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B1. Roadmap

This Technical Appendix, containing material of a technical nature relevant to the published article,
is organized as follows. Section B2 discusses the general definition of the predictive system and
establishes some notation. Section B3 details the filtering-and-sampling procedure for drawing
the time series of the unobservable conditional expected return p, conditional on the parameter
values. Section B4 characterizes the dependence of estimated expected returns on the full history
of returns and predictor realizations. Section B5 describes the prior and posterior distributions of
the parameters in the predictive system. Section B6 presents the procedure for maximum likelihood
estimation of the predictive system. Section B7 analyzes the R? ratio from equation (29) in the
paper. Finally, Section B8 provides details regarding the variance decomposition whose results are

reported in Table IV in the paper.

The Bayesian analysis of the predictive system proceeds as follows. Let Dr denote the data
available to the investor, let 6 denote the set of parameters in the predictive system, and let u denote
the full time series of u,, t = 1,...,T. To obtain the joint posterior distribution of 6 and u, de-
noted by p(6, u| D), we use an MCMC procedure in which we alternate between drawing p from
the conditional posterior p(u|6, D7) and drawing 6 from the conditional posterior p(6|u, Dr).
The procedure for drawing p from p(u|6, Dr) is described in Section B3. The procedure for
drawing 6 from p(6|n, Dr) o< p(6) p(Dr, 1t|0) is described in Section BS.

B2. Predictive system: General framework

We begin working with multiple assets, so that ; and p; are vectors (recall x; can be a vector in
any case). We define the predictive system in its most general form as a VAR for r;, x;, and pu;,,
with coefficients restricted so that u, is the conditional mean of r,4;. We also assume that x, and

W are stationary with means £, and E,. The first-order VAR, for example, is

Fep1 — E, 0 0 1 re—E, Upti
X1 —Ex | = | A Az A Xi—FEx |+ v |- (B1.)
Me+1 — Ey Azr Asy Az me — E, Wit

The predictive system in (B1.) can be viewed alternatively as simply an unrestricted VAR for
returns and predictors when some predictors are unobserved. Specifically, consider an unrestricted

VAR for r;, x;, and 7r;, where 77, has the same dimensions as 7, and contains additional unobserved



predictors:

rey1 — E, Bi1 B2 Bis re—E, Uit
Xiq1—Ex | = | Bai By B Xe—Ex |+ | vigr |- (B2.)
i1 — Ex B31 B3, Bj; w;— Ex Vst

When B;3 is nonsingular, (B1.) and (B2.) are equivalent. It is immediate that (B1.) implies (B2.).

To see the converse, define
pwe = Er + B11(rs — Ey) + Bra(x; — Ex) + Bis(r, — Ey), (B3.)
which implies
7w — Ex = —Bi3 Bii(ri — E;) — Biy Bia(x; — Ex) + By (0 — Ey). (B4.)

Pre-multiplying both sides of (B2.) by [B11 Bi2 B3], using (B3.) and (B4.), gives

ry — Er
piv1i—E, = [Ciu Cip Cis | Xt — Ex
—B'Bii(ri — E;) — By Bia(x, — Ex) + By (1 — E»)

Uiyl
+[ Bi1 Biz Bis || v
Ur+1
= A3 (ri— Ey) + Asa(xs — Ex) + Asz(pr — Ep) + wig1, (B5.)
where
[ Byy Bz Bis
[Cii Ci2 Ci3 ] = [ Bu Bz Bis ]| Bu By By
| B31 By B
_Ut+1
w41 = [ Bu Bz Bz || v
Ur+1
A3 = Ci— Ci3 By B
Az; = Cia—Ci3B By
Ays = Ci3Br.
Combining (B2.), (B3.), and (B4.) gives
l”t—Er

xt_Ex

] —B'Bii(r,— E;) — By Bia(x, — Ex) + B (e — E»)

Fev1— E, _ Bi1 B, Bis
Xep1— Ex By1 By, B
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+[ U1 ]
Vr41
ry — Er
0 0 1 Urtl
= x—FEy | + , B6.
[ Az Az Aas ] ! [ ] (6

where

A1 = By — By By By
Ay = By — BB Bis
A3 = BnBy. (B7.)

