. 6. Posterior probabilities implied by different methods. The figures show the
posterior probability of return predictability (see Fig. 4 for more details). Panel A
compares our benchmark specification ‘‘Exact likelihood’’, with a specification that
uses the conditional likelihood but keeps the prior the same. Panel B compares
this latter specification with one that uses the empirical Bayes prior but keeps
everything else the same; note both specifications use the conditional likelihood.
Panel C compares results from the conditional likelihood and empirical Bayes prior
assuming stationarity with results from this same specification without assuming
stationarity.

ratio and returns, one would expect positive shocks to returns
to follow negative shocks to the dividend-price ratio. In such a
sample, OLS would be biased downward, not upward. However,
the no-predictability model by definition implies that OLS must
be biased upward. Restating somewhat, over this period there is
still a negative relation between the lagged dividend-price ratio
and returns. The fact that this relation is weakened is not so much

evidence against predictability but rather a consequence of an
unusual set of shocks. If there trulywere no predictability, it would
have had to have weakened much further.

It might seem that the empirical Bayes approach, or indeed the
stochastic regressor approach (these are nearly identical), is more
robust, as it does not require an assumption of stationarity. How-
ever, recall that these approaches rely on incorrect conditioning.
They assumenot only that the agent can see part of the data but not
the rest, but that the agent is not allowed to make full use of this
data for inference.Moreover, this apparent robustness is itself con-
cerning. The non-stochastic regressor approach can be shown to be
equivalent to the use of ordinary least squares (OLS).18 Yet, OLS is
known to be biased in the time series setting, and invalid when
the right-hand-side variable is non-stationary. The fact that OLS
(with its known flaws) plays a central role in the non-stochastic
case, combined with the fact that this case relies on incorrect con-
ditioning would seem to make the non-stochastic case a less than
ideal foundation for Bayesian inference in a time-series setting.

One could generalize the prior distribution that we introduce to
allow for a non-stationary distribution for xt . This would of course
admit the possibility that excess returns, too, are non-stationary
and the equity premium undefined.We leave this interesting topic
to future work.

3.7. The training sample approach

An alternative approach that (like the non-stochastic case)
makes use of the principles of conjugacy is to form a prior using a
training sample.19 Unlike the non-stochastic case described in Sec-
tion 3.5, the training sample approach does not require foreknowl-
edge of the time series of x.20

In this section,we evaluate this approach in the setting ofmodel
uncertainty. Consider a training sample (an early sub-sample of
the data) with T̃ time series observations. Let X̃ and Ỹ denote the
analogs toX and Y , defined over this prior sample, b̃1 the regression
coefficients computed over this sample, and S̃ the sum of squared
errors. That is:

B̃1 = (X̃>X̃)�1X̃>Ỹ (31)

b̃1 = vec(B̃1) (32)

S̃ = (Ỹ � X̃ B̃1)
>(Ỹ � X̃ B̃1). (33)

Prior beliefs are given as follows:

p(b1|⌃,H1) / |⌃ |�1 exp

⇥
⇢
�1

2
(b1 � b̃1)>(⌃�1 ⌦ X>X)(b1 � b̃1)

�
(34)

p(⌃ |H1) / |⌃ |� N+1
2 exp

⇢
�1

2
tr⌃�1S̃

�
, (35)

which implies

b1 ⇠ N
⇣
b̃, ⌃ ⌦ (X̃>X̃)�1

⌘
(36)

⌃ ⇠ IW
⇣
S̃, T̃ � 2

⌘
. (37)

18 An apparent alternative would be to allow a flat prior for both � and ⇢ (thus
making the prior over the R2 unnecessary). As discussed above, this leads to Bayes
factors close to zero because of Bartlett’s paradox. A second alternative would be to
create a training sample. We explore this alternative in detail in the next section.
19 See Johannes et al. (2014).
20 Though it does use the conditional rather than the exact likelihood.
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This prior distribution can be interpreted as the beliefs the investor
would have if starting with a (true) uninformative prior and
updated using the conditional likelihood (14) for T̃ observations.
The resulting distributions follow from calculations in Zellner
(1996, pp. 224–227).21

Bayes theorem and the results in Zellner (1996) imply that the
posterior distribution takes the same form, but with the training
sample quantities replaced by their full-sample counterparts.22 Let

b̂1 = vec(B̂1)

B̂1 = (X>X)�1X>Y
S = (Y � XB̂1)

>(Y � XB̂1).

It follows that

p(b1|⌃,H1,D)

/ |⌃ |�1 exp
⇢
�1

2
(b1 � b̂1)>(⌃�1 ⌦ X>X)(b1 � b̂1)

�
(38)

p(⌃ |H1,D) / |⌃ |� T+1
2 exp

⇢
�1

2
tr⌃�1S

�
, (39)

which implies

b1 ⇠ N
⇣
b̂1, ⌃ ⌦ (X>X)�1

⌘
(40)

⌃ ⇠ IW (S, T � 2) . (41)

Appendix F describes the computation of Bayes factors.
The disadvantage of this approach is that inference is very

sensitive to the choice of the training sample. Fig. 7 shows the
implied prior distribution for the coefficient � under different
training samples (Panel A) and the corresponding posterior prob-
abilities of predictability (Panel B). We consider priors of length
8, 16 and 40 quarters (Johannes et al., 2014 use monthly data
and a training sample length of 24 months). All three prior-
likelihood combinations use exactly the same data; the only dif-
ference is whether the data is labeled as part of the prior or the
likelihood. Nonetheless, the differences in the economic conclu-
sions are striking. A prior formed using 8 quarters of data yields
a posterior probability of only 10% at the end of the sample, while
assigning 16 quarters to the prior implies a posterior probability of
above 50%. Increasing the data in the prior is no guarantee of stabil-
ity: the posterior probability formed when the prior is 40 quarters
is close to 30%.

