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Abstract

We model bargaining in over-the-counter network markets over the terms and prices
of contracts. Of concern is whether bilateral non-cooperative bargaining is sufficient to
achieve efficiency in this multilateral setting. For example, will market participants as-
sign insolvency-based seniority in a socially efficient manner, or should bankruptcy laws
override contractual terms with an automatic stay? We provide conditions under which
bilateral bargaining over contingent contracts is efficient for a network of market partic-
ipants. Examples include seniority assignment, close-out netting and collateral rights,
secured debt liens, and leverage-based covenants. Given the ability to use covenants and
other contingent contract terms, central market participants efficiently internalize the
costs and benefits of their counterparties through the pricing of contracts. We provide

counterexamples to efficiency for less contingent forms of bargaining coordination.
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1 Introduction

For a network market setting, we propose a theory of bilateral bargaining over the terms and
pricing of contracts that may be contingent on the contracts signed by other pairs of agents
in the network. We state conditions under which contingent bilateral contracting is socially
efficient, subject to the available sets of contracts. We provide counterexamples to efficiency
in settings with less effective forms of bargaining coordination. We develop two solution
concepts: an extensive form alternating-offers bargaining game equilibrium refinement, and
an axiomatic-bargaining solution. We show that the solutions arising from these approaches
coincide in the case of three-player networks. (Our extensive-form alternating-offers game
treats only the case of three-player networks.)

An example application depicted in Figure 1 is the contracting between a debtor firm and
a creditor, and between the same debtor firm and a derivatives counterparty. The unique
trembling-hand perfect equilibrium in our basic alternating-offers contingent contract bar-
gaining game specifies socially efficient actions by the three firms. Efficiency arises through
the ability of the debtor to internalize the costs and benefits of its two counterparties through
the pricing of contracts with each of them. For example, if a particular change in contract
terms would have large benefits for the swap counterparty, and could be accommodated at a
small total cost to the debtor and creditor firms, then this change in contract terms will be
chosen in the course of pairwise contingent contract bargaining, given that the debtor firm
can extract a compensating payment from the swap counterparty that provides a sufficient

incentive to the debtor and creditor.

swap

loan

Figure 1 — An illustrative three-firm financial contracting network.




An illustrative issue of concern in this setting is whether the equilibrium contract terms
would efficiently assign recovery priority to the creditor and the swap counterparty in the
event of the debtor’s insolvency. Assignment of priority in either direction is currently
permitted under U.S. bankruptcy law through exemptions for qualified financial contracts
such as swaps, repos, clearing agreements, and securities lending contracts. This exemption
allows for enforceable ipso facto clauses that assign the right to terminate a contract in the
event of insolvency and to liquidate collateral. This sort of clause is standard in current
swap and repo contracts.

There has been a debate over allowing qualified financial contracts to include ipso facto
clauses, unrestricted by bankruptcy law. Roe (2013) suggests that contractual assignment
to swaps of the right to terminate and keep collateral in the event of the debtor’s insolvency
should be unenforceable or subject to rejection under an automatic stay. This issue is
modeled in a different setting by Bolton and Oehmke (2015), who instead assume price-taking
competitive markets and rule out the negotiation of covenants regarding the assignment of
priority. Like Bolton and Oehmke (2015), our model does not cover externalities such as
firesales, a tradeoff discussed by Duffie and Skeel (2012).

In our model, each pair of directly connected firms bargains over contractual terms.
In the example setting illustrated in Figure 1, the equilibrium contract prices reflect the
relative distress costs of the two counterparties, allowing the debtor to efficiently internalize
its counterparties’ distress costs and assign contractual priority efficiently. For example, if the
creditor suffers greater distress from loss of default priority than does the swap counterparty,
then in the naturally selected equilibrium, the pricing of the swap contract will include a
price concession that is sufficient to “convince” the swap counterparty to give up priority.
The creditor would in this case be willing to accept a lower interest rate in order to receive
effective seniority. Conversely, if the creditor is better equipped to suffer losses at the debtor’s
default than the swap counterparty, then in equilibrium the debtor will offer a high enough
interest rate to the creditor to encourage the creditor to agree to loss of priority, and the
debtor will receive a correspondingly higher upfront payment from the swap counterparty.

The debtor’s shareholders have no direct concern with seniority at the debtor’s own default,



and are therefore able to act as a conduit by which the creditor and the swap counterparty
can indirectly compensate each other for priority assignment.

Our results are based on an extension to network settings of the alternating-offers bargain-
ing game of Rubinstein (1982). Bargaining is conducted by each pair of directly connected
nodes, which we call “firms.” Our model allows for incomplete information. While a given
pair of firms is bargaining, they are unaware of the bargaining offers and responses being
made elsewhere in the network. In order to isolate natural equilibria, we therefore extend
the notion of trembling-hand perfect equilibrium of Selten (1975) to this network bargaining
setting. The trembling-hand perfect equilibrium choices are socially efficient by virtue of
the assumed ability to sign contracts whose terms are contingent on the terms of other con-
tracts. For instance, in the setting of our illustrative example, the creditor and the debtor
can choose to make the terms of their loan agreement contingent on the terms of the swap
contract chosen by the debtor at its swap counterparty.

The efficiency of the trembling-hand perfect equilibrium contract terms does not depend
on some aspects of the bargaining protocol, such as which pair of counterparties writes
contingent contracts and which pair of counterparties uses only simple contracts. In practice,
covenants in a given contract normally restrict the terms of future contracts, but our setting
is static.

We show that equilibrium contract prices converge, as exogenous breakdown probabilities
go to zero, to those associated with the unique axiomatic solution that satisfies, on top of
some obvious bargaining axioms, two newly proposed axioms, ‘“multilateral stability” and
“bilateral optimality.” In particular, the non-cooperatively bargained prices do not depend
on which pair of firms writes contingent contracts. Our axioms apply to more general types
of networks, under conditions that rule out general cross-network externalities.

An extensive literature on network bargaining games includes some prior work that,
like ours, focuses on non-cooperative bilateral bargaining. Until now this literature has
studied settings in which there are two key impediments to socially efficient outcomes: (i)
general cross-network externalities, and (7i) coordination failures that arise from a restriction

to contracts that are not contingent on other bilateral contracts. We assume an absence



of general network externalities and we allow contracts to have unlimited cross-contract
contingencies, such as covenants. These “ideal” conditions are not to be expected in practical
settings. We nevertheless believe that it is valuable to characterize a theoretical benchmark
network market setting in which bilateral contracting is socially efficient, subject to the
restrictions imposed by the feasible sets of contractible actions. Even in our “ideal” setting,
our analysis suggests that apparently reasonable changes to our proposed bargaining protocol
can lead to additional equilibria that are not efficient.

Several papers provide non-cooperative bilateral bargaining foundations for the Myerson-
Shapley outcomes and values, as defined by Myerson (1977a). In the first of these papers,
Stole and Zwiebel (1996) provide a non-cooperatove foundation for the Myerson-Shapley
values as those arising in the unique sub-game perfect equilibrium of a network game in
which a firm negotiates bilateral labor contracts with each of its potential workers. Their
bargaining protocol, like ours, is based on the Rubinstein alternating offers game. In their
case, however, breakdown in a given bilateral bargaining encounter results in a re-start of the
bargaining of the firm with other workers, in which any previously “agreed” labor contract is
discarded. In this sense, the labor contracts are non-binding. The work of Stole and Zwiebel
(1996) is extended to more general settings by de Fontenay and Gans (2013). In a different
setting, Navarro and Perea (2013) provide a bilateral bargaining foundation for Myseron
values, with a sequential bilateral bargaining protocol in which pairs of linked nodes bargain
over their share of the total surplus created by the connected component of the graph in

which they participate.

2 A Simple Network with Three-Node in a Line

We begin with a simple three-firm network. Firms 1 and 2 bargain over the terms of one
contract. Firms 2 and 3 bargain over the terms of another contract. The contracts specify
the actions to be taken by each firm. Firm 7 takes an action in a given finite set S;. We
denote by S = H?Zl S; the set of all possible action vectors. For each action sy € Sy of the

central firm, there is a limited subset C(s2) C S; of feasible actions that can be undertaken



by firm 1, and a limited set C3(sy) C S3 of feasible actions for firm 3. That is, C; is
a correspondence on Sy into the non-empty subsets of S;. These correspondences describe
compatibility conditions on actions taken by bilaterally contracting counterparties. We write
(s1,52) € Cio and (sg, s3) € Cag to indicate that a pair of actions is compatible. For a given
action vector s, s is said to be feasible if both pairwise compatibility conditions are satisfied.
We denote by C' the set of feasible action vectors.

In applications, the actions of two linked firms could represent the terms of their bilateral
contract, other than the initial compensating payment. These terms could include, for
example, maturity date, stipulated future actions or payments (contingent perhaps on future
states of the world), seniority assignment, and so on. Each pair of contracting firms is also
able to exchange an initial monetary payment. Firm 2 pays firms 1 and 3 the amounts y;
and ys respectively. These amounts are any real numbers, positive or negative. Later we
will specify intervals by which the payments are bounded. Equivalently, firm ¢ pays firm 2
the amount —y;. In summary, firms choose actions s € S =57 x Sy x S3 and compensation

amounts y € R?, with respective quasi-linear utilities

u(y, s) = fi(s1,82) +m

uz(y, s) = fas1,82,83) — Y1 — Y3

us(y, s) = fs(s2,s3) + ys,
for some f; : Sy x Sy = R, fo: § = R, and f3 : S5 x S3 — R, as illustrated in Figure
2. It is important for our efficiency results that a firm’s utility depends only on its direct
compensation, and on the actions of itself and its direct bilateral counterparty. Nevertheless,
the compatibility condition s3 € C3(s2) and the dependence of f5(s2,s3) on so imply that
firms 1 and 2 contracting over (s, s2) has an influence over firm 3 through the choice of s,.

A symmetric situation applies to contracting between firms 2 and 3.

In the event of a failure to reach contractual agreement, there are some pre-arranged

“outside options,” which can be viewed as the “status quo.” We let (s°,4°) € S x R? be
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Firm 1 ( Firm 2 ] Firm 3
action: s; € C1(s2) action: sy € So action: s3 € Cs(sz)
ui(y, s) = fi(s1,%2) + 1 ku2(y75) = fa(s1,52,83) —y1 — Y3 ] u3(y, s) = fa(s2,53) +y3

Figure 2 — Actions and utilities in the three-firm financial contracting network.

the status-quo actions and payments. Without loss of generality via a normalization, we let
¥ = (0,0), i (s3,59) = 0, fi (s, 82) = 0, and fo (s2, 53, 58) = 0.

If the bargaining between Nodes 1 and 2 break down, an event that can arise in the
extensive-form bargaining game to be defined, then Node 2 has a limited set of actions
that can be taken with Node 3, and likewise with a breakdown between Nodes 2 and 3.
Specifically, in the event of a bargaining breakdown between Nodes 1 and 2, the action of
Node 1 is its status quo action s{, whereas the pair (ss, s3) of actions of Nodes 2 and 3 must

be chosen from

82[?’3 - {(52733) 189 € 521,83 € 03(82)} ,

where S3 is a given non-empty subset of S, with the property that any action in S5 is
compatible with s¥. That is, s € Ci(sy) for any s, € Si. Likewise, in the event of a
breakdown in the bargaining between Nodes 2 and 3, the action of Node 3 is its status quo

action s3, whereas the actions of Nodes 1 and 2 must be chosen from
852 = {(81,82) 1S € 53,31 € 01(82)},

where S3 is a given non-empty subset of Sy with the property that any action in S5 are
compatible with s3. By assumption, 82]?3 and 852 are not empty.
We assume for simplicity that each stated argmax is a singleton (that, is the associ-

ated maximization problem has a unique solution). This is generically true in the space of



utilities.! The socially optimal result is

(s1%, 85", s37) = argmax  U(s).
seC

where U : S — R be the “social welfare function” defined by

U(s) = fi(s1,52) + fa(s1,82,53) + f3(s2,53).

We also adopt the following two standing assumptions regarding outside option values.

First, for « = 1 and ¢ = 3, we have

fi (5?75%) = fl (8?783)7 536557

This condition means that that if there is a breakdown between Node 2 and another Node
1, then the utility of Node ¢ does not vary across the restricted choices remaining to Node 2.
Basically, if they don’t sign a contract, Node 2 cannot help or hurt Node i, no matter what
Node 2 chooses or whether Node 2 also takes its outside option.

The second assumption is

max U(sy,S9,83) > U (S?,S;B, 833) , (82, 53) € Cag, (1)
$1€C1(s2)
where
(s%B,sf) = argmax fo (3?,5%”, Sg) + f3 (s%b, sg) .