Combining (B5.) and (B6.) gives (B1.).

We assume the disturbances in (B1.) are distributed identically and independently across ¢ as

ut 0 Euu Zuv Zuw
vy ~ N 0 [, X Xuw Xow . (B8.)
wt 0 Zwu Zwv wa
Define the vector
It
é‘t = Xt )
e

and let V¢ denote its unconditional covariance matrix. Also let A denote the entire coefficient

matrix in (B1.), and let X' denote the entire covariance matrix in (B8.). Then

Vir Vex Viu o
Veie=1| Vir Vix Vip | = AVeeAd'+ X, (B9.)
Vir Vux Vi
which can be solved as
vec (Vi) = [I — (A ® A)] 'vec (2). (B10.)

using the well known identity vec (DFG) = (G’ ® D)vec (F).
Let z; denote the vector of the observed data at time ¢,

It
Z; = .
t x;

Denote the data we observe through time ¢ as D; = (zy, ..., z;), and note that our complete data
consist of Dr. Also define

E V,
EZ - g ) VZZ - T X ) VZ - e ] . Bll.
[ E.X ] [ xXr V.X.X ] ’ [ XU ( )



B3. Drawing the time series of u,

To draw the time series of the unobservable values of (1, conditional on the current parameter
draws, we apply the forward filtering, backward sampling (FFBS) approach developed by Carter
and Kohn (1994) and Friihwirth-Schnatter (1994). See also West and Harrison (1997, chapter 15).

B3.1. Filtering

The first stage follows the standard methodology of Kalman filtering. Define

a; = E(u:|Di-1) by = E(u¢|Dy) er = E(z/|pts, Di—1) (B12.)
Jt = E(z|Ds-1) Py = Var(jue|De—1) Q; = Var(u;|D;) (B13.)
Rt = Var(Zt“Lt,Dt_]) St :Var(Zt|Dt_1) Gt :COV(Zt,,LL”Dt_]) (B14)

Conditioning on the (unknown) parameters of the model is assumed throughout but suppressed in

the notation for convenience. First observe that

polDo ~ N(bo, Qo), (B15.)

where Dy denotes the null information set, so that the unconditional moments of 1o are given by
by = E, and Q¢ = V). Also,
p1|Do ~ N(ay, Pr), (Bl16.)

where a; = E, and P, = V), and
z1|Do ~ N(f1,S1), (B17.)

where f; = E, and S| = V,,. Note that

G =V (B18.)
and that
z1|p1, Do ~ N(er, Ry), (B19.)
where
er = fi+G P (1 —ay) (B20.)
R, = S1—G PGl (B21.)

Combining this density with equation (B16.) using Bayes rule gives
p1|Dy ~ N(by, Q1), (B22.)
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where

]

]

(B23.)
(B24.)

(B25.)

(B26.)

(B27.)

(B28.)

(B29.)
(B30.)
(B31.)
(B32.)
(B33.)

b] = a;+ P](P] + G;RI_IGI)_IG;RI_I(ZI — f])
Q] - P](P]‘FG;RI_IG])_IP].
Continuing in this fashion, we find that all conditional densities are normally distributed, and we
obtain all the required moments forz = 2,...,7T:
ar = (I —As1—A33)E, — A Ex + Asiri—1 + Aszoxi—1 + Aszbi—
f — [ bt—l
! | (I — A2)Ex — (A21 + A23) Er + Ani1—1 + A2oXy—1 + Azzbi—y
S — Qt—l Qt—lA/23 + Zuu Zuv
! | A23 Qt—l A23 Qt—lA/23 Zvu Zvv
Qt—lA/ Zuw
G — 33/ +
! | A23 Qt—1A33 va
Pt = A33 Qt—lA/g,3 + wa
er = Ji+ G P (e —ar)
R, = S,-GP'G
bt = a;+ Pt(Pt + G;Rt_th)_lG;Rt_l(Zt — ﬁ)
= a+G;S7(z = fo)
Q, = P(P,+G,R'G)'P,.

