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ABSTRACT

First-order vector autoregressive models for monthly time series appear
to describe the documented behavior of expected stock returns over long
holding periods. We examine the implied autocorrelations of long-horizon
returns and the implied R-squared in regressions of long-horizon returns on
predetermined variables. A simple model is estimated using monthly data, and
the estimated parameter values imply patterns for the autocorrelation and the
R-squared that coincide well with the patterns of the actual sample values.
The framework is also used to analyze other properties of expected returns for

various horizons.



1. Introduction

Empirical evidence indicates that expected returns on stocks and bonds
vary through time. Much of this evidence is characterized either by
autocorrelations of returns or by regressions of returns on various
predetermined variables.1 The length of the holding period over which a
return is computed, or the return "horizon," seems to affect the nature of
this evidence in significant ways. For example, the estimated
autocorrelations of returns on indexes of NYSE stocks are positive and in the
range of 0.1 to 0.2 for one-month horizons [e.g., Fama and Schwert (1977)],
but sample autocorrelations for horizons of four years are negative and in the
range of -0.2 to -0.5 [e.g., Fama and French (1987a)]). Regressions of one-
month stock returns on predetermined variables often produce R-squared values
less than 0.02 [e.g., Keim and Stambaugh (1986)], whereas regressions of
longer horizon returns (several years) on similar predetermined variables
often produce R-squared values in excess of 0.30 [e.g., Fama and French
(1987¢)].

Given the apparent sensitivity of evidence about time-varying expected
returns to the length of the return horizon, it would be useful to have a
single parsimonious framework capable of integrating the existing empirical
evidence. This study proposes and investigates such a framework. Using
monthly data, we estimate a simple autoregressive model for predicting one-
month-ahead returns given a set of predetermined variables. We then use the
estimated parameters to compute, for various return horizons, the implied
autocorrelation in returns and the implied R-squared for a regression of

returns on the predetermined variables. The behaviors of these implied values

1A partial list of the studies reporting such evidence includes Fama and
Schwert (1977), Hall (1981), Huizinga and Mishkin (1984), Fama (1984), Rozeff
(1984), Keim and Stambaugh (1986), Campbell (1987), Fama and Bliss (1987),
Fama and French (1987a, 1987b, 1987c), Lo and MacKinlay (1987), and Poterba
and Summers (1987).
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across various return horizons coincide well with the results reported in
previous studies.

Although the statistical framework investigated here appears to capture
reasonably well the existing evidence about changing expected returns, we do
not explain why expected returns change. The framework presented here simply
provides a unifying framework in which to analyze the existing evidence. In
other words, efforts to pursue economic exlanations for the behavior of
expected returns for various horizoms can be directed toward understanding the
parameter values in a single model. Given such a model, analyzing long-
horizon returns is unlikely to produce information about the behavior of
expected returns that is not already implied by the monthly time-series model.
The choices of variables and the precise forms of the models considered are
necessarily arbitrary. We suggest that this draft be viewed primarily as an

exercise illustrating the promise of this unifying approach.

2. The Models

Let rt,N denote the continuously compounded return on an asset for the N-
month period starting at the beginning of month t, and let X, denote a Kx1
vector of state variables observed at the end of month t. (Month t is the
month beginning at time t-1 and ending at time t.) To illustrate the model

initially, we let r.o, be the monthly return on the equally weighted NYSE

index, and we let L contain four variables:2

AyBaa c the change from the end of month t-1 to the end of month t in

Moody's average yield on bonds rated Baa.

2The last three variables are essentially the same as those used by Fama
and French (1987c). Similar variables are also used by Keim and Stambaugh
(1986).
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(Ypaa - yAaa)t . the difference at the end of month t between Moody's

average yield on bonds rated Baa and bonds rated Aaa.

(Ypaa ~ yTB)t the difference at the end of month t between the Aaa
yield and the yield on a U.S. Treasury Bill with maturity closest to

one month.

(D/P)t . for the equally weighted portfolio of NYSE stocks, the ratio
of dividends paid for the twelve months ending at t to the price at

the end of month t.