(skb.5%)esP,
This condition means that Node 1 always has a feasible choice that is a strict welfare im-
provement over any breakdown option.
Our main result is a protocol for contingent pairwise bargaining under which the unique
extensive form trembling hand perfect equilibrium, for any sufficiently small trembles, achieves

the socially optimal actions s**. We also provide alternative plausible bargaining approaches

IThat is, fixing all other primitives of the model, we can view the vectors of utilities of the firms (or of a
subset of firms) defined by the utilities fi, fa2, and f5 as elements of a Euclidean space. A condition is said
to hold “generically” in a Euclidean space if it holds except for a closed subset of zero Lebesgue measure.



that do not lead to this efficient result.

3 Simple Illustrative Example

For an extremely simple illustrative example, we may imagine a situation in which firm 2
is negotiating credit agreements with firms 1 and 3. The creditor firms 1 and 3 each begin
with 1 unit of cash at time zero. Firm 2 initially has ¢ < 1 in cash, and has the opportunity
to undertake a project that requires 2 units of cash. At time 1, the project will pay some
amount A > 2 with success probability p, and otherwise pays B, where 1 < B < 2. For
some negotiated note discount y;, creditor firm ¢ will provide firm 2 with 1 — g; in cash at
time zero in return for a note promising to pay 1 at time 1. Without loss of generality for
this example, we can take S; = S3 = {0} and Ci(s2) = C5(s2) = {0}. Firm 2 chooses from
Sy =40,1} x {0,1} x {1, 3}, each element of which specifies, respectively, whether credit is
taken from 1, whether credit is taken from 3, and whether firm 1 or firm 3 receives seniority.
If there is no agreement, all firms consume their initial cash. If firm 2 can negotiate funding
from each of the creditors, then at time zero it will invest 2 in the risky project and consume
all of its excess cash, which is ¢ — y; — y3. At time 1, firm 2 will consume A — 2 if the risky
project is successful and nothing otherwise. If the project is funded, then at time 0 firms
1 and 3 will consume y; and y3 respectively. At time 1, these creditors will each consume
1 if the project is successful. Otherwise, the senior creditor will consume 1 and the junior
creditor will consume B — 1.

Firm ¢ has utility ¢y + v;E(c1) for consumption ¢q in period 0 and ¢; in period 1. We
suppose that 79 < v < 73. The status-quo (breakdown) actions is taken to be s§ =
(0,0,3). (Which of the creditors is senior in the event of no funding is irrelevant, and is
taken to be firm 3 without loss of generality.) The model’s primitive set of parameters is
thus (A, B, p, ¢, 71,72,73, 53)-

We suppose that the project is worth funding, in terms of total utility, no matter which
creditor is senior. The unique efficient outcome, subject to the limited available forms of

credit agreements, is therefore to fund the project and for firm 3 to be the senior creditor.



That is, s5* = (1,1,3). We assume that y; + y3 < c¢ for any discounts y; and y; that are
individually rational for firms 2. This is the condition ¢ > vp(A — 2). With this, ¢ is
irrelevant and can be ignored when calculating an equilibrium. We also assume that the set
of discounts (y;, y3) that are individually rational for all firms is not empty, even if the “wrong”
creditor, firm 1, is senior. This is the condition yop(A —2) > 2 -y —y3(p+ (1 —p)(B —1)).

After normalizing by subtracting the initial cash utility of 1, firms 1 and 3 receive nothing
in the event that the project is not funded fully, and otherwise receive utility y; + f;(1, 1, j)

where

fi(1,1L,7) =yi(p+ (1 —-p)(B-1)),

depending on whether firm i’ # i obtains seniority. (We have suppressed from the notation

(2)

the dependence of f; on s; and s3, since this is trivial.)
After normalizing by subtracting the initial cash utility of ¢, firm 2 receives nothing in

the event that the project is not funded fully, and otherwise receives utility

—y1 —ys+ fo(1,1,7) = —y1 — y3 + Y2p(A — 2),

regardless of which firm j obtains seniority.

4 The Axiomatic Solution

Appendix C provides foundations for an axiomatic solution of network bilateral bargaining
problems. As we will show, the axiomatic solution coincides with the proposed equilibrium
for the associated non-cooperative extensive-form bargaining game.

In addition to (i) axioms for two-node networks that support the bargaining solution
of Nash (1950), our axioms are (i) multilateral stability, (7ii) independence of irrelevant
actions, and (iv) bilateral optimality. Under these axioms, we show that there is a uniquely
defined solution, which we call the aziomatic solution, and moreover the axiomatic solu-
tion outcome is socially efficient. We briefly motivate the axiomatic solution here, and

provide details in Appendix C. A key objective of the paper is to show conditions under



which the unique extensive-form trembling-hand-perfect equilibrium for our non-cooperative
extensive-form alternating-offers bargaining game associated with contingent network con-
tracting reaches the same payments and the same (efficient) actions as those uniquely spec-
ified by the axiomatic solution. This can be viewed as an extension to network games of the
non-cooperative-game foundation established by Binmore, Rubinstein, and Wolinsky (1986)
for Nash bargaining.

Formally, our axioms concern the properties of a “solution” F': ¥ — 2, a function that
maps the space X of network bilateral bargaining problems to the space 2 of associated
actions and payments. These spaces > and 2 are formally defined in Appendix C.

Our first axiom is that when applied to a network bilateral bargaining problem ¢ whose
graph merely consists of two connected nodes, the solution F(o) is effectively the Nash

Bargaining Solution, specifying actions s* = (s7, s5) and a payment y;, that solve

max {i(5) + fo(5))
Vo= 5 (A1) ] = [fa(5") — ]}

where u, and u, are the respective outside option values of nodes 1 and 2. In Appendix C, we
discuss underlying axioms for two-player games that support this Nash Bargaining Solution.

Roughly speaking, a solution F' satisfies our second axiom, multilateral stability, if, for
any given network bilateral bargaining problem o, whenever one “freezes” the actions and
payments among a subset of pairs of directly connected nodes, and then applies F' to the
bargaining problem og,;, induced for the remaining sub-network Gy, the solution F'(og)
of the sub-network bilateral bargaining problem o, coincides on the sub-network with that
prescribed by the solution F(o) to the entire network problem o. Multilateral stability is

illustrated in Figure 3.

Our third axiom, independence of irrelevant actions, states roughly that if the solution
specifies some outcome (s*,y*) for a network bilateral bargaining problem, and if we alter
this network bilateral bargaining problem merely by reducing the set of feasible actions while

still admitting s* as feasible, then (s*,y*) remains the solution.

10
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Figure 3 — Multilateral stability. By freezing the bargaining outcome of nodes 3 and 4 (blue) off
the sub-network formed by edges other than (3,4), the solution on the induced sub-network game
coincides with the blue solution. That is, 5; = s; and ¥;; = y;;.

4
4

A solution F satisfies the final axiom, bilateral optimality, if for any given network
bilateral bargaining problem ¢, when any two directly connected nodes maximize the sum
of their total payoff under the assumption that the remaining nodes will react according the
solution F' applied to their sub-network, then the maximizing actions they would choose
are consistent with the solution F'(o) of the entire network bilateral bargaining problem.

Bilateral optimality is illustrated in Figure 4.

A result stated in Appendix C implies that the axiomatic solution (y%, s*) associated with
our our present three-firm network setting is given by the efficient actions s = s** and the

upfront payments y* = (y{,y3) that uniquely solve the equations

Uy (yaa 3**) —Ujp = UZ(yaa 5**) — Uy

uz(y”,s™) — Ugzy = uz(y*, 3**) — Ugg,

11
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Figure 4 — Suppose the orange nodes, 2 and 3, maximize their total payoff assuming that the
remaining network will react according to the (blue) solution. Bilateral optimality implies that the
actions (89, §3) coincides with applying the blue solution to the whole network. That is, (S, 83) =
(s2,53).

where u;; is the outside-option value of node ¢ in its bargaining with node j. Here

Uy = Uz =10
1
Uy = — max U (s7,589,58
Uogq 1,52, 83
2 (82 53)6353 ( ’ ’ ) (4)
Uyg = 1 max U(Sl,SQ,Sg).
2 (81,82)6852

The main result of the paper, stated in Section 8, provides simple conditions under which
this axiomatic solution is also the unique extensive-form trembling-hand equilibrium of the
non-cooperative contingent-contract bilateral bargaining game to be described. In this sense,
bilateral bargaining over complete contingent contracts is socially efficient in our network
market setting. It also follows that our non-cooperative equilibrium solution concept for
extensive-form bilateral bargaining over contingent contracts satisfies multilateral stability,

irrelevance of independent actions, and bilateral optimality.

12



5 Counterexamples

This section explores variants of the model definition or solution concept that do not lead
to efficient equilibrium outcomes. Our objective here is to promote an understanding of the
dependence of our main efficiency results on our assumptions. For this purpose, we will
restrict attention to the simple special case in which f; =0, f3 =0, and Sy = {s3}. That is,
utility is obtained only by the central node, and the treatment of the central node is fixed.

We will simply write f for fs.

5.1 Bargaining Without Communication

We will first consider bilateral bargaining without the ability of either pair of connected
nodes to contract on the bargaining outcome of the other pair. That is to say, when Nodes
1 and 2 bargain, Nodes 1 and 2 are unable write a contract that depends on the action s3 of
Node 3 or the payment y3. Likewise, when Nodes 2 and 3 bargain, Node 3 cannot contract
on the action s; of Node 1 or the payment y;. The behavior of Nodes 1 and 3 in such a game
depends on their beliefs about the contracted action and payment of other nodes.

In this setting, it is common to restrict attention to passive beliefs in which, after observ-
ing a deviation, each node continues to believe that other nodes receive their equilibrium
offers. This is typical in Hart, Tirole, Carlton, and Williamson (1990) and Segal (1999).
Let (s, s%;y7, y5) denote the equilibrium outcome. With passive beliefs, if Node i is offered
(si,yi) # (s5,yF), he still believes that other nodes make their equilibrium choices of treat-
ments and prices. We suppose that the outcomes of bilateral negotiations are given by the
Nash Bargaining Solution (NBS). The passive-beliefs equilibrium must therefore be a pair-
wise stable Nash bargaining solution. That is, (s}, y) is the Nash solution to the bargaining

problem between Node ¢ and Node 2, under the belief that (s;f, y;) is the agreed choice by

13



Node j and Node 2. Hence (s*,y*) solves?

max . S 78* _ *
51€51,y1€R y1 - [f(s1,83) —y5 — ] .

e e

From (5), it is straightforward to characterize pairwise-stable NBS by

st = argmax f(s1,53)
s1€51

53 = argmax (s}, 53)
53€S53

yik :y§ = f(ST,SS).

Wl

In a pairwise stable NBS, each node has the same utility

f(s1,83).

Uy = U = U3z =

Wl

We can see that the efficient vector of treatments s** is indeed consistent with a pairwise
stable NBS. Not every pairwise stable NBS, however, is necessarily efficient. This is so

because (s7, s5) merely solves
s} € argmax f(s1,s3)
51€51
. . (6)
s3 € argmax f(s7, s3),
$3€S53
whereas (s7*, s3*) jointly maximizes f(sy, s3). Depending on the utility function f, there may
be other pairwise stable NBS, which are Pareto ranked. In a pairwise stable NBS, Nodes 1
and 3 cannot be sure of making efficient choices because of the inability to contract based
on communication between the two spoke-end nodes in the solution concept. Node ¢ cannot

be certain that node j will choose the efficient treatment s7*. Suppose a pair of treatments

(s1,s3) satisfies (6). If Node i believes that Node j chooses s}, then the outcome of her

*One may argue that B; = {(f(si,s}) =y} — ¥i,4i) = si € Si,yi € R} is not convex, whereas the Nash
solution requires convexity. Indeed, the payoff pairs form a finite number of parallel lines in the Euclidean
plane. One can convexify this set by filling in the gaps between the lines. Then the axiom of Independence
of Irrelevant Alternatives implies that the unique solution is given by maximizing the utility products in
equation (5).

14



bargaining with the central node is s.

One can construct a non-cooperative alternating-offers game whose Perfect Bayesian
Nash equilibria with passive beliefs coincide with the pairwise stable NBS, in the limit as
players become infinitely patient. This is shown by de Fontenay and Gans (2013). In such a
game, the central node is assumed to be able to bargain only over prices, but not the actions
to be chosen by the spoke-end nodes. Thus the central node cannot efficiently coordinate
the actions of the spoke ends. In practice, a borrowing firm is typically able to credibly
assign higher seniority to one lender over another, in return for a low interest rate. A junior
lender, through accounting disclosure or covenants, is typically able to receive information
on its relative and absolute loss of priority and demand a correspondingly high interest rate.
In other cases, however, firms in a network may fail to coordinate their contracts and use
price negotiations to promote efficient outcomes due to a lack verifiable and contractible

information.

5.2 Distortion of Outside Option Values

We now allow Nodes 1 and 2 to sign enforceable contingent contracts. For each action s3
chosen by Node 3, Nodes 1 and 2 can choose a different action-payment pair (sq,y;). Nodes
2 and 3 sign a simple, non-contingent binding contract (ss, y3), to which both nodes commit.
This setting is equivalent to the following 2-stage game: Nodes 2 and 3 first bargain over
(ss3,y3) in Stage 1. Then, in Stage 2, Node 2 bargains with Node 1 over (s1(s3),y1(s3)), with
common knowledge of the action s3 chosen by Node 3.