What is the source of this indeterminacy? As we discuss in Sec-
tion 3.2, Bartlett’s paradox implies that too diffuse a prior will lead
to very low Bayes factors, because the mass of the prior is far from
what the data suggest. Priors based on a small training sample run
into exactly this problem (as can be seen from the prior formed us-
ing 8 quarters of data). On the other hand, using a moderate-sized
training sample creates its ownproblems. For example, 40 quarters
of data imply a prior distribution that is no longer diffuse. However,
because this prior is centered at a different value than that implied
by the full sample, the posterior probability is also lower than for
the 16-quarter prior. Indeed, Fig. 7 shows that the shortest training
sample implies a prior that is diffuse and has little weight on rel-
atively low values of � while the longest training sample implies
a prior that is highly informative, but also places little weight on
relatively low values of � . In both cases, the Bayes factors are low.

21 We make the standard assumption that true uninformative prior is flat for b1
and proportional to |⌃ |�3/2 for ⌃ . Eqs. (31)–(37) then follow from the calculations
in Zellner (1996) for the posterior given data X̃ and Ỹ of sample length T̃ .
22 For consistency with earlier sections of the paper, we continue to use T as the
length of the full sample. The full sample is then comprised of the training sample
of length T̃ and an additional sample of length T � T̃ .

Fig. 7. The conjugate prior and posterior with training samples. Notes:
Panel A shows the prior distribution for � (the predictive coefficient) assuming
training samples of varying lengths. Panel B shows the posterior probabilities of
predictability. The training samples begin on 7/1/1952 and last for the number of
quarters given in the legend. The posterior probabilities are computed using the
remaining data, ending at the time shown on the x axis.

More intuition can be obtained using the formula for the log
Bayes factor that applies in this instance:

logB10 = log p(� = 0|H1) � log p(� = 0|D,H1) (42)

(see Verdinelli and Wasserman, 1995). By definition, altering the
end point of the training sample has no effect on the posterior
probability of � = 0, because the posterior is invariant to how
the data are divided between the training and the actual sample.
However, it will of course affect the prior probability that � = 0.
Eq. (42) shows that the log Bayes factor undergoes a linear shift
depending on the training sample. Thus, while the training sample
approach avoids some problems with the conjugate prior, it intro-
duces a new one, namely indeterminacy with respect to the choice
of the training sample.

3.8. Out-of-sample performance

Goyal and Welch (2008) argue that the out-of-sample perfor-
mance of predictive regressions, when implemented using stan-
dard techniques, is quite poor. This raises the question of whether
our approach to predictability leads to superior out-of-sample per-
formance.
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In this section, we answer this question using the same
CRRA utility function used to evaluate in-sample performance in
Section 3.4. As in that section, we consider a one-period investor
who chooses a weight in the risky asset. We first assume that the
investor follows an optimal strategy, that is, he computes expected
utility with respect to the predictive distribution of returns (see
Section 3.4), and chooses a portfolio strategy to maximize this
expected utility. We then compute the out-of-sample certainty
equivalent return (CER) associated with this strategy. That is,
for each quarter in the sample, we apply the optimal weights
computed using information available at that quarter to the actual
returns realized over the next quarter. This gives us a time series
of quarterly returns; we use this time series to compute the
expectation on the right hand side of (24).

We compare the resulting CER to that resulting from a sub-
optimal strategy.23 Motivated by the findings of Goyal and Welch
(2008), we first consider the strategy in which the investor com-
putes the distribution of returns assuming no predictability and
that the mean and volatility are given by their sample moments.

The results are shown in Panel A of Table 3. We find a positive
difference between CERs, indicating superior out-of-sample per-
formance relative to the sample means, for each of the prior be-
liefs we consider. As elsewhere in the paper, we consider a range
of prior beliefs on predictability q and the probability that the R2

exceeds 0.01. The results are largest for those prior beliefs that
lead to a relatively highweight on the predictabilitymodel (namely
P(R2 > .01|H1) = 0.50).

Panel A of Table 3 shows that strategies implied by our method
outperform a simple strategy based on sample moments. We also
assess the statistical significance of this outperformance. That is,
we ask: could this outperformance have occurred in a sample with
no predictability? Note that outperformance in a no-predictability
setting need not be spurious. This is because our strategies not
only incorporate evidence on predictability, but allow for Bayesian
updating on all the parameters. In performing this exercise, we
are assessing the extent to which this outperformance itself
constitutes evidence for return predictability.24

To accurately capture non-standard features of the portfolio re-
turn series, we simulate 400 samples under the null hypothesis of
no predictability.25 For each of these samples, we calculate out-of-
sample performance, repeating the procedurewe used to calculate
performance in actual data.We limit the number of samples to 400
due to the heavy computational requirement of this exercise. Be-
cause we have no reason to believe that our method would per-
formworse under the alternative hypothesis of predictability than
under the null, we consider a one-tailed test and report, in brack-
ets, the 95 percent critical value from our simulations. The results
show that our out-of-sample values exceed this critical value for 11
out of the 20 priors that we consider. We conclude therefore that
the out-of-sample performance our strategies exhibit would have
been quite unlikely in a setting with no predictability.

Our results based on sample means raise the question of
whether our strategies outperform those constructed using OLS
estimates (which were used for evaluation by Goyal and Welch
(2008)). We repeat the exercise above, but rather than consider a

23 As in Section 3.4 and in Kandel and Stambaugh (1996), we measure utility loss
by taking the difference between the CER of the optimal strategy and the CER of the
suboptimal strategy.
24 Unlike the rest of the paper, this exercise is purely frequentist in nature. The
Bayesian investor would not require such evidence under our framework.
25 In setting the parameters for this Monte Carlo, we take into account the bias
in ⇢. We choose ⇢ to be 0.997, which happens to be its estimate under the no-
predictability model. This value of ⇢ leads to an average OLS estimate of 0.973,
similar to that in the data.

