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ABSTRACT

This study investigates the bias in a regression with a lagged and
stochastic regressor. The regressor obeys a first-order autoregressive
process whose innovations are correlated with the regression disturbances.
When the latter correlation is positive (negative), the slope coefficient'’s
estimator and t statistic are biased downward (upward). The bias in the OLS
slope coefficient is proportional to the bias in the estimated autocorrelation
coefficient of the regressor process. Combining this result with an
approximate formula for the latter bias gives a new estimator which compares

favorably to the OLS estimator in terms of bias and mean square error.



1. Introduction

Researchers in economics and finance often encounter time-series
regressions in which the independent variables are predetermined (e.g.,
lagged) with respect to the dependent variable. This situation occurs, for
example, when one tests whether the expected return on an asset is constant by

testing whether 8 = 0 in the regression

yt a + ﬂxt-l + ul , t=1, ..., T, (1)

where Ye is the asset’s return and x is a variable from the information set

t-1
available to investors prior to observing the return. A few examples of such
tests include Fama and Schwert (1977), Fama (1984), Huizinga and Mishkin
(1985), Campbell(1985), and Keim and Stambaugh (1985).

In many cases X 1 although predetermined with respect to Yo is random
and possibly correlated with previous regression disturbances. For example,
suppose y,_ is the holding period return on a long term bond for month t, and
suppose X_ is the bond’s yield to maturity observed at the end of month
t-l.1 Previous holding period returns on the bond (y's) will contain
information about the most recent yield to maturity (Xt-l)’ e.g., previous

negative returns will be associated with a high yield. In essence, the

current price level, reflected inversely by the yield, is related to previous

price changes. In such a regression, X1 is correlated with U (s > 0), or
E(u|x) = 0 , (2)
= ! — [
where u [ul, ce, uT] and x [xo, R xT-l] .

If (1) represents the conditional forecast of Ye given x it is easily

t-1’



shown that

E(utxt-l) =0, (3)

which, along with suitable regularity conditions, implies that the ordinary
least squares (OLS) estimator of B is consistent. The condition in (2),
however, generally leads to finite-sample bias of the OLS estimator of B (and
a).2

This study investigates problems of finite-sample bias arising in (1)

under the following additional specifications:

X o= 4 + 2 + Ve , t =1, ..., T, (4)
u
[ v ] ~ N (0, T ® IT) (5)
2
9 %uv
= (6)
2
o o
uv v
where v = [vl, - VT]'. Note that, for . # 0, condition (2) obtains. The

specification for X, in (4) provides a simple way to focus on the effect of
serial correlation in the independent variable. For p = 0, X1 is correlated
only with U q- As p becomes larger, for a given correlation between u and
Ve the correlation between X1 and U (s > 1) becomes larger. The
regression disturbances are assumed to be serially uncorrelated in order to
focus on the effect of correlation between u and x.

Finite sample bias of the least squares estimator has been analyzed

extensively for the first-order autoregressive process. [See, for example,
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Kendall (1954), White (1961), Orcutt and Winokur (1969), Sawa (1978), Fuller
(1976), Dickey and Fuller (1979, 1981), Evans and Savin (1984).] The above
specification is a natural extension of that literature. In fact, the bias of
;, the OLS estimator of B, is proportional to the bias of ;, the OLS estimator
of p in (4). Thus, previous analytical and Monte Carlo results for the bias
of ; can be extended directly to the above model.

This study combines analytical methods with Monte Carlo experiments to
investigate the bias of 2, the behavior of the t statistic that tests the
hypothesis g8 = ﬂo, and the properties of alternative estimators designed to
reduce the bias. The investigation considers a range of parameter values,
including various levels of correlation between the regression disturbance
(ut) and the innovation in the regressor (vt). This correlation can vary
substantially, depending on the particular application. 1In the example above,
where a bond’'s return is regressed on the bond’s own yield, the correlation is
likely to be quite high. 1If the same bond yield is used to predict, say, a
common stock return, then the correlation between u, and Ve is probably lower.
It is shown here that the bias of both ; and the t statistic is increasing in
this correlation.

