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Appendix E. Comparison with parametric approaches

Could the conclusions reached above be obtained using more standard econometric ap-

proaches? Assume that the conditional means of consumption growth and excess returns,

as well as their conditional covariance - Et

(
∆Ct+1

Ct

)
, EtR

ei
t+1, and Covt(R

ei
t+1,

∆Ct+1

Ct
) - are all

linear in the vector of conditioning variables zt (which includes the constant). Then we can

estimate (e.g. as in Duffee (2005)) the following system:

∆Ct+1

Ct

= κ′zt + uc
t+1, (E.1)

Rei
t+1 = µ′

izt + ui
t+1, (E.2)

C̃ov
i

t+1 = δ′izt + uci
t+1 (E.3)

where C̃ov
i

t+1 =
(

∆Ct+1

Ct
− Et

∆Ct+1

Ct

) (
Rei

t+1 −EtR
ei
t+1

)
= uc

t+1u
i
t+1 is the ‘ex-post’ covariance of

consumption growth and excess returns on asset i, so that the ex ante conditional covariance

is given by its projection on the vector of conditioning variables:

Covt(R
ei
t+1,

∆Ct+1

Ct

) = EtC̃ov
i

t+1 = δ′izt. (E.4)

Table G.8 shows the coefficients from the regressions of returns and the ex-post consump-

tion covariances on zt for several choices of the conditioning variable. The assets used are

three portfolios formed from the 6 benchmark portfolios sorted on market capitalization on

book/market equity ratios used by Fama and French (1992). The growth portfolio is the

equal-weighted average of the small and large growth portfolios, the value and neutral port-

folios are, similarly, equal-weighted averages across value and neutral portfolios, respectively.

If high values of zt are associated with “bad times” and, consequently, a high price of

consumption risk, the assets whose covariances with consumption growth are increasing in

1



zt are riskier. If the CCAPM holds, their expected excess returns should also increase in zt.

Duffee (2005) finds that an increase in the ratio of stock market wealth to consumption is

associated with a rise in the covariance of the aggregate stock market return and consumption

growth. However, it is also associated with low expected stock returns. The top panel

illustrates that the same is true for each of the book/market-sorted portfolios. In fact, their

does not appear to be much difference in the sensitivities of either conditional expected

returns or conditional covariances to this variable, despite the fact that it appears to be a

useful scaling variable as shown in section 4.

The two middle panels of table G.8 display the sensitivities of first and second moments of

returns to cay . It does appear that cay plays a similar role at quarterly frequency to the role

played by ac at monthly frequency: rising cay not only predicts higher expected returns, but

also lower covariances of consumption with returns, presumably due to the declining share of

financial assets in total wealth. The expected return sensitivities exhibit the pattern familiar

from section 4.1: value returns are not quite as predictable as growth returns (in terms of

the slope coefficient). There is virtually no difference in covariances if the entire sample is

used for the estimation. However, using a shorter subsample ending in the second quarter

of 2003, which is closer to the sample used by Lettau and Ludvigson (2001b), I find that the

covariance of value returns with consumption growth actually increases when cay goes up,

while growth returns’ covariance declines. This is consistent with the argument of Lettau

and Ludvigson (2001b) that value is riskier in “bad times,” but inconsistent with the fact

that value’s expected returns are not more but less sensitive than growth’s expected returns.

Further, the coefficients for the conditional covariances are not statistically significantly

different from zero, as their standard errors are very large. This might be in part due to the

fact that the linear model is misspecified. Finally, using the labor-to-consumption ratio as

the predictive variable (bottom panel) leads to similar conclusions: covariances and expected

returns appear to move in the opposite directions for all portfolios, and while there is some

heterogeneity across covariance sensitivities, there is much less difference in expected return

sensitivities.