Table 3

Out of sample certainty equivalent returns (CERs).

P(R2 > 0.01|H1) Prior prob. of return predictability q
0.01 0.20 0.50 0.80 0.99

Panel A: Comparison with sample mean

0.05 1.11⇤ 1.08⇤ 1.06⇤ 1.07⇤ 1.07⇤
[0.98] [1.02] [1.03] [1.05] [1.04]

0.25 1.05 0.91 1.02⇤ 1.08⇤ 1.10⇤
[1.07] [0.98] [0.99] [0.99] [1.00]

0.50 0.85 1.09⇤ 1.20⇤ 1.24 1.25
[1.08] [1.08] [1.20] [1.32] [1.35]

0.99 1.17⇤ 1.04⇤ 0.96 0.79 1.12
[0.99] [0.99] [1.01] [1.05] [1.13]

Panel B: Comparison with OLS estimates

0.05 1.06 1.03 1.02 1.02 1.03
[1.86] [1.85] [1.86] [1.83] [1.83]

0.25 1.00 0.86 0.98 1.03 1.05
[1.78] [1.87] [1.86] [1.81] [1.87]

0.50 0.81 1.04 1.15 1.19 1.20
[1.91] [1.83] [1.79] [1.80] [1.77]

0.99 1.12 0.99 0.92 0.74 1.07
[1.87] [1.87] [1.87] [1.86] [1.85]

Notes: For each year beginning in 1972, the predictive distribution for returns is
computed using all data up to that year. Optimal portfolios are computed quarterly
to maximize the utility of an agent with constant relative risk aversion equal to 5;
these are combinedwith the actual returns over the following quarter to create out-
of-sample returns on the investment strategy. The CER is the riskfree rate of return
that generates the same average utility as this series of returns. Panel A reports the
CER for the optimal Bayes strategy using the benchmark approach (the benchmark
CER) minus the CER for portfolio weights assuming there is no predictability and
that the mean and volatility of returns are equal to their sample counterparts.
Panel B reports the benchmark CER minus the CER for portfolio weights computed
assuming the process for returns is as estimated using OLS. Statistics are reported
for various values of q and for priors on the strength of predictability under H1
(predictability model), indexed by P(R2 > 0.01|H1) (the prior probability that the
population R2 exceeds 0.01, assuming H1). CERs are annualized by multiplying by
four. Numbers in brackets report 95% critical values, generated using Monte Carlo
assuming no return predictability. Starred values are significant at the five percent
level using a one-tailed test.

sub-optimal strategy based on sample means, we consider a sub-
optimal strategies constructed using the OLS estimates. Panel B
indicates that the OLS strategies do perform worse, reconciling
our findings with those of Goyal and Welch. For completeness, we
also report the 95% critical value, constructed as described above.
However, there is no reason to expect that the difference between
our strategies and those based on OLS would be statistically
significant, and indeed they are not.26

Fig. 8 shows the portfolio weights corresponding to the optimal
strategy, the sample mean strategy and the OLS-based strategy.
Not surprisingly, the sample mean strategy varies slowly over
the period, reflecting changes in the measurement of the mean
return. This strategy makes no use of the predictability of stock
returns,which,when applied in our Bayesian setting, do turn out to
lead to superior out of sample performance. However, the weights
implied by the strategy with a 50% prior belief in predictability are
notably less volatile than an OLS-based strategy. In fact, the OLS
strategy spends much of the time at either 0% or 100% in equities
(the discrete-time CRRA investor would never choose to short
equities or to investmore than 100% in equities because of the non-
zero probability of negative wealth). It is likely that the Bayesian
strategy would outperform by an even greater extent if one were
to restrict the return distribution to allow for optimal strategies

26 In a previous study (Wachter andWarusawitharana, 2009) we found extremely
poor performance for an OLS investor. In that study, we assumed mean–variance
weights, which allowed for positions of unlimited size. In this study, we assume a
CRRA investor, whose weight in the risky asset always falls between 0 and 1. This
makes a difference for the OLS strategy, given the extreme nature of the implied
beliefs.
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Fig. 8. Portfolio weights for the benchmark approach and implied by sample moments. Notes: The figure shows the time series of weights in the risky asset using the
benchmark approach and assuming q = 0.50 and P(R2 > 0.01|H1) = 0.50. The figure also shows the time series of weights assuming that parameters estimated by OLS are
known with certainty, as well as the time series of weights computed assuming that returns are not predictable, but that the resulting moments are known with certainty
(sample moments). Data are quarterly from 7/1/1952 to the date shown on the x-axis.

outside of these bounds. These results show how economically
motivated prior beliefs can improve investment performance out-
of-sample, as well as in-sample.

3.9. Allowing for time-varying volatilities

Stochastic volatility is a well-established property of financial
returns. Here, we discuss how our approach would generalize to
allow for this property.

A critical aspect to our approach is the presence of an informa-
tive prior over the predictive coefficient � . This informative prior
is what allows us to calculate Bayes factors, and posterior proba-
bilities overmodels. If this prior were flat, Bartlett’s paradoxwould
lead to Bayes factors close to zero. The flat prior is in a sense infor-
mative because the predictive coefficient can become very large,
leading to implied priors on the R2 that are unreasonable on eco-
nomic grounds. The Bayes factors in this case are low, not because
predictability is absent, but because the supposedly uninformative
prior places toomuchweight onunreasonable areas of the parame-
ter space. Our approach allows the investor to place an informative
prior on the predictive coefficient in a natural and intuitive way.