(B34.)

The values of {a,, b;, Q;, S;, Gy, P;} fort = 1,...,T are retained for the next stage. Equations
(B27.) through (B29.) are derived as

s, G,
|: G; Pt ] = Var(é‘t|Dt_1)
= Iivar(é‘t_l |Dt_1)14_/ + )
Too o 7.
= Al 0 O 0 A+ X
0 0 Qs
Q11 Qt—lA/23 Qt—lA/33
= A230:-1 A230:14% AxQi1A4%,
A330:-1 A330,14% A33Qi-1A4%,

B3.2. Sampling

We wish to draw (o, i1, - . -
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, o) conditional on Dr. The backward-sampling approach relies



on the Markov property of the evolution of ¢; and the resulting identity,

o, 81,....¢r|Dr) = p(Cr|D1) p({T-1|8T, Dr—1) *+- p(1¢2, D1) p(S0l81, Do).  (B35.)

We first sample 7 from p(ur|Dr), the normal density obtained in the last step of the filtering.
Then, fort =T —1,T —2,...,1,0, we sample u, from the conditional density p(&;|C;+1, Dy).
(Note that the first two subvectors of ¢, are already observed and thus need not be sampled.) To
obtain that conditional density, first note that

Jr+1 Str1 G
D; ~ N N : B36.
é‘t+1| ! (|: at+1 Gt+1 Pt+1 ( )
;s 00 O
§elDe~NY| x |.] 00 0 , (B37.)
b, 0 0 QO
and
Cov((,,§;+1|D,) = Var(§,|D,)/I’
[0 0 0 0 Ay A,
= 0 0 O 0 A,, A5,
| 0 0 O I 4, A%,
[0 0 0
= 0 0 0 . (B38.)
| O: QtA/23 QtA/33
Therefore,
$elCiv1, Dy ~ N(hy, Hy), (B39.)
where

hi = E(|Dy) +[Cov(Cr. &y | D] [Var(e1| DI [Gr41 — E(Crs1| D)

r 0 0 0 -
— xtt + 0 0 0 |: St+1 Gria ] 1|: Zrv1 — fr4 ]
o , , G’ P —a

b, 0 0:4;; Qidy, o ok frss ok

and

H, = Var(¢|D;) — [Cov(¢r, &y q|Dy)] [Var(¢41| Do) [Cov(¢s, §;+1|D,)]/

00 0 0 0 0 g G 2[00 O
— 00 0 |—=] 0 0 0 [Gi“ P”:] 0 0 A0,
00 O 0: 0:4,, 0.4}, t+1 St 0 0 A330;
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The mean and covariance matrix of y, are taken as the relevant elements of /1, and H;.

For the remainder of the Appendix, we deal with the special case in which the coefficient matrix
in (B1.) is restricted as

0 0 1 0o 0 [
Ar1 Az Ars = 0 A O (B40.)
Az Azy Aszs 0 0 B

B4. Expected returns and past values

This section derives equations (8), (11), and (26). We continue to treat the multiple-asset case,
in which r; is a vector of returns. Denoting matrices by uppercase letters, we replace m by M, n
by N,Aby A, ¢ by @, by A, w by £2, and « by K.

Below, we express the vector of conditional expected returns, b, = E(r;+1|D;), as a function

of past returns and predictors. Denote
[Mt Nt]E Pt(Pt+G;Rt_th)_lG;Rt_l = G;St_l, (B41)
so that, from equation (B32.), for t > 1,

by = a;+[M; Ni|(z: — 1)

— _ re—biy
= (I—-B)E, + Bb,—y +[M, N,]{ o — (I — A)Ey — Ax,_, ]
= (I-B)E, + (B—M;)b;— + M;r; + N;vy, (B42.)
or
by —E, = B(by—1 — E;) + M;(r; — bs—1) + Nsv;. (B43.)