In principle, one could go further and impose conditional moment restrictions on the asset
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returns jointly. This entails making parametric assumptions on the functional form of risk

prices. For example, one could follow Duffee (2005) and assume that γt = γ0 + γ1xt. Then

the model could be estimated using the instrumental variables GMM approach of Campbell

(1987) and Harvey (1989). However, such a model would be misspecified by construction,

since expected returns, covariances, and prices of risk cannot be all linear. Thus even if

the true conditional model holds, it could produce non-trivial pricing errors. Brandt and

Chapman (2007) emphasize that the nonlinearity need not be large to produce a spurious

rejection. Alternatively, one could avoid imposing parametric structure on the prices of risk

and only make assumptions about the dynamics of conditional second moments, as done, for

example, by Ferson and Harvey (1999), among others. I discuss this approach in Appendix

E and show that, indeed, one can reject the conditional CCAPM using cay. Still, the

conditional restrictions imposed using this method rely crucially on the linear specification

of conditional betas. Therefore, if the linear model for conditional betas is misspecified, it

is possible that the conditional tests will reject even the true conditional model. Ghysels

(1998) argues that this problem is potentially quite severe, to the extent that the conditional

beta models can perform even worse empirically than the unconditional models. Given

the substantial difference in the estimated sensitivities of consumption covariances to the

conditioning variable between the samples the concern over misspecification should make it

hard to argue in favor of using the parametric approaches for imposing conditional moment

restrictions.

Appendix F. Testing conditional factor models using beta representation

Consider the setup of Lettau and Ludvigson (2001b), who specify a conditional con-

sumption CAPM with a single conditioning variable, cay - the cointegrating residual of

consumption, financial wealth and labor income, so that f̃t+1 =
[
∆Ct+1

Ct
,
∆Ct+1

Ct
× cay t

]
in (8)

above. Their tests concentrate on the beta representation

E(Rei
t+1) = η0 + η1β

i
cayt

+ λ0β
i
∆Ct+1

+ λ1β
i
∆Ct+1×cayt

, (F.1)
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which is equivalent to (8) except that they allow a non-zero (and time-varying) cross-sectional

intercept (η0 + η1cay t), which implies that the conditional zero-beta rate is not necessarily

equal to the risk-free interest rate. The estimate and test this specification using the standard

cross-sectional regression methodology of Fama and MacBeth (1973), first estimating the

betas (loadings) of returns on the scaled factors
[
cay t,

∆Ct+1

Ct
,
∆Ct+1

Ct
× cay t

]
by time-series

regression and then regressing the cross-section of returns on the cross-section of betas to

obtain the risk premium estimates λ (and η).

An alternative approach would be to test the conditional implications of the consumption

CAPM using cay as the conditioning variable. The conditional beta representation is given16

by

Et(R
ei
t+1) = ηt + λtβ

i
t , (F.4)

where ηt, λt, and βi
t are all functions of cay . Conditioning down obtains

E(Rei
t+1) = E

(
ηt + λtβ

i
t

)
. (F.5)

Assuming, as Lettau and Ludvigson (2001b) do, that conditional betas (and risk premia)

are linear, i.e. βi
t = βi

0 + βi
1cay t, these pricing implications can also be tested using the

Fama-Macbeth methodology (e.g. Ferson and Harvey (1999)). Specifically, the parameters

16Lettau and Ludvigson (2001b) start with the stochastic discount factor model Et[Mt+1R
i
t+1] = 1, where

Mt+1 = at + bt
∆Ct+1

Ct

. Taking the unconditional expectation and assuming the SDF coefficients are linear
functions of the conditioning variable yields

E[(a0 + a1cay t + (b0 + b1cay t)
∆Ct+1

Ct

)Ri

t+1] = 1 (F.2)

and standard manipulations produce the expected return-beta representation (F.1). Alternatively, working
with the conditional expectation directly, the conditional expected returns are given by

Et(R
i

t+1) =
1

at
−

bt

at
Et[

∆Ct+1

Ct

Ri

t+1], (F.3)

which leads to the beta representation for excess returns (F.4).
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βi
0 and βi

1 can be estimated as factor loadings in the time series regressions

Rei
t+1 = α0 + α1cay t + βi

0

∆Ct+1

Ct

+ βi
1

∆Ct+1

Ct

cay t (F.6)

Then the fitted conditional betas β̂i
t = β̂i

0 + β̂i
1cay t can be used in the cross-sectional regres-

sions (at each date t ) to estimate ηt and λt. The latter can be used to obtain either the

unconditional averages of the risk premium and the zero-beta rate, or can be projected on

the conditioning information set. Average of the conditional pricing errors for each asset are

then given straightforwardly as

ui = E(Rei
t+1) − E

(
η̂t + λ̂tβ̂

i
t

)
. (F.7)