This insight can be readily generalized to a setting that allows
for time-varying volatility. Here, we outline one such approach.
Consider a data generating process as in Section 2.1, except al-
low the volatility of the shocks, and potentially the predictive co-
efficient, to change over time. That is, we compare the predictive
model

rt+1 = ↵ + �t xt + ut+1

to one without predictability (2), where xt is given by (3), and the
shocks ut+1 and vt+1 are governed by

ut+1
vt+1

�
| rt , . . . , r1, xt , . . . , x0 ⇠ N (0, ⌃t) ,

with

⌃t =
"

� 2
u,t �uv,t

�uv,t � 2
v,t

#

.

We assume that ⌃t follows a multivariate stochastic process such
that it is positive definite with probability one.27 Rather than prior

27 The difficulties in modeling ⌃t are not unique to our setting, but arise in any
multivariate setting with stochastic volatility.

beliefs over ⌃ itself, the investor would have a prior over the hy-
perparameters of this process. Because second moments (as op-
posed to first moments) can generally be accurately measured, the
precise form of these priors might not turn out to be important for
the conclusions.28

As discussed above, the aspect of our approach that one would
wish to preserve in this setting is the informative prior on � and
its link to the R2 statistic. The simplest generalization would keep
⌘ as a constant parameter with the distribution

⌘|H1 ⇠ N(0, � 2
⌘ ). (43)

The relation

�t = ��1
x,t �u,t⌘

then gives the prior distribution over �t . This definition assumes
that time-varying parameters are part of the agent’s information
set at time t , for the purpose of the R2 calculation.29 Regardless of
time-variation in �u,t and �v,t , this would ensure that the amount
of predictability remains economically reasonable. Note that the
posterior means for �t could, and most likely would, vary over
time.

This system could be generalized still further by allowing
⌘ itself to vary over time, replacing (43) with priors on the
hyperparameters on the process for ⌘. This prior would allow
investor to have the view that predictability could vary over time
in a way that is unrelated to the variance of the predictor variable
or of returns.

The advantage of either of these approaches is that they would
allow the investor to consider both time-varying first and second
moments in his investment decision. Given the evidence that sec-
ondmoments vary, thiswould be useful in improving out of sample
performance. However, the qualitative findings of the importance
of predictability reported earlier in the manuscript do not rely on
homoskedasticity but rather on the negative correlation between
shocks to the dividend-price ratio and returns. Thus, while intro-
ducing time-varying secondmomentswould be interesting,we ex-
pect that our main results would be unaffected.

28 See Johannes et al. (2014) for a recent Bayesian analysis of stochastic volatility
in a return predictability setting.
29 In this, it is analogous to our current calculation for the R2, which conditions on
the true parameters. Note that this only matters for the interpretation of the priors,
not for the calculation of the priors themselves.
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4. Conclusion

This study takes a Bayesian approach to answering the question
of whether the equity premium varies over time. We consider
investors who face uncertainty both over whether predictability
exists, and over the strength of predictability if it does exist.
We find substantial evidence in favor of predictability when the
dividend-price ratio is used to predict returns. Moreover, we find
large certainty equivalent losses from failing to time the market,
even for investors who have strong prior beliefs in a constant
equity premium. Our strategies exhibit improved out-of-sample
performancewhen comparedwith no-predictability strategies and
when compared with OLS.

We depart from previous studies in that we model the re-
gressor as stochastic rather than fixed. We show that this raises
the probability of predictability in general, and particularly dur-
ing the 2000–2005 period. Thus the model chosen for the regres-
sor can significantly affect Bayesian inference, often innon-obvious
ways. In this study, we model the predictive variable as following
a stationary process, and the predictor variable and returns as ho-
moskedastic. Exploring alternative distributional assumptions and
their consequences for inference on returns is an interesting topic
for further work.

Appendix A. Jeffreys prior under H
0

Given a set of parametersµ, dataD, and a log-likelihood l(µ;D),
the limiting Jeffreys prior satisfies

p(µ) /
�����E

✓
@2l

@µ@µ>

◆����
1/2

. (A.1)

Our derivation for the limiting Jeffreys prior on b0, ⌃ general-
izes that of Stambaugh (1999). Zellner (1996, pp. 216–220) derives
a limiting Jeffreys prior by applying (A.1) to the likelihood (17) and
retaining terms of the highest order in T . Stambaugh shows that
Zellner’s approach is equivalent to applying (A.1) to the conditional
likelihood (16), and taking the expectation in (A.1) assuming that
x0 ismultivariate normalwithmean (6) and variance (7).We adopt
this approach.

We derive the prior density for p(b0, ⌃�1) and then transform
this into the density for p(b0, ⌃) using the Jacobian. Let

l0(b0, ⌃;D) = log p(D|b0, ⌃,H0, x0) (A.2)

denote the natural log of the conditional likelihood. Let ⇣ =
[� (11) � (12) � (22)]>, where � (ij) denotes element (i, j) of ⌃�1. Ap-
plying (A.1) implies

p(b0, ⌃�1|H0) /

���������
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The form of the conditional likelihood implies that

l0(b0, ⌃;D) = �T
2
log |2⇡⌃ |

�1
2

(z � Z0b0)>
�
⌃�1 ⌦ IT

�
(z � Z0b0) . (A.4)

It follows from (A.4) that
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Taking the expectation conditional on b0 and ⌃ implies

E


@2l0
@b0@b>

0

�

= �T
2

2

64
� (11) � (12)[1 µx]
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Using arguments in Stambaugh (1999), it can be shown that

E
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(see Box and Tiao (1973, pp. 474–475)). Therefore
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This matrix � has the same determinant as �E

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2 columns and 2 rows have been reversed.
From the formula for the determinant of a partitionedmatrix, it
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��1. Therefore,

|�| = |⌃ |�2� 2
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x .

Substituting into (A.7),

p(b0, ⌃�1|H0) / |⌃ | 1
2 �u�x.