We show that the socially efficient outcome (s7*, s5*) may not be an equilibrium.

Suppose in Stage 1, Nodes 2 and 3 choose (s3,y3). Then, in Stage 2, a breakdown between
Nodes 1 and 2 leads to payoffs of ul,(s3) = 0 for Node 1 and u9;(s3) = f (s, s3) — y3 for
Node 2. Therefore udy(s3) and u9;(s3) are the respective outside option values for Nodes 1
and 2 in their bilateral bargaining in Stage 2. Likewise, the outside option values for Nodes
2 and 3 in Stage 1 are u3; = 0.5f (s} (s3)) and uj, = 0, where s7(s3) = argmax, g, f(s1,53).

By the same argument used to determine the pairwise stable NBS, the Nash bargaining

15



outcome (s1(s3),y1(s3)) between Nodes 1 and 2 in Stage 2 is

s1(s3) = argmax f(s1, s3),
s1€51

whereas the payment y;(s3) is determined by
yi(s3) = f(s7(s3), 83) — y1(s3) — Yz — up (s3)
ys = f(s1(s3),53) — y1(53) — Y3 — 1oy

Hence

y1(ss) = 5 [f(s1(s3), 83) — f (59, 83)] ,

2y3 =

N~ N~

[F(si(59), )+ F (s%85)] = 5 (51 (s3) )

Therefore, in Stage 2, when choosing s3, Nodes 2 and 3 s3 both receive the payment

oto0) = (5 (siCo0)es0) 7 (8s0)] = 57 (5 (49) o8) ).

One can easily choose f so that the maximum of g is not attained at s3 = s3*. In this case,
the socially efficient outcome (s7*, s5*) cannot be an equilibrium.
Indeed, by committing to s3, when bargaining with Node 1, Node 2 has an outside option

0 s3) — ys that depends on s3. In this sense, the choice of s3 in Stage 1

value ud; (s3) = f (s
may distort the outside option value of Node 2 in Stage 2. A low value of u3; forces Node
2 to make a high payment to Node 1, which is detrimental to both Nodes 2 and 3. Thus
the distortion caused by this outside option value u9; can create an incentive for inefficient

equilibrium outcomes.

5.3 Incentives to Lie Distort the Distribution of Surplus

We again allow nodes to sign contingent contracts. For each action s3 chosen by Node 3,
Nodes 1 and 2 choose some action-payment pair (si,%;), and vice versa. We now assume,
however, that the contingent contracts are not enforceable. We will see, not surprisingly,

that the central node may have an incentive to misreport to one end node the outcome of
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its bargain with the other end node.

We assume that the outside option values for both bilateral bargaining problems (that
between Nodes 1 and 2, and that between Nodes 2 and 3) are all 0. This assumption allows
us to isolate the effect of dishonesty by the central node. As this rules out the distortion of
outside option values through commitment to a contract, we consider only binding contracts.

Consider the following 2-stage game. In Stage 1, Nodes 2 and 3 first bargain over (ss, y3).
In Stage 2, Node 2 communicates to Node 1, not necessarily truthfully, that the action chosen
by Node 3 is §5. Then Nodes 1 and 2 bargain over (s1(83),%1(83)) . Truthful communication
by Node 2 and the socially efficient outcome (si*, si*) need not be an equilibrium of the
game. In order to see this, suppose this is in fact an equilibrium. In Stage 1, Nodes 2 and 3
choose the treatment s3* along with some payment y3 € R. If Node 1 believes the report from
Node 2 that Node 3 agreed to take the action s3, then following the earlier determination
of pairwise stable NBS, the Nash bargaining outcome (s1(83),71(83)) between Nodes 1 and
2 in Stage 2 would be:

s1(83) = argmax f(s1, 53).
51€51

The associated payment y;(S3) is determined by

y1(53) = f(57(33),83) — y1(33) — ys

ys = f(s1(83), 83) — y1(S5) — s
Hence y1(S3) = £ f(s7(33), 33). The value to Node 2 associated with reporting §; is
* [~ *k ~ * ([~ Kk 1 * [~ ~
F(51(53), 857) — 41(83) — s = [ (51(53), 857) — 3 f(51(5), 83) — .

We define g : S5 — R by

o5s) = 1 (51(59), 55°) — 5 (5106, 5).

One can choose f so that the maximum of g is not attained at S5 = s3*. It is therefore

not credible that Node 2 correctly reports. This could destroy the socially efficient outcome
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(s7*, s5*) for being an equilibrium.

We have shown that if Node 1 believes the report of Node 2, then Node 2 will not report
truthfully, so there is no truth-telling equilibrium. There are other possibilities, based on
a definition of equilibrium in which Node 1 does not necessarily believe Node 2, but rather
makes an inference about s3 based on the report s3. In this setting, it is conceivable that an
equilibrium may not exist, or that there may be either efficient or inefficient equilibria. We

intend to go further into this in the next version of the paper.

6 Contingent-Contract Network Bargaining

Our main objective now is to extend and apply the bargaining protocol of Rubinstein
(1982) and Binmore, Rubinstein, and Wolinsky (1986). The associated unique extensive-
form trembling-hand perfect equilibrium outcome of the corresponding negotiation game
converges, as the breakdown probability goes to zero, to the axiomatic solution (s%,y*), and
in particular achieves the socially efficient choice s* = s**. As explained in the previous
section, not all plausible extensions of the Rubinstein model to our network setting have this
efficiency property.

We allow the actions negotiated by Nodes 1 and 2 to be contractually contingent on the
actions chosen by Nodes 2 and 3 from Sy 3 = {(s2,53) : S2 € Sa, 53 € C5(s2)}. As we shall
see, Nodes 2 and 3 may experience a breakdown in their negotiation, a contingency that we
label By 3. Thus, the set of conceivable contingencies is S 3 U { B 3}. The contingent action

to be negotiated between Nodes 1 and 2 is (s;(+), s?, s3"), where s; is chosen from

C = {81 : 8273 — Sl . 51(82783) € 01(82)},

and (s?,s3") is chosen from Sf,. That is, s;(-) is a “menu” of actions such that, for each

pair of conceivable actions (s2,s3) € Sa3 by Nodes 2 and 3, s1(s9, s3) specifies an action,
compatible with s, to be taken by Node 1. In the event B, 3 that bargaining between Nodes
2 and 3 breaks down, the pair of actions to be taken by Nodes 1 and 2 is (311’, s%b). Nodes

1 and 2 also bargain, separately, over a contingent payment (yl, yl{), where y; is a mapping
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from Sy 3 to R, and ¢} is a real number that specifies the amount of payment from Node 2
to 1 in the breakdown event By 3. Thus, the contract between Nodes 1 and 2 takes the form
of some contingent action (81, sl{, s%b) and some contingent payment (yl, y’l’)

On the other hand, the contract to be chosen by Nodes 2 and 3 specifies (s, s3) € Sa3
and an associated payment y3 € R, as well as also some (sgb,sg) S ng and associated
payment 35 € R to be taken in the event of a breakdown between Nodes 1 and 2.

The proposed four-stage extensive-form network bargaining game is defined as follows.

Stage a: In Stage a, Nodes 1 and 2 bargain over their contingent action. Node 1 is the first
proposer and offers a contingent action s; in C and some (s}, s}’) € SP, in period 0. (The
identity of the first proposer is irrelevant for the ultimate solution concept.) For each contin-
gency (s2,83) € Sa3, Node 2 either accepts or rejects the offered action sq(s2, s3). Likewise,

for the contingency By 3, Node 2 either accepts or rejects (31{, s%b). Acceptance closes the

bargaining between Nodes 1 and 2 over the action s; (respectively, (s’{, s%b) ) contingent on
(s2,s3) (respectively, on Bs3). Agreement or rejection at one contingency does not bind be-
havior at any other contingency. Rejection at a particular contingency (including By 3) leads,
with a given probability n € (0, 1), to a breakdown of the negotiation over that contingency.
If Nodes 1 and 2 break down when they are bargaining over (31{, s%b), the resulting actions
for both Nodes 1 and 2 are the exogenous status-quo choices, (s}, s}’) = (s9,s3). These
breakdown events are independent across contingencies. The process continues to the next
period, when Node 2 is the proposer and Node 1 responds, as illustrated in Figure 5. This
alternating-offers procedure is iterated until agreement or breakdown. Let 8573 be the set of
contingencies (including By 3) that are still open for negotiation. That is, Sj 5 is the set of
contingencies for which Nodes 1 and 2 have reached neither agreement nor breakdown by the
beginning of period . In period ¢, Nodes 1 and 2 bargain over s;(ss, s3) for these remaining
contingencies (ss, s3) in 845, and over (s}, s3) for the contingency Bsg if By € Sis. The
bargaining between Nodes 1 and 2 concludes at the first time by which they have reached

an agreement or have broken down for all of contingencies in Sy 3 U {Bs3}. This is a finite

time, almost surely. The breakdown probability 7 is an exogenous parameter of the model.
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propose T

Figure 5 — The first four stages of a generic Rubinstein alternating-offers game.

We will later be interested in the limit behavior as 7 — 0. The result of Stage a of the
bargaining game is some random set Zo35 C Sy 3 U {By3} on which Nodes 1 and 2 reach
agreement, and for each contingency in =, 3, the agreed action s1(s2, s3) for Node 1, as well

as the agreed pair of actions (sl{, s%b) in the contingency By 3, if it is in Sy 3.

Stage b: In Stage b, Nodes 2 and 3 bargain without contingencies over some (32, S3, 850, sg)
such that (ss,s3) € Sa3 and (s3°,s5) € S7%. One should understand (s3°,s3) to be the
actions of Nodes 2 and 3 that apply in the event that Nodes 1 and 2 break down at the
contingency (s, s3), actions that Nodes 2 and 3 would have liked to choose. Simultaneous
with the bargaining in Stage a, Nodes 2 and 3 play a similar alternating-offers bargaining
game. We suppose that Node 3 proposes first. (Again, the identity of the first proposer does
not matter in the limit as n — 0.) The two negotiations, between Nodes 1 and 2 in Stage a,
and between Nodes 2 and 3 in Stage b, are not coordinated in any way. Specifically, Stage b
strategies cannot depend on information from ongoing play or breakdowns in Stage a, and
vice versa. Let A3 € {Y, N} be the binary variable indicating whether Node 2 and 3 reach
an agreement (Y) or not (N) over (sg,s3). If Nodes 2 and 3 break down when bargaining

over (s%b, sg), the resulting actions for both Node 2 and 3 are their exogenous status-quo

choices, (s3°,s5) = (59, s3).
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Stage a’: Once Nodes 1 and 2 have finished bargaining over their contingent actions in
Stage a, they bargain in Stage a’ over the corresponding payments y; (ss, s3) and y°. Stage a
precedes Stage a’ so that the play of Stage a is available information to both players at the
beginning of Stage o', information including the bargaining outcome of Stage a. If By 3 & =, 3,
that is, if Nodes 1 and 2 did not reach an agreement over (sl{, s%b) in Stage a, then y? is not
subject to negotiation and is fixed to be the null payment y® = 0. Otherwise when bargaining
over the payments 1 (s2,s3) and 3, Nodes 1 and 2 use the same form of alternating-offer
game. For any contingency in = 3, breakdown of the associated payment bargaining leads to
the status-quo action sy (respectively, actions (s!,s9)) and the null payment, y? = 0. That
is, unless they can agree on the payment y;(sq, s3) (respectively, ¢°), the contingent action
s1(s2, s3) (respectively, actions (s’{, s%b)) agreed in Stage a is discarded. We let =53 be the
set of contingencies that are still open for negotiation at the beginning of period ¢ in Stage a'.
The result of Stage @’ is a random set Ay 3 C =55 at which there is ultimately agreement on
boolb

both an action s;(ss, s3) and a payment y;(ss, s3), as well as actions (s}, s3’) and a payment

y} for the contingency By .

Stage b’ : Similarly, following Stage b, Nodes 2 and 3 bargain over the payment y3 associated
with (sq,s3) and the payment y associated with (s%b,sg) to be made in the event that
Nodes 1 and 2 do not reach agreement at the choice (s, s3) of Nodes 2 and 3. As with the
paired Stages a and b, the negotiations and breakdowns in Stages a’ and ' are carried out

independently.

3b

- AT b. b . b
In summary, given the results (31(-),31,52 ; yl,yl,Ag,g) and (52,33,52 , S5 ; yg,y3,A273)

of the first four stages, the actions and payments of the game are determined as follows. If

Ay3 =Y and (s9,s3) € Ass, then the ultimate actions and payments are

[81(82,83)782,83 ; y1(32,33),y3(32,33)].