The paper proceeds as follows. Section 2 analyzes the bias of ; by
extending previous analytical results for the first-order autoregressive
process. Section 3 investigates the finite-sample distribution of the t
statistic under the null hypothesis. Section 4 investigates the behavior of
several estimation techniques designed to reduce small-sample bias. The first

technique uses an analytical approximation for the bias of B; jackknife

techniques are also investigated. Section 5 concludes the paper.



2. The Bias of the OLS Estimator

A
Given the process for X, assumed above, obtaining the bias of 8 is
A

straightforward. Let p denote the OLS estimator of p in (4).

ag

Theorem. E(B - B) —%Y E(p - p) . (8)
UV

Proof: Let X = [¢ x], ¢ = [1, ..., 11", x = (%), --» %g]', 6 = [a B]', and

¢ = [p p]’. The error in the OLS estimator of § is given by § - § =

(X'X)-lx’u, and u can be written as u = (auv/ai)v + ¢, where E(e|x) = 0.

Thus, we can write the error in § as § - § = (auv/ai)(X'X)-lX’v + (X’X)-lX'e.

The expectation of the second term is zero. The first term equals

+

(o ey 1xD) Tt - @) R (xg)] - (auv/ai)(; - ¢), which gives the

uv’ v

desired result.

A

The usefulness of (8) is that the bias of p has been analyzed in previous

studies. Sawa (1978) gives a method for obtaining exact first and second
moments of p, and other studies have performed Monte Carlo experiments [e.g.,

Orcutt and Winokur (1969) and Fuller (1976)]. 1In general, ; is downward
biased in finite samples. From (8), ; is downward (upward) biased if the
correlation between u, and Ve is positive (negative). As the (absolute)
correlation between u, and Ve increases, holding the ratio of their variances
constant, the (absolute) bias increases. The proof above also gives the

A

result that E(a - a) = (auv/ai)'E(” - p). Although the focus here is

A

primarily on B, the latter result can be coupled with the analysis of previous
studies that investigate the bias in the intercept [e.g., Orcutt and Winokur

(1969)].
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Table 1 displays values of T-E(; - B) for the special case T = 03.

The values for the smaller samples(T = 10, 15, 25) are obtained using the
analytical result of Sawa (1978), while the values for the larger samples (T =
50, 100, 250, 500) are obtained by Monte Carlo experiments based on 1000
replications for each case.3 The analysis here is confined here to values of
p less than unity, for which X is stationary. The initial value X is
generated randomly from the unconditional distribution. As table 1 confirms,

the bias is fairly well approximated as being proportional to 1/T. It is

known that

1 +30 O(—lﬁ) (9)

T

E(p) - p

[Marriott and Pope (1954) and Kendall (1954)], and table 1 indicates that the
higher order terms are indeed small. Such behavior suggests that a simple

jackknife estimator might eliminate most of the bias in B8, and section 4

investigates this possibility.

3. The Behavior of the t Statistic

In many studies, the central issue surrounding (1) is whether 8 = ﬁo.
(ﬁo is often zero.) This section investigates the behavior of the usual t
statistic under the null hypothesis.4 Table 2 displays estimates, based on
Monte Carlo experiments of 1000 replications each, of the 2.5% fractile of the
t statistic.5 Results are shown for different values of the autocorrelation
coefficient p and the correlation between u and Ve denoted as vy. (It is

easily shown that the t statistic’s distribution is invariant to a, 8, o and
y u

o _.)

v

When either p or vy are large (close to unity), table 2 reveals that the t



Table 1

2

Values of T-E(8 - 8) when ¢ =0
uv v

(For other cases, multiply value shown by ouv/oi.)

T .99 .95 .80 4o

Analytical Values

10 -4.42 -4.23 -3.62 -2.26
15 -4.67 =444 -3.70 -2.26
25 -4.88 -4.56 -3.70 -2.25

50
100
250
500

-4
-4
-4
-4

.86
.98
.61
.88

Monte Carlo Estimates

-4.37
-4.36
-3.94
-3.93

-3.25

-3.42
-3.147
-4.13

-2

-1

-2.