The Jacobian of the transformation from ⌃�1 to ⌃ is |⌃ |�3.
Therefore,

p(b0, ⌃ |H0) = |⌃ |� 5
2 �u�x.
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Appendix B. Sampling from posterior distributions

This section describes how to sample from the posterior dis-
tributions for our benchmark and related models. In all cases, the
sampling procedure for the posteriors under H1 and H0 involve the
Metropolis–Hastings algorithm. Below we describe the case of the
exact likelihood and full Bayes prior in detail. The procedures for
the conditional likelihood and for the empirical Bayes prior are
similar.

B.1. Posterior distribution under H0

Substituting (8) and (17) into (18) implies that

p(b0, ⌃ |H0,D) / �u|⌃ |� T+5
2 exp

⇢
�1

2
��2
x (x0 � µx)

2

� 1
2
(z � Z0b0)>

�
⌃�1 ⌦ IT

�
(z � Z0b0)

�
.

This posterior does not take the formof a standard density function
because of the term in the likelihood involving x0 (note that � 2

x is a
nonlinear function of ⇢ and �v). However, we can sample from the
posterior using the Metropolis–Hastings algorithm.

The Metropolis–Hastings algorithm is implemented ‘‘block-at-
a-time’’, by repeatedly sampling from p(⌃ |b0,H0,D) and from
p(b0|⌃,H0D). To calculate a proposal density for ⌃ , note that

(z � Z0b0)>
�
⌃�1 ⌦ IT

�
(z � Z0b0)

= tr
⇥
(Y � XB0)

>(Y � XB0)⌃
�1⇤ ,

where

B0 =

↵ ✓
0 ⇢

�
.

The proposal density for the conditional probability of ⌃ is the
invertedWishart with T +2 degrees of freedom and scale factor of
(Y � XB0)

>(Y � XB0). The target is therefore

p(⌃ |b0,H0,D) / �u exp
⇢
�1

2
(x0 � µx)

2��2
x

�
⇥ proposal.

Let

V0 = �
Z>
0
�
⌃�1 ⌦ IT

�
Z0
��1

.

Let

b̂0 = V0Z>
0
�
⌃�1 ⌦ IT

�
z.

It follows from completing the square that

(z � Z0b0)>
�
⌃�1 ⌦ IT

�
(z � Z0b0)

= (b0 � b̂0)>V�1
0 (b0 � b̂0) + terms independent of b0.

The proposal density for b0 is therefore multivariate normal with
mean b̂0 and variance–covariance matrix V0. The accept–reject al-
gorithm of Chib and Greenberg (1995, Section 5) is used to sample
from the target density, which is equal to

p(b0|⌃,H0,D) / exp
⇢
�1

2
(x0 � µx)

2 ��2
x

�
⇥ proposal.

Note that �u and ⌃ are in the constant of proportionality. Drawing
successively from the conditional posteriors for⌃ and b0 produces
a density that converges to the full posterior conditional on H0.

B.2. Posterior distribution under H1

Substituting (12) and (15) into (18) implies that

p(b1, ⌃ |H1,D)

/ �x|⌃ |� T+5
2 exp

⇢
�1

2
�2 �� 2

⌘ ��2
x � 2

u
��2 � 1

2
��2
x (x0 � µx)

2
�

⇥ exp
⇢
�1

2
(z � Z1b1)>

�
⌃�1 ⌦ IT

�
(z � Z1b1)

�
.

The sampling procedure is similar to that described in Ap-
pendix B.1. Details can be found in Wachter and Warusawitha-
rana (2009). To summarize, we first draw from the posterior p(⌃ |
b1,H1,D). The proposal density is an inverted Wishart with T + 2
degrees of freedom and scale factor (Y � XB1)

>(Y � XB1), where

B1 =

↵ ✓
� ⇢

�
. (B.1)

We then draw from p(✓ , ⇢ | ↵, �, ⌃,H1,D). The proposal den-
sity is multivariate normal with mean and variance determined by
the conditional normal distribution. Finally, we draw from p(↵, � |
✓ , ⇢, ⌃,H1,D). In this case, the target and the proposal are the
same, and are also multivariate normal.

Appendix C. Computing the Bayes factor

This section describes computation of Bayes factors for the
benchmark and related models. Verdinelli and Wasserman (1995)
show

B�1
10 = p(� = 0|H1,D)

⇥ E


p(b0, ⌃ |H0)

p(� = 0, b0, ⌃ |H1)

����� = 0,H1,D
�

. (C.1)

To compute p(� = 0 | H1,D), note that

p(� = 0 | H1,D) =
Z

p(� = 0 | b0, ⌃,H1,D)

⇥ p(b0, ⌃ | H1,D) db0 d⌃ . (C.2)

As discussed in Appendix B.2, the posterior distribution of ↵ and
� conditional on the remaining parameters is normal. We can
therefore compute p(� = 0 | b0, ⌃,H1,D) in closed form by using
the properties of the conditional normal distribution. Consider
N draws from the full posterior: ((b(1)

1 , ⌃ (1)), . . . , (b(N)
1 , ⌃ (N))),

where we can write (b(i)
1 , ⌃ (i)) as (�(i), b(i)

0 , ⌃ (i)). We use these
draws to integrate out over b0 and ⌃ . It follows from (C.2) that

p(� = 0|H1,D) ⇡ 1
N

NX

i=1

p(� = 0|b(i)
0 , ⌃ (i),H1,D),

where the approximation is accurate for large N .
To compute the second term in (C.1), we observe that
p(b0, ⌃ | H0)

p(� = 0, b0, ⌃ | H1)
= p(b0, ⌃ | H0)

p(� = 0|b0, ⌃,H1)p(b0, ⌃ | H1)