If, instead, A3 =Y and (sq,s3) € Az 3, the outcome of the bargaining game is then

0 3 b. 0 __ b
[81752 »S35 Y1 _07y3] '
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Finally, in the event A, 3 = NN, the final outcome is [sl{, 530089 YLyl = O]. This combination

of the above four stages into final results is illustrated in Figure 6.

( Nodes 1 and 2 in Stage a \} ( Nodes 2 and 3 in Stage b W
{s1(s2,83) : (s2,83) € 3 b
t Zas), (s 58) L (52,53 58", %) )

Nodes 2 and 3 in Stage o’

( Nodes 1 and 2 in Stage a’ W
b
L {y1(s2,53) : (s2,53) € Az 3}, ¥ J (vs:45)

| |
v

Final result

[s1(s2,83), 52,535 y1(52, 83), y3(52, 53)
if A273 =Y and (82,83) € A273

T
-1 J

(s9, 3%, s%: 9, 48)
if A3 =Y and (s2,s3) & Azs

b .1b .0.,b ,0) ; _
(51752 783ay17y3) if Ap3 = N

Figure 6 — The stages of the bilateral bargaining encounters

To complete the description of the extensive form game, we can use individual rationality
to bound, without loss of generality, payments into specified compact intervals. For any
contingency (sg,s3) € Za3, a monetary payment y;(ss, s3) from Node 2 to 1 that is being
negotiated in Stage @’ must be individually rational for both nodes. This is so for Node 1 if

and only if
f1(s1(s2,83), 52) + y1(s2,83) > f1 (3[1)758) =0.

Likewise, a payment y3 that is being negotiated in Stage o’ is individually rational for Node
3 if and only if

f3(s2,83) +ys > f3 (5(2]733) = 0.
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Individual rationality for Node 2 is the condition

f2(81(82753), 82783) - y1(82, 83) — Y3 > fo (5(1), sg,sg) =0.

So, it must be the case that

y1(s2,83) < fa(s1(s2,83), S2,53) — U3 < fa(s1(s2,83), 82, 83) + f3(s2,53),
ys < fa(s1(sa,83),52,53) —y1(s2,83) < fa(s1(s2,83), S2,53) + fi(s1(s2,53), 52)
< fasi(sa,83), S2, 83) + fi(si(s2,S3), S2),
where

s7(s2,83) = argmax fi(s1, s2) + fa(s1, S2, 83).
s1€C1(s2)

Let y, and g be the real-valued functions, on C} 4 and S, respectively, determined by

Y, (s1,52) = —fi(s1, 52), (7a)

U181, S2, 53) = fa(s1, 52, 83) + f3(s2,53). (7b)

Let y, and 3 be the real-valued functions on Cs 3 determined by

Yy (s2,53) = —f3(s2, 53), (8a)

gg(SQ, 83) = fg(ST (82, 83), S9, 83) + f1($>{ (SQ, 83), S9, 83). (8b)

Given individual rationality, we can therefore restrict the set of potential payment between
Nodes 1 and 2 to the interval [y (si(s2,s3),52), 1(s1(s2,83), $2,83)], on the contingency
(s2,83), given an agreed contingent treatment s;(-) from Stage a. Likewise, the poten-
tial payment ys between Nodes 2 and 3 is restricted to [y, (s2, s3), 3(s2, s3)] when the agreed
treatments from Stage b is (s2, S3).

Individual rationality also bounds the payments 3 and y5 by [gf (sl{, s%b) L yP (s’{, s%b)]

and [Q?,B (s%b, sg) LB (séb, sg)], where gf and yP are the real-valued functions on 852 deter-
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mined by

fi (sll’, sgb) —l—gf (sl{, sgb) =0, (9a)

Fa (s1,83"83) =77 (s1,82") =0, (9b)
and y? and g5 are the real-valued functions on Sy’; determined by

f5 (5, s8) —i—gf (5, s5) =0, (10a)

f2 (8(1)7 S%ba Sg) - 2733 (S%ba 83) =0. <1Ob>

Any payment that is not in these intervals is not individually rational for at least one of the
nodes, thus is ruled out from the bargaining game.
An extensive-form bargaining game is defined in this manner for each list (1, S, C, f, s°)

of model parameters, where S = (S, S5, S3,53,53), C = (C1,Cs), f = (f1, f2, f3), and

§% = (s, 53, 53).

We could have merged Stages a and o’ (and likewise have merged Stages b and ') without
strategic difference. We split the game into these stages, however, in order to take advantage
of the refinement associated with extensive form trembling hand perfection, which we turn
to next. As we explain in Section 8.3, a failure to split the game into stages would admit

additional “weird” and inefficient equilibria that survive the equilibrium refinement.

7 Solution Concept

Our solution concept is a variant of extensive form trembling hand perfection, due to Selten
(1975), to which we add two requirements. The first of these is that minimum tremble
probabilities do not depend on strategically irrelevant information. Despite the simplicity of
its motivation, the ultimate mathematical definition of this property is long and complicated,
so relegated to Appendix F. The second requirement is adapted from the refinement concept

of Milgrom and Mollner (2016), extended proper equilibrium, under which a costless deviation
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by one player must be more likely than a costly deviation by the same or another player.
This section provides a complete definition of the final resulting solution concept, “restricted

equilibrium.”

7.1 Multistage Games, Strategies, and Nash Equilibria

In this subsection we define n-person extensive-form games in which the action spaces can
be discrete or continuum, and in which the time horizon can be finite or countably infinite.
We combine the treatments of finite and infinite time horizon games. Thus when N = oo,
the notation of the form S;,S51,..., 5y or t < N mean 57,57, ... and t < oo respectively.

A noncooperative n-person game in extensive form, or simply a multistage game, consists

of the following objects:
(i) A finite set I of players.

(ii)) A number N, which is either a positive integer or oo, called horizon. We let W =

{(i,t) i el,te{l,...,N}}. We write it for (i,t).

(ii)) A (finite or infinite) sequence Si,Ss,...,Sy of nonempty Borel spaces called state

spaces.

(iii) For every it € W, a nonempty Borel space A;; called action space. Here, A; is the

space of potential actions of player 7 in period t.

(iv) For every it € W, a nonempty compact metric space® Z;; called information space. An

element z; € Z;; is called an information set.

We apply the subscript “< t” to denote the projection that maps a set of the form A =
[T, Ax to Aey = TTLZ) Ag, and likewise maps an element (ax)N_, to ac, = (ap)tZh. We
similarly apply the subscripts “< ¢’ and “> t” for projection to periods weakly before and
strictly after ¢ respectively. We define the space H; = S<; X A<, of partial histories to time

t, the space ©; = S<; x A, of preplays to time ¢ (©; = S;), as well as the space H = S x A

3 A compact metric space is necessarily separable and complete, thus a Borel space.
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of (complete) histories, where S = [],,S;. The remaining elements of a multistage game

are as follows.

(v) A sequence (pt)i>1, where p; € A(Sy) and, for ¢t > 0, p; is a Borel-measurable prob-
ability kernel from H;_; to S;. These kernels are called state transition kernels. For
simplicity, we assume that the probability measure p;(-|h;—1) has full support for all
hi—1 in H; 1. All of the following results remain valid without this assumption, by

ignoring states that are not in the support.

(vi) For every player i, a sequence ((;;):>1 of Borel-measurable information functions, where
(i1 :S1 — Z;j; and, for t > 0, (;; : ©; — Z;;. This means that, given a preplay 6, € ©,
of the game to period t, at time ¢ player ¢ is “at the information set” (or “has the

information”) (i (6;).
(vii) For every player i, a Borel measurable payoff function u; : H — R.

These primitives determine a multistage game I' = (I, N, S, A, Z, p, (,u). Roughly speak-
ing, this game is played as follows. In period 1, nature chooses a state s; € S; whose prob-
ability distribution is p;. For each ¢, player i is informed of z;; = (;1(s1), representing the
information given to player ¢ before his move in period 1. Player ¢ then chooses an action
a;; in A1, possibly using a behavioral (mixed) strategy, which we will formally define. The
initial partial history hy = (ay, s1) € H; is thus determined. Nature then chooses a state s;
with the probability distribution p;(-|hy). For each 4, player 7 is then informed of (;1(s1,a1)
and chooses an action a;; € A;; in period 1. The partial history hy = ((s1, 1), (a1,a1)) € Hy
is thus determined, and the game continues recursively in this manner, period by period. A
play of the game results in a complete history h = (s,a) € H, under which the payoff of
player i is u;(h). This differs from the classical “tree” form* of Kuhn (1953).

4When one represents a finite extensive-form game in the classical tree model of Kuhn (1953), a non-
terminal node of the game tree corresponds to some partial history of the form h; or (s<¢, a<), whereas a
terminal node corresponds to a complete history h € H. Furthermore, an information set (a subset of nodes)
corresponds to the inverse image (;, l(zit) of an information set z;; € Z;;, via the information function (.
As Aumann pointed out, on page 511 of Aumann (1964), “not all finite extensive games in the sense of Kuhn
... are included in the above definition; however all games of perfect recall are included,. .. The condition for
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A multistage game is said to have perfect recall if, for all t € W and all 7 < t, there is a

Borel measurable functon r; : Z;; — Z;- X A;r such that

Titr (Ct(S<ty a<t)) = (Gir(S<r, G<r), i), SES, a€ A

That is, any player can infer from the information that he currently possesses his information
set and his action chosen at a previous date. The functions r;, are called the recall functions.
From now on we assume that a multistage game always has perfect recall.

Given a multistage game I' = (I, N, S, A, Z,p,(,u), a behavioral strategy of player i is
a sequence (0y)iew of universally measurable probability kernels o;; from Z; to A;. (The
notion of universal measurability is reviewed in Appendix A.) We let ¥;; denote the set of
behavioral strategies of player ¢ at time ¢, and then let 3; = Ht21 Y+ denote the set of
behavioral strategies of player i. The set of behavioral strategy profiles® is ¥ = [Lic, 2

We say that 0 = (0)yew is a Borel measurable strategy profile if for every it € W, oy
is a Borel measurable probability kernel from the information space Z;; to the action space
Ai. So when we refer to a strategy profile o without the qualification “Borel measurable”,
we mean that ¢ is universally measurable, but not necessarily Borel measurable.

6 via the Ionescu-Tulcea Extension Theorem,

A strategy profile 0 = (0;);e; determines,
a unique probability measure P on the space (H, Z(H)) of histories, such that the finite
dimensional distribution of P? on H; is given by ®}_, [pk ® [Lies(oir 0 Qk)] The expected

utility of player ¢ determined by the strategy profile o is

Uio) = B (u;) = /H ws(h) P (dh),

where E? denotes expectation with respect to P?.

a Kuhn game to be included is that the game can be ‘serialized’ timewise,. .. the possibility of serialization
is not at all equivalent with perfect recall (but the latter implies the former).”

> We do not provide here a formal definition of “mixed strategies” because (1) it is not needed for the
subsequent development of the model; (2) Aumann (1964) showed that Kuhn’s theorem remains valid for
infinite extensive games as defined above, so that it is sufficient to consider behavioral strategies when a
game has perfect recall. We sometimes omit the qualification “behavioral” when the notation makes this
obvious.

6See Proposition 7.45 in Bertsekas and Shreve (1978).
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A Nash equilibrium is a strategy profile 0 = (0;);e; € X such that
Ui(o) > U; (07, 0-;)

for every i € I and for every behavioral strategy o, € ¥; of player i, where o_; as usual

denotes (0;)jen {i}-

7.2 Perturbed Game and Trembling Hand Perfect Equilibrium

We now extend the notions of “perturbed game” and “trembling hand perfect equilibrium,”
due to Selten (1975), to multistage games that may have continuum action spaces. For a
topological space F, let A(E) be the set of strictly positive probability measures on E. That
is, x € E(E) if and only if for, any non-empty open subset O C E, we have x(O) > 0.

For a multistage game I' = (I, N, S, A, Z,p,(,u), a perturbed game Tisa triple (T, €, x)
defined by:

e Minimum tremble probabilities, defined by some € = (€;)iew, Where €; is a Borel

measurable mapping from Z; to (0, 1].

o Reference strategy profile x = (Xit)itew, Where x;; is a Borel measurable probability

kernel from Z;; to Aj, and yi(zi) € K(Ait) for every z; € Zy.

The perturbed game [ has the same game structure and utility functions as those of the
original game I', but the behavioral strategies of [ are restricted as follows. A behavioral
strategy profile o of [ is a behavioral strategy profile of I such that, for each information set
ziy and each Borel measurable subset B C A;; of actions, the probability o, (B | z;;) assigned
to actions in B is bounded below by €;(2i)xi(B | zit). As €; is always strictly positive, this
means that a strategy for T is “bounded away from” being a pure strategy.