.21
-2.
.60

12

-1
-1

-0.

-0

ol

.05
.03
66
.73
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statistic’s distribution in samples of even 100 or more can differ
substantially from the asymptotic (Normal) distribution. (The 2.5% fractile
of the Normal distribution is -1.96.) In general, when vy is positive, the t
statistic is downward biased and skewed slightly to the left. When both p and
v are high, the distributions in samples of 25 and 50 are similar to the
random-walk case documented in Fuller (1976, table 8.5.2).

Table 2 reports results only for cases where vy, the correlation between
u, and Ve is positive. When v is negative, the density function reverses.
That is, the negatives of the values in table 2 can be viewed as estimates of
the 0.975 fractile. For the example mentioned in the introduction, where X4
is a bond’'s yield and Ye is the subsequent holding period return, y is most
likely negative--innovations in the yield are negatively correlated with
returns. In that case ; is biased upward, and to reject B = 0 against the

(one-tailed) alternative B > 0 at the 0.025 significance level would require

that the t statistic exceed a critical value greater then the usual value of

1.96.

4., Bias-Corrected Estimators

This section investigates the behavior of several alternative estimators

designed to reduce the bias in the OLS estimator, ;. The first of these
alternative estimators is based essentially on a combination of (8) and (9).
This estimator is similar in spirit to an estimator for p considered by Orcutt
and Winokur (1969). They replace E(;) in (9) with ;, solve for p, and then

use that solution as a new estimator. The approach taken here is to combine

(8) and (9) to obtain

A ag
B - B = - (gD 0(-25) (10)

A%



Table 2

Estimates of the 0.025 Fractile of the Sample t Statistic, t(B8 - B)

o

0.025 fractile of t(B - B)

Parameters for sample of
o] Y 25 50 100 250 500
0.99 0.99 -3.254 -3.164 -2.843 -2.648 -2.712
0.99 0.95 -3.252 -3.044 -2,986 -2,824 -2.678
0.99 0.80 -3.186 -2.,998 -2.992 -2.622 -2.659
0.99 0.40 -2.701 -2,.485 -2.544 -2.395 -2.225
0.99 0.00 -2.,075 ~-2,09- ~-2.159 -1.939 ~2.039
0.95 0.99 -2.977 -2.942 -2.897 -2.392 -2,.248
0.95 0.95 -3.054 -2.861 -2.699 -2.389 -2.367
0.95 0.80 -2.881 -2.830 -2.581 -2.393 -2.159
0.95 0.40 ~-2.637 -2.369 -2.349 -2.157 ~-2.121
0.95 0.00 -2.128 -2,030 -2.050 -2.048 -1.988
0.80 0.99 -2.715 ~2.420 -2.423 -2.300 -2.205
0.80 0.95 -2.695 -2.495 -2.457 -2.139 ~2.181
0.80 0.80 ~-2.582 -2.478 -2.367 ~-2.211 -1.939
0.80 0.40 -2.472 -2.220 -2.076 -1.957 -1.887
0.80 0.00 -2.097 -2.050 ~1.979 -1.961 -1.950
0.49 0.99 -2.432 ~-2,220 -2.212 -2.145 ~-2.016
0.40 0.95 -2,.,284 ~2.358 -2.081 ~2.095 -1.883
0.40 0.80 -2,270 -2.192 -2.139 -2.181 -2.,004
0.40 0.40 -2.339 -2.058 -2.116 -1.923 -2.027
0.40 0.00 -1.,963 -2.076 -2,062 -2.051 -1.987
0.00 0.99 -1.996 ~2,067 ~-2.024 -1.932 -2.,047
0.00 0.95 -2.223 -2,150 -2.194 -1.869 -2.024
0.00 0.80 ~2.051 -2.144 -1.978 -1.938 -1.849
0.00 0.40 -2.115 -1.890 -2.026 -1.989 -1.899
0.00 0.00 -1.951 -1.949 -1.950 -1.940 -1.977




9

and then to replace the quantities on the right-hand side with sample

estimates. Thus, the new "bias-adjusted" estimator, ﬁA, is given by

A

Suv 1+ 3p)
T

By = B + (50(

S
v

(11)

where S v and si are estimated using residuals from the OLS regressions for
(1) and (4). It should be noted here that, unlike the estimator considered by
Orcutt and Winokur, ;A does not necessarily eliminate bias of O(l/T).6 The
addition of the estimates S v and 53 complicates the analysis of the expected
value. Nevertheless, given the favorable results of Orcutt and Winokur for
their estimator based on (9), it seems reasonable to investigate a similar
approach here.

