The Aggregate Demand for Bank Capital*

Milton Harris† Christian C. Opp‡ Marcus M. Opp§

November 18, 2018

Abstract

We propose a novel conceptual approach to characterizing the credit market equilibrium in economies with multi-dimensional borrower heterogeneity. Our method is centered around a micro-founded representation of borrowers’ aggregate demand correspondence for bank capital. The framework yields closed-form expressions for the composition and pricing of credit, including a sufficient statistic for the provision of bank loans. Our analysis sheds light on the roots of compositional shifts in credit toward risky borrowers prior to the most recent crises in the U.S. and Europe, as well as the macroprudential effects of bank regulations, policy interventions, and financial innovations providing alternatives to banks.

Keywords: Composition of credit, Bank capital, Non-bank competition, Bailouts, Credit-rationing, Overinvestment, Crowding out.

JEL Classification: G21 (Banks, Depository Institutions, Mortgages), G28 (Government Policy and Regulation).

*We are grateful for comments by Frédéric Boissay, Darrell Duffie, Markus Brunnermeier, Arvind Krishnamurthy, and Per Strömberg. In addition, we thank seminar participants at Bocconi BAFFI CAREFIN, European Central Bank, HKU, HKUST, University of Oregon and NUS.
†University of Chicago, Booth School of Business. Email: Milton.Harris@chicagobooth.edu.
‡University of Pennsylvania, The Wharton School. Email: opp@wharton.upenn.edu
§Stockholm School of Economics. Email: Marcus.Opp@hhs.se.
1. Introduction

The financial accelerator literature following Bernanke and Gertler (1989) has identified bank net worth as a key state variable affecting growth and allocative efficiency in the economy.\(^1\) Consistent with the views of this literature, this variable now features centrally in macroprudential regulations. While the existing literature has contributed much to our understanding of the role of net worth in determining aggregate quantities, recent empirical evidence highlights the diverse micro-level implications of shocks affecting bank capital, as well as their role in shaping aggregate phenomena. In particular, the empirical literature has documented how banks affect real activity not only by alleviating credit rationing but also by reaching for yield.\(^2\) This rich evidence reveals that the allocative effects of various shocks affecting banks depend on which types of lending are affected. That is, *compositional* effects are of first-order importance, not just aggregate quantities. Yet, most existing theoretical frameworks used to analyze regulations and shocks relating to bank capital feature only limited notions of borrower heterogeneity — often, banks simply have direct access to a production technology, much like normal firms do. These modeling approaches, while tractable and useful in many ways, leave an important question unanswered: which types of borrowers in the economy exhibit the strongest adjustments in bank credit in response to shocks relating to bank capital and the regulations governing it?

Our paper aims to bridge this gap by offering a novel approach to transparently characterizing the credit market equilibrium in an economy with rich borrower heterogeneity. Our key conceptual contribution is to depart from the conventional view of focusing on the demand and supply for credit in terms of loan quantity/interest rate pairs, and to instead construct a micro-founded aggregate demand function for *bank capital*. Despite the presence of multi-dimensional borrower heterogeneity this approach yields closed-form expressions for the composition and pricing of credit in equilibrium. The presented framework allows gauging the effects of policy interven-

\(^1\) See, e.g., Kiyotaki and Moore (1997), Bernanke et al. (1999), Martinez-Miera and Suarez (2012), He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014), and Begenau (2016)

tions and shocks affecting the financial system. In particular, it sheds light on the cross-sectional determinants of overinvestment and credit rationing, and the implications of financial innovations yielding alternatives to banks. As example applications, we discuss how our framework can coherently integrate various stylized facts that have been linked to the most recent crisis episodes in the U.S. and Europe.

We propose a static general equilibrium environment that can accommodate any finite number of borrower types and aggregate states. Borrower types can differ in terms of investment opportunities, public market access, and regulatory risk classifications. As in Holmstrom and Tirole (1997), only borrowers with sufficiently low moral hazard intensities can access a competitive public market (or more broadly, non-bank alternatives), rendering a subset of borrowers dependent on monitored financing from the banking sector. Relative to public markets, banks differ in their credit supply due to a socially beneficial monitoring advantage (following Diamond, 1984), and by virtue of having access to implicitly subsidized debt financing via the anticipation of taxpayer bailouts or deposit insurance (see Atkeson et al. (2018) and Duffie (2018) for evidence on this distortion). As in practice, banks are subject to Basel I-III bank capital requirements. Our framework allows specifying any stochastic relation between securities’ actual riskiness and regulatory capital charges in order to account for imperfections of regulations in practice (such as zero capital charges on Greek sovereign debt prior to the European debt crisis).

A key measure of our analysis is the implicit price of bank capital that is associated with any given bank loan. This price represents the present value of a loan to bank equity holders per unit of equity capital that is needed to fund the loan.\footnote{This metric is also directly related to the 	extit{profitability index} used in capital budgeting contexts (Berk and DeMarzo, 2014).} This value is an increasing function of a loan’s interest rate. As standard in price theory, the aggregate demand curve is then based on reservation prices. Reservation prices are those prices that encode the maximum interest rate a borrower would be willing to accept from a bank if only non-bank funding was available as an alternative. Our analysis reveals how multiple dimensions of borrower heterogeneity can be summarized in this one key metric determining a borrower’s position in the demand curve. Specifically, a reservation price exceeds a value of one by a premium that is given
by the following ratio of borrower-specific quantities: (1) banks’ and borrowers’ joint incremental private surplus from bank funding relative to that obtainable under non-bank funding, and (2) the effective amount of bank capital used to fund a borrowers’ loan. Incremental private surplus (the numerator) emerges from banks’ comparative advantages in both monitoring and in funding investments with implicitly subsidized debt. The second quantity (the denominator) maps units of credit into corresponding units of bank capital. For example, when seeking a $100 loan from a bank funding the investment with 8% equity, a borrower effectively demands only $8 of bank capital. As the incremental private surplus reflects the “put” value obtained from banks’ ability to fund risky loans at subsidized rates, a wedge emerges; that is, the ranking of borrowers based on these reservation prices is generally not aligned with the ranking that would maximize allocative efficiency. The severity of this distortion, in turn, depends on securities’ regulatory capital charges, which are determined by so-called “risk weights” in practice.

The credit market equilibrium is then pinned down by the intersection of demand and supply for bank capital. As our paper’s contribution lies in micro-founding the aggregate demand for bank capital, we keep the modeling of the supply side parsimonious. In particular, we allow for flexible specifications for the costs of raising additional bank capital via issuances of outside equity (as in Decamps et al., 2011, Bolton et al., 2013), going beyond a common assumption in the financial accelerator literature that equity issuances are infeasible (e.g., Bernanke and Gertler, 1989). Bank credit is extended to all borrowers with reservation prices for bank capital above the marginal borrower type’s reservation price, which is also the equilibrium price of bank capital. Borrowers with reservation prices below this equilibrium price issue bonds in public markets, if feasible. Our approach thus yields an intuitive sufficient statistic characterizing bank funding in the cross-section; a borrower obtains bank credit if the difference between her reservation price and the equilibrium price of bank capital is weakly positive. Moreover, the equilibrium price for bank capital is key in determining the division of surplus between suppliers of bank capital (bank owners) and its inframarginal customers (borrowers). Our analysis yields a closed-form expression for the cost of debt for bank-funded borrowers that encodes this equilibrium price. Moreover, this price has a familiar empirical counterpart — it is the shadow value of bank capital,
an object that has been estimated in a recent influential literature.4

This transparent approach to characterizing the credit market equilibrium yields novel and testable predictions regarding the effects of various policy interventions and shocks. In particular, the theory immediately implies that bank credit to borrowers with reservation prices close to the shadow value of bank capital has the highest propensity of being affected by any type of shock or intervention affecting banks and borrowers’ alternatives to bank finance. In particular, shocks to an economy’s bank capital move only the supply curve, thereby changing the identity of the marginal borrower. The impact of capital injections on allocative efficiency therefore depends on the social surplus created by the marginal borrower type’s investment opportunities. Yet, due to the above-mentioned wedge, this social surplus may be negative. The pricing implications of shocks to the capital supply also follow immediately. An increase in the supply lowers the shadow value of bank capital, thereby reducing bank loans’ equilibrium yields.

The existing literature also intensely debates the effects of changes to regulatory bank capital requirements (see, e.g., Admati et al., 2011). Our model provides predictions for the compositional effects of these policies, which ultimately shape aggregate effects. Our approach reveals that changes to capital ratio requirements only affect the demand curve for bank capital. In particular, increases in the overall capital ratio requirement (the capital to assets ratio) lead the demand curve to shift downwards and to fan out to the right. These adjustments occur since each borrower’s credit requires more units of bank capital. Thus, each borrower effectively demands more capital per unit of incremental surplus it creates. Moreover, the ranking of borrowers within the demand curve may change due to a skin-in-the-game effect — the reservation prices of borrowers whose bank-dependent surplus depends more on the above-mentioned put wedge (e.g., risky borrowers) fall more than those of other borrowers do. As a result, an increase in ratio requirements generally causes the ranking of borrower types in the demand curve to become better aligned with the ranking based on social surplus. Despite the increased reliance on bank capital, overall lending to surplus-generating borrowers can therefore expand if surplus-destroying risky borrowers start to be unprofitable and thus rationed, an effect that frees up previously used capital. On the other hand,

4See, e.g., Koijen and Yogo (2015), Kisin and Manela (2016).
if increases in ratio requirements are insufficient to cause substantive changes in the ranking of borrowers within the demand curve, such policy changes primarily lead to the rationing of marginal borrowers.

Our theory also allows analyzing the overall equilibrium effects of targeted changes in the capital charges associated with specific classes of securities. Even such targeted changes have externalities on other types of borrowers, in particular non-targeted marginal borrowers. For example, if the risk weights of a subset of infra-marginal borrowers are increased, but these increases are insufficient to cause those borrowers to become rationed, this policy merely induces the rationing of additional marginal borrowers. Our framework also highlights that setting capital charges for various asset classes should not be based only on evaluations of a borrower’s riskiness, but also on a borrower’s bank dependence. In particular, our theory reveals that setting very high risk weights for borrowers that are non-bank dependent is beneficial independently of whether a borrower is risky or not.

Finally, we analyze the effects of improvements in the efficiency and accessibility of public markets or other bank alternatives available to borrowers. This analysis sheds light on time-series trends associated with financial innovations, such as the development of junk bond markets in the 1980s, securitization and shadow banking in the 2000s, and the ongoing development of Fintech funding platforms, such as those facilitating crowdfunding. Moreover, it may be applied to cross-country comparisons (say USA vs. Italy), or to evaluate policy initiatives aiming to give borrowers better access to non-bank finance, such as the European Union’s “Markets in financial instruments directive” MiFID II. If these bank alternatives are less subject to distortions associated with government bailouts or deposit insurance, they will compete with banks for only those types of borrowers that are viable under such lower subsidies; that is, those borrowers that tend to have fundamentally better and safer investment opportunities. As a result, the relative ranking of high-risk borrowers in the demand curve for bank capital improves, implying that banks will tend to shift their portfolios towards these borrowers. Consistent with these predictions, Hoshi and Kashyap (1999, 2001) show empirically that deregulations leading up to the “Japanese Big Bang” allowed large corporations to switch from banks to public capital markets, which caused banks to take greater risks. If policy makers take a macroprudential approach to regulating the
entire financial system, they can counteract this perverse behavior by increasing capital requirements in response to the increased availability of non-bank finance.

Relation to the literature. As in Holmstrom and Tirole (1997) banks in our model can create social value by lending to borrowers that would otherwise be credit-rationed by public markets. Following Diamond (1984), banks’ advantage emanates from the ability to monitor borrowers and thus reduce moral hazard. Contrary to these classic contributions, our framework allows for multi-dimensional borrower heterogeneity, capturing differences in investment opportunities (general state-contingent payoff profiles), in bank dependence, and in security risk classifications determining banks’ capital charges.