For t = 1, we obtain
by —E, = M(r; —bo) + Nyvy,

where v; denotes x; — E,. Repeated substitution for the lagged values of (b, — E,) gives

t t
bi=E,+ Y Ag(rs—be1) + ) By, (B44.)
s=1 s=1
where
A, = B M, (B45.)
&, = B'°N,. (B46.)
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That is, the expected return conditional on data observed through period ¢ can be written as the
unconditional mean E, plus a linear combination of past return forecast errors, €, = ry — bs_1,

plus a linear combination of past innovations in the predictors. This is equation (8) in the text.

The conditional expected return b, can be rewritten so that past forecast errors are replaced by

returns in excess of the unconditional mean £,. To do so, modify equation (B42.) as
bi—E, =(B—M;)(by—1 — E;)+ M;(r, — E;) + Nsv, (B47.)

so that repeated substitution for the lagged values of (b; — E,) then yields

t t
be=Er+ ) @(re=Ep)+ ) Asus (B48.)
s=1 s=1
h
e o _ [ (B=M)B=M 1) (B=My)M, fors <i (549,
s M, fors =1t '
_ J B=—M)(B—-M;—1)(B—Ms41)Ns; fors <t
45 = { N fors =1t (B50.)

That is, b, is then equal to the unconditional mean return E, plus linear combinations of past

returns in excess of £, and past innovations in the predictors. This is equation (11) in the text.

If E, is replaced by the sample mean in equation (11), then the estimate of b; becomes

t t
b= "Krs + Y Agvs, (B51.)
s=1 s=1

where .
1
Ks =~ (1 -> Q,) + 92, (B52.)
I=1
and Zi:l ICs = 1. This is a generalized version of equation (26) in the text.

In the rest of the Appendix, we discuss the special case (implemented in the paper) in which
r; 1s a scalar. This simplification turns i, E,, and B into scalars as well. Therefore, we now turn

back to the notation from the text in which B is replaced by 8 and the relevant X’s by o’s.

B5. Drawing the parameters

This section describes how we obtain the posterior draws of all parameters conditional on the

current draw of the time series of p;.



B5.1. Prior distributions

First, we discuss the prior on (Ey, A, E,, B). We require both x; and i, to be stationary, so
that all eigenvalues of A must lie inside the unit circle and € (—1, 1). Apart from this restriction,
our prior is noninformative about A4 but informative about 8, 8 ~ N(0.99,0.152) (see Figure 5).
We put a mildly informative prior on E,, E, ~ N(j, aér), centered at the sample mean return
with a large prior standard deviation of 1% per quarter. We use a noninformative prior for £,
E, ~ N(0, aéx Ik ) with a large og,. All four parameters, 4, B, E,, and E, are independent a

priori.
The prior on X' is more complicated. Recall that, with r; being a scalar, X is defined as

2
0, Ouwv Oyw

2 = Uvu Zvv va

2
Owu Owv Oy

We divide the elements of X' into two subsets: first, the 2 x 2 submatrix X';;, where

5= 02 ouw
11 = 2 )
Uw u Uw

and second, the elements of X' that involve v: X,) = (Xyy, Opu, Ovw). We choose a prior that
is informative about X';; but noninformative about X'(,). Such a prior is obtained as a posterior
of X when a noninformative prior is updated with a hypothetical sample in which there are 7}
observations of (u,w) but only Sy <« Tj observations of v (see Stambaugh, 1997). We choose
Ty equal to one fifth of the sample size, which makes the prior on X¥;; informative (five times less
informative than the actual sample). We choose Sy = K + 3, where K is the number of predictors,
which makes the prior on X, virtually noninformative (as informative as a sample of only K + 3

observations, where K = 1 or 3).

The prior on Xy; is inverted Wishart, Yy; ~ IW(TOZ:’H,O, Ty — K), so the prior mean is
E(X) = 5:'11,0 (To/(Toy — K — 3)). Denote the (7, j) element of 5:'11,0 by M;;, fori = 1,2 and
J = 1,2. The value of M, is chosen such that the prior mean of 03 is equal to 95% of the sample
variance of market returns. The value of M5, is chosen to deliver the prior mean of 05) which, com-
bined with B of 0.97, sets the variance of i, equal to 5% of the sample variance of market returns.
These values of M;; and M3, lead to a prior for the R? from the regression of r;41 on , that we
find plausible (see Figure 5). To be able to put different priors on p,,, while keeping the same prior

on o2 and o2, we adopt a hyperparameter approach. We assume that M, is an unknown hyperpa-

rameter with a uniform prior distribution on the interval (—c~/ My Myy,T~/ M1y M3y). Since the
prior mean of p,, is approximately equal to My, /+/ My M>;, this prior mean is approximately