Two additional estimators, both based on the grouped jackknife approach
of Quenouille (1949), are also investigated. Such estimators eliminate bias
of 0(1/T), and recall from table 1 that the bias in ; is well characterized as
proportional to 1/T. Let M = T/2 [or (T-1)/2 if T is odd], and consider OLS
estimators of B for subperiods of size M having contiguous observations.

There are T-M+l such subperiods. Let é(M),Z denote the average of the
estimators for the first and last subperiods, and let g(M),ALL denote the

average of the estimators over all T-M+l subperiods. The jackknife estimators

are defined as

11 - Gf - Gl 2 and (12)
A T A M A
By = GB - (Fﬁ)ﬂ(M) JALL (13)
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The first jackknife estimator, thch uses two subperiods, is also investigated
as an estimator of p by Orcutt and Winokur (1969). The second estimator,
which uses all of the subperiods, eliminates bias of 0(1/T) in precisely the
same manner as the first, but it may have less variance [Efron (1982, p. 7)].

While the above alternative estimators may be less biased than the OLS
estimator, they may also possess more variance. Indeed, previous
investigations of jackknife estimators have found those estimators to possess
greater variance than OLS estimators in a number of different applications
[e.g., Orcutt and Winokur (1969) and Huizinga (1983)]. Table 3 presents both
the biases and the mean square errors of the OLS estimator and the three
alternative estimators. Each row of the table is based on a set of 1000 Monte
Carlo replications.

In virtually all cases, each of the three bias-corrected estimators
contains less bias than the OLS estimator. In many cases the bias of the OLS
estimator is five of six times greater than the bias of the alternative
estimators. The biases among the three alternative estimators are fairly
similar, although ;A tends to have less bias than the jackknife estimators in
cases where both p and y are high (0.95 or 0.80) and sample size is small (25
or less).

The comparisons of mean square error (variance plus the square of the
bias) are less favorable to the jackknife estimators. In most cases the
jackknife estimators possess substantially higher mean square error (MSE) than
the OLS estimator. The two jackknife estimators themselves have similar
MSE’s, although ;JZ (which uses all T-M+l subperiods) is typically superior to

A

ﬂJl (which uses only two subperiods) in smaller samples and when p is high.

The bias-adjusted estimator BA generally compares favorably to the OLS

A

estimator, B. When both p and v are high (0.80 or more), the MSE of B exceeds



Table 3

Monte Carlo Comparison of OLS and Bias-Corrected Estimators

(8= 0.0, g = 0.10, o = 0.10)

Bias (x 100)

Mean Square Error (x 100)