Letting il denote the set of behavioral strategies of player ¢ in the perturbed game f,
the associated set of behavioral strategy profiles is S = [Lc; f]z A Nash equilibrium of the

perturbed game T is then a strategy profile o = (0:)ier € 5 such that, for every player i,

Ui(o) > U; (07, 0-;)
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for every ol € 5;.
A sequence fl,fQ ... where T" = (T', €, x™) is a perturbed game of T, is called a test
sequence for T"if (1) sup €” — 0, where, for any minimum tremble probabilities e,

supe = sup sup €;(zy),
teW 2zt €45

and (2) there exists a reference strategy profile x = (X )iew such that for every n > 0,
it € W and zy, xi(2i) is absolute continuous with respect to x(z).

A behavioral strategy profile o € ¥ of ' is a limit equilibrium point for (f") - if, for
each n, a Borel measurable Nash equilibrium o™ € Si" of T can be found such tnh_at, as n
goes to infinity, o7 (z;) converges weak™ to o;(z;) for every it € W and every information
set z;; € Zy. That is, o™ converges weak*®, pointwise, to o. If, in addition, o is an Nash

equilibrium” for I, then we say that o is an extensive form trembling hand perfect equilibrium

of I.

7.3 Extended Properness in Extensive Form Games

We now adapt to our setting the refinement concept of Milgrom and Mollner (2016), extended
proper equilibrium, under which a costless deviation by one player must be more likely than
a costly deviation by the same or another player. We extend this notion from finite games
in normal form to extensive-form games in which the action spaces can be finite, countably
infinite, or a continuum, and in which the time horizon can be finite or countably infinite.
We fix a multistage game I' = (I, N, S, A, Z, p, (,u). Given a strategy o; € ¥; of player 1,
a time ¢, and a potentially different time-t strategy o}, € ¥, let 0;/0}, denote the strategy
which is oy, in any period 7 # t and which is ¢}, in period ¢t. For some a;; € A;, we let

o;/ay be the strategy o;/xy(ay), where xy(a;) is the time-t pure strategy that maps any

"In Selten’s original treatment of finite games, it is not required, as a matter of definition, that the limit
strategy profile o is a Nash equilibrium for it to be extensive form perfect. This is because in finite games,
being the weak™ limit of perturbed Nash equilibria implies being a Nash equilibrium itself. However this
implication no longer holds in infinite games of our setting without some sort of continuity conditions on
the payoff function. For example, see Carbonell-Nicolau (2011b,a) for counter examples and such continuity
conditions.
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information sets z; € Z; to the fixed action a;. For a strategy profile o € ¥, we let o /0,
denote the strategy profile (0;/0},,0_;), and likewise let o/a;; denote the strategy profile
(0:/ai,o_;).

Given a strategy profile 0 € ¥ and some it € W, consider a Borel measurable M C Z;;
with the property that P7(Hy) > 0, where Hy = {(s,a) : Gi(s<t,a<r) € M}. Given an
action a; € Ay, we define LY (a; | M) to be the expected loss for player i from playing a;
instead of a best response in period ¢ against o, conditional on the event that player ¢ is in
some information set in M. That is,

L2 (ag | M) = sup E7/@t (u; | Hy) — E7/% (u; | Hyy) .

At €Ajy

We also define pg(a;; | M) as the probability that player i chooses a; in period ¢, conditional

on the event that the information set of player 7 at time ¢ is in M. That is, letting
H(ay) ={(s',d") € H : a}, = ay},

we will write pf(a; | M) = P7 [H(ay) | Hyl -
We now introduce a notion of approximate equilibrium that will subsequently play a role
in the final solution concept. For any metric space such as a typical information-set space

Zit, we let B(z,7) denote as usual the open ball of radius r centered at a point x.

Definition 1. For strictly positive scalars A and 6, a (\, §)-eztended proper equilibrium of T’
in extensive form is a strategy profile o € ¥ with the following property. For every it € W,

there exists a function oy : Z; — R satisfying two properties:

1. For every z; € Zy, the ball M = B(zy, at(2it)) C Zy centered at z; is reached with

positive probability, in the sense that P7(Hys) > 0.

2. For any player j and time 7, and any information sets z;; € Z;; and zj, € Zj., if there
are Borel measurable M; C B(zy, au(zi)) and M; C B(zj-, a;-(2;-)) that are reached
with positive probability and satisfy L¢(a; | M;) > A and Lf (a;, | M;) < A, then we
must have p(az | M:) < 8%, (a0 | M)
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Property 2 of the above definition requires that whenever a deviation is costly (in that its
expected loss is larger than the threshold value \), then the probability that this deviation
is being played is at most a multiple ¢ of the probability of a costless deviation.

The notion of a (), d)-extended proper equilibrium is similar in spirit to the concept
due to Milgrom and Mollner (2016) of approximate equilibrium solution. Our version is
prompted by the need to treat a continuum action space.

To conclude this section, we provide the solution concept for our main result concerning
network bargaining problems. This definition refers to the property “independence of strate-
gically irrelevant information,” which was motivated earlier in this section and is completely

defined in Appendix F.

Definition 2 (Restricted Equilibrium). Given a multistage game I', a behavioral strategy
profile o is a restricted equilibrium if o is a Nash equilibrium, and if, for all strictly positive
scalar A, sufficiently small, there exists a sequence ¢" of behavioral strategy profiles and a
sequence {0"} of strictly positive reals converging to zero such that: satisfying the following

properties.

1. There exists a test sequence = (I, €™, x™) for T', such that each rn respects inde-

pendence of strategically irrelevant information.

2. For each n, o™ is a Borel measurable Nash equilibrium of I and is also a (A, 0™)-

extended proper equilibrium of I' in extensive form.

3. 0" converges weak*, pointwise, to o, as n — o0.
) ) )

If o is a restricted equilibrium of I', then a test sequence (f”)nzo associated with o as
in the definition above is called a restricted test sequence for o, and a converging sequence

(6™)n>0 of equilibria associated with o is called a restricted trembling sequence for o.

8 Equilibrium Network Bargaining Solution

The game described in Section 6 can now be treated as a three-agent multistage game

with perfect recall in which players have a continuum of potential actions. The specific

31



action or state spaces, depending on the stage of the game, are finite (consisting of proposed
treatments, or {accept, reject}) or are real intervals (consisting of proposed payments). Any
finite space is given its discrete topology, real intervals are given the topology defined by the
usual “distance” metric m(z,y) = |z — y|, and a product space is given its product topology.

We show existence and uniqueness of restricted equilibrium of this extensive-form network
market bilateral bargaining game, and explicitly calculate the unique associated equilibrium
treatments and payment outcomes, showing that they coincide in the limit (as Nature’s
breakdown probability 1 goes to zero) with the treatments and payments of the axiomatic

solution. In particular, the equilibrium treatments maximize total social surplus.

8.1 Equilibrium Strategies
We first define candidate equilibrium strategies, beginning with some notation. The candi-
date equilibrium contingent action si(-) in C is defined by

s7 (89, 83) = argmax f1(s1, $2) + fa(s1, S2, S3). (11)
81601(82)

We will later use the fact that

ST(SZ;S?)) = argmax U(51;52753)7 (12)
s1€C1(s2)

recalling that U is the social welfare function.
Recall that

(s?,s%B) = argmax fi(s1,82)+ fo (51,32,33)
(81,82)6352

and

(sgB,sf) = argmax fo (5(1), S9, 53) + f3(s2,83).
(82783)6853

We let S = {(s1, 52, 53) : 51 € C1(s2), 52 € Sa, 83 € Cs(s2)} be the set of feasible actions. For
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each n € [0,1], we define y : S — R and y3 : So 3 — R so that

f2(81(82783), 32,53) - y?(sh 52, 53) - y3(52,83) - ﬂgl

(13)
= (1 - 77) [f1<81(527 83)7 52) + yi](sb S92, S3> - 27172]
and
f2(8>{(827 53)7527 53) - y?(s’{(52733), 52,33) - yQ(SQ, 53) - 233 (14>
= (1 =n) [fs(s2,s3) + v (52, 83) — ugy]
where
2?2 = 2g2 =0
1 —n
no— 2T (0 3B B
U9y 21 (31> So 583 ) (15)
1—mn
Uy = Dy U (s7, 5", 3) .

One can view Q?j

as the outside option value of Node 7 in the bilateral bargaining between
Nodes i and 7, given the exogenous breakdown probability 7.

In order to see that the payments y] and yi are uniquely well defined, first take s; =
s3(s2, s3) in (13). In this case, (13) and (14) together uniquely determine y{(s3(s2, s3), 2, S3)
and y; (sq, s3) for any (sq, s3) in Sy 3. Then, for any s; € C}(s2), one can solve for the unique

payment y{(s1, S, s3) from (13).
Continuing to build needed notation, let g : S — R and g7 : So3 — R be such that

(1 —n) [fo(s1(52, 53), 52, 53) — U1 (51, S2, 53) — Y4(S2, 53) — Usy ]

(16)
= fi(s1(s2,53), 52) + 71 (51, 52, 83) — Uy,
and
(1 =) [f2(s1(s2, 83), 52, 83) — y{(51(52, 83), 52, 53) — F (52, 83) — us] a7
= f3(82,53) + U3 (52, 53) — Usy.
Next, let 47" and 7" be the real-valued functions on S, satisfying
fo (3, s8) = " (o s8') = (L= ) [ o (5, 8%) + 7" (5, 3") | (18)
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and
(=) [ (58 58 8) = 577 (b, 3%) | = fu (st sb?) + 07 (51 58") (19)

Let y2" and 72" be the real-valued functions on 87 satisfying

fo (8 s ) — o (s h) = (1 =) [ s (s s8) + 937 (s )| (20)

and

( ) [fZ (S?a S9 753) - y3 (Sgbv 53)] f3 (SQ 733) + y (Sgb’ Sg) (21)

Our candidate equilibrium strategy profile o*7 is defined as follows:

e In Stage a, Nodes 1 and 2 offer each other, at any period ¢, the contingent treatment
contract s3(s2, s3) for all contingencies (ss, s3) € S5, and (s, s37) for the breakdown
contingency By if By is still open for negotiation in period ¢, that is if By € S5 5.
These offers are immediately accepted. Given any other feasible contingent offer s; :
Sty — Siand (s%,s)") € S, Nodes 1 and 2 both accept s1(ss, s3) (respectively,

(s3,53%)) at any (so,s3) for which sq(sa,s3) = sj(sa,s3) (respectively, if (s, s3?) =

(sP,537)), and otherwise reject s;(ss, s3) (respectively, (s}, s3?)).

e Suppose (s1(-),Z23) is the outcome of Stage a. (Recall that =3 is the set of all
contingencies on which Nodes 1 and 2 reached an agreement after Stage a). At each

period t in Stage aa, contingent on any (s, s3) in 5573, Node 1 offers the payment
1 {y?(81,82, s3) >y, (s1, 32)} yi(s1,89,83) +1 {y?(sl,SQ, s3) < y,(s1, 82)} Y1(s1, S2, 53)
if it is the turn of Node 1 to make an offer, while Node 2 offers

max {g?(slv 52, 33):Q1(31; 52)} .

If yi > y,, then Node 1 accepts offers that are at least g7 and rejects the rest; If
yi < y,, then Node 1 accepts all offers that are strictly larger than y | but rejects y .
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If y/ > y,, Node 2 accepts offers that are at most y; and rejects the rest. If y{ <y,
Node 2 rejects all offers.

If By3 € =33, then contingent on Bs 3, Node 1 offers the payment

1P (b, s87) > (st o) | ool (st s) 41 {ul (st s8) <2 (s 3) | o (st sb)

if it is the turn of Node 1 to make an offer, while Node 2 offers

min {gfﬂ (S?a Séb) Yy <81{’ S%b)}

If yffn > ng , then Node 1 accepts offers that are at least an

and rejects the rest. If
Bu < 9B, then Node 1 accepts all offers that are strictly larger than y? but rejects

v <yl p y larg y! ]

gf If yf "> gf , Node 2 accepts offers that are at most y{ and rejects the rest. If

yf" < gf, Node 2 rejects all offers.

In Stage b, Nodes 2 and 3 offer the simple contingent treatment contract (32 ,s5% s s3B sB )

at each period. Both of these nodes accept this simple contingent treatment contract,

and only this one.
In Stage bb, given any simple contingent treatment contract (32, s3; 830, sg) agreed in

Stage b, Node 3 offers the simple contingent payment

<S2,33)} Y3(s2, 83),

[IL {yg(82, s3) > Y, (59, 53)} Yl (sq, 53) + 1 {y3(327 53) <
" (3, s5) < ZJ3 (s3 ,Sg)} yP (3, sg)}

Y
1 {ys (53b753) < 3/3 (52 753)} Ys 3" (52 753) + 1{ 3

while Node 2 offers the simple contingent payment

[min {ﬂg(32,33),g3(32,53)}, min {yg (s3°,88), Yy B (53, s8) H

The first element of each payment pair applies when Nodes 1 and 2 reach agreement,

while the second applies when Nodes 1 and 2 break down.

When Nodes 1 and 2 reach agreement:
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If yi > Yoo then Node 3 accepts offers that are at least g7 and rejects the rest. If
ys < Yy then Node 3 accepts all offers that are strictly larger than y 5 but rejects y 5
If y§ > y,, Node 2 accepts offers that are at most ys and rejects the rest. If y5 < y.,
Node 2 rejects all offers.