= p
2⇡�� ,

because p(b0, ⌃ | H0) = p(b0, ⌃ | H1). Note that �� = �⌘�
�1
x

�u. We require the expectation taken with respect to the posterior
distribution conditional on the existence of predictability and the
realization � = 0. To calculate this expectation, we draw ((b(1)

0 ,

⌃ (1)), . . . , (b(N)
0 , ⌃ (N))) from p(b0, ⌃ | � = 0,H1,D). This in-

volves modifying the procedure for drawing from the posterior for
b1, ⌃ given H1 (see Appendix B.2). We sample from p(⌃ | ↵, � =
0, ✓ , ⇢,H1,D), then from p(⇢, ✓ | ↵, � = 0, ⌃,H1,D) and finally
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from p(↵ | � = 0, ⌃, ✓ , ⇢,H1,D), and repeat until the desired
number of draws are obtained. All steps except the last are identi-
cal to those described in Appendix B.2 (the value of � is identically
zero rather than the value from the previous draw). For the last
step we derive p(↵ | � = 0, ⌃, ✓ , ⇢,H1,D) from the joint distri-
bution p(↵, � | ⌃, ✓ , ⇢,H1,D), making use of the properties of the
conditional normal distribution.

Given these draws from the posterior distribution, the second
term equals

E


p(b0, ⌃ |H0)

p(� = 0, b0, ⌃ |H1)

����� = 0,H1,D
�

⇡ 1
N

NX

i=1

p
2⇡�⌘(�

(i)
x )�1� (i)

u . (C.3)

Appendix D. The posterior distribution and Bayes factor for the

conjugate g-prior and conditional likelihood

This section generalizes results in Zellner (1996) to the case of
a multivariate regression system with an informative conjugate
prior. We assume a multivariate version of the conjugate g-prior
as follows:

b1|⌃,H1 ⇠ N(0, g�1 �⌃ ⌦ (X>X)�1�), (D.4)

⌃ |H1 ⇠ IW (S0,N0 � 2), (D.5)

where g�1 is a scale parameter that determines the degree of
precision of the prior, IW denotes the inverse-Wishart distribution,
andN0 and S0 can be interpreted as the length of a hypothetical no-
predictability prior sample and the sum of squared errors of this
sample, respectively.30

Given B1 defined as in (B.1), it follows from Zellner (1996,
Eq. 8.14) that

p(B1|⌃,H1) / |⌃ |�1 exp
⇢
�1

2
tr
�
gB>

1 (X>X)B1⌃
�1�
�

. (D.6)

Note that the variance of b1 equals ⌃ ⌦ (X>X)�1, and that

|⌃ ⌦ (X>X)�1|� 1
2 / |⌃ |�1

because X>X can be regarded as a constant when calculating the
distribution of B1. Further, the density for the inverse Wishart
distribution (D.5) equals

p(⌃ |H1) / |⌃ |�(N0+1)/2 exp
⇢
�1

2
tr(⌃�1S0)

�
. (D.7)

Therefore the joint prior is given by

p(B1, ⌃ |H1) = |2⇡⌃ |� N0+3
2

⇥ exp
⇢
�1

2
tr
�
gB>

1 (X>X)B1⌃
�1 + S0⌃�1�

�
. (D.8)

Note that this prior imposes a particular structure on the covari-
ance matrix of the parameters that mimics the likelihood specifi-
cation. It is this structure that is responsible for this specification’s
tractability. Note also that the data enter into the prior through the
term (X>X)�1, so that this prior requires incorrect conditioning.

30 This interpretation is consistent with having a standard uninformative ‘‘prior’’
before viewing this no-predictability ‘‘prior sample’’ of p(b1) / constant and
p(⌃) / |⌃ |�3/2. See Zellner (1996, Chapter 8.1). A prior sample of length greater
than 2 is necessary for awell-defined posterior distribution, since the data also need
to be sufficient to identify b1.

The entire time path of the state variable must be known when
prior beliefs are formulated.

We combine this prior with the conditional likelihood func-
tion.31 Let

B̂1 = (X>X)�1X>Y (D.9)

S = (Y � XB̂1)
>(Y � XB̂). (D.10)

Given this notation, we can rewrite (14) as follows:

p(D|B1, ⌃,H1) / |⌃ |� T
2 exp

⇢
�1

2
tr
⇣
(B1 � B̂1)

>X>

⇥ X(B1 � B̂1)⌃
�1 + S⌃�1

⌘�
, (D.11)

where / in (D.11) should be taken to mean that we have
eliminated multiplicative terms that do not depend on B1 and ⌃ .
For more detail, see Zellner (1996, Chapter 8.1).

Define sufficient statistics for the posterior as follows

B̄1 = �
X>X(1 + g)

��1
(X>Y )

S̄ = S0 + Y>Y � (Y>X)(X>X(1 + g))�1(X>Y ).

Note that S̄ can be rewritten as

S̄ = S0 + S + B̂>
1 X

>XB̂1 � B̄>
1 (X>X)(1 + g)B̄1. (D.12)

Bayes rule implies that the posterior is given by
p(B1, ⌃ |D,H1) / p(D|B1, ⌃,H1)p(B1, ⌃ |H1)

where the first and second terms on the right hand side are given
by (D.11) and (D.8) respectively. Completing the square and using
(D.12) implies that the posterior density equals

p(B1, ⌃ |D,H1) = |⌃ |� T+N0+3
2 exp

⇢
�1

2
tr
�
(B1 � B̄1)

>

⇥ (X>X(1 + g))(B1 � B̄1)⌃
�1 + S̄⌃�1�

�
. (D.13)

We now factor the joint posterior (D.13) into a posterior for
B1 conditional on ⌃ and the marginal posterior for ⌃ . This is an
important step in computing the Bayes factor, as will be apparent
in what follows. By definition,
p(B1, ⌃ |D,H1) = p(B1|⌃,D,H1)p(⌃ |D,H1). (D.14)
Define
b̄1 = vec(B̄1).