T 8 BA 8J1 BJ2 8 aA 8.11 BJ?
p= 0,95, Y= 0.95
10 .36.795 -8.608 -13.367 -13.280 23.794 18.474 28.768 22,089
15 -27.042 -6.860 -7.136 -8,163 12,950 8.629 13.200 10.621
25 -16.053 -2.814 -1.670 -1.845 4.702 2,733 5.227 3.920
50 -8,439 -1.483 -0.322 -0.356 1.488 0.893 1.648 1.471
100 -4,207 -0.644 0,128 0.084 0.414 0.254 0.476 0.411
250 -1.459  -0.007 0.218 0.211 0.080 0.060 0,093 0.105
500 -0.764 -0.,036 0.020 0.094 0.033 0.027 0.034 0.041
p = 0,95, Y = 0.80
10 -30,009 -6.175 -8.771 -8.463 19,001 15.585 29,381 22.691
15 -22.793 -5.697 -7.319 -7.263 11.200 8.290  13.657 10.923
25 -14,160 -3.138 -3.093 -2,563 4.295 2.804 4.993 4.047
50 -7.140 -1,309 -0.182 0.001 1.236 0.816 1.449 1.288
100 -3.599 -0.598 0.164 0,055 0.358 0.243 0.441 0.408
250 -1.,398 -0.177 -0.054 0.001 0. 080 0.062 0.088 0,098
500 -0.577 0.037 0.140 0.139 0.026 0.023 0.030 0.036
p = 0,95 Y = 0.40
10 -14.180 -2.081 -2.414 -2.649 13,635 14.77 38,154 26.246
15 -11.375 -3.042 -3.596 -3.328 6.446 5.937 11.198 9.255°
25 -7.162 =1.709 -0.925 -1.133 2,429 2.161 3.858 3.523
50 -3.570 -0.673 -0.490 -0.305 0.735 0.637 1.096 1,056
100 -1.845 ~0.329 0.132 0,134 0.234 0.204 0.336 0.353
250 -0.598 0.009 0.216 0.094 0.057 0.054 0.075 0.091
500 -0.229 -0.078 0.093 0.118 0.023 0.023 0,026 0,035
p=0.,80, Y=0.95
10 -32.916 -7.871 -12.095% -10.457 20.148 16.618 26.621 20.934
15 -22,537 -4.300 -4.624 -5.290 11.004 8.671 13,231 11.119
25 -13,202 ~1.455 -1.203 ~0.835 4.495 3.449 5.065 4.653
50 -6.933 -0.765 -0.596 -0.538 1.601 1.254 1.817 2,057
100 -3.361 ~0.191 0.073 ~0.168 0.555 0.468 0.564 0.662
250 -1.219 0.062 0.092 0,088 0.162 0.150 0.173 0.211
500 -0.722 -0.080 -0.700 -0.109 0.082 0.078 0,081 0.102
- p= 0.80, Y= 0.80
10 ~26.403 ~4.777 -8.687 -7.725 18.281 17.159 28,113 23,150
15 —19:784 -4.571 -4.489 -5.139 9,726 7.891 12.511% 10.461
25 -11.930 -2.027 -1.526 -1.581 4.015 3.109 5.121 4.569
50 ~5.625 -0.421 0,236 -0,084 1.442 1.230 1.748 1.822
100 -2.522 0.137 0,085 0.081 0.520 0.477 0,577 0.663
250 -1.207 -0.124 -0.089 0.001 0.181 0.169 0.190 0.228
500 -0.562 -0.019 0.011 0,022 0.018 0.079 0.081 0.106
p = 0.80, Y= 0.40
10 -12,974  -2.447 -3.417 ~-2.950 12.038 12,569  35.879  26.969
15 -9.731 -1,981 -2.506 -1.478 7.042 6.847 12,392 10.251
25 -6.290 -1.230 -0.890 -1.075 3.092 2.904 4.592 4.590
50 -2.175 0.448 0.832 0,403 1.062 1.044 1.470 1.548
100 -1.237 0.093 0.114 0.333 0.454 0.444 0.542 0.665
250 -0,623 ~-0.086 -0.046 -0,033 0.156 0,153 0.166 0.216
500 -0.204 0.066 0.079 0.018 0.073 0.073 0.078 0.098
p = 0.40, Y = 0.95
10 -20.498  -3.985 -5.930 -5,672 15.153 18,206  22.967  20.559
15 ~-14.698 -2.874 -3.072 -2.988 8.905 9.681 11.926 10.915
25 -7.879 -0.193 -0.152 -0.116 4.194 4.418 5.478 5.186
50 -4,220 -0.205 -0.09 -0,098 1.964 1.986 2.284 2.5
100 -2.253 -0.216 -0.165 -0.151 0.940 0.939 1.004 1.219
250 -0.459 0.374 0,332 0.522 0.344 0.350 0,354 0.472
500 -0.189 0.230 0.241 0.186 0.152 0.154 0,157 0. 208
p = 0.40, y = 0.80
10 -17.257 -3.232 -4.811 -3,988 13,737 15.487 28.494 19.873
15 -10.594 -0.318 -0.848 -0.260 7.778 8,530 10,992 10.414
25 -7.739 -1.291 ~1.432 -1.635 4,045 4,047 5.159 5.258
50 -3.,119 0.284 0,484 0.694 1,854 1.904 2.161 2.633
100 -1.960 -0.239 -0.213 -0.167 0.883 0.878 0.943 1,222
250 ~-0.555 0,143 0.126 0.341 0.350 0.353 0.363 0. 461
500 -0.458 -0.108 -0.104 -0.093 0.168 0.167 0.173 0.234
p = 0.40, Yy = 0.40
10 -7.387 0,102 0,122 0.625 12.540 13.306 24.155 21,016
15 -4,972 0.078 0.914 0.152 8.120 8.551 12.201 12.180
25 -3,150 0,055 -0, 220 0,111 4.097 4,206 4,894 5.444
50 -1.842 -0,145 -0.213 -0.115 1.799 1.801 2.049 2.509
100 -0.762 0,105 0,107 0,307 0.902 0.905 0.941 1.136
250 -0.386 -0.036 -0.015 -0.417 0.367 0.367 0.379 0.480
500 -0,232 -0,057 ~0.062 -0.159 0.167 0,166 0.170 0,225
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that of ;A’ often by as much as 25 percent. When p and vy are lower, then the
MSE of g is typically lower than that of ;A’ but not by substantial amounts.
These results are similar to those reported by Orcutt and Winokur in that they
find, for high values of p, the estimator based on (9) is superior to the OLS
estimator. (They also find the jackknife estimator to have the highest mean
square error.) The superiority of ;A in this study is interesting in that,
even though additional parameters are estimated [cf. (11)], the variance of