The yield-related variables are stated as percent per month. Let

and define the first-order vector autoregression [VAR(1)],

Ve = 8 * C¥ea T Ve ’ (1)

where E(utlyt_l} = 0 and E(utvt_s } = 0 for s » 0. The eigenvalues of G are
assumed to be less than unity in absolute value. Table 1 reports descriptive
statistics for the five variables in Ye-

A special case of (1), in which r.o 4 is Granger caused by X 1o is given

by the set of equations

and (2a)

(2b)



where u and . have the same properties as the disturbances in (1). The
correlation between U and the elements in e is represented by the

auxiliary regression

u, = b’nt + ¢

c (2¢)

t r

where E(ct|nt) = 0. We will denote the model represented in (2a)-(2c) as the
nrestricted” model. This specification essentially assumes that X, captures
all changes in expected returns on the asset (since Ye 1 is serially
uncorrelated). The inclusion of lagged return as a predictive variable in (1)
can capture autocorrelated components in expected returns that are not
accounted for by X, - We will refer to the more general VAR(1l) model in (1) as
the "unrestricted"” model (although the assumed first-order autoregressive
nature of the process clearly represents a restriction within a more general
class of models).

Table 2 reports ordinary least-squares estimates of the parameters in the
unrestricted VAR(1) model, and table 3 reports estimates of the parameters in
the restricted version of the model. The estimation is based on monthly data
for the period from January 1927 through December 1985 (708 observations). We
do not, in the present draft, conduct tests of the adequacy of these VAR(1)
models for representing the behavior of the monthly time series used here.

Our initial objective is to investigate the extent to which simple models can
capture the behavior of returns for various horizons. If this basic approach

appears to be useful, then future research should consider alternative time-

series models.



3. t eturns over V s Ho
3.1 Ap Initial Look

Although the models above are formulated in terms of one-month-ahead
forecasts, the parameters of these models can be used to obtain implications
about the behavior of expected returns for longer horizons. To illustrate
this point, consider the expected return for a five-year horizon. The
estimated parameters for the above models, reported in tables 1 through 3, can
be used to obtain implied values for the coefficients in a regression of the
five-year return r , ., on y, ,- Figure 1 plots the implied expected returns
for five-year horizons (stated on a per-month basis) obtained from the
unrestricted VAR(1) model. Also shown are the fitted expected returns
obtained by regressing directly the five-year return rt,60 ony. q- The
expected returns implied by the VAR(1) model coincide rather well with the
expected returns estimated directly in the regression.

We discuss below several other ways in which the above framework yields
implications about the behavior of expected long-horizon returns. In order
that the reader not be burdened unnecessarily with algebraic manipulation, we
simply present the results of our analyses graphically and omit the underlying
formulas. All of the computations follow directly, however, from the

estimated parameters of the VAR(1l) models reported in tables 1 through 3.

3.2 Autocorrelations of Returns

We consider next the first-order autocorrelation for returns over N-
month horizons, corr(rt’N, rt-N,N)' The VAR models imply values for this
autocorrelation. Fama and irench (1987a) report the first-order
autocorrelations of returns with horizons up to ten years. Figure 2 plots,
for horizons of one month through ten years, the autocorrelations implied by

both the restricted and the unrestricted versions of the VAR(1) model. Also
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shown are the sample estimates of these autocorrelations.3 Both versions of
the model imply properties for corr(rt'N, rt-N,N) that correspond to
properties of the sample estimates reported in previous studies. For short
horizons (N small), the implied autocorrelations are positive, and this
implication is consistent with previous evidence indicating positive
autocorrelation in short-horizon stock-market returns [e.g., Fama and Schwert
(1977) and Lo and MacKinlay (1987)]. Given that the unrestricted VAR(1l) model
includes the lagged one-month return as a predictive variable, it is not
surprising that this model yields an implied autocorrelation for one-month
returns that closely resembles the sample estimates. More noteworthy is the
fact that the restricted version of the model, which does not include lagged
return as a predictive variable, also implies positive autocorrelation for
short horizons.

The autocorrelations of long-run returns that are implied by the VAR(1l)
models also exhibit properties similar to those documented by previous
studies. As the return horizon increases, the implied first-order
autocorrelations decrease up to horizoms of approximately three to four years.
In the restricted model, for example, the implied autocorrelation begins at
0.03 for 1l-month returns, becomes negative at a 4-month horizon, declines to
.0.28 at a 44-month horizon, and then moves back toward zero for longer
horizons. Although the implied long-horizon autocorrelation does not reach as
low a value as the actual sample autocorrelation, the overall pattern of the
implied autocorrelations is similar to that of the sample autocorrelations.