9



uniformly distributed as U(—c¢, ¢). For all three priors on p,,,, we specify ¢ = —0.90 and we vary
¢ as follows: 0.9 for the noninformative prior, -0.35 for the less informative prior, and -0.87 for the

more informative prior. These choices produce the priors on p,,, plotted in Figure 5.

The prior on X, is obtained by changing variables from (X, 044, 0yy) to the slope C (K x2)
and the residual covariance matrix £2 (K x K) from the regression of v, on (u,;, w;), with zero
intercept. That is, C = [0y, avw]Z‘l_ll, and 2 = X,, — CX;C’. We then put a normal-inverted-
Wishart prior on C and £2: 2 ~ IW(SOK}O, So) and vec (C)[§2 ~ N(éo, 2 ® (X;Xo)™ "), where
[}0 , Co, and X (; X) represent estimates from the Sy periods in the hypothetical sample in which both
v, and (u,, w,) are available. The choices of [AZO and ¢y are inconsequential because they represent
means of distributions with large variances. We choose a very small value for Sy, as explained
above, so the prior variance of §2 is large . We then choose the 2 x 2 matrix X; X, equal to a small
positive number times the identity matrix, so (X Xo) ™', and thus the prior variance of C, is large.

As aresult, the priors on C and §2 are noninformative.

As mentioned above, these priors on Xy, C, and 2 can be thought of as posteriors. After
changing variables from X to (X1, C, £2), the diffuse prioron ¥, p(¥) o | X|~K+3)/2 translates
into p(X1,C, 2) o | X |K=3/2|Q|7(K+3)/2 When this noninformative prior is updated with
the hypothetical sample of 7, observations of (1, w) and Sy observations of v, the posteriors of
Y11, C, and £2 are exactly the same as the priors described above. See Stambaugh (1997), with

the additional restriction that the population means of #, and w; are zero.

B5.2. Posterior distributions

B5.2.1. Drawing (E,, A, E,, ) given ¥

Equations (4) and (5) can be written as

)= ) G-t ) () - G,

dr+1 Ll q: L2 Ex;L

where the covariance matrix of the residuals is

Z‘UU va ]

Low) = { Gy O
w

The prior for E, is

Exu ~ N(Exuoviuo)v

10



where

0
Fano = (u)
2
o O’EXIK 0
v = (B2

Since both the prior and the likelihood are normally distributed, the full conditional posterior dis-

tribution of E, is also normal,

Eaul ~ N (Exu Vi) (B53.)

where V= (VoL +TL, Y- L) and Exy = Vi [V‘l Espy + L’zZ’(_v}U) Zthl(q,H — qu,)].

X o (vw) X o

Let x* = (x’z‘ - ,x’})’ denote the (7" — 1) x 1 vector of realizations of predictor k in periods
2,....,T,fork =1,..., K. Also, let x(;) denote the (7" — 1) x K vectors of realizations of all K
predictors in periods 1, ..., 7 — 1. Similarly, let © = (2, ..., ur) and pqy = (11, ..., u7-1)’,
and let E .« be the k-th element of E. Denote

x'—ir 1 E xq—tr—1EL 0 0 0
z = s Z — 0 0 0 ,
xK — 17 E.x 0 0 xq—tr—1E. 0
w—tr—1Ey 0 0 0 way —tr-1Ey

where 17— isa (T — 1) x 1 vector of ones, the dimensions of z are [(T — 1)(K + 1)] x 1, and the
dimensions of Z are [(T' — 1)(K + 1)] x (K? + 1). Then we can write the equations (4) and (5) as

z = Zb+ errors,

where b = (vec (A’)’ B)’ and the covariance matrix of the error terms is X(yy) ® I7—1. The prior
(vw) p

distribution on b is given by
b ~ N (b, Vbo) X lpes,

where by and Vj, are chosen as explained earlier and 15¢s is equal to one when x; and u, are
A —1 A A
stationary and zero otherwise. Let V;, = [Z’(Z’(_U}U) ® IT_I)Z] and b = VbZ'(Z(_vL,)@[T—l)Z.