The factorization in (D.14) is accomplished as follows:

p(B1|⌃,D,H1) / |⌃ |�1 exp
⇢
�1

2
tr
�
(B1 � B̄1)

>

⇥ (X>X(1 + g))(B1 � B̄1)⌃
�1�

�
,

= |⌃ |�1 exp
⇢
�1

2
(b1 � b̄1)>

⇥ �
⌃�1 ⌦ X>X(1 + g)

�
(b1 � b̄1)

�
(D.15)

and

p(⌃ |D,H1) / |⌃ |� T+N0+1
2 exp

⇢
�1

2
tr
�
S̄⌃�1�

�
. (D.16)

The distribution (D.15) represents a multivariate normal distribu-
tion.32

31 We cannot use the exact likelihood function because the prior does not lead to
a well-defined distribution for the predictor variable.
32 As in (D.6), for (D.15) to bemultivariate normal, |⌃ |must be raised to the power
�1.
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Our ultimate goal is to calculate the marginal posterior for � ,
which is the second element of b1. Let �̄ be the second element of
b̄1 and define
⌫̄x = ⇥

(X>X)�1⇤
22 ,

namely the second diagonal element of (X>X)�1.33 It follows from
(D.15) and properties of the multivariate normal distribution that

p(�|⌃,D,H1) / 1
�u

exp
⇢
�1

2
��2
u (1 + g)⌫̄x(� � �̄)2

�
, (D.17)

where we have used the fact that (⌃�1 ⌦ (X>X))�1 = ⌃ ⌦
(X>X)�1.

Further, note that (D.17) depends only on �u. Therefore, to cal-
culate the marginal prior for � , we only need to integrate out �u.
It follows from (D.16) and properties of the inverse Wishart distri-
bution that

p(� 2
u |D,H1) / 1

�
T+N0�1
u

exp
⇢
� S̄11

2� 2
u

�
, (D.18)

where S̄11 is the first diagonal element of S̄ (see Zellner (1996,
p. 227–228)). It follows that
p(�|D,H1)

=
Z 1

0
p(�|� 2

u ,D,H1)p(� 2
u |D,H1) d� 2

u

/
Z 1

0

1

�
T+N0
u

exp
⇢
� 1

2� 2
u

�
(1 + g)⌫̄x(� � �̄)2 + S̄11

� �
d� 2

u

/ �
(1 + g)⌫̄x(� � �̄)2 + S̄11

�� T+N0�2
2 (D.19)

/
✓
1 + 1

T + N0 � 3

⇥
✓

(1 + g)⌫̄x(T + N0 � 3)
S̄11

◆
(� � �̄)2

◆� T+N0�2
2

. (D.20)

Therefore, � has a t-distribution with location parameter �̄ , scale
parameter

((1 + g)T ⌫̄x(T + N0 � 3))�1/2 S̄1/211 ,

and T + N0 � 3 degrees of freedom.
Under the condition

p(b0, ⌃ |H0) = p(b0, ⌃ |� = 0,H1), (D.21)
the Bayes factor can be computed using the marginal prior and
posterior distributions for �:

B10 = p(� = 0|H1)

p(� = 0|D,H1)
(D.22)

(see Verdinelli andWasserman, 1995). The value of p(� = 0|D,H1)
can be computed based on (D.20) using the formula for the density
of a t-distribution. We can perform the analogous calculation for
the prior distribution to find

p(�|H1) /
✓
1 + 1

N0 � 3

✓
g ⌫̄x(N0 � 3)

S0,11

◆
�2
◆� N0�2

2
,

where S0,11 is the first diagonal element of S0. This is a central t
distribution with scale parameter

(g ⌫̄x(N0 � 3))�1/2 S1/20,11,

and N0 � 3 degrees of freedom.

33 Note that this element is also equal to T �̂ 2
x , namely T (the number of time

series observations on the return variable) multiplied by the sample variance of the
predictor taken from time 0 to time T � 1.

Appendix E. The posterior distribution and Bayes factor for the

conjugate g-prior when the regressor is strictly exogenous

When the regressor is strictly exogenous, it is correct to use only
the return equation. With some abuse of notation, let b = [↵, �]>.
The prior distribution takes the form

p(b|�u,H1) / 1
� 2
u
exp

⇢
� 1

2� 2
u
b>(gX>X)b

�
(E.23)

p(� 2
u |H1) / 1

�
N0
u

exp
⇢
�1

2
��2
u s0

�
(E.24)

where s0 andN0 are constants.We can rewrite this system in terms
of familiar distributions:

b|�u,H1 ⇠ N
�
0, g�1� 2

u (X>X)�1� , (E.25)

� 2
u |H1 ⇠ IW (s0,N0 � 2). (E.26)

As in the previous section, it is as if we have a ‘‘true’’ uninformative
prior of p(� 2

u ) / ��2
u and p(b) / constant before seeing a ‘‘prior

sample’’ with N0 observations. Because � 2
u is scalar in this case, its

distribution can also be characterized as an inverse-Gamma.
Define

b̂ = (X>X)�1X>R (E.27)

s = (R � Xb̂)>(R � Xb̂). (E.28)

Note that s = S11 in the previous section. The likelihood function
is

p(R|X, b, � 2
u ) / ��T

u exp
⇢
� 1

2� 2
u

⇣
(b � b̂)>X>X(b � b̂) + s��2

u

⌘�

where, as in the previous section / should be taken to mean that
we have eliminated multiplicative terms that do not depend on b
and �u.