None of the values shown are adjusted for finite-sample bias. Finite

sample bias is present in the sample autocorrelations as well as in the

3These estimates are obtained using overlapping data in the same manner
as Fama and French (1987a), and the estimates are not adjusted for small-
sample bias.
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estimates of the model parameters reported in tables 2 and 3. It may be the
case that such biases have different effects on the implied autocorrelations
and the sample autocorrelations, so comparisons based on figure 2 should be
viewed cautiously. We plan to incorporate the effects of finite-sample bias

in future work.

3.3 Regression R-squared

Another striking characteristic of the results reported by previous
studies is the behavior of the R-squared in regressions of returns on
predetermined variables. Although the R-squared statistic is generally viewed
as, at best, a useful descriptive statistic, the magnitudes obtained in recent
studies using long-horizon returns have been objects of significant attention
by researchers in finance. We demonstrate here that the simple VAR(1l) models
introduced above yield implications about R-squared that are similar to the
characteristics observed by previous studies.

Regressions of monthly stock returns on predetermined variables generally
produce R-squared less than 0.05 [e.g, Fama and Schwert (1977) and Keim and
Stambaugh (1986)].4 This characteristic is shared by the above VAR(1l) models,
in that the R-squared values in the monthly-return regression equations are
approximately 0.03 in the unrestricted version and 0.02 in the restricted
version. Fama and French (1987b, 1987c) report regressions of returns on
predetermined variables with return horizons from one month to four years, and

the R-squared values in their regressions increase with return horizon. For

aThere are exceptions to this statement. Campbell (1987) reports R-
squared values between 0.11 and 0.23 for regressions of monthly excess stock
returns on variables related to short-term interest-rates. Keim and Stambaugh
(1986) find R-squared values in excess of 0.30 for regressions of monthly
excess stock returns on predetermined variables when the regressions are
limited to January observations.
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example, Fama and French (1987c) report that, when excess returns on the
equally weighted NYSE portfolio are regressed on (D/P)t and (yAaa - yTB)t’ the
R-squared is 0.01 for a return horizon of one month but the R-squared is 0.34
for a four-year return horizon.
Figure 3 displays the value of the "true" R-squared implied by the VAR(1)
models for regressions of returns on the four predetermined variables in X 1

That is, in the regression

t.n - %N Y %N %l YO Ven ' (3)

the R-squared is the value of var(a&xt_l)/var(rt.N) implied by the VAR(1)
model. This R-squared value is computed for return horizons (N) ranging from
one month to four years. Also shown in figure 3 is the actual (unadjusted)
sample R-squared value obtained by regressing rt,N on X 4 using overlapping
observations.5

The R-squared values implied by both versions of the VAR(1l) model exhibit
properties similar to those of the sample values. For example, the values
implied by the restricted version of the model begin at 0.02 for a l-month
horizon and increase to 0.19 for a 32-month horizon. As in the analysis of
autocorrelations, the sample R-squared value is not adjusted for any finite
sample bias and, therefore, provides an upward biased estimate of the true R-
squared value, due primarily to the autocorrelation in the residuals caused by
the use of overlapping observations. In future work we plan to account for
this effect and provide a more appropriate comparison of the implied values

and the actual values.

5The R-squared values correspond to those computed by Fama and French
(1987¢).



3.4 Impulse Response Functions

One potential benefit of the VAR model is that it permits a deeper
analysis of the manner in which changes in the predetermined variables impact
expected future returns for various horizons. One framework that appears to
be especially useful in this analysis is that proposed by Sims (1980, 1981).
This approach computes the response of a given variable, in this case rt+n,1’
to a set of orthogonal shocks in each variable in the system.

The VAR model allows Tein 1l (the return in month t+n) to be written as

‘D'
—p+20

ot femy (%)

rt+n,1
where fs {s a vector containing five elements, with E{fs) =0, var(fs) -1,
and cov(fs, es-j) - 0 for all j » 0. The elements of ft are constructed as
follows. The first element Elt is the shock in period t to the first variable
in X, . The second element EZt is the shock to the second variable in X, that
is uncorrelated with €1t; the third element €3t is the shock to the third
variable that is uncorrelated with elt and €2t’ etc. Thus, the construction
of €t depends on the ordering of variables. We order the variables as in the
vector y, defined above, so that the fifth element of £t is the shock to rt,l
that is uncorrelated with shocks to any of the variables in X, -

The response of r to the shocks (or "impulses™) in the variables in

t+n,1

period t is represented by the parameter vector on. That is, Bln is the

response of r to a one-standard-deviation shock at period t in the first

t+n,1
variable, 02n is the response to the orthogonalized one-standard-deviation
shock in the second variable, etc. The values of ain for various n represent

the "impulse response function,” the responses of returns in various future
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months to a one-standard-deviation (orthogonalized) shock to variable 1 at
time t.
Figure 4 plots the responses of monthly returns to shocks in each of the
four variables in X, in the restricted version of the VAR(1) model. Responses

of to shocks in the second, third, and fourth variables

rt+n,1
[(yBaa - yAaa)t’ (yAaa - yTB)t' and (D/P)t] are positive for all n. The
responses to shocks in the two yield spreads increase for several months and
then decline monotonically toward zero. The responses to shocks in the
dividend-price ratio decline more slowly and in a nearly monotonic fashion.