An important channel affecting the credit supply by banks in our model are risk-taking incentives. These incentives have implications for banks’ portfolio decisions and asset prices, connecting our paper to several strands of the literature. In a partial equilibrium setting, Rochet (1992) shows theoretically that banks typically choose specialized, risky portfolios when their deposits are insured, even in the presence of capital ratio requirements (see also Repullo and Suarez, 2004). In our general equilibrium framework with heterogeneous borrowers, risk-taking (“reaching for yield”) is not only associated with heterogeneous portfolio strategies across banks, but also causes distortions in the cross-section of asset prices. This feature relates our paper to a growing literature on the pricing of securities when intermediaries are marginal investors.

Finally, our paper relates to the literature that explores the role of competition for financial stability and banks’ risk-taking incentives. Marcus (1984) and Keeley (1990) highlight that competition between banks reduces a bank’s value of staying solvent and thus, encourages risk-taking. In our model, banks compete not only with each other

5In Chemmanur and Fulghieri (1994), borrowers can also choose between bank loans and publicly traded debt, but their analysis focuses on incentives for information production in distress.

6Kahn and Winton (2004) show that such “segmentation” may even obtain within a bank by creating subsidiaries without mutual recourse.

8See, e.g., Garleanu and Pedersen (2011) and He and Krishnamurthy (2013).

9Related implications of competition for regulation have also been studied in Boot et al. (1993), Hellmann et al. (2000), and Repullo (2004).
but also with investors in public markets. Yet, as borrowers have heterogeneous access to these markets, this channel has additional compositional implications, consistent with the above-mentioned evidence on the Japanese Big Bang.

2. Model Setup

We consider a discrete-state economy with two dates, 0 and 1. At date 1, the aggregate state of the world $s \in \Sigma$ is realized. The ex-ante probability of state s is denoted by $\pi_s > 0$. The economy consists of three types of agents, entrepreneurs, investors, and bankers. All agents in the economy are risk-neutral, have a rate of time preference of zero, and have access to a risk-free outside investment opportunity yielding a net-return of $r_F \geq 0$.

2.1. Entrepreneurs

Entrepreneurs are the only agents in the economy with real investment opportunities, and, hence, we refer to them more broadly as firms, borrowers, or issuers. There is a continuum of firms of total measure one, indexed by $f \in \Omega_f$. Each firm f is owned by a cashless entrepreneur who has access to a project that requires a fixed-scale investment I at time 0, and produces state-contingent cash flows C_s at time 1. Firm cash flows $C_s(q, a)$ are affected by the entrepreneur’s discrete fundamental type $q_f \in \Omega_q$ and her unobservable binary action $a_f \in \{0, 1\}$. Going forward, we will at times omit firm subscripts when doing so does not create ambiguity.

Firms are subject to limited liability and have access to monitored financing from banks and unmonitored financing from public markets. In public markets, investors and banks compete for firms’ securities. Both investors and bankers can observe the firm fundamental q, implying that there is no asymmetric information about fundamentals between issuers and providers of capital. There is, however, a moral hazard problem, following Holmstrom and Tirole (1997). Shirking, $a = 0$, allows the en-

\footnote{Formally, $f = (f_1, f_2)$ with $f_i \in [0, 1]$ for $i \in \{1, 2\}$ and $\Omega_f = [0, 1] \times [0, 1]$. The double continuum assumption for firms will ensure that firms are atomistic relative to banks.}
entrepreneur to enjoy a private benefit of $B(q)$ when unmonitored, and 0 when monitored by banks.11

Assumption 1 Parameters satisfy the following relations:

1) $\frac{E[C_s(q,0)]}{1+r_F} + B(q) < I \quad \forall q$,

2) $\frac{C_s(q,0)}{1+r_F} < I \quad \forall s, \forall q$.

The first condition implies that no project generates positive social surplus (including the private benefit) under shirking. The second assumption is made for expositional reasons. It simplifies the entrepreneur’s incentive problem when unmonitored finance is provided and implies that debt is the optimal contract (see Lemma 1 below).

2.2. Investors

There is a continuum of competitive investors with sufficient wealth to finance all projects in the economy. At date 0, investors have access to the following investment opportunities: (1) securities issued by firms in public markets, (2) bank deposits and bank capital (equity), and (3) the risk-free outside investment opportunity. Competition, capital abundance, risk-neutrality, a zero rate of time preference, and access to an outside investment opportunity yielding a return of $r_F \geq 0$ imply that investors’ demand an expected rate of return of r_F on all investments in equilibrium.

Financing of firms via public markets requires that the borrower’s stake in her company provides her with sufficient incentives to exert effort ($a = 1$), as Assumption 1.1 renders financing under shirking ($a = 0$) infeasible. Going forward, we denote by

$$NPV(q) = \frac{E[C_s(q,1)]}{1+r_F} - I \quad (1)$$

the project’s value added under high effort. Securities purchased by investors must allow them to break even on their investment. Taken together, a firm with fundamental q can obtain financing from investors in public markets if there exists a security

11More generally, similar qualitative results obtain as long as banks strictly reduce the private benefit of shirking.
with promised state-s cash flows, $CF_s \geq 0$, that satisfies both the entrepreneur’s IC constraint and investors’ IR constraint:

\[
\frac{\mathbb{E} \left[\max \{ C_s(q, 1) - CF_s, 0 \} \right]}{1 + r_F} \geq B(q) + \frac{\mathbb{E} \left[\max \{ C_s(q, 0) - CF_s, 0 \} \right]}{1 + r_F},
\]

(IC)

\[
\frac{\mathbb{E} \left[\min \{ C_s(q, 1), CF_s \} \right]}{1 + r_F} \geq I.
\]

(IR)

Lemma 1 A firm with fundamental q can obtain unmonitored finance from investors in public markets if and only if $NPV(q) \geq B(q)$. Under unmonitored finance, the optimal contract is debt, and the value of an entrepreneur’s equity is $NPV(q)$.

A firm cannot receive unmonitored finance — and is thus bank-dependent — if its value added NPV is small relative to the moral hazard rent B. While our model relates bank-dependence to moral hazard rents, one may more generally view the parameter $B(q)$ as any firm fundamental that determines bank-dependence in reduced form.\(^{12}\) Note that our setup leaves full flexibility on how a particular fundamental type q is associated with state-contingent cash flows $C_s(q, 1)$ and the bank dependence parameter $B(q)$.

2.3. Banks

There is a continuum of competitive bankers $b \in \Omega_b$ of mass 1.\(^{13}\) Bankers have access to a costless monitoring technology that allows them to eliminate an entrepreneur’s private benefit from shirking, $B(q)$.\(^ {14}\) As a result, banks can effectively raise entrepreneurs’ pledgeable income.

At time 0, each banker has positive initial wealth in the form of cash, and bankers’ aggregate wealth is E_I.\(^ {15}\) Since the distribution of wealth is not important for our

\(^ {12}\)Empirically, large firms are more likely to have access to public markets than small- and medium-sized firms do (see e.g., Gertler and Gilchrist (1994) or Iyer et al. (2014)).

\(^ {13}\)In Section 5, we discuss the robustness of our analysis with respect to the possibility that banks have market power.

\(^ {14}\)As discussed in Section 5, key insights of our analysis also apply when banks have to incur costs to monitor borrowers and when banks differ in their monitoring abilities.

\(^ {15}\)In Section 5, we discuss the implications of legacy assets for our model’s predictions.
key results, we presume that aggregate wealth is uniformly distributed among bankers, implying that E_I also corresponds to bankers’ initial per-capita wealth. Banks may also raise external funds in the form of outside equity E_O and deposits D. We denote by A the total amount invested in firms and by M the total amount invested in the risk-free outside investment opportunity. Thus, we obtain the following balance sheet identity in terms of book values:

$$A + M = E + D,$$

where we define $E \equiv E_I + E_O$ as the total book equity capital. Banks can invest in firms via bank loans or via unmonitored bonds issued in public markets. Regarding these investments we make two assumptions. First, firm projects requiring bank monitoring are funded by a loan that is fully held on the balance sheet of the monitoring bank.\(^{16}\) Second, banks can invest only in bonds that are at least pari passu with other debt issued by a firm (but not junior debt or equity).\(^{17}\) These assumptions ensure that we can abstract from security design and the origination and trading of synthetic (derivative) securities.\(^{18}\)

External financing frictions. Banks are subject to limited liability and face external financing frictions, consistent with the literature on the bank lending channel. As our paper’s contribution is focused on micro-founding the aggregate demand for bank capital in the presence of general cross-sectional borrower distributions, we model the supply side in a parsimonious and flexible way.\(^{19}\) For a bank to raise a net-amount E_O of new equity capital, investors need to put up $c(E_O)$ units of cash, where for $E_O > 0$, the function $c(\cdot)$ satisfies the properties $c(E_O) \geq E_O$, $c'(E_O) > 1$, and $c''(E_O) \geq 0$. For $E_O \leq 0$, the function is given by $c(E_O) = E_O$. That is, a bank raises $c(E_O)$ units

\(^{16}\)This assumption ensures that our model captures the “skin-in-the-game” requirement that is typical for models with moral hazard.

\(^{17}\)In practice, investments in firms’ equity do not play an important role on the asset side of banks’ balance sheets. This may, in part, be explained by stringent capital requirements: under Basel III, U.S. banks are subject to a risk-weight of 300% for publicly traded stocks and 400% for non-publicly traded equity exposures.

\(^{18}\)While security design would be an interesting extension, our assumption ensures that we can focus on issuer risk classifications (introduced below), avoiding the need to specify classifications for all possible security types that an individual firm might issue.

\(^{19}\)See, e.g., Decamps et al. (2011) and Bolton et al. (2013) for similar specifications.
from investors, but due to costly frictions obtains in net only E_O units of new equity
bank capital, with the remainder being absorbed by dead-weight costs. Going forward,
we will refer to this remainder, $(c(E_O) - E_O)$, as *net issuance costs*. In contrast, paying
dividends (which implies $E_O < 0$) is not subject to any frictions. Similarly, the process
of issuing deposits is frictionless. A wedge between banks’ costs of raising debt on
the one hand and equity on the other is a general property of models where moral
hazard impedes outside financing, and debt provides better incentives (Innes, 1990,
Tirole, 2005). Such a wedge may also arise because of adverse selection (Gorton and
Pennacchi, 1990), or due to equity claims’ lack of monetary services (Stein, 2012).

Bank regulation. We take two features of real-world regulations as primitives of our
economy. First, bank deposits are effectively insured by FDIC insurance and/or im-
plicit bailout guarantees. Second, banks are subject to capital requirements. Although
there is a substantial literature that sheds light on the potential reasons why these par-
ticular institutions might exist,\(^{20}\) a variety of frictions, including political economy
frictions (incentives for holding office, lobbying, competition between countries, etc.),
are likely responsible for their historical emergence and persistence. As it is not the
purpose of this paper to rationalize these institutions based on one particular economic
force, we take them as given and analyze their implications for credit supply decisions.
In the following, we describe how our model captures these institutional features.

First, promised payments of bank deposit contracts are fully insured by the gov-
ernment,\(^ {21}\) and any shortfalls are financed by lump-sum taxes that are levied from
investors. As common in the literature, we thus abstract from deposit insurance pre-
mia,\(^ {22}\) which are quite insensitive to banks’ asset risk in practice (see, e.g., Kisin and
Manela, 2016). This approach is also in line with our objective to capture the effects
of implicit bailout guarantees, for which banks do not pay insurance premia. Yet, we
also discuss in Section 5 that the key insights of our conceptual approach are robust to
deviations from this specification.

\(^{20}\)See Diamond and Dybvig (1983) for deposit insurance and Bianchi (2016) or Char and Kehoe
(2016) for bailouts.

\(^ {21}\)If guarantees were imperfect, the deposit rate would reflect a bank’s default risk, but less than
justified by a bank’s asset risk. The qualitative results of our analysis would be unaffected in this case.

\(^ {22}\)See, e.g., Hellmann et al. (2000) and Repullo and Suarez (2013). See also Pennacchi (1987, 2006)
and Iannotta et al. (2018) for analyses of deposit insurance pricing and implications for bank regulation
and financial system risks.
Second, banks are subject to capital regulations that may be contingent on risk classifications of the issuers in which a bank invests. Risk classifications are denoted by \(\rho \), and take values in the discrete set \(\Omega_{\rho} \). The empirical counterpart of these risk classifications might be credit ratings and/or asset classifications, which are used in regulations in practice. Going forward, we refer to the pair \((q, \rho)\) as an issuer’s type. We impose the technical condition that if any issuer in the economy is of the type \((q, \rho)\), there is a also strictly positive mass of firms of this type, \(m(q, \rho) > 0 \).\(^{23}\) Whereas the risk classification \(\rho \) is verifiable for regulatory purposes, the firm fundamental \(q \) is not (see, e.g., Grossman and Hart, 1986, for the definition of verifiability). Yet, as we do not impose any restrictions on the relation between \(\rho \) and \(q \), our model can in principle capture any degree of verifiability in the context of regulations.