Both of these are valid approaches to testing a conditional factor model. However, the

latter approach has more power, since it imposes additional restrictions on the dynamics of

conditional betas and expected returns. A simple way to illustrate the dramatic differences

between the two approaches is to compare the average pricing errors. Figure G.9 plots the

average returns on the 25 portfolios formed on size and book-to-market (see Appendix for

data description) against the average returns predicted by four empirical models: the un-

conditional consumption CAPM, the unconditional scaled-factor specification of conditional

CCAPM in (F.1), the three-factor model of Fama and French (1993), and the conditional

specification of conditional CCAPM in (F.4). The unconditional consumption CAPM (top

left panel) is well-known to have virtually no explanatory power for the average returns

of the Fama-French portfolios. In contrast, the scaled CCAPM of Lettau and Ludvigson

(2001b) does a relatively good job at lining up the predicted mean returns against the ac-

tual ones (top right panel), reducing the square root of the average (squared) pricing errors

(alphas) by a third compared to the unconditional CCAPM (from 0.6% to 0.4% for quar-

terly returns). This performance is comparable to the well-known ability of the Fama-French

portfolio-based model to explain the cross-section of value and size-sorted portfolios (bottom

left panel). However, imposing the conditional restrictions (F.4) eliminates virtually all of
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the advantage of the conditional model over the unconditional one. The conditional model

generates very little dispersion in the predicted average returns (bottom right panel), thus

failing to explain any of the variation in the observed mean portfolio returns.

Appendix G. Consumption of stockholders

The fact that not all households participate in the equity market suggests an alternative

interpretation of the composition effect, i.e. the tendency of the conditional covariances of

stock returns with aggregate consumption growth to decline as a the contribution of finan-

cial wealth to consumption decreases. Since equity, which represents a large fraction of total

financial wealth, is concentrated in the hands of stockholders, their consumption is likely

to be disproportionately effected by stock market fluctuations, relative to the consumption

of non-stockholders. Thus, a decrease in the value of equity would reduce the stockholders’

relative share of aggregate consumption, and therefore reduce the sensitivity of aggregate

consumption to the fluctuations in stock market wealth. Indeed, consistent with this inter-

pretation, Malloy, Moskowitz, and Vissing-Jørgensen (2005) use household-level data from

the Consumer Expenditure Survey (CEX) to show that the consumption-wealth residual cay

is highly negatively correlated with the time-varying share of stockholders’ consumption in

the aggregate consumption.

The direct implication of this interpretation of the composition effect is that the canonical

asset pricing relation 2 is misspecified as long as the measure of aggregate consumption

includes all households rather than just those that are marginal in the asset market of

interests (i.e., stockholders in the case where stock returns are the test assets). In order to

verify whether my conclusions are robust to this type of misspecification I use the data from

Malloy, Moskowitz, and Vissing-Jørgensen (2005) to test the conditional CCAPM. Their

measure of quarterly stockholder consumption growth is available at a monthly frequency

(i.e., for overlapping quarterly growth rates), but for a shorter time period (03.1983 - 11.2004)

than the aggregate data used elsewhere in the paper. As a benchmark comparison, I also

use the monthly series of quarterly aggregate consumption growth based on the NIPA data

constructed by Malloy, Moskowitz, and Vissing-Jørgensen (2005) for the same time period.
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I construct the monthly analog of the cay variable as a cointegrating residual of monthly

series for aggregate consumption, stock market wealth, and labor income; the resulting series

has very similar properties to the cay variable of Lettau and Ludvigson (2001b).

As before, I estimate conditional expected returns and conditional covariances of returns

with consumption growth jointly, by selecting kernel bandwidth so as to minimize the con-

ditional pricing errors for the cross-section of portfolio returns. The evidence in table G.9

shows that if differences between “good” and “bad” states in conditional covariances of re-

turns and consumption growth are measured the same way as above, the composition effect

is statistically detectable for stockholder consumption, at least for the large growth portfo-

lio, while the differences are not statistically significant for the NIPA aggregate consumption

growth measure over the same sample period (however, in both cases statistical significance

is somewhat sensitive to the choice of “high” and “low” states. Moreover, the magnitudes of

differences in covariances between high and low states are greater for stockholder consump-

tion than for aggregate consumption, which is likely due to the fact that levels of covariances

are proportionally higher for latter than for the former. For the Value minus Growth port-

folio returns, in both cases the difference is positive and statistically significant for the small

portfolios, consistent with the conditional CCAPM of the value effect, but not for the large

portfolios. As before, however, the differences in expected returns on these portfolios are

negative, albeit not statistically significantly.