The responses of r to shocks in the first variable, AyBaa e’ are negative

t+n,1

for small n and positive for larger n.

3.5 ecompo e Autocorrelatio

The infinite moving average representation in (4) can also be used to
analyze the contribution of each of the predictive variables to the
autocorrelation of rt,N’ the return for an N-month horizon. First note that,

since

N-1
on T g Tes - )

the N-horizon return can be written as

-]
TeN T Np + j§1 75 €t+N~j . (6)

Equation (6) can be rewritten as
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5
Te,Nn T Mo+ ) g‘i,t:+N-1 (7)
1=1
where
€1, t4N-1 j§1 71,354, t4N-] : (®)

Since the elements of fs are mutually uncorrelated by construction, equation
(7) expresses the N-month return as a sum of five orthogonal components. By
decomposing the return in this fashion, the autocovariance of r,y can be

similarly decomposed:

5

) cov(r, 51’t_1) . (9)

cov(r , I )
t,N t-N,N =1

Each term on the right-hand side of equation (9) represents the portion of the
autocovariance of rt,N that can be attributed to the covariance between rt,N
and past (orthogonalized) shocks to a given variable in the system. Dividing
each side of (9) by var(rt,N) gives the autocorrelation as a sum of five
components.

Figure 5 displays, for various return horizons (N), the five components
of the autocorrelation in rt,N' The solid line represents the autocorrelation
of rt,N implied by the unrestricted VAR(1) model, which was displayed
previously in figure 1. The other five curves in figure 5 sum to this total
autocorrelation. Perhaps the most striking result of this exercise is that
shocks to the dividend-price ratio appear to make the most important

contribution to both the positive autocorrelation in short-horizon returns as

well as to the negative autocorrelation for the longer horizonms.
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4. Conclusjons and o ure Resear

Vector autoregressive models for monthly stock returns and four
additional monthly time series of financial variables contain implications
about the behavior of expected returns for longer horizons. Estimates of the
parameters of such models using monthly data imply values of statistics for
long-horizon returns that appear to correspond reasonably well to actual
sample values of those statistics. The statistics examined here include the
first-order autocorrelation on long-horizon returns and the R-squared value
obtained in regressions of long-horizon returns on a set of predictive
variables. The framework analyzed here also allows the researcher to
understand better the manner in which shocks to various financial variables
impact expected returns for future periods.

Several directions for future research are suggested by this preliminary
investigation. Expected returns on other assets can be investigated within
this framework. For example, previous studies report evidence indicating that
the type of predictive variables used here can also predict returns on bonds
of various default risks and maturities for both short horizons [Keim and
Stambaugh (1986)) and long horizons [Fama and French (1987¢)]. It would be
useful to know whether the models considered in this study can also capture
the behavior of expected bond returns for various horizons.

If the investigation of additional assets suggests that a parsimonious
model can describe expected returns of various assets for both short and long
horizons, then additional cross-sectional analyses could be pursued. For
example, such a model could allow a cross-sectional pricing restriction on
expected returns for a given horizon to be used to obtain implications about
cross-sectional relations for expected returns over other horizons.

The first-order autoregression used here to model the behavior of the
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monthly time series should be viewed as tentative. We use these models
because they provide a simple framework in which to investigate the relations
among expected returns for various horizoms. Alternative time-series models,
although possibly more complex, might improve the ability of this overall
approach to capture the behavior of long-horizon expected returns.