The full conditional posterior distribution of 4 is then given by
bl- ~ N (5, I7b) X lpes, (B54.)

where 171, = (Vb_ol + I;'b_l)_l and b = 171, (nglbo + I;'b_ll;). We obtain the posterior draws of b

by making draws from N (5, 171,) and retaining only draws that satisfy b € S. The posterior draws
of A and B are constructed from the posterior draws of b from the definition b = (vec (4’)" B)’.

11



B5.2.2. Drawing X given (E., A4, E,,B)

Recall that we change variables from X', where

2
0, Ouwv Oyw
Y= Ovu Zvv Ovw s

2
Owu Owv Oy

to the set of (X', C, §2), where

5= 02 ouw
11 = 2 )

and C and §2 are the slope and the residual covariance matrix from the regression of v on (u, w).

The prior for X'; is conditional on the hyperparameter M;,. This hyperparameter can be

drawn from its full conditional posterior density, p(M;,|-, D;), which is given by

p(Mi2]|X11) |4€'11,0|T02;K exp {—%U(Zﬂlﬁn,o)} . My € (—cv/ My My, T/ My M),
(B55.)
where M1, is the (1,2) element of b 11,0. Although this is not a density of a well known distri-
bution, we can make posterior draws of M, easily. We approximate this density by a piecewise
linear function, using a fine (250-point) grid on the interval (—c/ M1y M35,/ M1 M>5). For a

random draw z ~ U(0, 1), we find the points on the grid whose cumulative probability densities

are immediately above and below z, and we compute the value of M, by linear interpolation.

Conditional on Mi,, we have the matrix > 11,0 1n the prior distribution for X';;. In addition,
conditional on (Ey, 4, E,, B), we have the sample of the residuals (u,, v;, w;),t = 1,...,T. Let
X denote the 7" x 2 matrix of [u; w,], let Y5 r denote the 7" x K matrix of v;. The sample estimates
from the regression of Y> r on X are given by C = X' X)) 'X'Y,r, Q= (Yao.r — XCA’)’(Yz,T -
xXC )/ T, and b 11 = X' X/T. The posterior of X1 has an inverted Wishart distribution:

Tl ~ IW(Toﬁll,o-FTﬁn,T-i-To—K). (B56.)

In addition, let Ve = (X{Xo + X'X)~', C = V¢ [(X(;XO)C’O + (X’X)é], ¢ = vec(C), and
D = CA’(; X Xo C’o +C'X'xXC-C Ve IC. The posterior of £2 has an inverted Wishart distribution:

Q ~ IW(SeR20+ TR+ D, T +Sy), (B57.)
and the conditional posterior of ¢ = vec (C) is normal:

c|2,- ~ N 2 V). (B58.)

12



Given the posterior draws of (X1, C, §2), we construct the remaining (non-X;;) elements of X' as
follows: [0y, Oyw] = CXyp and Xy, = 2 + C Xy C'.

Our inference is based on 25,000 draws from the posterior distribution. First, we generate a
sequence of 76,000 draws. We discard the first 1,000 draws as a “burn-in” and take every third
draw from the rest to obtain a series of 25,000 draws that exhibit little serial correlation. The
posterior draws of the relevant quantities such as p,, Pxu. Rz(,u, on x;), R*(rss+1 on Ut), etc.

are constructed easily from the posterior draws of the basic parameters in the model.

B6. Maximum likelihood estimation

Denote the variance-covariance matrix of the disturbances in equations (4) and (28) as

COV(|: Z’ ],[ & v ])=I*= { 0l Oy ] (B59.)

