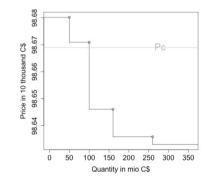
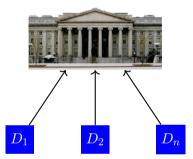
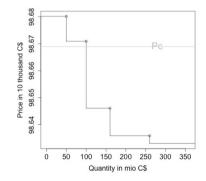
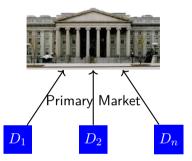

Intermediary Market Power and Capital Constraints Jason Allen and Milena Wittwer

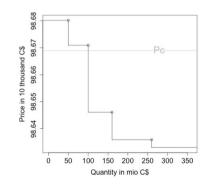

> Discussion: Chaojun Wang The Wharton School, University of Pennsylvania


Conference on Sovereign Bond Markets April, 2023





Secondary Market



Effect of Capital Constraints on Auction

Relaxing capital constraints

- 1 flatter demand curves (theory &
- 2 higher prices (theory & &
- 3 higher markup (theory &

)

Effect of Capital Constraints on Auction

Relaxing capital constraints

- 1 flatter demand curves (theory & empirics)
- 2 higher prices (theory & empirics &
- 3 higher markup (theory &

Effect of Capital Constraints on Auction

Relaxing capital constraints

- 1 flatter demand curves (theory & empirics)
- 2 higher prices (theory & empirics & structural)
- 3 higher markup (theory & structural)

Model: Uniform price auction with a capital constraint

- Asset supply A, per-unit payoff $R \sim N(\mu, \sigma)$
- N > 2 dealers
- Initially, dealer i holds z_i units of the asset, equity capital E_i
- Each dealer submits demand schedule $a_i(p)$, s.t.

$$\kappa_i \le \frac{E_i}{p(a_i + z_i)}$$

- Market clears at $\sum_i a_i(p^*) = A$
- CARA $\mathbb{E}[1 e^{-\rho\omega_i(a_i,p)}]$ with $\omega_i(a_i,p) = (a_i + z_i)R pa_i$

- 1 flatter demand curves (theory & empirics)
- 2 higher prices (theory & empirics & structural)

- 1 flatter demand curves (theory & empirics)
- 2 higher prices (theory & empirics & structural)

Theory same predictions with perfect competition?

• Flatter demand curve:

$$\mu - \rho \sigma q_i(p) = (1 + \lambda_i \kappa) p$$

• Higher price: $p^*(0)$ increases as κ decreases (Corollary 1)

- 1 flatter demand curves (theory & empirics)
- 2 higher prices (theory & empirics & structural)

Theory same predictions with perfect competition?

• Flatter demand curve:

$$\mu - \rho \sigma q_i(p) = (1 + \lambda_i \kappa) p$$

• Higher price: $p^*(0)$ increases as κ decreases (Corollary 1)

Structural How would the estimation for price/yield differ?

- 1 flatter demand curves (theory & empirics)
- 2 higher prices (theory & empirics & structural)

Theory same predictions with perfect competition?

• Flatter demand curve:

$$\mu - \rho \sigma q_i(p) = (1 + \lambda_i \kappa) p$$

• Higher price: $p^*(0)$ increases as κ decreases (Corollary 1)

Structural How would the estimation for price/yield differ?

• {Same when dealers are identical (Corollary 2)? When the shadow cost of capital $\lambda \kappa \downarrow$ by 1%, $p^*(0) \uparrow$ by $\eta = |\frac{1}{1+\lambda\kappa} - 1|\%$ }

Suggestion #2: Asset allocation

 $\mathsf{Markup}\coloneqq p^*(0)-p^*(\Lambda) \text{ measures price distortion}$

Suggestion #2: Asset allocation

 $\mathsf{Markup}\coloneqq p^*(0)-p^*(\Lambda) \text{ measures price distortion}$

Asset allocation changes with perfect competition?

Suggestion #2: Asset allocation

 $\mathsf{Markup} \coloneqq p^*(0) - p^*(\Lambda)$ measures price distortion

Asset allocation changes with perfect competition?

- Without capital constraints, asset allocation remains the same which is efficient
- "Markup" is a mere transfer from government to dealers, which is what the government wants during crisis
- Would introducing capital constraints change the above?

Suggestion #3: Market power over customers

 $\mathsf{Markup} \coloneqq p^*(0) - p^*(\Lambda)$ is a measure of dealer market power over the Fed/BOC

Suggestion #3: Market power over customers

 $\mathsf{Markup}\coloneqq p^*(0)-p^*(\Lambda)$ is a measure of dealer market power over the Fed/BOC

How about dealer market power over customers (which would usually distort asset allocation)?

•
$$Markup^{C} := secondary price - \underbrace{primary price}_{p^{*}(\Lambda)}$$

- \bullet Current model says smaller Markup^C with relaxed capital constraints
- Naturally expects smaller $Markup^{C}$ with lower balance sheet cost
- Can get direct evidence

Hard capital constraints $\kappa_i \leq \frac{E_i}{p(a_i+z_i)}$

Hard capital constraints $\kappa_i \leq \frac{E_i}{p(a_i+z_i)}$

Hard capital constraints $\kappa_i \leq \frac{E_i}{p(a_i+z_i)}$

How about equity issuance?

• Primary market price and quantity reveal dealer willingness to pay, which affects dealer funding cost in capital markets

Hard capital constraints $\kappa_i \leq \frac{E_i}{p(a_i+z_i)}$

- Primary market price and quantity reveal dealer willingness to pay, which affects dealer funding cost in capital markets
- Equity issuance incentivizes dealers to bid more aggressively, raising clearing price (De-Marzo, Kremer, and Skrzypacz, 2005)

Hard capital constraints $\kappa_i \leq \frac{E_i}{p(a_i+z_i)}$

- Primary market price and quantity reveal dealer willingness to pay, which affects dealer funding cost in capital markets
- Equity issuance incentivizes dealers to bid more aggressively, raising clearing price (De-Marzo, Kremer, and Skrzypacz, 2005)
- $\bullet\,$ Tighter capital constraints raises need to issue equity and thus $p^{\rm primary}$

Hard capital constraints $\kappa_i \leq \frac{E_i}{p(a_i+z_i)}$

- Primary market price and quantity reveal dealer willingness to pay, which affects dealer funding cost in capital markets
- Equity issuance incentivizes dealers to bid more aggressively, raising clearing price (De-Marzo, Kremer, and Skrzypacz, 2005)
- $\bullet\,$ Tighter capital constraints raises need to issue equity and thus $p^{\rm primary}$
- Above effects absent/weaker in opaque secondary OTC market

Hard capital constraints $\kappa_i \leq \frac{E_i}{p(a_i+z_i)}$

- Primary market price and quantity reveal dealer willingness to pay, which affects dealer funding cost in capital markets
- Equity issuance incentivizes dealers to bid more aggressively, raising clearing price (De-Marzo, Kremer, and Skrzypacz, 2005)
- $\bullet\,$ Tighter capital constraints raises need to issue equity and thus $p^{\rm primary}$
- Above effects absent/weaker in opaque secondary OTC market
- Tighter constraints reduces $Markup^C \coloneqq p^{secondary} p^{primary}$
- Relaxing constraints widens $Markup^{C}$

Summary

• Powerful framework to study treasury auctions

Summary

• Powerful framework to study treasury auctions

- Main suggestions:
 - Examine dealer market power over customers
 - \blacktriangleright Equity issuance to rationalize larger Markup^C with relaxed capital constraints