Let \(x(q, \rho) \) denote a bank’s portfolio weight corresponding to issuers of type \((q, \rho)\), and let \(\mathbf{x} \) denote the vector of portfolio weights for all issuer types. Due to shortsale constraints for bank loans, the portfolio weights must satisfy \(x(q, \rho) \geq 0 \). As in the regulatory frameworks of Basel I-III, bank capital regulation prescribes that the book equity ratio of every bank, \(e \equiv \frac{E}{A} \), be above some minimum threshold \(e_{\text{min}}(\mathbf{x}) \) that is a weighted average of asset-specific capital requirements \(\varepsilon(\rho) \):

\[
e_{\text{min}}(\mathbf{x}) \equiv \sum_{\forall q, \rho} x(q, \rho) \cdot \varepsilon(\rho). \tag{3}
\]

Note that whereas a bank’s investment strategy \(x(q, \rho) \) conditions on the full type \((q, \rho)\), the regulatory capital requirement parameter \(\varepsilon(\rho) \) conditions only on the verifiable component \(\rho \). In line with regulations in practice, it is useful to recast \(\varepsilon(\rho) \) as the product of a risk-weight, \(rw(\rho) \), and an overall level of capital requirements, \(\varepsilon \), that is,

\[
\varepsilon(\rho) = rw(\rho) \cdot \varepsilon. \tag{4}
\]

Bankers’ Objective. Competitive banks take equilibrium yields \(y(q, \rho) \) charged to firms of type \((q, \rho)\) as given. The state-contingent rate of return for an investment in

\(^{23}\)This assumption ensures that an infinitesimal bank’s asset demand never exceeds the total supply of firms with a given existing type \((q, \rho)\).
an issuer of type \((q, \rho)\) is given by:

\[
r^a_s(q, \rho) = \min \left\{ y(q, \rho), \frac{C_s(q, 1)}{I} - 1 \right\}.
\] (5)

Equation (5) reflects that a bank, after lending an amount \(I\), receives a borrowing firm’s total cash flow \(C_s(q, 1)\) whenever the firm defaults. The overall rate of return on a bank’s portfolio in state \(s\), which we define as \(r^a_s\), is given by:

\[
r^a_s(x) = \sum_{q, \rho} x(q, \rho) \cdot r^a_s(q, \rho).
\] (6)

Due to deposit insurance, investors are willing to provide deposit finance to banks at a promised interest rate of \(r_D = r_F\), regardless of the asset holdings of a bank. Thus, after raising a net-amount of outside equity \(E_O\) and deposits \(D\), the total market value of a bank’s equity is:

\[
E_M = \mathbb{E} \left[\max \left\{ (1 + r^a_s(x))A + (M - D)(1 + r_F), 0 \right\} \right],
\] (7)

which accounts for a bank’s limited liability. Before raising outside finance, a banker’s objective is to maximize the value of her equity stake, i.e., the market value of the inside equity, which we denote by \(E_{M,I}\). Competition implies that the value outside equity holders obtain must be equal to the cash they put up, \(c(E_O)\). Thus, we obtain:

\[
E_{M,I} = \max_{E_O, M, D, x} \left\{ E_M - c(E_O) \right\}.
\] (8)

It is useful to express this objective function in terms of the equity ratio \(e = \frac{E_I + E_O}{A}\). Using this definition and the balance sheet identity (2), we can eliminate the variables \(D\) and \(M\), and write the expected rate of return on bank book equity (ROE) before the cost of outside equity as:

\[
\rho_E(x, e) = \mathbb{E} \left[\max \left\{ r_F + \frac{r^a_s(x)}{e} - r_F, -1 \right\} \right],
\] (9)

which reflects that equity returns are levered asset returns that are bounded from below at \(-100\%\) due to equity holders’ limited liability. Using (9), we obtain the equivalent
maximization problem:

\[E_{M,I} - E_I = \max_{E_O, e, x} \left[(E_I + E_O) \frac{r_E(x,e)}{1 + r_F} - (c(E_O) - E_O) \right], \] (10)

\[\text{s.t. } e \geq e_{\min}(x). \] (11)

This latter representation highlights that a bank maximizes the net present value of the loan portfolio from a bank equity holders’s perspective, minus the net issuance costs for outside equity, \((c(E_O) - E_O)\).

3. Analysis

We now analyze the competitive equilibrium of the economy.

Definition 1 A Competitive Equilibrium is a yield function, an investment and effort strategy for each entrepreneur, an outside equity, equity ratio, and portfolio strategy for each banker, and an investment strategy for each investor such that:

a) **Given its type** \((q, \rho)\), the entrepreneur of each firm \(f\) decides whether to raise \(I\) units of capital at the equilibrium yield \(y(q, \rho)\), and whether to shirk or not.

b) **Each banker** \(b\) chooses net outside equity \(E_O\), her equity ratio \(e \geq \sum_{q, \rho} x(q, \rho) \cdot e(\rho)\), and the vector of portfolio weights \(x \geq 0\) to maximize (10).

c) **Investors decide on** investments in the risk-free outside investment opportunity, firm debt, bank deposits, and bank outside equity.

d) **Markets for** debt, deposits, and bank capital clear.

Our analysis of the equilibrium proceeds as follows. We first study the optimal behavior of an individual bank in partial equilibrium, that is, taking prices as given. In a second step, we determine the prices of all assets in the economy in general equilibrium.
3.1. Bank Optimization in Partial Equilibrium

It is convenient to separate the maximization problem of an individual bank (10) into two steps; a problem of optimal outside equity issuance on the one hand, and the jointly optimal portfolio and leverage choice on the other, that is,

\[
E_{M,I} - E_I = \max_{E_O} \left[\frac{(E_I + E_O)(\max_{x,e}[r_E(x,e)] - r_F)}{1 + r_F} - (c(E_O) - E_O) \right],
\]

(12)

First, consider the inner (ROE) maximization problem, given the exogenous yields on loans \(y(q, \rho)\):

\[
\max_{x,e} [r_E(x,e)] \text{ s.t. } e \geq e_{\text{min}}(x).
\]

(13)

Given a solution \((x^*, e^*)\) to this maximization problem, we define the set of a bank’s failure states:

\[
\Sigma_F(x^*, e^*) \equiv \left\{ s \in S : \frac{r^*_A(x^*) - r_F}{1 + r_F} < -e_{\text{min}}(x^*) \right\}.
\]

(14)

In these states, a bank’s assets are insufficient to cover the promised liabilities. We also define \(\Sigma_S(x^*, e^*)\) as the set of complementary survival states.

Lemma 2 Optimal bank leverage \(e^*\) and portfolios \(x^*\) satisfy the following properties:

i) **Leverage:** The leverage constraint binds, that is, \(e^* = e_{\text{min}}(x^*)\), if either

1) there exists a portfolio \(x\) that yields \(r_E(x, e_{\text{min}}(x)) > r_F\), or

2) for an optimal portfolio \(x^*\), failure states exist, \(\Sigma_F(x^*, e_{\text{min}}(x^*)) \neq \emptyset\).

ii) **Portfolio choice:** All issuer types \((q, \rho)\) with a strictly positive weight in the optimal portfolio of a bank \((x^*(q, \rho) > 0)\) exhibit correlated downside risks, i.e.,

\[
\frac{r^*(q, \rho) - r_F}{1 + r_F} < -\varepsilon(\rho) \iff s \in \Sigma_F(x^*, e^*),
\]

\[
\frac{r^*(q, \rho) - r_F}{1 + r_F} \geq \varepsilon(\rho) \iff s \in \Sigma_S(x^*, e^*).
\]
Leverage. Part i.1 of Lemma 2 states that if the equilibrium loan yields allow banks to obtain a positive expected excess return on bank capital, banks have a strict incentive to choose the maximum leverage allowed by the regulatory constraint. To understand part i.2, observe that upon bank default in some state s, government transfers to bank depositors are strictly decreasing in e. Total payments to all security holders are thus increasing in leverage, a key departure from the Modigliani-Miller benchmark. While these transfers accrue *ex post* to depositors, competition among investors on the deposit rate ensures that the present value of these transfers is passed on to bank equity holders *ex ante*. The present value of these transfers is the value of a put (see Merton, 1977). Thus, shareholder value maximization requires the value of the put be maximized by taking on maximal leverage for any optimal portfolio x^*.\(^{25}\)

Portfolio choice. Lemma 2 highlights that optimally designed bank portfolios may consist of multiple, imperfectly correlated issuer types. Such portfolios exhibit correlated downside risks in that for each state s, the losses on each investment either wipe out the associated regulatory capital cushions $c(\rho)$, or none of them. Taking correlated downside risks is an optimal response to convexity in a bank’s objective function implied by deposit guarantees.

To further illustrate the implications of these optimal portfolio choices, consider an example of a bank that can invest in safe US treasuries or risky Greek bonds. Suppose yields are such that investing exclusively in Greek bonds yields the same ROE as investing exclusively in US treasuries. Then, starting from a portfolio invested only in Greek bonds, the bank will receive a *strictly* lower ROE if it marginally increases the portfolio weight of US treasuries. This is because the expected return on treasuries across the bank’s *survival* states must be strictly lower than that for Greek bonds.\(^{26}\) Conversely, starting from a portfolio with 100% US treasuries, a bank also strictly lowers its ROE when marginally increasing the portfolio weight of Greek bonds. After such a marginal deviation, the bank still does not default, and thus, lacks the benefit of a bailout put. Therefore, it cannot assign the same marginal value to a Greek bond

\(^{24}\)Once we endogenize loan yields in general equilibrium, banks pass on part of the put value to firms.

\(^{25}\)Consistent with this prediction, Kisin and Manela (2016) show empirically that capital requirements are indeed effectively binding for the largest banks in the US economy.

\(^{26}\)Recall that we started with the supposition that exclusively investing in Greek bonds (and defaulting in some states) yields the same ROE as exclusively investing in US treasuries (and not defaulting).
as when being exclusively invested in Greek bonds. In short, bank specialization can naturally occur in our environment, shedding light on related recent evidence (see Rappoport et al., 2014).

Outside equity issuances. Given a solution \(e^*\) and \(x^*\) yielding \(r_E(x^*, e^*)\), we can now characterize the incentives of an individual bank to issue outside equity (see the outer maximization problem in equation (12)).

Lemma 3 A bank gains from marginally increasing date-0 capital as long as:

\[
\frac{r_E(x^*, e^*) - r_F}{1 + r_F} > c'(E_O) - 1. \tag{15}
\]

When deciding on equity issuances, a bank simply compares its expected date-1 expected excess return on bank capital, \(r_E(x^*, e^*) - r_F\), discounted at rate \(r_F\), with the date-0 marginal net issuance costs for new bank capital, \((c'(E_O) - 1)\).

3.2. Prices and Allocations in General Equilibrium

We now analyze how prices and allocations are determined in general equilibrium. As highlighted in the introduction, a key feature of our approach is to derive the effective demand curve for bank capital, rather that a demand curve for credit. This approach is instructive as bank capital is the key scarce resource through which equilibration occurs. We derive a novel issuer-specific metric that allows us to construct this aggregate demand curve — an issuer type’s effective reservation price for bank capital. This reservation price encodes all dimensions of issuer heterogeneity, and yields a univariate score that determines which issuers in the economy obtain bank finance.

Going forward, we will refer to \(p\) as the date-0 market value bank equity holders obtain per unit of bank capital, that is, \(p \equiv \frac{E_B}{B}\). This price is the equivalent of Tobin’s \(Q\) applying to regular capital in the investment literature. The profitability index\(^{28}\) of

\(^{27}\)Moreover, in Section 5, we discuss how these results extend to environments where banks differ ex ante in terms of characteristics such as legacy asset holdings.