In terms of the average pricing errors, the consumption CCAPM, both unconditional

and conditional, that uses stockholder consumption does appear to perform somewhat bet-

ter than the model with aggregate consumption estimated over the same sample period.

Table G.10 displays the average pricing errors for the two sets of models, using either cay

or the stock market wealth-consumption ratio ac. While all of the versions of the CCAPM

that uses NIPA aggregate consumption growth have large and highly statistically signifi-

cant pricing errors on the Small Value minus Small Growth and Small Growth minus Large

Growth portfolios, for the stockholder consumption CAPM these pricing errors are smaller

(although still substantial) and not statistically different from zero, with the exception of the

conditional CCAPM using ac where it is significant. However, for the stockholder consump-
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tion CAPM the Small Value minus Large Value portfolio has a large (2 % per quarter) and

statistically significant pricing error, either unconditionally or when cay is used as the con-

ditioning variable. Moreover, the lack of statistical significance might be in part attributed

to the short sample, which makes estimated pricing errors highly imprecise, especially in

the nonparametric setting. Overall, there is evidence that using stockholder consumption to

measure risk in asset returns improves the performance of a canonical consumption-based

asset pricing model, but does not fully explain the cross section of equity returns. This con-

clusion is consistent with the evidence documented above that high average return portfolios

(e.g. small value) do not seem to have higher conditional expected returns than low average

return portfolios at times their risk measured by conditional covariance with consumption

growth is higher.
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Table G.8: Sensitivity of conditional moments to conditioning variables

Regression slope coefficients of portfolio excess returns and their ex-post covariances with
consumption growth on the lagged conditioning variable. Standard errors are given in the
parentheses.

ac - monthly data

E(Ri) R2 Covi R2

Growth -0.77 0.01 0.51 0.00
( 0.45) ( 2.32)

Neutral -0.57 0.01 0.68 0.00
( 0.34) ( 1.47)

Value -0.64 0.01 0.64 0.00
( 0.34) ( 1.44)

cay - quarterly data

E(Ri) R2 Covi R2

Growth 1.35 0.03 -4.47 0.01
( 0.42) ( 3.74)

Neutral 1.11 0.03 -4.29 0.02
( 0.35) ( 2.99)

Value 1.03 0.03 -4.60 0.02
( 0.38) ( 3.31)

cay - quarterly data up to 2003

E(Ri) R2 Covi R2

Growth 2.35 0.07 -1.29 0.00
( 0.57) ( 9.54)

Neutral 1.87 0.07 1.22 0.00
( 0.47) ( 8.12)

Value 1.79 0.05 2.46 0.00
( 0.50) ( 8.32)

yc - quarterly data

E(Ri) R2 Covi R2

Growth -0.25 0.01 0.11 0.00
( 0.19) (19.97)

Neutral -0.15 0.00 0.44 0.00
( 0.17) (17.61)

Value -0.18 0.00 0.70 0.00
( 0.21) (20.72)
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Table G.9: Differences in conditional moments of portfolio returns - stockholders

Bootstrap tests of differences in conditional covariances of returns on the benchmark port-
folios with stockholder consumption growth and differences in conditional mean excess re-
turns, estimated jointly using z = cay as the conditioning variable, where zL = −0.0174
and zH = 0.02 correspond to the 10th and 90th percentiles of the distribution of cay (in the
entire sample IV.1952 - IV.2008), respectively. The test statistics are differences in point
estimates of conditional moments evaluated at these two states for each test portfolio. The
p-values for the one-sided tests reported in the parentheses are computed using the boot-
strap distributions of the corresponding test statistics centered at zero. Conditional means
and covariances are estimated jointly using monthly observations of quarterly consumption
growth measures based on, alternatively, the NIPA aggregate data, or the stockholder con-
sumption data from the CEX, both for the period 03.1983 - 11.2004 (see Malloy, Moskowitz,
and Vissing-Jørgensen (2005) for detailed description).