UUG Z11)1)

Maximum likelihood estimates are computed as the values of E,, 8, m, n, A4, 062, Ope, and Xy,

that minimize

T
—2InL = Z [ln }tht—l} + (z/ — 2t|t—1)/Vt|_,1_1(Zt - 2t|t—1)] ) (B60.)
t=1
where 240 = E.,
op oy,
V1|0 B |: Oxr Vxx i|’

o = (1=B>)7' [0 Zpon+ (1= B>+ m*)o? + 2mo.n],
oxr = (I —BA) ' [AZyn +[I — (B —m)Aloy],

2l‘ll‘—] == EZ + Fl](Zt—l - EZ) + F122*Vt__11|t_2 (Zt—l - 2l‘—lll‘—2) ) I = 27 cee s T?
Vt|t—1 = F12 (2* _Z*Vt__lnt_zz*) F{z + 2*, = 2, ,T,
0 —(B—m) n
I A B B

and V. is given by (B9.), (B10.), and (B40.).

B7. The R? ratios

The numerator of the R? ratio in equation (29) is computed as

Var(E(u,|x;)) _ Var(E(us) + Vi Vi (xr —E(x1))) . Vi Vi Vix
Var(u;) Var(ir) Viu

R*(u; on x;) =

9

(B61.)
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where Vi, V., and Vi, are given by (B9.), (B10.), and (B40.).

The denominator of the R? ratio in equation (29) is computed as

Var(E(u|Dr)) _ Var(ur) — Var(ui| Dr) _ |- 0
Var(ji,) Var(u,) Viu®

where Q; is given in equation (B34.). We replace Q; by its steady-state value, Q, which can be

R*(u; on D;) =

(B62.)

shown to be equal to a solution of a quadratic equation:

VE — 46— &
(B63.)

0 = —

Eo= (1= B)(0; = 0wy, 0ui) + 2B(0uw — 0w ¥y, 0vi) = (T4 — Oww Ty Ovw)
= (1—B*Var(u|v) + 28Cov(u, w|v) — Var(w|v)

£ = (Oww— 0wy, 0vi)® = (07 — 0wy, 00u) (0 — Oww 2y Ovw)

= Cov(u,w|v)?* — Var(u|v)Var(w|v) < 0

The value of Q is also used in computing the steady-state values of M; and N, from equation

(B41.), denoted by m, and n;, in the scalar case:

m = (BO + Cov(u,w|v))(Q + Var(u|v))™! (B64.)
n = (owy— mcr,,v)Z’v_vl. (B65.)

B8. Variance decomposition of expected return

In equation (34), the conditional expected return jt, depends on three time-varying variables:
1. C1 = Xx;, the current predictor values

2. C2 =72, B'u,—i, an infinite sum of current and lagged unexpected returns

3. C3 = Z?io (,3’ Ig — A ) v;—i, an infinite sum of current and lagged predictor innovations ,

plus an error term. In the variance decomposition in Table IV, we consider regressions of (; on
various subsets of (C1, C2, C3). Let C denote a given subset of (C1,C2, C3). The R? from the
regression of ; on C is equal to

ViceVe e

Rz(,uvt onC) =
Viu

(B66.)
The matrix V¢, the covariance matrix of C, is pieced together from
Var(Cl) = Vix
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Var(C2) = o2(1—B5)7"
vec (Var(C3)) = [(1=B*)"Ix2 —(Ixk —BA) ' Q@ Ix — Ix ® (Ix — BA) '+
+ (g2 — A® A) '] vec (Z)
Cov(C1,C2) = (Ix —BA) o
Cov(C2,C3) = [(1—p*)7"Ix — (Ix — BA) "] o
vec (Cov(C1,C3)) = [Ix ® Ik —BA) " + (Ig2 — A ® A)~'] vec (Zyy),

and V¢, the vector of covariances between ; and C, is built from

Cov(u,,Cl") = ¥, Var(Cl) + ¥,Cov(Cl, C2)' + ¥,Cov(Cl, C3')’
Cov(u,, C2) = Y, Var(C2) + ¥,Cov(Cl1, C2) + ¥,Cov(C2, C3)
Cov(u,,C3") = ¥, Var(C3) + ¥,Cov(Cl1, C3') + ¥,Cov(C2, C3)'.
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