\(^{28}\)See, e.g., Berk and DeMarzo (2014).
any loan in a given efficient portfolio satisfying Lemma 2 is directly related to this price:

\[
\frac{\text{NPV of loan to bank equity holders}}{\text{Bank capital required for loan}} = p - 1.
\]

(16)

As a result, there is a one-to-one mapping between the price of bank capital and the interest rate on a loan in an efficient portfolio (since the net present value of the loan to bank equity holders is an increasing function of the interest rate charged). Yet, contrary to interest rates, the price attained per unit of bank capital is equalized across all loans provided in equilibrium. We will first construct the aggregate supply and demand correspondences for bank equity, which we denote by \(E^S = S(p) \) and \(E^D = D(p) \) respectively. Market clearing then determines the equilibrium market price of bank capital \(p^* \), and the equilibrium quantity \(E^* \). Second, given \(E^* \) and \(p^* \), we determine the equilibrium composition and pricing of credit in closed-form.

3.2.1. Aggregate Equity Supply and Demand

Aggregate supply of bank equity. Given Lemma 3, we immediately obtain the aggregate inverse supply function for bank equity:

\[
S^{-1}(E) \equiv c'(E - E_l).
\]

Note that this function represents the marginal cost of increasing bank capital at date 0. How this marginal cost relates to the *required return* on equity capital in equilibrium will be a result of our analysis below. As paying dividends is not associated with an additional cost, the inverse supply function is equal to one for \(E < E_l \).

Aggregate demand for bank equity. To derive the aggregate demand for bank equity we initially determine for each issuer type her *effective* reservation price per unit of bank equity. Next, we construct the aggregate demand curve by aggregating across all issuer types in the economy.

An issuer type’s effective reservation price per unit of bank equity is measured as a present value accruing to bank equity holders. The payments encoded in this reservation price come from both the issuer and the government (via deposit insurance).
Thus, this metric is affected by both the traditional credit demand side (issuers) and factors affecting the credit supply side (regulations, government subsidies, and banks’ optimal response to them). These two components of the reservation price are determined by the two Lemmas we have established thus far: first, the issuer’s outside option in public markets (Lemma 1) pins down the maximum interest rate that an issuer is willing to pay for a bank loan. Second, banks’ optimal leverage and portfolio decisions (Lemma 2) affect the magnitude of expected government subsidies, which are internalized by bank equity holders as debt is priced competitively.

Lemma 4 An issuer of type \((q, \rho)\) has the following reservation price per unit of bank capital:

\[
p^* (q, \rho) = 1 + \frac{NPV(q) \mathbb{1}_{\{B(q) > NPV(q)\}} + PUT(q, \rho)}{I_\xi(\rho)},
\]

(17)

where we define the date-0 put value:

\[
PUT(q, \rho) \equiv \mathbb{E} \left[\max \left\{ I(1 - e(\rho))(1 + r_F) - C_s(q, 1), 0 \right\} \right] \quad 1 + r_F \geq 0,
\]

(18)

and where the demanded quantity of bank capital at this reservation price is \(I_\xi(\rho)\).

The numerator of the ratio on the right-hand side of equation (17) reflects the incremental private surplus that bank financing of an issuer type \((q, \rho)\) generates in excess of the surplus attainable under public market financing. First, incremental surplus is attained for all projects that are bank-dependent (where \(B(q) > NPV(q)\)), as these projects would be credit-rationed under unmonitored public market financing. Second, incremental private surplus is attained whenever there is a positive probability that the government will cover a shortfall in payments to depositors that effectively funded this issuer type (captured by the term \(PUT\)) — this shortfall depends on the regulatory capital cushion for a given security, \(\xi(\rho)\), and a security’s risk properties. Finally, the total incremental surplus is scaled by the effective equity capital demanded by the issuer, \(I_\xi\), yielding the per-unit premium of the reservation price in excess of 1.

Lemma 4 allows us to construct an aggregate demand correspondence by sorting issuer types according to their reservation prices \(p^* (q, \rho)\). At a price \(p\), all borrower types with \(p^* (q, \rho) \geq p\) demand a quantity of bank equity equal to \(I_\xi(\rho)\). Let \([\cdot, \cdot]\)
denote the range operator, and let \(m(q, \rho) \) denote the mass of issuers of type \((q, \rho)\). Then the aggregate demand correspondence for bank equity, \(D(p) \), is given by:

\[
D(p) \equiv \left[\sum_{(q, \rho): p^r(q, \rho) > p} I \cdot e(\rho) \cdot m(q, \rho), \sum_{(q, \rho): p^r(q, \rho) \geq p} I \cdot e(\rho) \cdot m(q, \rho) \right]. \tag{19}
\]

As Lemma 4 derived the reservation prices \(p^r(q, \rho) \) in terms of exogenous parameters, the aggregate demand for bank equity is also expressed analytically. Since the reservation prices are both a function of social surplus and deposit insurance subsidies, issuers with the highest reservation price for bank equity are not necessarily those that create the greatest societal value. Going forward, we denote by \(D^{-1}(E) \) the inverse aggregate demand function associated with (19).

Figure 1 illustrates the potential misalignment of the equilibrium demand for bank equity with the social surplus created by bank finance. Throughout, our graphs follow the familiar convention of price theory — we plot the inverse demand functions, where the quantity of bank equity is plotted on the horizontal axis, and the price of bank equity on the vertical axis. The figure introduces an example with three issuer types that we will revisit at various points of our analysis below. Throughout, these three issuer types will be indicated by the colors red, yellow, and green. The red issuer type represents high-risk, negative-NPV borrowers, the yellow type high-risk, positive-NPV firms with access to public markets, and the green type bank-dependent, low-risk, positive-NPV issuers (see the figure caption for parameter values). Figure 1 plots two curves, the aggregate inverse demand curve (in red, yellow, and green), and a curve representing the issuer types’ bank-dependent social surplus per unit of equity capital used (in black). The vertical difference between these two curves, highlighted by the grey-shaded area, represents the wedge due to deposit insurance. The magnitude of this wedge is evidently issuer type-specific, revealing distortions in the ranking of issuers based on private surplus (green, yellow, red) relative to the one based on social surplus (black). In fact, in this example, the ranking is exactly inverted — the red type’s reservation price is the highest even though the social surplus its projects create is the lowest (and negative); the green type’s reservation price is the lowest but its bank-dependent social surplus is the highest. We will explore the implications of this misalignment and its dependence on various features of the economy in our
Figure 1. Demand for bank capital and bank-dependent private surplus. The graph illustrates the aggregate demand for bank capital in an economy with three issuer types, two equiprobable aggregate states, $r_F = 0$, $I = 1$, a general capital requirement of $e = 25\%$, and $B(q) = 0.15$ for all issuer types. The three issuer types’ reservation prices are indicated by the green, yellow, and red lines. Jointly, these reservation prices determine the aggregate demand correspondence. The green type is a good (positive NPV), safe borrower without access to unmonitored finance and project cash flows $C = (1.05, 1.05)$. The yellow type is a good, risky borrower with public market access and project cash flows $C = (1.8, 0.6)$. The red type is a bad (negative NPV), risky borrower and project cash flows $C = (1.5, 0.4)$. The black solid line indicates the social surplus (social NPV) that bank financing generates in excess of an issuer type’s outside option from unmonitored finance, per unit of bank equity used. Since the yellow issuer type has access to unmonitored finance, the social value generated by bank financing is zero. For each type, the area between the reservation price and the black solid line measures the put value. Since the green issuer type is safe, the associated put value is zero.

comparative statics analyses below.

The following proposition derives the equilibrium price and quantity of aggregate bank equity.

Proposition 1 (Price and Quantity of Bank Capital) The equilibrium amount of bank equity capital is given by

$$E^* = \max\{E \geq 0 : D^{-1}(E) \geq S^{-1}(E)\},$$

\hspace{1cm} (20)
implying that aggregate outside equity issuances (or dividend payments) amount to

\[E^*_O = E^* - E_I. \] \hfill (21)

The equilibrium value per unit of bank capital is given by:

\[p^* = \frac{E_M}{E^*} = S^{-1}(E^*). \] \hfill (22)

To discuss the intuition underlying Proposition 1, we simply extend our example from Figure 1 by incorporating an inverse supply function. Figure 2 illustrates a standard case where the equilibrium is characterized by the intersection of demand and supply, that is, by the condition \(D^{-1}(E^*) = S^{-1}(E^*). \)\(^{29}\) In equilibrium, the market value of a unit of bank capital is \(p^* \). This price is also the Lagrange multiplier on banks’ equity capital constraint, a shadow value that a recent literature has estimated for banks and insurance companies (see, e.g., Koijen and Yogo, 2015, Kisin and Manela, 2016).

Given this equilibrium price, the distribution of surplus follows immediately. Bank surplus is positive if and only if \(p^* \) is strictly greater than 1, that is, if bank capital is scarce \((E^* > E_I) \). On the other hand, the issuer surplus per unit of bank equity is given by the difference between an issuer’s reservation price and the equilibrium price, that is, by \((p'(q, \rho) - p^*) \). As standard in price theory, the marginal type receives zero surplus, and all inframarginal issuer types have reservation prices weakly greater than \(p^* \). In Figure 2, we indicate issuers’ incremental surplus from bank finance and bank surplus by the orange- and grey-shaded areas, respectively.

Figure 2 illustrates three relevant types of equilibrium outcomes that we will highlight throughout our analysis: (1) over-investment in surplus-destroying (red) issuer types (2) under-investment in bank-dependent (green) issuer types, and (3) crowding-out of public market financing in the sense that (yellow) issuer types with access to public markets obtain bank finance in equilibrium.

The following proposition shows how the equilibrium price of bank capital \(p^* \) in combination with the aggregate demand correspondence (19) directly characterizes the

\(^{29}\)Due to discontinuities in the inverse demand function, \(D^{-1}(E) \), it is also possible that demand and supply do not intersect. Such a case will be illustrated below in Figure 3.
Figure 2. Equilibrium price and quantity of capital. The graph extends Figure 1 by adding an inverse supply function. The supply of bank capital is given by: \(S^{-1}(E) = c'(E) = 1 + 50 \left(\max \{E - E_I, 0\} \right)^2 \). The equilibrium quantity \(E^* \) and price \(p^* \) are indicated by the blue circle. The marginally funded borrower type is the green type. The incremental surplus that issuers obtain above and beyond the surplus attainable from public market finance is illustrated by the orange-shaded area. The grey-shaded area measures the surplus accruing to banks’ initial equity holders.

composition and pricing of credit in the economy.

Proposition 2 (Composition of Credit and Pricing) All issuer types with \(p^*(q, \rho) > p^* \) and a fraction \(\xi \in [0, 1) \) of borrower types with \(p^*(q, \rho) = p^* \) are financed by banks.\(^3\) These issuer types’ equilibrium debt yields, \(y(q, \rho) \), satisfy the following equilibrium relation for the expected return on debt:

\[
E [r^*(q, \rho)] = r_F + \xi (q, \rho) (r_E^* - r_F) - \frac{PUT(q, \rho)}{I} (1 + r_F) .
\]

(23)

Of the remaining issuers in the economy, only issuer types with \(NPV(q) \geq B(q) \) obtain unmonitored finance from public markets, and their expected return on debt

\(^3\)Here, \(\xi = \frac{E^{*} - \sum_{(q, \rho) \mid p^*(q, \rho) > p^*} I \xi(q, \rho) m(q, \rho)}{\sum_{(q, \rho) \mid p^*(q, \rho) = p^*} I \xi(q, \rho) m(q, \rho)} .\)
satisfies:

$$\mathbb{E} [r^a(q, \rho)] = r_F. \quad (24)$$

The expected excess return on bank capital follows from the price of equity p^*:

$$r^a_E - r_F = (p^* - 1) (1 + r_F). \quad (25)$$

Proposition 2 provides a closed-form representation of the composition and pricing of credit.\footnote{In knife-edge cases where multiple issuer types (q, ρ) have the same reservation price $p(q, \rho)$, a tie-breaker rule can ensure the uniqueness of the equilibrium allocation in terms of the masses of each issuer type that obtain bank finance. One such tie-breaker rule is to assume that among issuer types with identical reservation prices, banks rank issuer types according to the incremental social surplus they create under bank finance, $\text{NPV}(q) 1_{\{B(q) > \text{NPV}(q)\}}$.} The proposition highlights that the difference between a borrower’s reservation price and the shadow price of bank capital, $(p^* - p^*)$, is a sufficient statistic for bank funding. A borrower obtains bank funding if this statistic is weakly positive. Equation (23) reveals that a CAPM type relation holds for all bonds or loans held by banks. Yet, contrary to the classic CAPM, a security’s expected return is not a linear function of its beta with respect to an aggregate risk factor. Instead, a security’s expected return increases with its regulatory risk weight, which is interacted with the expected excess return on bank capital, $(r^a_E - r_F)$. This component of the expected return does not represent compensation for risk, but rather compensation for an issuer’s use of banks’ scarce capital, which could be used profitably to extend loans to other (marginal) borrowers. In addition, the expected return is dampened by a security-specific term (PUT/I) that reflects implicit funding subsidies per unit of investment. As regulatory risk classifications (e.g., based on credit ratings) affect a security’s risk weight, they crucially affect both the pricing and the allocation of bank credit. We will discuss this issue in more detail in our comparative statics analysis below. Finally, equation (25) provides a mapping between the price of equity and banks’ expected excess returns on book equity. When bank capital is not scarce, $p^* = 1$, the expected return on bank equity is equal to the return of the outside investment opportunity r_F.