the estimator is evidently not increased enough to produce a MSE higher than

that of the OLS estimator.

5. Conclusions

This study has investigated problems arising from bias in a regression
where a lagged but stochastic regressor obeys a first-order process whose
innovations are correlated with the regression disturbances. When the latter
correlation is positive, the OLS estimator of the regression slope coefficient
and the coefficient’s t statistic are biased downward. (When the correlation
is negative, both quantities are biased upward.) Jackknife estimators prove
to be effective in reducing the bias, but they possess substantially higher
mean square error than the OLS estimator. The bias of the OLS slope
coefficient is proportional to the bias of the OLS estimator for the
autocorrelation coefficient of the regressor process. When this result is
combined with an approximate formula for the bias of the estimated
autocorrelation, a new estimator is obtained. This new bias-adjusted
estimator compares favorably to the OLS estimator in terms of both bias and

mean square error.
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FOOTNOTES
1Examples of studies in which holding-period returns on assets are
regressed on bond yields (or yield spreads) include Campbell (1985) and Keim

and Stambaugh (1985).

The failure of the orthogonality of u and x also leads to inconsistency
of generalized least squares estimators that attempt to account for possible
serial correlation in the ut's. The latter large-sample problem has been
analyzed by a number of studies, including Hansen and Hodrick (1980), Hansen
(1982), Hansen and Sargent (1982), Cumby, Huizinga, and Obstfeld (1983), and

Hayashi and Sims (1983).

3Some of the values shown in table 1 differ slightly from those in Sawa
(1978, table 2a). The values shown here were computed in double precision
using IMSL routines EIGRS and DCADRE on a Dec 20. Most of the values are also
slightly closer than Sawa'’'s to the Monte Carlo results reported by Orcutt and

Winokur (1969).

4Independent work by Mankiw and Shapiro (1985) also reports results of
Monte Carlo experiments that investigate the behavior of the t statistic in

the same framework.

5An appendix containing estimated fractiles for both tails of the

empirical distribution is available from the author on request.

6OLS-based estimators of Ty 03, and p are used in (1l1l) primarily for

simplicity and ease of computation. The estimator of p could instead be that
of Orcutt and Winokur (1969), and the estimator of . could be improved
iteratively. ©Neither of these changes would necessarily eliminate bias of

0(1/T), however.
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