Analogously to the previous section, define

b̄ = �
X>X(1 + g)

��1
(X>R)

and

s̄ = s0 + R>R � (Y>X)(X>X(1 + g))�1(X>R)

= s0 + s + b̂>X>Xb̂ � b̄>(X>X)(1 + g)b̄. (E.29)

Note that if g is the same, b̄ will equal the first column of B̄1, and
s̄ will equal S̄11 (assuming that s0 = S0,11). Completing the square
and using (E.29) imply

p(b, � 2
u |R, X,H1) / ��(T+N0+2)

u

⇥ exp
⇢
� 1

2� 2
u

�
(b � b̄)>(X>X(1 + g))(b � b̄) + s̄

��
. (E.30)

The posterior for b conditional on �u is multivariate normal:

p(b|�u, R, X,H1)

/ 1
� 2
u
exp

⇢
� 1

2� 2
u
(b � b̄)>X>X(1 + g)(b � b̄)

�
(E.31)

while the marginal distribution for � 2
u is an inverse-Wishart (or, in

this case, inverse-Gamma):

p(� 2
u |R, X,H1) / ��(T+N0)

u exp
⇢
� 1

2� 2
u
s̄
�

.

It follows from (E.31) and properties of the multivariate normal
distribution that the distribution for � (the second element of b) is
given by

p(�|� 2
u , R, X,H1) / ��1

u exp
⇢
� 1

2� 2
u
(1 + g)⌫̄x(� � �̄)2

�
, (E.32)
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where �̄ is the second element of b̄. Finally, we compute

p(�|R, X,H1) /
Z 1

0
p(�|� 2

u , R, X,H1)p(� 2
u |R, X,H1) d� 2

u

/
Z 1

0

1

�
T+N0+1
u

exp
⇢
� 1

2� 2
u

�
(1 + g)⌫̄x(� � �̄)2 + s̄

��
d� 2

u

/ �
(1 + g)⌫̄x(� � �̄)2 + s̄

�� T+N0�1
2 .

Arguing by analogy with (D.20), we see that � has a t-distribution
with location parameter �̄ , scale parameter
((1 + g)⌫̄x(T + N0 � 2))�1/2 s̄1/2,
and T +N0�2 degrees of freedom. The prior distribution for � will
be a central t with scale parameter

(g ⌫̄x(N0 � 2))�1/2 s1/20 ,

andN0�2 degrees of freedom. Bayes factors can then be computed
using (D.21) and (D.22).

It is instructive to compare these results with those of Ap-
pendix D. Themarginal prior and posterior for � is nearly the same
in the one-equation setting as in the two-equation setting, except
for the degrees of freedom in the t-distribution. There is an addi-
tional degree of freedom in the one-equation setting, correspond-
ing to a t-distribution that is somewhat less fat-tailed. As Zellner
(1996, Chapter 8.1) discusses, this change in thedegrees of freedom
arises because of the need to estimate an additional parameter in
the two-equation case, namely the correlation between shocks to
u and shocks to v. Because, in effect, the same data needs to work
harder in the two-equation case, the distributions are more dif-
fuse. Mathematically, the difference arises from the fact that the
marginal distribution of� 2

u in (D.18) is not the sameas themarginal
distribution of � 2

u in the single-equation case. However, if the re-
gressor is strictly exogenous, namely if u and v are assumed to
be independent, the one-equation case and the two-equation case
will yield identical Bayes factors, a manifestation of the general
principle discussed in Section 2.5.

Appendix F. Bayes factors for the training sample approach

Bayes factors for the training sample approach (described
in Section 3.7) can be computed as a special case of those in
Appendix D. Define

⌫̃x =
h
(X̃>X̃)�1

i

22

where we use the notation of Section 3.7, namely variables with a
tilde on top correspond to quantities computed over the training
sample. Then the prior distribution for � can be computed using
results for the posterior distribution calculated in Appendix D, for
an uninformative prior (g = 0, N0 = 0), and with full-sample
quantities replaced by their training sample counterparts. That is,
(D.19) becomes

p(�|H1) /
⇣
⌫̃x(� � �̃)2 + S̃11

⌘� T̃�2
2

, (F.33)

where �̃ is the second element of b̃1 and S̃11 is the first diagonal
element of S̃. Similarly, the posterior can be calculated in the same
way (again, g = 0 and N0 = 0), keeping in mind that the full-
sample quantities in this case are as inOLS regression. That is (D.19)
becomes

p(�|D,H1) /
⇣
⌫̄x(� � �̂)2 + S11

⌘� T�2
2

. (F.34)

The calculation of the Bayes factor of course requires the true
prior and posterior densities of � at zero, not just these values up
to a constant that does not depend on � . These densities can be
calculated by observing, as in Appendix D, that (F.33) and (F.34)
imply t-distributions, with known density functions.

Fig. 9. The Bayes factor and posterior probability of return predictability for the
yield spread. Notes: Panel A assumes the posterior probability of predictability and
Panel B shows the log Bayes factor, assuming the predictive variable is the yield
spread, namely the continuously-compounded yield on the five-year zero coupon
bond less the continuously-compounded yield on the 3-month Treasury bill. The
solid line shows results for the benchmark specification. The dashed line shows
results assuming a non-stochastic regressor.

Appendix G. Results for the yield spread

In Fig. 9, we report results in which the predictor variable
is the difference between the continuously-compounded 5-year
zero-coupon bond yield and the yield on the 3-month Treasury
Bill. Panel A shows that, while the yield spread had significant
predictive power for returns in the early part of the sample, its
power has been steadily declining. At the end of the sample, the
posterior probability of predictabilitywith the yield spread is about
50%, close to the prior. The yield spread has a lower autocorrelation
than the dividend yield, and innovations to the yield spread have
low correlation with innovations to returns. Both of these facts
suggest that the non-stochastic and benchmark analyses would
imply very similar results, which indeed they do.
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