Remarkably, the tractable pricing relation (23) holds for all securities of bank-funded issuers despite the fact that marginal investors across various securities differ — the cross-section of banks is generally exposed to heterogenous risks (due to het-
erogenous equilibrium investment strategies). The following corollary highlights the diversity of banks’ investment portfolios.

Corollary 1 (Heterogeneous bank portfolios) Suppose two issuers of distinct types \((q, \rho)\) and \((q', \rho')\) obtain loans from banks in equilibrium and

\[
\left\{ s \in \Sigma : e(\rho) < \frac{r_F - r^*(q, \rho)}{1 + r_F} \land e(\rho') > \frac{r_F - r^*(q', \rho')}{1 + r_F} \right\} \neq \emptyset,
\]

then the two issuers must be financed by two distinct banks with differing equilibrium default states.

A bank typically invests in a continuum of borrowers (i.e., an infinite number), but as these borrowers exhibit correlated downside risks, doing so does not yield diversification with respect to relevant tail risks.

4. **Positive and Normative Implications**

In this section, we derive positive and normative implications of our model. To do so, we will analyze and illustrate how equilibrium outcomes vary as a function of the bank capital supply, regulatory capital ratio requirements, public market development, and interest rates. In this context, we will repeatedly consider a useful summary measure of efficiency — the total surplus that firm investment creates in the economy, that is, the sum of the surpluses created by all projects financed in equilibrium. For brevity, we will refer to this object simply as *total surplus* going forward.

4.1. **Equity Capital Supply**

As highlighted in the introduction, the financial accelerator literature following Bernanke and Gertler (1989) has identified bank net worth as a key state variable affecting growth and allocative efficiency. A key object of interest for our study is how variation in this aggregate state variable has *heterogenous* effects across different borrower types in the
economy. In practice, various economic shocks can lead to declines or increases in bank capital. For example, a macroeconomic downturn is typically associated with higher loan default rates, and correspondingly, declines in bank net worth. On the other hand, equity capital injections by governments during crises can increase aggregate bank capital (see, e.g., Giannetti and Simonov, 2013).

The following Corollary to Propositions 1 and 2 summarizes how changes to aggregate bank capital affects prices and allocations in the economy. To streamline the presentation, we focus on economies where the finite number of borrower types \((q, \rho)\) have distinct reservation prices \(p^\ast\), which eliminates knife-edge cases.

Corollary 2 A decline in the aggregate amount of inside bank capital \(E_I\)

1. weakly increases the equilibrium price of bank capital \(p^\ast\), the expected return on bank capital \(r_E^\ast\), and loan yields \(y(q, \rho)\),

2. weakly decreases aggregate investment, but weakly increases unmonitored funding by public markets.

3. The local effect on total surplus from firm investment is

 (a) negative, if the marginal borrower type satisfies \(0 < NPV < B\),

 (b) neutral, if the marginal borrower type satisfies \(NPV > B\),

 (c) positive, if the marginal borrower type satisfies \(NPV < 0\).

Figure 3 illustrates the effects of shocks to banks’ inside equity, building on our earlier example with three issuer types (Figures 1 and 2). These shocks affect only the equity supply curve, shifting it outwards (or inwards), from the solid blue line to the dashed blue line (or dotted black line). As a result of the considered increase (to the dashed blue line), the equilibrium price of equity \(p^\ast\) drops from the reservation price of the green issuer type to one, reflecting that bank equity capital is no longer scarce. Whereas some issuers of the green type (who have positive-NPV projects) were rationed at the initial level of equity (solid blue line), this is no longer the case after the increase. While more abundant equity capital resolves this rationing of green
issuer types, it does not reduce allocative inefficiencies caused by the funding of red issuer types.

On the other hand, the considered decrease in equity capital (to the dotted black line) causes the equilibrium price of equity p^* to rise to the reservation price of the yellow issuer type. As a result, all issuers of the green type are rationed, reducing total surplus. The remaining issuer types that receive bank funding either destroy surplus (red types) or could also be funded by public markets (yellow types).

In sum, these illustrations highlight that the effects of shocks to bank capital crucially depend on the characteristics of the marginal borrowers, that is, those borrowers whose reservation prices are close to the equilibrium shadow value of bank capital. The explicit formula we derived in equation (17), in turn, provides clear predictions on how various borrower characteristics determine these reservation prices.

Figure 3. Bank equity capital supply. The graph illustrates how equilibrium outcomes are affected by an increase or decrease in inside capital E_t relative to the baseline level considered in Figure 2. We consider changes of magnitude $\Delta = 0.125$.
4.2. **Capital Ratio Requirements**

A quickly-developing macroeconomic literature evaluates capital requirements as a macroprudential tool used by policy makers to stabilize and support economic growth. Whereas this literature typically directly specifies banks’ investment technologies, our objective is to shed light on relevant compositional effects. In particular, in this section, we examine the implications of changes to overall equity capital ratio requirements ε, and of risk-classification specific changes, that is, adjustments to the risk weights $rw(\rho)$.

Corollary 3 The following comparative statics with respect to capital ratio requirements ε apply:

1. An increase in capital ratio requirements from ε to $\varepsilon + \varepsilon$ (with $\varepsilon > 0$)

 (a) weakly increases loan yields for all borrowers if bank capital is not scarce before the increase in capital ratio requirements,

 (b) weakly decreases aggregate investment,

 (c) weakly increases total surplus if bank capital is not scarce after the increase.

2. For $D^{-1}(E^*) > p^*$, a marginal increase in ε is compensated by additional equity issuances, leaving aggregate bank funding unchanged.

 For $D^{-1}(E^*) = p^*$, a marginal increase in ε strictly reduces the fraction of firms of the marginal type that receive bank funding.

 (a) If the marginal issuer type is bank-dependent and has a negative (positive) NPV, this reduction in bank funding has a positive (negative) impact on total surplus.

 (b) If the marginal issuer type is not bank-dependent, then total surplus is unaffected.
To illustrate these results, we revisit our baseline example with three issuer types introduced in Figures 1 and 2. We start by considering increases in the overall capital ratio requirements ε, and then consider more targeted intervention based on changes to the risk-weights applying to specific borrower risk classifications ρ.

Overall capital ratio requirements. The four panels of Figure 4 illustrate demand and supply curves under distinct capital ratio requirements ε. As an initial reference point, Panel A simply replicates the baseline parameterization of Figure 2. Panels B to D, in turn, illustrate the effects of gradual increases in the equity ratio requirement ε (small, medium, and large) relative to this benchmark.

![Figure 4. Capital ratio requirements.](image)

Panel A: Baseline

Panel B: Small increase in ε

Panel C: Medium increase in ε

Panel D: Large increase in ε

Figure 4. Capital ratio requirements. Panels A through D illustrate the effects of increases in capital ratio requirements. Panel A replicates the economy illustrated in Figure 2, where all borrower types are subject to a ratio requirement of $\varepsilon = 0.25$. Panels B through D consider gradual increases in capital ratio requirements, up to a level of $\varepsilon = 0.55$ in Panel D.
Changes to the overall capital ratio requirement affect only the demand curve, causing three types of adjustments. First, all issuer types’ reservation prices are reduced, which is graphically reflected by a downward adjustment in the demand curve. This effect follows immediately from the fact that reservation prices reflect incremental private surplus attainable per unit of equity used (see equation (17)). As ratio requirements are increased, more units of equity are required to fund any borrower type, lowering the per-unit surplus. Second, the downward adjustments in reservation prices are issuer-type specific. Those issuer types whose reservation price is more reliant on the \(\text{PUT}\)-component of private surplus exhibit stronger downward adjustments. As a result, the ranking of issuer types within the demand curve can change as \(\epsilon\) is increased. Third, the demand curve pans out to the right, that is, the width of each borrower type on the demand curve increases, as more equity capital is required to fund the borrowers of any type.

The graphs reveal that changes to overall capital ratio requirements are a fairly blunt tool. On the one hand, increases can have the desirable effect of aligning the private ranking of borrower types with the ranking based on social surplus — the “large increase” in \(\epsilon\) considered in Panel D achieves this result. A better alignment obtains as greater skin in the game reduces distortions introduced by the \(\text{PUT}\) component affecting the demand for bank capital. On the other hand, increases in ratio requirements can also cause the rationing of surplus-generating bank-dependent borrowers — the “small increase” considered in Panel B for example shows a case where that type of rationing is more severe than in the baseline economy with the lowest ratio requirements.

More generally, the graphs highlight that changes to ratio requirements potentially have a non-monotonic effect on the rationing of good, bank-dependent borrowers (green types). Whereas, small increases in ratio requirements worsen this type of rationing, medium and large increases completely alleviate the rationing of good borrower types. This result obtains as small increases in ratio requirements broadly increase the demand for equity without changing the ranking of borrower types within the demand curve. Yet, for large enough increases in ratio requirements, good borrowers obtain a higher ranking, thus giving them priority in access to bank finance. Moreover, since other borrowers start to be rationed completely, the existing equity capital is applied to a smaller subset of borrowers (in Panel E only to the good borrow-
ers). Yet, high ratio requirements are not per se a guarantee for improved allocative efficiency. If ratio requirements were increased beyond the level considered in Panel D, the total equity capital required to fund all borrowers of the green type would increase further (graphically, the width of the green types demand segment would increase), and at some point, surplus-generating bank-dependent borrowers would again be rationed.

Overall, these illustrations highlight that increases in ratio requirements can have the desirable effect of better aligning the private demand for bank capital with the ranking based on social surplus. Yet, they also reveal potential adverse effects due to the increased reliance on bank capital for the funding of any borrower type, a channel that can cause the rationing of surplus-generating bank-dependent borrowers.

Risk weights. Next, we consider policy makers’ opportunity to undertake more targeted adjustments to capital requirements, specifically by changing risk weights that are contingent on the risk classifications ρ. One of the major changes in the regulatory frameworks from Basel I to Basel II was the introduction of such risk weights that are contingent on external ratings. A similar system of risk-based capital requirements was introduced for U.S. insurance companies in 1994. Yet, the ratings used in regulations in practice are generically noisy and incomplete, that is, they pool multiple types of borrowers. In fact, regulations used in practice even pool borrowers of multiple ratings classes. For example, capital regulations applying to U.S. insurance companies impose the same “risk based capital charges” no matter if a corporate bond is rated AAA, AA, or A (see Becker and Opp, 2013). Due to the associated pooling of borrowers, changing risk weights for specific risk classifications then generically involves the same types of trade-offs as the ones discussed above for overall capital ratio requirements (in the provided examples, effectively three borrower types were pooled under one risk classification). In particular, whereas increasing risk weights tends to reduce the funding of surplus-destroying risky borrowers of a given risk-classification, they can also cause bank-dependent surplus-generating borrowers with the same risk classification to be rationed.