Panel A: NIPA
E(R|zH) −E(R|zL) 100 × (cov(R,∆c|zH) − cov(R,∆c|zL))

Small Growth 1.75 -1.82
( 0.25) ( 0.06)

Small Value 0.76 -0.12
( 0.37) ( 0.45)

Large Growth 2.64 -1.13
( 0.06) ( 0.09)

Large Value 1.14 -0.35
( 0.25) ( 0.30)

Small Value minus Growth -0.99 1.69
( 0.33) ( 0.04)

Large Value minus Growth -1.50 0.79
( 0.17) ( 0.08)

Panel B: CEX stockholders
E(R|zH) −E(R|zL) 100 × (cov(R,∆c|zH) − cov(R,∆c|zL))

Small Growth 2.14 -9.73
( 0.16) ( 0.06)

Small Value 0.33 -3.92
( 0.41) ( 0.21)

Large Growth 2.83 -7.93
( 0.03) ( 0.05)

Large Value 0.88 -5.35
( 0.25) ( 0.07)

Small Value minus Growth -1.81 5.82
( 0.16) ( 0.05)

Large Value minus Growth -1.95 2.58
( 0.07) ( 0.16)
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Table G.10: Average pricing errors: stockholder consumption

CCAPM estimated using monthly observations of quarterly consumption growth measures
based on, alternatively, the NIPA aggregate data, or the stockholder consumption data
from the CEX, both for the period 03.1983 - 11.2004 (see Malloy, Moskowitz, and Vissing-
Jørgensen (2005) for detailed description).
P-values for the test that individual pricing errors are equal to zero given in the parentheses
are computed using (semi)parametric stationary bootstrap with 10000 replications.

Model SV-SG SG-LG SV-LV LV-LG

unconditional CCAPM (NIPA) 3.43 -3.16 -0.13 0.40
( 0.00) ( 0.00) ( 0.35) ( 0.31)

unconditional CCAPM (stockholders) 1.84 1.11 2.26 0.69
( 0.10) ( 0.16) ( 0.01) ( 0.22)

CCAPM (NIPA) scaled with cay 3.08 -3.20 -0.30 0.18
( 0.00) ( 0.00) ( 0.17) ( 0.52)

CCAPM (stockholders) scaled with cay 1.23 -1.15 1.41 -1.33
( 0.15) ( 0.05) ( 0.06) ( 0.00)

CCAPM (NIPA) scaled with ac -0.33 -1.53 -0.83 -1.03
( 0.03) ( 0.27) ( 0.10) ( 0.09)

CCAPM (stockholders) scaled with ac 0.62 -0.39 -0.27 0.51
( 0.62) ( 0.45) ( 0.07) ( 0.23)

conditional CCAPM (NIPA) with cay 3.45 -3.15 -0.12 0.42
( 0.00) ( 0.00) ( 0.44) ( 0.36)

conditional CCAPM (stockholders) with cay 1.88 1.01 2.15 0.74
( 0.13) ( 0.24) ( 0.05) ( 0.28)

conditional CCAPM (NIPA) with ac 3.29 -2.96 -0.10 0.43
( 0.00) ( 0.00) ( 0.46) ( 0.21)

conditional CCAPM (stockholders) with ac 2.19 0.41 1.74 0.86
( 0.05) ( 0.60) ( 0.21) ( 0.14)

average returns 2.28 -0.79 1.16 0.34
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Figure G.9: Fama-MacBeth regressions

Each panel plots the average excess returns on the 25 portfolios sorted on size (S, 1 = low, 5
= high) and book-to-market (B, 1 = low, 5 = high)), against the average returns predicted
by one of the four models:
unconditional consumption CAPM, E(Rei

t+1) = η + λβi
∆Ct+1

;

Fama-French three-factor model, E(Rei
t+1) = η + λMβi

RMRF + λSβ
i
SMB + λHβ

i
HML ;

unconditional version of the conditional consumption CAPM scaled with cay ,

E(Rei
t+1) = η0 + η1cay t + λ0β

i
∆Ct+1

+ λ1β
i
∆Ct+1×cayt

; (G.1)

conditional consumption CAPM using cay as the conditioning variable:

E(Rei
t+1) = E

(
ηt + λtβ

i
t

)
, where βi

t = bi0 + bi1cay t. (G.2)
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