When Nodes 1 and 2 break down:

" and rejects the rest. If

If y5" > gf , then Node 3 accepts offers that are at least 5
y" < y, then Node 3 accepts all offers that are strictly larger than yJ but rejects
yl. I yd" > yJ, Node 2 accepts offers that are at most y; and rejects the rest. If

Y < y?, Node 2 rejects all offers.

8.2 The Main Result

Our main result provides the following sense in which contingent bilateral contracting is

efficient.

Theorem 1. Fiz a contracting network (S,C, f,s%). There is an n* > 0 such that the
following is true. For any breakdown probability n € (0,n*), the pure strategy profile o*"
is a restricted equilibrium of the network market bargaining game T (n, S, C, f,s°). For any
restricted equilibrium of this game, with probability 1, the (same) deterministic outcome
[8**, (y?(s**),yg(sz*,sg*))} 15 immediately implemented as an accepted offer in period 1 of

the respective bargaining stages.
This theorem is proved in Appendix B.
Proposition 1. Asn — 0, the unique restricted equilibrium payments of the game T (n, S, C, f, s°)

converge to the axiomatic solution payments y®.

8.3 Why Separate Stages a and aa, or Stages b and 0bb?

In Section 6, we mentioned that although splitting Stage a from Stage aa, or Stage b from
Stage bb, makes no strategic difference, this separation allows us to take advantage of the

refinement associated with extensive form trembling-hand perfection. If we were to merge
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Stages a and aa, or Stages b and bb, then in general there would be extensive form trembling-
hand perfect equilibria that are not efficient. This is explained as follows.

If we were to merge Stages b and bb while Stages a and aa separate, then Nodes 1 and
2 would have the same equilibrium behavior in Stage a and aa. The outcome of those two

stages is that Nodes 1 and 2 agree on the contingent contract (s*, s, si?)

. Now, suppose
we wish to sustain an equilibrium in which Nodes 2 and 3 sign a contract (5;,353) € Sa3
that is different from the socially efficient choice (s5*, s5*). When Stages b and bb are merged
into a single stage, nodes 2 and 3 offer a pair of actions (s, s3) € S23 and a payment ys in
each round. Conditional on making a “trembling mistake,” Nodes 2 and 3 could then make
“unreasonable” mistakes in their payment. For example, for any (s9, s3) that is not (s, 53),
the bargaining outcome of Nodes 2 and 3 could be (s, s3;y3 = —M) with some probability e.
That is, conditional on signing the contract (ss, s3), Node 3 would need to pay the maximum
payment M to Node 2. This payment would place Node 2 in an extremely bad bargaining
position when he bargains with Node 1 on the contingency (s, s3). This is so because if
Node 2 wishes to secure this large payment M from Node 3, then Node 2 would be forced
to share his surplus with Node 1. Thus the total payoff of Nodes 2 and 3 as a whole would
be less for the contract choice (s9,s3) than for (Sg,S3). This is so for any (ss, s3) # (82, 53).
This shows that an equilibrium in which Nodes 2 and 3 sign an arbitrary contract (S, S3)
can be sustained by allowing uneasonable payment trembles.

If we were to merge Stages a and aa, the same argument shows that Nodes 1 and 2 need
not agree, in equilibrium, on the efficient contingent contract sj. It may be that some other
natural refinement concept would not require a separation of these bargaining stages in order

to achieve efficiency.
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Appendices

A Auxiliary Measure Theoretic Facts

A.1 Borel and Analytic Sets, Semi-analytic Functions

For an extensive-form game that allows players a continuum of potential actions, some care
must be taken regarding the measurability of mixed and behavioral strategies. Aumann
(1964) was the first to address this concern.

A topological space is said to be a Borel space, if it is topologically homeomorphic to
a Borel subset of a Polish space. By Kuratowski’s Theorem,® Borel spaces can be easily
classified by isomorphism via cardinality. That is, a Borel space is either finite or denumerable
with the discrete structure, or it is isomorphic with the unit interval [0, 1]. For any topological
Y, we denote its Borel o-algebra Z(Y), and denote by A(Y') the set of probability measures
on A(Y) endowed with the weak* topology. When Y is a Borel space, A(Y) is a Borel
space’. The property of being a Borel space is preserved when taking countable Cartesian
products.!?

However the Borel o-algebra has a deficiency in the context of optimization that it does
not preserve measurability under projection. It is well known that if Y and Z are Borel
spaces, and if B a Borel subset of Y x Z, then the projection of B on Y need not be
Borel. To circumvent this difficulty, the literature of stochastic optimal control works with
an enriched o-algebra, the universal o-algebra®'. We introduce this concept into the context
of noncooperative games in extensive form.

The universal o-algebra 2 (Y') of a Borel space is the intersection of all completions of

8 A formal statement and proof of Kuratowski Theorem is provided by Bertsekas and Shreve (1978),
Corollary 7.16.1.

9See Section 7.4 in Bertsekas and Shreve (1978).

19See Proposition 7.13 in Bertsekas and Shreve (1978).

Hnterested readers are referred to Appendix A of Bertsekas (2012) or Section 7 of Bertsekas and Shreve
(1978) for a detailed treatment.
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A(Y) with respect to all probability measures. That is,

2Y)= () #)
PEA(Y)

where %Y (Y) is the complete o-algebra with respect to the probability measure P. Clearly,
we have Z(Y) C Z (Y). A probability measure P on (Y, Z(Y)) has a unique extension to a
probability measure P on (Y, % (Y)). We write simply P instead of PP.

Let Y and Z be Borel spaces, and consider a function g : Y — Z. We say that g
is universally measurable if g~Y(B) € % (Y) for every B € B(Z). A probability kernel q
from Y to Z is function from Y to A(Z). We sometimes denote by ¢(dz|y) the probability
measure ¢(y) on Z. A probability kernel ¢ is Borel measurable (universally measurable) if and
only if for each Borel set B € #(Z), the function ¢(B |y) is Borel measurable (universally
measurable, respectively) in y. (See Proposition 7.26 in Bertsekas and Shreve (1978).)

A proof of Kuratowski’s theorem can be found in Chapter I, Section 3 of Parthasarathy

(1972).

Proposition 2 (Kuratowski’s theorem). Let X be a Borel space, Y a separable metrizable
space, and ¢ : X —'Y be one-to-one and Borel measurable. Then p(X) is a Borel subset of
Y and o=t is Borel measurable. In particular, if Y is a Borel space, then X and w(X) are

1somorphic Borel spaces.

Suppose (2, .7, P) is a probability space, (€21,.%7) is a measurable space, and X a mea-
surable function from 2 to ;. We will simply write “for P almost every x € X” to mean
“Vz € N, where N € . is such that P(X € N) = 0”. If P is another probability measure
on (€,.7) such that X has the same probability distribution under P and P, that is, if for
any A € 1,

P(X € A) = P(X € A),

then it is clear that “for P almost every x € X” is means the same as “for P almost every
re X"

Now suppose Y is an extended real-valued random variable on (2 for which either EF (Y1)
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or EP(Y ™) is finite, so that the conditional expectation EF (Y |¥) of Y given a sub-sigma-
algebra ¢ is well defined. Suppose g : ; — R is measurable and EF(Y | X) = g(X), P

almost surely. We define, for every x € {1y,
EP(Y|X =) = g(2).

For any measurable g : Q; — R such that E¥(Y' | X) = §(X), P almost surely, we have
B (Y | X = 2) = ()

for P almost every x € ;.

Proposition 3. Let (Q, F) be a measurable space, and Y is an extended real-valued random
variable on Q for which either E(Y ™) or E(Y ™) is finite. Let (1,.%1) be a measurable
spaces, and X is a measurable function from € to €1. Suppose P and P are two probability
measures on (2, F). If (X,Y) has the same probability distribution under P and P, that is,
if for every A € %, B € Z,

P(X €AY € B)=P(X € A,Y € B),
then
EP(YV|X =2)=EY(Y|X = 2), (22)
for P and P every x € §1y.

Proof. For any bounded measurable f : {2 — R, we have

/Q EP(Y | X =) f(z) P o X (dz)
_ /Q EP(Y | X = ) f(x) Po X\ (do)
= EF [EF(Y | X)/(X)] = EF [Y f(X)] = E" [Y /(X))
Therefore the function g : x — Eﬁ(Y | X = z) satisfies g(X) = EP(Y'| X), P almost surely.
Thus Equation (22) holds for P every x € ;. Likewise, Equation (22) holds for P every
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17691 ]

Proposition 4 (Propostion 7.44 in Bertsekas and Shreve (1978)).
Let XY and Z be Borel spaces. Suppose f: X — Y and g :' Y — Z are Borel measur-
able (universally measurable). Then the composition g o f is Borel measurable (universally

measurable, respectively).

Proposition 5 (Proposition 7.26 and Lemma 7.28 in Bertsekas and Shreve (1978)).

Let X and Y be Borel spaces, & is a collection of subsets of Y which generates Z(Y) and
15 closed under finite intersections, and q a probability kernel from X toY. Then q is Borel
measurable (universally measurable) if and only if the mapping X > x — q(E |x) € [0,1] is

Borel measurable (universally measurable, respectively) for every E € &.

Proposition 6. Let X, Y and Z be Borel spaces, and let q be a Borel-measurable (univer-
sally measurable) probability kernel from X toY x Z. Then there exists Borel measurable
(universally measurable) probability kernels b from X XY to Z, and m from X toY such
that

oY % Z|0) = [ BZlnpmidy|a), VY€ BY). ZeH(2)

Proof. The Borel measurabibility part is precisely Corollary 7.27.1 in Bertsekas and Shreve
(1978). The universal measurabibility part is an immediate application of Proposition 7.27

in Bertsekas and Shreve (1978) along with the fact that Z(X)@ % (Y) Cc (X xY). O

Proposition 7 (Proposition 7.29 and 7.46 in Bertsekas and Shreve (1978)).

Let X and 'Y be Borel spaces and q a Borel-measurable (universally measurable) probability
kernel from X to Y. If f : X xY — R is Borel measurable (universally measurable) and
bounded either above or below, then the function X > x — [ f(z,y)q(dy|z) € R is Borel

measurable (universally measurable, respectively).

Corollary 1 (Extension of Corollary 7.29.1 and 7.46.1 in Bertsekas and Shreve (1978)).
Let X and Z be Borel spaces, and let f : X XY — [—00, 00] be Borel measurable (universally

measurable) and bounded either above or below. The function 6 : X x A(Y) — [—o00, 0]
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given by
Of(z,p) = /Y S, y)p(dy)

is Borel measurable (universally measurable, respectively).

Proof. Define a Borel measurable probability kernel on X x A(Y') to Y by ¢(dy | z, p) = p(dy)
and apply Proposition 7. O

A subset A of a Borel space X is said to be analytic if there exits a Borel space Y and a
Borel subset B of X x Y such that A = projy(B), where projy is the projection mapping
from X x Y to X. It is clear that every Borel subset of a Borel space is analytic. It is also
true that every analytic set is universally measurable!.

Let X be a Borel space and let f : X — [—o00, 00| be a function. We say that f is upper

semianalytic if the level set

{re X[ f(y) >c}

is analytic for every ¢ € R. Likewise, f is lower semianalytic if {x € X | f(z) < ¢} is ana-
lytic for every ¢ € R. Every upper or lower semianalytic function is universally measurable.
Moreover, upper (lower) semianalycity is preserved under partial maximization (minimiza-
tion, respectively), and under integration with respect to a Borel measurable probability

kernel:

Proposition 8 (Proposition 7.47 in Bertsekas and Shreve (1978)).
Let X and Y be Borel spaces, and consider a function f from X XY to [—o0,00]. Let

f:X = [~00,00] and f: X — [~00,00] be defined by

fz) = sup,ey flz,y),
f(x) =infyey f(x,y).

If f is upper semianalytic, then f is upper semianalytic; If f is lower semianalytic, then S

15 lower semianalytic.

2for a proof, see Bertsekas and Shreve (1978), Corollary 7.42.1.
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Proposition 9 (Proposition 7.48 in Bertsekas and Shreve (1978)).
Let X and Y be Borel spaces, and let q(dy | x) be a probability kernel from X toY . Consider
a function f from X XY to [—o00,00] that is bounded either above or below. If q is Borel
measurable and f is upper (lower) semianalytic, then the function € : X — [—00, 00| given
by

l(z) = /Y 9(x,y)q(dy | x)

is upper (lower, respectively) semianalytic.

Corollary 2 (Extension of Corollary 7.48.1 in Bertsekas and Shreve (1978)).
Let X and Z be Borel spaces, and let f : X XY — [—00,00] be upper (lower) semianalytic
and bounded either above or below. The function 0 : X x A(Y') — [—o00, 00| given by

Ostap) = | SGovholi)
Y
is upper (lower, respectively) semianalytic.