Yet, even when risk classifications are perfectly precise, changes in risk weights generally have non-trivial implications. We consider such a scenario in Figure 5. The figure follows a format similar to that of Figure 4. Panel A again replicates the baseline
Figure 5. Risk weights. Panels A through D illustrate the effects of increases in the risk-weight applying to red borrower types, assuming that regulatory risk classifications perfectly identify this type. Panel A replicates the economy illustrated in Figure 2, where all borrower types are subject to a ratio requirement of \(\varrho \equiv 0.25 \) (that is, all borrower types have a risk weight of 1). Panels B through D consider gradual increases in the red type’s risk weight, up to a level of 2.5 in Panel D.

parameterization from Figure 2, and Panels B through D consider changes to capital requirements. Yet, now, only the risk weights applying to borrowers of the red type are increased. This type of policy intervention thus presumes that the regulator has access to regulatory risk classifications that perfectly identify only the borrowers of the red type. Conditional on having access to these precise classifications, there is no downside to imposing large increases in the risk weight for red types, as investment in these risky types projects’ always reduces expected total surplus. Yet, even when policy interventions can be targeted with that much precision, small increases in risk weights
can harm allocative efficiency. In particular, the change from the baseline level to the one considered in Panel B reduces total surplus. This result obtains as the considered risk weight increase is insufficient to cause the rationing of red borrowers. Instead, red types remain inframarginal borrowers and simply use more of banks’ equity capital — graphically, the red segment of the demand curve widens. As a result, additional marginal green borrowers are crowded out, causing increased rationing of beneficial bank-dependent investment. This result reveals interesting interactions and spill-over effects occurring even when a policy maker can adjusts risk weights based on perfectly precise risk classifications.

4.3. Development of Public Markets

The development and accessibility of credit from sources other than banks varies considerably across countries (see, e.g., Rajan and Zingales, 1995, 1998). Moreover, countries have been affected, to varying degrees, by long-term trends associated with financial innovations. These trends have had the implication that borrowers have obtained better access to alternatives to the funding provided by regular banks. For example, important innovations have included the development of junk bond markets in the 1980s, securitization and shadow banking in the 2000s, and most recently, the development of Fintech funding platforms, such as those facilitating crowdfunding. Despite this variation in the cross-section and over time, the rules governing bank capital requirements have changed very infrequently, and following the Basel accords, a large set of countries has instituted very similar rules. In this section, we analyze how a given set of rules for capital requirements can have starkly different allocative implications across economies that differ in borrowers’ access to non-bank funding, which we broadly term “public market development.” In the context of our model, access to public markets is affected by both the surplus a borrower’s projects generate (NPV) and the moral hazard rent B that is attainable absent bank monitoring. The more developed public markets are, the lower is this moral hazard rent, and the fewer firms have to rely on banks as the sole source of finance.

Figure 6 illustrates the implications of improvements in public markets that lower
Figure 6. Changes in public market development. The figure illustrates the effect of a decrease in the parameter B for all borrower types from 0.3 (Panel A) to 0.15 (Panel B). The Panels of the figure build on our previous benchmark parameterization shown in Figure 2, subject to the following adjustments: the green type now has cash flows $C = (1.28, 1.28)$, the general capital requirement is $\varepsilon = 30\%$, and $E_f = 0.05$.

the moral hazard frictions in these markets for all borrower types. As detailed in the figure’s caption, the graphs again build on our baseline Figure 2, subject to a few adjustments. In Panel A, the moral hazard friction in public markets is large (“High B”), implying that both green and yellow borrower types do not have access to this source of finance. Lacking this outside option, these borrower types are highly profitable for banks, as measured by their high reservation prices for bank capital. Given these high reservation prices, banks use their scarce capital to extend credit to green and yellow borrower types only. Surplus-destroying red borrower types are rationed.

In contrast, in Panel B, the moral hazard frictions in public markets are lower (“Low B”), causing green and yellow types to have access to these markets. Moreover, since borrowers of the green type also have safe cash flows, these borrowers do not create any incremental private surplus with bank finance (as the PUT component is also zero). As a result, the green type’s reservation price for bank capital drops to one, causing this type to move off the banking sector’s balance sheet. In contrast, the yellow type, while not bank dependent, does generate some incremental private surplus with bank funding, as the PUT value is positive. Yet, the yellow borrower type’s reservation price does drop relative to the regime with less developed public markets depicted in Panel A, as the PUT value becomes the sole source of incremental private
surplus from bank finance. Finally, the reservation prices of surplus-destroying risky red borrower types are unaffected by the change in public market development, as public markets are in any case not a feasible source of funding for these borrowers. As a result, red borrowers end up becoming those with the relatively highest reservation prices, and therefore start to obtain bank finance. In sum, the model reveals banks’ increased incentives to focus on reaching for yield (instead of using monitoring abilities) after public markets become more efficient and a greater competitive threat.

5. Discussion of Modeling Assumptions

In this section, we discuss the robustness of the presented results with respect to various modeling assumptions. We highlight that key principles uncovered from our approach of considering a micro-founded aggregate demand function for bank capital continue to apply when various assumptions of our baseline model are relaxed. In this context, we will refer to the following broad definition of a borrower’s reservation price for bank capital:

$$p^r = 1 + \frac{\text{Incremental private surplus from funding borrower with bank loan}}{\text{Bank capital needed to fund borrower}}. \quad (26)$$

In discussing implications of alternative modeling assumptions, we will repeatedly revisit this general representation of borrowers’ reservation prices. In particular, we will evaluate which elements of equation (26) would be affected by additional economic channels not explicitly featured in the baseline model.

Market power. The proposed environment features the standard assumption that banks act competitively (as, e.g., in Holmstrom and Tirole, 1997). Yet, in principle, banks may have market power in the loan market and/or in the deposit market. If banks had market power in the loan market, they would be able to extract a greater fraction of the surplus created when funding a borrower, that is, banks would receive higher prices per unit of bank capital. However, borrowers’ reservation prices and the associated demand for bank capital are unaffected by this type of market power. As a result, key insights of our analysis regarding the demand curve would still apply if
banks had market power in their interactions with borrowers.

On the other hand, if banks had market power in the deposit market, any investments yielding expected returns above the deposit rate (including storage investments) would generate additional private surplus. This source of surplus would imply an additional channel causing a wedge between the private ranking of borrowers within the demand curve based on reservation prices and the social ranking based on total surplus. In particular, investments in securities that are associated with higher risk weights could be financed less with “cheap” deposits, making these investments less attractive, ceteris paribus. While in the presented model, higher risk weights already cause borrowers to rank lower in the demand curve, this additional channel would add to the existing effect emerging from the PUT component affecting reservation prices. In particular, if safe storage investments (e.g., government bonds) were associated with very low risk weights, then banks would have a larger incentive to invest in these types of securities, shedding light on banks incentives to hold “safe” assets.

Ex-ante differences across banks. Our model reveals that even ex ante identical banks optimally choose heterogeneous portfolio strategies (see Corollary 1). If subgroups of banks additionally differed ex ante in terms of characteristics such as the probability of receiving government bailouts, legacy asset holdings, or monitoring technologies, these sources of heterogeneity would naturally lead to clientele effects. These clientele effects would lead to multiple bank capital demand curves, one for each subgroup of banks. For example, ceteris paribus, banks that are more likely to receive government bailouts would generate higher reservation prices with risky borrowers, as the PUT component of the reservation price would be higher. Similarly, if banks had different types of legacy assets, they would create more private surplus with those types of new borrowers that exhibit correlated downside risks with the existing assets. For example, as Greek banks are generically more exposed to Greek risk factors, this logic predicts that these banks have a comparative advantage specifically in holding Greek sovereign debt, rather than just any risky debt. Moreover, banks could have heterogeneous monitoring technologies as represented by differing abilities to reduce moral hazard rents or differing monitoring costs. In this case, banks whose monitoring technologies are less efficient would also have greater risk taking incentives. As the monitoring-dependent surplus of these banks would be lower, the PUT component
would be a relatively more important source of the private surplus shaping reservation prices.

Endogenous capital requirements and deposit insurance premia. The proposed modeling environment allows capturing many details of regulatory frameworks used in practice by putting effectively no restrictions on specifications for overall capital requirements, risk classifications, and risk weights. This framework can facilitate analyses of how regulators should optimally choose parameters of the regulatory environment when facing the plausible limitation that regulations can condition only on a given set of noisy but verifiable security risk classifications (akin to the coarse set of verifiable signals in the incomplete contracts literature following Grossman and Hart, 1986). These contractible risk classifications (e.g., credit ratings) generally pool multiple types of borrowers, and thus provide noisy and/or biased risk evaluations (for example, two borrower types \((q, \rho)\) and \((q', \rho)\) are pooled under the common regulatory risk classification \(\rho\)). Due to this type of pooling, setting risk weights for specific risk classifications then generically involves trade-offs. In particular, regulators typically face the dilemma that whereas high risk weights reduce the funding of surplus-destroying risky borrowers of a given risk-classification, they can also cause bank-dependent surplus-generating borrowers with the same risk classification to be rationed. These trade-offs emerging from imprecise risk classifications could also not be alleviated by additional regulatory tools used in practice, such as deposit insurance premia. As deposit insurance premia also have to rely on regulatory risk classifications of securities, they would operate similarly to risk weights in affecting the reservation prices of all borrowers pooled under a given risk classification \(\rho\). In particular, deposit insurance premia would equally lower the incremental private surplus from bank lending for all borrowers of a given classification. Finally, analyses of this type could flexibly specify welfare functions incorporating additional allocative effects going beyond the surplus generated by borrowers (such as the costs of raising funds for bailouts).
6. Case Studies

In this section, we illustrate how our conceptual approach of an aggregate demand function for bank capital can be used to shed light on important crisis episodes that have been in the focus of extensive empirical research. As already mentioned in the introduction, a key contributing factor to the Japanese crisis were deregulations that improved public market access for large firms. Our framework predicts that such increased competition faced by banks for a subset of borrowers naturally causes safe large firms to rank lower in the aggregate demand curve for bank capital, and conversely, riskier firms to rank relatively higher (see also the comparative statics analysis in Section 4.3). This mechanism can help explain the crowding out of safe bank lending documented by Hoshi and Kashyap (1999, 2001) and Caballero et al. (2008). We now discuss the more recent financial crisis and the subsequent European debt crisis through the lens of our framework.

Financial crisis in the U.S. (2007/08). The fact that sophisticated financial institutions were holding large amounts of “toxic” structured securities on their balance sheets was a key reason for the severity of the 2007/08 financial crisis (Diamond and Rajan, 2009). In the terminology of our model, this observation raises the question why so many risky assets ranked highly in the aggregate demand curve for bank capital, even when the underlying investments in real estate were inefficient from an ex-ante perspective. An explanation consistent with our model is that the popular practice of securitization in the pre-crisis period generated an unusually large supply of securities with a high PUT value.

A key force behind this increased supply was the possibility to economize on capital requirements by securitizing a loan pool even if the risk of the loan pool was ultimately still borne by the bank (see, e.g., Acharya et al., 2013). Since the “savings” in regulatory capital requirements for securitization tranches were linked to their ratings, profit-maximizing credit agencies in turn responded to the demand for highly-rated securities by increasing their supply (see, e.g., Opp et al., 2013). As a result, by 2007, 60% of collateralized debt obligations were rated AAA (Fitch, 2007). At the same time, the very design of the structuring process implied that the highly rated tranches were exposed to high downside risk, akin to “economic catastrophe bonds” (see Coval
et al. (2009a), Coval et al. (2009b)). In sum, the combination of high downside risk, rating-contingent capital requirements, and rating inflation generated a large supply of securities with high PUT value, causing severe distortions in the aggregate demand curve.

These distortions have several immediate implications. First, if we view subprime home-owners as a borrower type in our model, our framework predicts “real” over-investment in the housing sector. Second, since overall capital requirements in the pre-crisis period were so low that bank capital was not scarce, the reaching-for-yield-behavior by competitive financial institutions implied that the put value was passed on to borrowers in the form of too low loan yields, consistent with empirical evidence for low risk-premia in the pre-crisis period (Muir, 2017). Within our framework, when banks (and similarly, insurance companies) become marginal investors in publicly traded debt, they may bid up prices to the point where these securities earn negative expected excess returns (see equation 23), consistent with empirical evidence by Greenwood and Hanson (2013). Via this risk-taking mechanism, our theory thus also predicts a rational overvaluation of the underlying real estate, relative to a frictionless benchmark.