We have confined our attention in this study to variables that are
functions of prices and returns on financial assets. The framework used here
could also be expanded to include macroeconomic variables. For example,
Litterman and Weiss (1985) apply the impulse-response framework to analyze
responses of various macroeconomic variables to shocks in the nominal interest
rate. It would be interesting to investigate whether shocks in the financial
variables used in this study appear to impact future macroeconomic variables

in patterns similar to the ways in which they impact future expected returns.
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Table 1

Sample Means, Standard Deviations, and Correlations

Correlations
Standard
Variable Mean Deviation Ypaa YAaa Yaaa YTB D/P r
Ay 0.0007 0.0203 0.00 -0.25 0.17 -0.42
Baa
Ypaa YAaa 0.1007 0.0676 0.58 0.08 0.01
Yaaa VTR 0.1839 0.1077 -0.04 0.09
D/P 0.0402 0.0133 -0.20
r 0.0104 0.0753

Note: The variables are defined as follows.

AyBaa,t
(yBaa )

(yAaa i}

(o/P),

r

yAaa

Yrp)e

the change from the end of month t-1 to the end of month t in
Moody's average yield on bonds rated Baa.

)t . the difference at the end of month t between Moody's
average yield on bonds rated Baa and bonds rated Aaa.

the difference at the end of month t between the Aaa

yield and the yield on a U.S. Treasury Bill with maturity
closest to one month.

for the equally weighted portfolio of NYSE stocks, the ratio of
dividends paid for the twelve months ending at t to the
price at the end of month t.

the return in month t on the equally weighted portfolio of NYSE
stocks.



Table 2
Estimates of the Unrestricted VAR(1) Model’'s Parameters.

Dependent

Varieble® Independent variables (lagged one m::ont.h)b Residual Autocorrelations
2
Intercept 4Yp,, YpaaTAsa JasaVm  P/F r T L I I I
AyBaa 0.0101 0.1798 -0.0185 -0.0262 -0.0478 -0.0916 0.24 47.1 0.07 -0.02 =-0.25 -0.08 0.14 0.09
(0.0037) (0.0874) (0.0363) (06.0120) (0.0515) (0.0195) (0.00)
Ypaa YAaa 0.0008 0.0738 0.9645 0.0120 0.0318 -0.0760 0.96 4040.9 0.04 -0.07 -0.26 -0.12 0.12 0.09
(0.0031) (0.0702) (0.0306) (0.0088) (0.0434) (0.0169) (0.00)
Yaea YTB 0.0081 -0.0704 0.1332 0.8704 0.0825 -0.0641 0.85 3427.7 -0.10 0.06 -0.06 -0.02 -0.04 0.09
(0.0059) (0.1292) (0.0395) (0.0346) (0.0810) (0.0223) (0.00)
D/P 0.0024 0.0119 -0.0077 ~0.0004 0.9623 -0.0028 0.93 9146.1 0.04 -0.01 -0.07 0.03 0.13 0.05
(0.0008) (0.0127) (0.0054) (0.0015) (0.0128) (0.0028) (0.00)
T -0.0188 -0.1132 0.0876 0.0206 0.3770 0.1506 0.03 11.1 o©0.00 0.02 -0.08 -0.01 0.07 -0.02
(0.0135) (0.2770) (0.1076) (0.0331) (0.2494) (0.0769) (0.05)
&1he variables are defined as follows.
Ayan L ¢ the change from the end of month t-1 to the end of month t in Moody's average yield on bonds rated Baa.
(an - ’An)t. . the difference at the end of month t between Moody's average yield on bonds rated Baa and bonds rated Asa.
(yA.. - ’IB)t. . the difference at the end of month t between the Asa yield and the yield on a U.S. Treasury Bill with
maturity closest to one month.
(D/P), : for the equally weighted portfolio of NYSE stocks, the ratio of dividends paid for the twelve months ending at t to

the price at the end of month t.
Iy the return in month t on the squally weighted portfolio of NYSE stocks.

b'I'he coefficients are estimated using ordinary least squares and the standard errors (in parentheses) are based on the
heteroskedasticity-consistent estimator of the covariance matrix of White (18680) and Bsieh (19883).

CThe statistic reported is asymptotically distributed as x2 with five degrees of freedom under the null hypothesis that all of
the coefficients on the independent variables (excluding the intercept) are squal to zero. The p-value is shown in parentheses.



Table 3

Estimates of the Restricted VAR(1) Model's Parameters.