Proof. Define a Borel measurable probability kernel on X x A(Y') to Y by q(dy |z, p) = p(dy)
and apply Proposition 9. O

We conclude this subsection by stating the universally measurable selection theorem. A

proof can be found in Bertsekas and Shreve (1978) Proposition 7.50:

Theorem 2 (Universally Measurable Selection Theorem). Let X and Y be Borel spaces,
B C X XY an analytic set, and let f : (X,Y) — [—00,00] be upper semianalytic. Define
f*:projx (D) — [—o0, 0] by

fH(x) = sup f(z,y).

yEBy

For any € > 0, there ezists a universally measurable function ¢ : projx(D) — Y such that

for every x € X, ¢p(x) € B, and
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B Appendix: Proof of Theorem 1

We now provide a proof of Theorem 1.

B.1 Filtering in an Multistage Game

We first provide the following basic results about filtering, that is adapted from Section
10.3.1 in Bertsekas and Shreve (1978).

Given a multistage game I' = (I, N, S, A, Z,p,(,u). Suppose a strategy profile o is
Borel measurable. Then given o_;, player i faces a single person imperfect state information
stochastic control problem. Recall that (;; : ©; — Z;; is the (Borel measurable) information
function of player ¢ in period t. (;; can be lifted to be a Borel measurable function CA on H by
((s,a) = ((s<t,a<;). We write simply (;; instead of (j;. Likewise, if ¢ is a function defined
on a domain which is a projected space of H, we sometimes lift g to be a function on H and

write g for the lifted function. We first fix a Borel-measurable strategy profile o.

Lemma 1. For every it € W, there exist Borel-measurable probability kernels b (d0; | p, zit)

from A (©;) X Z; to ©, which satisfy

[;n{«m>623}pu@>=:é (0, | p. 2e) (p 0 Ci) (dza) (23)

t it

Proof. For fixed p € A(©;), define a probability measure ¢ on ©; x Z; by specifying its

values measurable rectangles to be
1€, % Zy|p) = [ 1166 € Z} plat).
9,

By Proposition 5 and corollary 1, ¢ is Borel-measurable probability kernel from A(©;) to
O; x Zy. By Proposition 6, this probability kernel can be decomposed into its marginal
from Z; given A(©;) and a Borel-measurable probability kernel b(df, |p, z;) on O, given
A(Oy) X Zj such that Equation (23) holds. O

It is customary to view b;; as a belief updating operator of player 7 in period ¢: given a
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prior distribution of the preplay 6; of the game, player i observes z; and updates his belief
about 6; to be the posterior distribution by (db; | p, zit).
For every it € W, consider the function f; : A(©,) x Ay — A(O,4,) defined by

Fulda)(€441) = / a(@d0) T oseldase | Gul60) (24)

(0c,ait,(aje)jise+1) €0, JeI\{i}

Pet1 [d5t+1 ‘ (et;ait; (ajt)jel\{z‘})] , VO, € B(O111).

Equation (24) is called the one-stage prediction equation. If player ¢ has a posterior distri-
bution ¢; about ©, and takes an action a; in period t, then his a priori belief of ©,,, is
fit(qit, air). The mapping f is Borel measurable (Propositions 5 and 7).

Define the probability kernels ¢;; from Z; x A; to ©,41 (¢ > 1) recursively by

i1 (zi1, ai1) :ﬁ1<bi1(pla Zi1), i), (25)
Gt (Zit, air) =fa (bit [qi(t_l) (rit(t_l) (zit)) ,zit} ,ait) where 7;4;_1) is the recall function.
(26)

Note that for each t > 1, ¢; is Borel measurable by composition of Borel measurable functions.

Equations (23) to (25) are called filtering equations corresponding to the multistage game
I' and the Borel measurable strategy profile 0. The probability kernels ¢;; provide a version of
the conditional distribution about the preplay of the game given player ¢ current information,
as the following lemma shows.

Let a;; be the projection mapping from H to A;. That is, a;(s,a) = ay.

Lemma 2. Given a multistage game I'. For every Borel measurable strategy profile o, it € W

and ©,,, € B(O41), we have
PO, 1 | Gits @it) = it (Opiy | Gty it) P? almost surely.

Proof. The proof works by induction in ¢, and uses the filtering equations and Fubini’s
theorem. We omit the details and refer to Lemma 10.4 in Bertsekas and Shreve (1978) for a

complete proof of a very similar result. O
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Fix some Borel measurable strategies o;11,... and the state transition kernels p;;o,. ..
determine, a probability measure ¢; on ©;,; determines, via the Ionescu-Tulcea Extension
Theorem, a unique probability measure k7(dh|gq) on the space (H,%(H)) of histories,
such that the finite dimensional distribution of x?(dh|¢) on Oy14, is given by ¢ ®]_,
[HieN (O'i(t+k) o Ci(t+k)) ® pt+k+1] for every 7 > 0. The function that maps every ¢; €

A(Oy41) to k7(dh | ;) is Borel measurable, as the following lemma shows.
Lemma 3. The function k% : A(O;41) — A(H) defined above is Borel measurable.

Proof. Fix any Borel rectangle [ [, 1, S, X [] A, in ©4pq4, the function

iEN k<t+T L

A(O41) 3 g = K7 ( H S, % H A ‘ C]t) € [0, 1]

k<t+1+T1 1EN,k<t+T1

is Borel measurable by Corollary 1. Thus k% is Borel measurable by Proposition 5. O

Since both g;; : Zy X Ay — A(O4y1) and k @ A(O41) — A(H) are Borel measurable,
their composition k o g;; defines a Borel measurable probability kernel from Z;; x A;; to H.

We immediately obtain the following corollary.

Corollary 3. Suppose o is a Borel measurable strategy profile and g : H — R s upper
semianalytic and bounded. Then for every it € W, there exists a bounded upper semianalytic

function g : Zy x Ay — R such that
g<zita ait) = EJ[Q ’ Git = Zit, Qg = ait] (27)

for P7 almost every (zy, ;).

Proof. Define g : Z;; x Ay — R by

0z i) = / 9(h) (K 0 ga) (dh | 2, ).

By Proposition 9, ¢ is upper semianalytic. Equation (27) is an immediate consequence of

Lemma 2. O
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One can see from the construction of the function ¢ in Corollary 3 and the filtering
equations Equations (23) to (25) that ¢ does not depend on (oy1,...,0;). This result is
intuitive in the following sense: player ¢ can infer perfectly his previous actions before date ¢
from his current information set z;;, due to perfect recall; The action of player ¢ in the current
stage is also conditioned upon; Thus he does not need to rely on his previous strategies
(O'il, . ,ai(t_l)) nor his current strategy o;; to compute the conditional expectation. We

combine Corollary 3 and this remark to obtain the following proposition.

Proposition 10. Suppose o is a Borel measurable strategy profile and g : H — R is upper
semianalytic and bounded. Then for every it € W, there exists a bounded upper semianalytic

function § : Zy x Ay — R such that for every (o},)r<t,

9(zit, air) = Ea/(a’{T)TSt[g | Git = 2it, Qi = @it (28)

for PO/@i)r<t qlmost every (2, ).
Similar to Proposition 10, we have the following lemma:

Proposition 11. Suppose o is a Borel measurable strategy profile and g : H — R s upper
semuanalytic and bounded. Then for every it € W, there exists a bounded upper semianalytic

function g : Z;y — R such that for every (o). )r<t,

§(zu) = BT/t g | Gy = 2] (29)
for P/ @ir)r<t glmost every z;.

Note the difference between the two propositions above, Equation (29) holds only for
every (0% )r<t, as opposed to (o} ),<; in Equation (28). This is because in Equation (29)
the action of player ¢ in period ¢ not conditioned upon, thus o;; needs to be specified for the
computation of the conditional expectation.

If the strategy profile o and the function g are only a universally measurable, then same

construction above lead to a universally measurable function g with the same property, via
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the universally measurable part of Propositions 4 and 7 and corollary 1. Formally, we have

the following propositions.

Proposition 12. Suppose o is a universally measurable strategy profile and g : H — R
18 universally measurable and bounded. Then for every it € W, there exists a bounded

universally measurable function § : Zy x Ay — R such that for every (o%,)r<t,

9(zit, air) = Eg/(a’{T)TSt[g | Git = 2t i = air]

for PO/@i)r<t almost every (2, ).

Proposition 13. Suppose o is a universally measurable strategy profile and g : H — R
is universally measurable and bounded. Then for every it € W, there exists a bounded

universally measurable function g : Zy — R such that for every (o) ),<i,

9(zit) = Eo/ir)<t 9| Gt = zit]

for P/ (i<t glmost EVery Zi .

B.2 A Sufficient Condition and A Necessary Condition for Nash

Equilibrium

Now that we finish establishing the basic results about filtering, we provide a sufficient and
then a necessary condition for a strategy profile to be a Nash equilibrium.

Given a multistage game I' = (I, N, S, A, Z,p,(,u). For every t, let ¥, be the projection
from H to ©,. We define, for every time ¢ and every preplay 6, € O, of the game,

Ui (0r) = sup u;(h),
{hEH: ﬂt(h):et}
w; (0r) = inf u;(h).

{hGH: ﬁt(h):Qt}

Since u; is Borel measurable, thus upper and lower semianalytic, therefore by Proposition 8,

u;)r and u,, are upper and lower semianalytic functions on ©, respectively, thus universally
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measurable. Both functions can be lifted to be an upper and lower semianalytic function
respectively, on H.
We say that wu; is lower convergent if for each history h € H,

lim w,, (0:(h)) = wi(h),

)
t—o00

and there is a uniform lower bound on u;. The notion of upper convergence of a wu; is
symmetrically defined.
For every it € W and strategy profile o, there exists (Proposition 13) a universally

measurable function Uf, : Zi; — R such that for every (o7 )r<,

U‘(\Tt<zit) — Ea/(UgT)r<t [Uz | Cit — Zit],

)

for Po/(7iz)=<t almost every z. U;ft(zit) is the expected utility of player ¢ conditional on
observing z;.

Fix a perturbed game [ = (', €, x). Consider a strategy profile o = (0;)ier € 5. We say
that the strategy o; of player ¢ is unimprovable with respect to the strategies o_; of all other

players in [ if and only if for every ¢t > 1 and for every strategy o} € il of player i,

it (Cit) > E7/7 [Uz‘[\ftﬂ (Ci(tﬂ))

Cit] P?/% almost surely. (30)

Remark 1. Unimprovability, also called the one-shot deviation principle, was originally for-
mulated by Blackwell (1965) in the context of dynamic programming. In the context of
extensive games, after fixing the strategy of the other players to be o_;, player i faces a
potentially infinite-horizon dynamic programming problem. To say that a strategy o; is
unimprovable is to say that it cannot be improved upon in one step by any other strategy
ol. If at any time ¢, when presuming that he will revert to the strategy o; beginning in next
period, he does as well as possible by using o; in this period. for every o/, t,k > 0, and every

partial history h,_y € H;_;.

By induction and the law of iterated expectations, this easily extends to k-period unim-
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provability, as follows.

Lemma 4. If o; is unimprovable with respect to o_; in f, then for every t,k > 0 and for

every strategy ol € f]z of player 1,

ﬁt (Cit) = B/ [ Zq|.t+k‘ (Ci(t+k))

Qt} P/ almost surely. (31)

Proof. Suppose inequality 31 holds for some k£ > 1, since

il(t+k) (Gitrrmy) > E7/% [ t4kr (Gittrrsn) Ci(t+k:)] P?/% almost surely,

we then have

5 (G = BB U7 (Gereen)

> Eo/ [ i(\Tt—I—k—H (Cz‘(t+k+1))

G| |Gl

Cit:| P?/7: almost surely.

This establishes k-period unimprovability by induction. n
Now we are ready state a sufficient condition for being a Nash equilibrium.

Proposition 14 (A sufficient condtion). Suppose I' = (I, N, S, A, Z,p,(,u) is a multistage
game in which every utility function u; is lower convergent, and I = (T, €, x) is a perturbed
game of I (if e = 0, then F=r by convention). If o is a strategy profile such that o; is

unimprovable with respect to o_; in r for alli € N, then o is a Nash equilibrium of T.

Proof. Suppose o € 3 has the stated unimprovability property. For every ¢,k > 0 and for

every o, € ii, from the definition of the function U;Tt . We have,

Uflir (Zi(t+/<f))

= Eo/)r<t [ul | Citry = zi(Hk)} for Po/(@ix)=<t+k and P7/7 almost every Zi(t+k)s
> Eo/(Oi )<tk [%Hk ‘ Citrk) = Zi(t-&-k)} for Po/(%ir)r<t+k and P?/% almost every Zi(t4k) s
> R/ {gﬂt% ‘ Citt+h) = zi(t+k)} for Po/(i-)r<t+k and P?/% almost every Zi(t+k)-

where the last inequality follows from Proposition 3, as the probability distributions of both
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Uik and Cj¢+x) are the same under Po/(@i)r<t+k and P2/%. This is also why all equalities
and inequalities above hold for P?/(%i-)-<t+k and P?/% almost eVery Zi(i+k)-

Thus inequality (31) implies that,

7 (G) > E7/% [EO/O; [ Wiesn | Gieim]

_ o/o}
= E7/ [E¢|t+k

G|
Cit] P/ almost surely.