Further, recent empirical research has produced more detailed micro-level evidence identifying the risk-taking channel underlying our narrative. Relying on institutional imperfections of capital regulation, Becker and Ivashina (2015) and Iannotta et al. (2018) have identified “reaching-for-yield” behavior by both insurance companies and banks, respectively, by exploiting variation of “risk” within capital requirement buckets. Based on this reaching-for-yield behavior, our framework predicts that risk signals used for regulation, such as credit ratings, will be reflected in prices (controlling for cash flow characteristics q). A recent study by Kisgen and Strahan (2010) finds direct evidence in support of this implication.

European debt crisis (2010/12). In the aftermath of the Financial crisis, European

32 Banks’ securities holdings account for about 20% of their assets (see Laux and Leuz, 2010, Abbassi et al., 2016). In addition, insurance companies, which are also regulated financial institutions that may be subject to implicit too-big-to-fail guarantees, hold a large fraction of corporate debt.

33 For example, capital regulations applying to U.S. insurance companies impose the same “risk based capital charges” no matter if a corporate bond is rated AAA, AA, or A (see Becker and Opp, 2013). Within our model, this may be interpreted as variation of q holding $\epsilon(\rho)$ fixed.
banks substantially increased their portfolio share of government bond holdings precisely at a time when the credit risk of these sovereign debt positions went up due to rising budget deficits. For example, the portfolio share that Italian banks allocated to Italian government bonds increased from 5% in 2008 to over 10% in 2012 (see SEB, 2018). A higher ranking of sovereign debt in the aggregate demand is consistent with the view that the private sector lacked profitable investment opportunities, whereas the \(PUT \) value associated with sovereign debt increased substantially. A key factor for this increase in \(PUT \) value (and, hence, reservation prices) was that the increase in the sovereigns’ credit risk was not counterbalanced by corresponding increases in regulatory risk-weights. Instead, the Capital Requirement Directive assigns a zero-risk weight for “exposures to Member States’ central government […] denominated and funded in the domestic currency of that central government” (see Hannoun, 2013), regardless of credit risk. Consistent with the view that risk-taking incentives were instrumental for the increase in the portfolio share allocated to sovereigns, banks’ overall portfolios exhibited correlated downside risks (see prediction in Lemma 2), which was further facilitated by a removal of concentration limits for sovereign debt exposures by Eurozone regulators: A “home-bias” in sovereign debt holdings in the sense of Greek banks holding Greek sovereign debt (see empirical evidence by Acharya and Steffen (2015)) ensures that losses on sovereign debt positions occur precisely in states of the world where the bank defaults on obligations to its own creditors.\(^{34}\)

In turn, the aggregate consequences of risk-taking behavior by European banks were far more severe than a redistribution of wealth from tax payers to bank equity holders.\(^{35}\) First, the lack of “market discipline” induced by banks’ risk-taking behavior aggravated the magnitude of the European sovereign debt crisis by facilitating excessive borrowing ex ante. Second, empirical evidence by Acharya et al. (2014) shows that bank risk-taking caused negative real effects by crowding out lending to small and medium-sized firms: Since public markets are not as developed in Europe (see, e.g., Rajan and Zingales, 1995), many of these firms did not possess a viable outside option to bank finance so that credit rationing resulted from the above described change in the ranking of borrowers in the aggregate demand curve.

\(^{34}\)See further discussion in Section 5 where we address how our results extend to legacy assets.

\(^{35}\)If there are positive marginal social cost of public funds (as in Farhi and Tirole (2017)), then even pure transfers to the banking sector are distortionary.
7. **Conclusion**

An influential literature in macroeconomics and banking highlights bank capital as a key state variable affecting aggregate economic outcomes. In this study, we propose a transparent and flexible framework to analyze which types of borrowers in an economy are most affected by shocks relating to bank capital and the regulations governing it. To do so, we develop a novel approach to characterizing the credit market equilibrium based on a micro-founded aggregate demand function for bank capital. Despite the presence of multi-dimensional borrower heterogeneity this approach yields closed-form expressions for the composition and pricing of credit in equilibrium. The demand curve central to our analysis is based on borrowers’ reservation prices for bank capital. These reservation prices are shown to have an economically intuitive representation that is amenable to empirical measurement, and provides sharp predictions on the behavior of bank funding. In particular, the difference between a borrower’s reservation price and the shadow value of bank capital is a sufficient statistic for the provision of bank credit. Our framework might therefore provide useful conceptual guidance for future empirical studies using micro-level data (e.g., as analyzed in Jiménez et al., 2012, Iyer et al., 2014). Studies of this type could help further improve our understanding of the complex behavior of the composition of credit and its importance for macroeconomic stability and efficiency, including phenomena such as overinvestment, credit rationing, and crowding out effects. Moreover, in light of recent Fintech innovations, substitution between bank credit and new alternative sources of finance are likely to have first-order effects on the demand for bank capital and the composition of credit.

A. Appendix

A.1. Proof of Lemma 1

First, we show that if \(NPV (q) < B (q) \), the borrower cannot raise financing under any contract. Assumption 1.1 implies that public financing requires high effort, i.e., \(a = 1 \). If the borrower exerts effort, the maximum value of the borrower’s stake is given by \(NPV (q) \), since the IR constraint and investor competition imply that investors’ expected discounted payoff is equal to \(I \), and \(NPV (q) \) is equal to the difference between the present value of the firm’s cashflows \(\frac{E[C_t(q,1)]}{1+r_F} \) and \(I \). Second, as reflected by the IC constraint, the borrower’s payoff under shirking is bounded from below by \(B (q) \), due to limited liability. Hence, if \(NPV (q) < B (q) \), it is impossible to jointly satisfy IC and IR.

We next show that whenever \(NPV (q) \geq B (q) \), the borrower can raise financing with a debt contract that gives all surplus to the borrower, which also proves the optimality of debt. Set \(CF_s = FV \) for all \(s \). Then IR implies that \(\frac{FV}{1+r_F} \geq I \). Moreover, using Assumption 1.2, we obtain that \(E[\max \{ C_s(q,0) - FV, 0\}] = 0 \) and the right hand side of IC achieves the lower bound \(B (q) \) under any debt contract that satisfies IR. Since investors are competitive, the face value of debt is set such that IR binds, so that the borrower’s payoff is \(NPV (q) \). We have thus proven that whenever \(NPV (q) \geq B (q) \), there exists a debt contract that satisfies IR and allows the borrower to extract the entire NPV.

Unlike in Innes (1990) the optimality of debt is implied by Assumption 1.2 rather than the joint assumption of the monotone likelihood ratio property (MLRP) and the monotonicity constraint of investors’ payoff in firm cash flows. There are cash flow distributions that satisfy Assumption 1.2, but not MLRP, and vice versa.

A.2. Proof of Lemma 2

We analyze the individually optimal portfolio choice of a bank that faces a perfectly elastic supply of securities and takes as given the associated state-dependent returns \(r^s(q, \rho) \). The bank’s inner (ROE) maximization problem (13) is

\[
\max_{e,\mathbf{x}} r_E (\mathbf{x}, e) - r_F \quad \text{s.t. } e \geq e_{\min} (\mathbf{x}) ,
\]

(27)

where

\[
r_E (\mathbf{x}, e) - r_F = \frac{1}{e} E[\max \{ r^A (\mathbf{x}) - r_F, -(1 + r_F) e\}]
\]
We note that \(r_E(x,e) - r_F \geq 0 \) if the bank chooses a strictly positive investment in a loan portfolio, \(A > 0 \). Otherwise, it would prefer to invest in cash or pay out dividends \(E_O = -E_I \). We thus only consider the relevant case where a weakly positive excess return is attainable.

Leverage. Taking the partial derivative of \(r_E(x,e) \) w.r.t. \(e \) yields

\[
\frac{\partial r_E(x,e)}{\partial e} = -\frac{1}{e^2} \mathbb{E} \left[\max \left\{ r_s(x) - r_F, -(1 + r_F)e \right\} \right] - \frac{1}{e} \Pr \left[\frac{r_s(x) - r_F}{1 + r_F} < -e \right].
\]

Note that if \(r_E(e,x) > r_F \) for some \((e,x)\) then it must be the case that

\[
\mathbb{E} \left[\max \left\{ r_s(x) - r_F, -(1 + r_F)e \right\} \right] > 0.
\]

It follows that \(\frac{\partial r_E(x,e)}{\partial e} < 0 \) if \(r_E(x,e) > r_F \). Further, if \(r_E(x,e) = r_F \) then \(\frac{\partial r_E(x,e)}{\partial e} < 0 \) as long as there is one state \(s \) with positive probability, where the bank defaults, that is, \(\Pr[\frac{r_s(x) - r_F}{1 + r_F} < -e] > 0 \).

Thus, for any choice \((x,e)\) that yields \(r_E(x,e) > r_F \) it is optimal to decrease \(e \) at the margin, unless the constraint \(e \geq e_{\min} \) is already binding. Since decreasing \(e \) increases \(r_E(x,e) \), the condition \(r_E(x,e) > r_F \) remains satisfied after any decrease in \(e \). Thus, for any \((\tilde{x},\tilde{e})\) such that \(r_E(\tilde{x},\tilde{e}) > r_F \) it is the case that \(\arg\max_e r_E(\tilde{x},\tilde{e}) = e_{\min} \).

Further, for any choice \((x,e)\) that yields \(r_E(x,e) = r_F \) and \(\Pr[\frac{r_s(x) - r_F}{1 + r_F} < -e] > 0 \), marginally decreasing \(e \) also increases \(r_E \) (provided such a decrease is feasible, that is, the constraint \(e \geq e_{\min} \) is not already binding). Since marginally decreasing \(e \) increases \(r_E(x,e) \) (maintaining the condition that \(r_E(x,e) \geq r_F \)) and weakly enlarges the set of default states (maintaining \(\Pr[\frac{r_s(x) - r_F}{1 + r_F} < -e] > 0 \)), it is optimal to decrease \(e \) until the constraint \(e \geq e_{\min} \) is binding. Formally, for any \((\tilde{x},\tilde{e})\) such that \(r_E(\tilde{x},\tilde{e}) = r_F \) it is the case that \(\arg\max_e r_E(\tilde{x},\tilde{e}) = e_{\min} \) if \(\Pr[\frac{r_s(x) - r_F}{1 + r_F} < -e] > 0 \).

This concludes the proof of the two statements about optimum leverage.

Portfolio choice. The analysis in the previous paragraph implies that it is optimal for banks to choose \(e = e_{\min} \) as long as there exists a portfolio \(x \) such that \(r_E(x,e) > r_F \), or \(r_E(x,e) = r_F \) and \(\Pr[\frac{r_s(x) - r_F}{1 + r_F} < -e] > 0 \). The following Lemma will be useful for characterizing the banks’ portfolio choice.
Lemma 5 For all \((q, \rho)\) with \(x^*(q, \rho) > 0\), we obtain

\[
\mathbb{E} \left[\frac{r^s(q, \rho) - r_F}{\varepsilon(\rho)} \bigg| s : \frac{r^s_A(q, \rho) - r_F}{1 + r_F} > -\epsilon_{\min}(x^*) \right] = \frac{\nu}{\Pr \left[s : \frac{r^s_A(q, \rho) - r_F}{1 + r_F} > -\epsilon_{\min} \right]} = k > 0. \tag{28}
\]

Proof: Presume that such a portfolio \(x\) exists and that banks (optimally) choose \(e = \epsilon_{\min}\). Then we can re-write the expected excess return on a bank’s book equity as follows:

\[
r_E(x, \epsilon_{\min}) - r_F = \mathbb{E} \left[\max \left\{ \frac{r^s_A(x) - r_F}{\epsilon_{\min}(x)}, -(1 + r_F) \right\} \right]
\]

\[
= \mathbb{E} \left[\max \left\{ \sum_{q, \rho} x(q, \rho) \left[r^s(q, \rho) - r_F \right], -(1 + r_F) \right\} \right]
\]

\[
= \mathbb{E} \left[\max \left\{ \sum_{q, \rho} \frac{r^s(q, \rho) - r_F}{\epsilon(\rho)} x(q, \rho) \varepsilon(\rho), -(1 + r_F) \right\} \right]. \tag{30}
\]

Defining \(w(q, \rho) = \frac{x(q, \rho)\varepsilon(\rho)}{\sum_{q, \rho} x(q, \rho)\varepsilon(\rho)} \in [0, 1]\) for all \((q, \rho)\) as the new choice variables we obtain:

\[
r_E(w) - r_F = \mathbb{E} \left[\max \left\{ \sum_{q, \rho} w(q, \rho) \frac{r^s(q, \rho) - r_F}{\epsilon(\rho)}, -(1 + r_F) \right\} \right]
\]

Maximizing subject to the constraint that \(\sum_{q, \rho} w(q, \rho) = 1\) and \(w(q, \rho) \geq 0\) (short-sales constraint), we obtain for all \((q, \rho)\) with \(w^*(q, \rho) > 0\) the following condition at the optimum:

\[
\frac{\partial r_E(w) - r_F}{\partial w(q, \rho)} = \nu, \tag{32}
\]

where \(\nu\) is the Lagrange multiplier on the constraint \(\sum_{q, \rho} w(q, \rho) = 1\). Further, we can write:

\[
\frac{\partial r_E(w) - r_F}{\partial w(q, \rho)} = \mathbb{E} \left[\frac{r^s(q, \rho) - r_F}{\varepsilon(\rho)} \bigg| s : \frac{r^s_A(q, \rho) - r_F}{1 + r_F} > -\epsilon_{\min} \right] \cdot \Pr \left[s : \frac{r^s_A(q, \rho) - r_F}{1 + r_F} > -\epsilon_{\min} \right]. \tag{33}
\]

Combining (32) and (33), we obtain (28) if \(w^*(q, \rho) > 0\) (and, hence, \(x^*(q, \rho) > 0\)).