Dependent b
Varieble® Independent varisbles (lagged one month) Residual Autocorrelations
2
Intercept AYp,, YpasTAsa YAV O/F as. B2 2 s s k3 A b5 0

AYpaa 0.0062 0.3193 -0.0241 -0.0230 0.0229 0.15 33.5 0.04 -0.01 -0.2¢ -0.07 ©0.10 0.08
(0.0039) (0.0815) (0.0403) (0.0124) (0.0585) (0.00)

Ypas TAsa -0.0024 0.1885 0.9598 0.0147 0.0805 0.95 2503.7 0.08 -0.03 -0.30 -0.13 0.07 0.08
(0.0031) (0.0756) (0.0341) (0.0084) (0.0480) (0.00)

Yaea YTB 0.0054 0.0272 0.1283 0.8726 0.1320 0.84 3182.1 -0.10 0.06 =-0.06 -0.02 -0.04 0.09
(0.0058) (0.1233) (0.0393) (0.0346) (0.0843) (0.00)

D/P 0.0023 0.0161 -0.0078 -0.0003 0.9644 0.93 7921.8 0.08 -0.02 -0.07 0.02 0.13 0.05
(0.0008) (0.0125) (0.0054) (0.0015) (0.0131) (0.00)

r -0.0124 -0.3423 0.0969 0.0152 0.2607 0.02 7.1 0.13 0.01 -0.08 -0.02 0.06 -0.02
(0.0129) (0.2603) (0.1146) (0.0342) (0.2566) (0.13)

Coefficients (and standard errors) in the auxiliary regression of the estimated residuals for the first-stage
return (tt) regression on the estimated residuals from the other four first-stage regressions :

-0.1866 -0.2832 0.0211 -18.7863
(0.1056) (0.1828) (0.0198) (0.7773)

Estimated residual variance of the auxiliary regression : 0.00106

%7The variables are defined as follows.
AyB“ v the change from the end of month t-1 to the end of month t in Moody's average yield on bonds rated Baa.

(an - ’Ana)t. : the difference at the end of month t between Moody's aversge yield on bonds rated Baa and bonds rated
Aaa.

the difference at the end of month t between the Aas yield and the yield on a U.S. Ireasury Bill with

({y - Yrg)
Asa Bt maturity closest to one month.

O/P), = for the equally weighted portfolio of NYSE stocks, the ratioc of dividends paid for the twelve months ending at
t to the price st the end of month t.

Ty the return in month ¢t on the equally weighted portfolio of NYSE stocks.

b‘l‘ho coefficients are estimated using ordinary least squares and the standard srrors (in parentheses) are based on the

heteroskedasticity-consistent estimator of the covariance matrix of White (1980) and Hsieh (1983).

CThe statistic reported is asymptotically distributed as x2 with four degrees of freedom under the null hypothesis that

all of the coefficients on the independent variables (excluding the intercept) are equal to zero. The p-value is shown in
parentheses.
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Figure 1. Estimated expected returns on the equally-weighted NYSE
portfolio for five-year horizons. The value plotted corresponds to the
expected monthly return for the five-year horizon beginning on the given date.
The solid line represents expected five-year returns implied by the
unrestricted VAR(1) model, and the dashed line represents expected returns
estimated directly in a regression with five-year returns as the dependent
variable.



corr(reNs Tt=N.N)

"
°li
o
<
o
=
o
|
<
] e
o
|
'“';' T
? implied by Restricted VAR(1) Model
Implied by Unrestricted VAR(1) Model . . — . —
Somple Estimotes e
o]
‘D. n.“uuunn..nunuuuunnl-unuunlun-uuuIunuulnllnunlnlhnuuuuhnnnnuunuuu..u
So. 12 24 36 48 60 72 B4 96 108 120

N

Figure 2. First-order autocorrelations of N-month returns on the equally
veighted NYSE portfolio implied by the restricted VAR(1l) model (solid line)
and the unrestricted VAR(1) model (dashed line). The dotted line displays
sample estimates obtained by regressing the N-month return on its lagged
value, using monthly observations with overlapping return horizons.
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Figure 3. R-squared values in regressions of N-month returns on the
equally weighted NYSE portfolio on four predictive variables (the change in
the Baa yield, the Baa yield minus the Aaa yield, the Aaa yield minus the T-
Bill yield, and the dividend-price ratio). The values implied by the VAR(1)
models are equal to the ratio of the implied varidnce of the expected N-month
return to the implied variance of the total N-month return. The sample value
is obtained in a regression of the N-month return on the four variables, using
monthly observations with overlapping return horizons.
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Figure 4. Responses of one-month returns on the equally weighted NYSE
portfolio in month t+n to shocks in the predictive variables in month t, as
implied by the restricted VAR(1l) model.
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Figure 5. Components of the first-order autocorrelation of N-month
returns on the equally weighted NYSE portfolio, as implied by the unrestricted
VAR(1l) model.