Correlated down-side risks. First, note that we established in Lemma 5 that for any optimal choice \((x^*, e^*)\) the expected excess asset return conditional on bank survival scaled by \(\varepsilon(\rho)\) is identical across issuer types \((q, \rho)\) with \(x^*(q, \rho) > 0\). Suppose there is a type \((\tilde{q}, \tilde{\rho})\) with \(x^*(\tilde{q}, \tilde{\rho}) > 0\) in the optimal portfolio that yields \(\frac{r^s_{A}(\tilde{q}, \tilde{\rho}) - r_F}{1 + r_F} > -\varepsilon(\tilde{\rho})\) in some state \(s\).
where the bank defaults, that is, where \(\sum_{q, \rho} x^*(q, \rho) \frac{r^*(q, \rho) - r_E}{1 + r_E} < -e_{\min} \). Then the bank could obtain a higher expected return on equity \(r_E > r_E(x^*, e^*) \) by investing only in this asset \((\bar{q}, \bar{\rho})\), as it not only yields the same expected levered return across previous survival states (under the previous policy \((x^*, e^*)\)) but also allows the bank to survive in at least one additional state \(s\).

Conversely, suppose \(x^*\) is an optimal portfolio and there is an asset of type \((\bar{q}, \bar{\rho})\) in the optimal portfolio with a strictly positive weight \(x^*(\bar{q}, \bar{\rho}) > 0\) that yields \(r^\delta(\bar{q}, \bar{\rho}) \leq -e(\bar{\rho})\) in some state \(\delta\) where the bank survives and has strictly positive equity value, that is, where \(\sum_{q, \rho} w^*(q, \rho) \frac{r^*(q, \rho) - r_E}{\varepsilon(\rho)} > -(1 + r_E)\). Then it must be the case that in this survival state \(\delta\) other assets in the portfolio yield \(\frac{r^*(q, \rho) - r_E}{\varepsilon(\rho)} > -(1 + r_E)\), otherwise the bank would default in that state. For notational simplicity define the set of states where the bank survives under policy \((x^*, e_{\min}(x^*))\) as \(\Sigma_S(x^*, e_{\min}(x^*))\). We showed in Lemma 5 that

\[
\mathbb{E}\left[\frac{r^*(q, \rho) - r_E}{\varepsilon(\rho)} \bigg| \Sigma_S \right] = k
\]

for all \((q, \rho)\) with \(x^*(q, \rho) > 0\). However, since asset \((\bar{q}, \bar{\rho})\) performs worse than other assets in the portfolio in state \(\delta\), that is, \(\frac{r^\delta(\bar{q}, \bar{\rho}) - r_E}{\varepsilon(\bar{\rho})} < -(1 + r_E) \leq \frac{r^*(q, \rho) - r_E}{\varepsilon(\rho)}\) it must outperform, relative to the other assets in the portfolio in expectation in the other survival states, to ensure that equation (28) can hold, that is:

\[
\mathbb{E}\left[\frac{r^\delta(\bar{q}, \bar{\rho}) - r_E}{\varepsilon(\bar{\rho})} \bigg| \Sigma_S \setminus \delta \right] > \mathbb{E}\left[\frac{r^*(q, \rho) - r_E}{\varepsilon(\rho)} \bigg| \Sigma_S \setminus \delta \right] \text{ for all } (q, \rho) \neq (\bar{q}, \bar{\rho}) \text{ with } x^*(q, \rho) > 0.
\]

If we set \(w(\bar{q}, \bar{\rho}) = 1\) and \(w(q, \rho) = 0\) for all \((q, \rho) \neq (\bar{q}, \bar{\rho})\) we obtain the following expected excess return on equity conditional on the states \(\Sigma_S\):

\[
(1 - \Pr[\delta|\Sigma_S]) \cdot \mathbb{E}\left[\frac{r^\delta(\bar{q}, \bar{\rho}) - r_E}{\varepsilon(\bar{\rho})} \bigg| \Sigma_S \setminus \delta \right] + \Pr[\delta|\Sigma_S] \cdot (-1 - r_E) \\
> (1 - \Pr[\delta|\Sigma_S]) \mathbb{E}\left[\frac{r^*(q, \rho) - r_E}{\varepsilon(\rho)} \bigg| \Sigma_S \setminus \delta \right] + \Pr[\delta|\Sigma_S] \frac{r^\delta(\bar{q}, \bar{\rho}) - r_E}{\varepsilon(\bar{\rho})} \\
= k,
\]

that is, we obtain a conditional expected return that is greater than the one obtained from portfolio \(x^*\). Further, in failure states \(\Sigma_F\), this new portfolio cannot yield equity holders lower returns than the previous portfolio \(x^*\), since equity holders are protected by limited liability. This implies that setting \(x(\bar{q}, \bar{\rho}) = 1\) and \(x(q, \rho) = 0\) for all \((q, \rho) \neq (\bar{q}, \bar{\rho})\) increases \(r_E\), contradicting the supposition that \(x^*\) was an optimal portfolio.

Thus, if \(x^*\) is an optimal portfolio then any asset \((q, \rho)\) in this optimal portfolio with a strictly positive weight \(x^*(q, \rho) > 0\) must yield \(\frac{r^*(q, \rho) - r_E}{1 + r_E} > -e(\rho)\) in all states \(s\) where
bank survives and has strictly positive equity value.

A.3. Proof of Lemma 3

Recall that the optimal bank inside equity value can be written as follows:

$$E_{M,I} = E_I + \max_{E_O} \left[\frac{(E_I + E_O) (\max_{e,x} [r_E(x,e)] - r_F)}{1 + r_F} - (c(E_O) - E_O), \right]$$

Let (x^*, e^*) denote the optimal solution to the inner (ROI) maximization problem. It follows that if $(e'(0) - 1) \geq \frac{r_E(x^*,e^*) - r_F}{1 + r_F}$ the bank optimally sets $E_O = 0$ (note that c is weakly convex). Further, at any E_O where $(e'(E_O) - 1) < \frac{r_E(x^*,e^*) - r_F}{1 + r_F}$ the bank can strictly increase its objective function at the margin by increasing E_O.

A.4. Proof of Lemma 4

The reservation price of an issuer is defined as the date-0 value added to bank equity holders per unit of allocated bank equity if the issuer is financed at her outside option. The derivation of the reservation price builds on results in Lemmas 1 and 2. First, if an issuer demands a loan to finance an investment of size I, optimal financing decisions by the banker (by Lemma 2) imply that the issuer “effectively” demands $I_{E}(\rho)$ units of bank equity. Bankers obtain the remaining funds of $I(1 - E(\rho))$ via (subsidized) deposits. Since the government transfers the difference between the promised repayment to depositors $I(1 - e(\rho))(1 + r_F)$ and the cash flows produced by banks assets (the cash flows generated by the borrower, $C_s(q, 1)$) in bank default states, the present value of government transfers ultimately accruing to bank equity holders is

$$PUT(q, \rho) \equiv \frac{\mathbb{E} \left[\max \{I(1 - e(\rho))(1 + r_F) - C_s(q, 1), 0\} \right]}{1 + r_F} \geq 0. \quad (35)$$

The value of $PUT(q, \rho)$ uses the optimality of portfolios with correlated downside risk (by Lemma 2) and that bankers hold senior loans with promised yields of $y(q, \rho) \geq r_F$.

Conditional on financing an issuer, the total private surplus shared between the bank equity holders and the issuer is, thus, given by $NPV(q) + PUT(q, \rho)$. Due to the borrower’s outside option of unmonitored finance (see Lemma 1) the maximum value added that bankers can reap is given by

$$\Pi(q, \rho) = NPV(q) + PUT(q, \rho) - NPV(q) \mathbb{1}_{\{NPV(q) \geq B(q)\}} \quad (36)$$
Scaling (36) by $I\xi(\rho)$ and adding 1 yields the effective price that a banker receives per unit of bank equity if the borrower is financed at his outside option, i.e., the issuer’s reservation price in (17).

A.5. Proof of Proposition 1

The result follows from standard general equilibrium analysis, see e.g., Mas-Colell et al. (1995).

A.6. Proof of Proposition 2

As is standard in general equilibrium theory, all issuer types (q, ρ) with a reservation price $p^r(q, \rho)$ above the equilibrium price p^* get financed. To obtain ξ note that after financing all issuers with $p^r(q, \rho) > p^*$, an amount of $E^* - \sum_{(q, \rho):p^r(q, \rho) > p^*} I \cdot \xi(\rho) \cdot m(q, \rho)$ is left to fund issuers with $p^r(q, \rho) = p^*$. The total demanded capital by these issuers is $\sum_{(q, \rho):p^r(q, \rho) = p^*} I \cdot \xi(\rho) \cdot m(q, \rho)$. Hence, we obtain that

$$\xi = \frac{E^* - \sum_{(q, \rho):p^r(q, \rho) > p^*} I \cdot \xi(\rho) \cdot m(q, \rho)}{\sum_{(q, \rho):p^r(q, \rho) = p^*} I \cdot \xi(\rho) \cdot m(q, \rho)}$$

(37)

To obtain the expected return on debt of bank finance borrowers we use the fact that all loans must yield the same ROE to bankers (or equivalently, the same price) if financed in optimal portfolios. That is,

$$\mathbb{E} \left[\max \left\{ \frac{r^s(q, \rho) - r_F}{\xi(\rho)}, - (1 + r_F) \right\} \right] = r^*_E - r_F$$

(38)

where $r^*_E - r_F = p^* (1 + r_F)$. Multiplying (38) by $\xi(\rho)$ and using basic algebra gives us:

$$\mathbb{E} [r^s(q, \rho)] = r_F + \xi(\rho) [r^*_E - r_F] - \mathbb{E} \left[\max \left\{ (1 - \xi(\rho)) (1 + r_F) - \left[1 + r^s(q, \rho) \right], 0 \right\} \right]$$

(39)

Since $g(q, \rho) \geq r_F$, we obtain that $1 + r^s(q, \rho) = \frac{C_s(q, 1)}{I}$ whenever $\frac{r^s(q, \rho) - r_F}{\xi(\rho)} < - (1 + r_F)$. Thus, we get:

$$\mathbb{E} [r^s(q, \rho)] = r_F + \xi(\rho) [r^*_E - r_F] - \frac{1 + r_F \mathbb{E} \left[\max \{ I (1 - \xi(\rho)) (1 + r_F) - C_s(q, 1), 0 \} \right]}{I}$$

(40)

Using the definition of (18) we thus obtain (23).
References

Duffie, D., 2018, Prone to fail: The pre-crisis financial system, Working paper, Stanford GSB.

SEB, 2018, Euro Area: Increased bank holdings of government debt, Technical report, SEB.