As k — 00, w4, converges monotonically (upwards) to u; (since u; is lower convergent), so

an application of monotone convergence implies that

i (Gie) > E7/% [u; | Cu] = UU/U’,'(C#) P?/% almost surely.

it

In particular, Uf, (za) 2> Uiall/ag(zil) for P?/? almost every z;. Since the probability dis-
tribution of (;; does not change with the strategy profile (it is always p; o (;;'), thus

i (zi1) > U;ljl/ag(zil) for p; almost every z;;. Thus,

Ui((’) = /Z U¢U|1 (Zzl) (Pl o Ci_11> (dZﬂ) > / UiTl/Ui (Zzl) (pl o Ci_ll) (dZu) = Uz‘(U;,U—i)-

Zi1
Therefore o is a Nash equilibrium of T. n

Now we provide a necessary condition for a strategy profile to be a Nash equilibrium.

Definition 3. We say that a utility function wu; is convergent uniformly in probability it
Ve>0,

sup P’ [ﬂﬂt — Uy > e} — 0.
oEY

Proposition 15 (A nessary condition). Suppose I' = (I, N, S, A, Z,p,(,u) is a multistage
game in which every utility function u; is convergent uniformly in probability. Let T =
(T, €, x) be a perturbed game of . If o is a Borel measurable Nash equilibrium of f, then for
every it € W,

Uii(zir) = sup U;Tt/gg(zit) for P? almost every z. (32)

G’éE i

We need some intermediate results to establish the necessary condition above.
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Lemma 5. If 0 is a Nash equilibrium of f, then for every o} € ii,

@'(|71(Zi1> > U;‘Tl/ag(zﬂ), for almost every z;.

Proof. Let Z,, = {Zil € Zy 1 Uf(2n) < U;lfl/ag(zﬂ)}. Intuitively, Z,, is the set of places

)

where player ¢ can improve by adopting the strategy o) in place of 0. Z,; is a universally

measurable subset of Z;;. Define a strategy ; € ﬁ)z of player i as follows: for every t > 1,

5it(Zit) = Uit(zit) if Tz'to(zz‘t) §Z Zil?

Oit(zie) = g (zie) if rio(2ie) € Zy
where 7 is one of the recall functions of player ¢. Then
Ui(65,0-;) = / Ui (zi1) (pl ° Cﬁl) (dzi1) +/ U;‘Tl/ai(zﬂ) (Pl o Cﬁl) (dzir)
Zi1€Z¢1 Zilegil
= /Z UZ‘UH(Zil) (pl © Ci_ll) (dzi) +/ . [U:‘Tl/g(zu) - Ufu(zil)] (pl ° Ci_ll) (dzi)
il 2i1€44
= U(O') + / [U;l/o-i<2ﬂ) - U;Tl(Zﬂ)] (p1 o} C;ll) (dZﬂ).
2i1€4;

Since U;(6;,0-;) < U;(o), then the integral on the right hand side of the equation above

must be non positive. But the integrand [U;{Jg(zﬂ) - Uf‘l(zﬂ)] is strictly positive when

zi1 € Zjy, so it must be that (p; o ;') (Z;;) = 0. This completes the proof. O

For every it € W, let
Bit = {(zit,p) € Ziy x A(Ay) : p(B) > €i(zi)xut(B| zi), VB C Ay}
Lemma 6. For every it € W, By is a Borel subset of Z; x A(Ay).
Proof. Define ¢ : Z;; x A(Ay) — A(Ay) by
e(zit, p) = (1= €e(2it))p + €it(zie) Xt (2it)-

The function ¢ is Borel measurable, as €;(-) and x;(+) are. Let ¢ : Z;; x A(Ay) — Ziuyx A(Ay)
be defined as @(zi,p) = (2it, (zit,p)). Then @ is Borel measurable and bijective, and
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?(Zy x A(Ay)) = By. By Kuratowski’s theorem (Proposition 2), By is a Borel subset of
Zz‘t X A(Azt) [l

Suppose o is a Borel measurable Nash equilibrium of T. Without lose of generality, we will
show Equation (32) for t = 0. Let g : H — R be universally measurable and bounded. For
every it € W and 6, € O, there exists, by Proposition 12, a bounded universally measurable

function g : Z; x A;; — R such that for every (JQT)TS,
G(2it, air) = EU/(UZ{T)TS[Q | Git = Zit, Qi = gy, for P?/(@ir)<t almost every (i, ay). (33)

Define f : B;; — R by
Flaen) = [ i aap(das) (34)

The function f is universally measurable and bounded, because ¢ is (Corollary 1).

For every o/, € im the operator J% mapping g into J%(g) : ©, — R is defined by

J7(g) (B) = £ (Cie(0r), o [dauie | Gie(0:)]) -

for every #;, € ©,. The function J% (g) is bounded and universally measurable by Proposi-
tion 4. Thus the operator J% maps a bounded universally measurable function ¢ : H — R
to a bounded universally measurable function J%(g) : H — R. From the definition of

J%t(g) and the law of iterated expectation, it follows that for every (o7,). _,,

J%it(g) (9,(h)) = E7/@iddr<t [¢ | ;1] (h), Po/(@ir)r<t almost surely. (35)

Lemma 7. For every t > 1, (0}, )r<t € [[.< Sir and bounded universally measurable g :

H — R, we have
<J<T§1 o Jﬂz/'t> (9) = E”/(‘TQT)TSt[g | Cals almost surely.

! ! og . . .
where J%1 ... J%t denotes the composition of Jo,. .. J%t,

Proof. We proceed by induction on t. The case where t = 0 reduces to the definition of J%1.
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Suppose Lemma 7 holds for some ¢t — 1 > 0. Since J% (g) is defined on Oy, thus it has the

same probability distribution under P?/(?ir)7<t and P?/(?iz)-<t . Thus we have

(77 ..07) (g)

= E7/Cir<t [J7(g) | ¢ (induction hypothesis at t — 1)
= B/t [J%(g) | (] (Proposition 3)

= B/l [E0/@)r< [g| (] [ Ga]  (Equation (35))

= B/t g ] () Po/(@ir)z<t almost surely.

Since both sides of the equation are functions defined on ©,, their probability distributions
are unaffected by the underlying probability measure. Therefore the equations above hold

almost surely. This establishes Lemma 7 by induction. O

Given a z; € Zy, let B,, be the section of By at z;. That is,
B., = {p € A(Ay) : (zit,p) € Bit}.
The operator J;; mapping ¢ into J;(g) : ©; — R is defined by

Jit(9)(0:) = sup  f(Cu(0:),p).

PEB¢; (01

If the function g is upper semianalytic, then the function ¢ in Equation (33) can be taken
to be upper semianalytic (Proposition 10), and thus the function f in Equation (34) is
also upper semianalytic (Corollary 2). Therefore the function J;;(g) is upper semianalytic
(Propositions 4 and 8). Thus the operator J maps a bounded upper semianalytic function
g : H — R to a bounded upper semianalytic function J;(g) : H — R.

It is clear that

<Jagl o JU&) (9) < (Ji-.-Ju) (9)

for every t > 1, (oly,...,00) € [« 5> and bounded upper semianalytic function g : H —

R. But the inequality can be arbitrarily tight, as the following result shows.

Lemma 8. For every t > 1, bounded upper semianalytic function g : H — R and € > 0,
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there ezists o, € S such that for every h € H,

J"gt(g) (h) > Ju(g) (h) — €

Proof. An application of Theorem 2 to the upper semianalytic function f defined in Equa-
tion (34) implies the existence of a universally measurable probability function: o}, : Z; —

A(A;) such that for every zy € Zyy, o}, € B,,, and for every z; € Zy,

f(zi, 00 (zi0)) > sup f(zi,p) — €.
PEBz;,

Thus o/, € &y and for every h € H,

J%(g) (h) > Ju(g) (h) — €
O

Lemma 9. For every t > 1, bounded upper semianalytic function g : H — R and € > 0,

there exists (0, ...,04) € [ L - such that for every h € H,

(J"§1 . J”§t> (9) (R) = (Jir ... Ju) (9) (h) — €

Proof. We proceed by induction on ¢. The case where ¢t = 0 reduces to Lemma 8. Suppose

it is true for some t — 1 > 0. Then there exists <0§1, e ,ag(t_1)> €ll, - S, such that

(J% . J%m) (Ju(9) = (Jir .. Ju) (Ju(g)) — €.
By Lemma 8, there exists o}, € S such that
I (g) > Ju(g) — .
Combining the two inequalities above, we obtain
(Jgél . Jait) (9) > (Ju ... Ju) (g) — 2e.
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This establishes Lemma 9 by induction. [

Let J* : Z;; — R be defined by

J(zin) = sup U;\Tl/g(zzl)

O';E P
Lemma 10. For every t > 1, J*(Gi1) < (Ji - - - Jig-1)) (ﬂﬂt) almost surely.
Proof. For every o, € ii,

i1 it

Ug/gi(@l) — o/} Ua/ai(cit) | Ql] < E°/° [ﬂﬂt(Cit) | Ql} , almost surely.

As the probability distribution of ;;((;r) and ¢;; does not depend on the choice of (o7, . .., ),
thus

B/ [a50(Gie) | G| = B7/ <t [a(Gar) | Ga] = (JU;I S JU;“_”) (te) < (Jir - - - Jigeny) (tage)-

almost surely. Therefore J*((1) < (Jin ... Jig—1)) (Uy) almost surely. ]
Now we are ready to show Proposition 15.

Proof. Let o be a Borel measurable Nash equilibrium of [ as in the statement of Propo-
sition 15. For every ¢ € I, let M = supwu; — infw;. Since u; is convergent uniformly in

probability, thus for every € > 0, there exists ¢ > 1 such that
P (ﬂi‘t — W > e) <e€ (36)
/

for every o’ € 5. Fix such a t, then there exists (o, ... ,cri(tfl)) €ll.. S such that

(JU;I e JU;“‘”) (@) > (Jia - Jig-ny) (@) — € > T*(Can), almost surely
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by Lemmas 9 and 10. On the other hand,

(J”il . J"§<t—1>> (¢

_ Ecr/(aéT)mt[ai't | il (Lemma 7)
< E"/(”gf)Tq[gﬂt | Gia] + €+ Me (Inequality 36)
< B/ [UT/(Ugr)T<t(Cz‘t) |G| + (M +1)e
= U;|71/ U”)T<t(gl) + (M + 1)e almost surely.
Therefore
U;ljl/( ”)T<t(Ql) + (M +1)e> J* () almost surely.
Let

A = { il Czl (M+ 1)6 < J*(Czl)} .

Since U, (Ca) = us/ i T<t((ﬂ) almost surely (Lemma 5), we have P7(A.) = 0. As € is

i1
arbitrary, thus P7(A) = 0, where

A= Ayr = {U(¢) < T (Ga)}-
k—o00
Therefore Uz|1(Ci1) > J*(¢n) = <SUPa;e > Ui(lfl/ag) (¢i1) almost surely, completing the proof.
]

Remark 2. One difference between the sufficient and the necessary conditions, is that be-
tween the qualifications for “almost surely”. In the sufficient condition, inequality 30 holds
Po/(oir)r<t almost surely, where (07, ),<; vary across [1,<; Zir- This effectively requires that
the inequality holds “everywhere”, whether or not it is ruled out by the underlying strategy
profile o. Formally, unimprovability is equivalent to the following: for every it € W, for

every o,, € X, there exists a universally measurable function g : Z; — R such that for

every (07 )r<t,

glzi) = Brllric)= [Ui(\fm (Gir+1))
Uili(zit) = 9(zit) for every z.

Git = Zz’t:| for P?/(?i-)=<t_almost every zy,
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In this sense, it is inspirit similar to subgame perfection. It is stronger than the necessary
condition, which only requires inequality Equation (32) to hold P? almost surely. That is,
every player’s continuation strategy has to be optimal only at points that the strategy profile
o allows. Optimality is not required at points that o rules out. For this reason, the necessary
condition is not sufficient for a strategy profile to be a Nash equilibrium, because a player
can have intertemporal coordination failure.

To differentiate the two concepts of optimality, we will refer to the type in the sufficient

condition “everywhere optimality”.

Suppose a multistage game I' = (I, N, S, A, Z,p,(,u) is such that players can perfectly
observe the complete preplay of the game before he acts in any period, that is, Z; = O, and
Git : ©y — Zj is the identity mapping for every it € W, then every preplay 6, € ©; induces
a subgame I'jp, of I'. We apply the subscript “|f,” to denote the components of the subgame
I'jg,. For example, Ijg, is the set of players in I'g,, and u,p, is the utility function of player
iin Tp,. Let ' = (I',¢,x) be a perturbed game of T', a subgame ﬁgt = (L., €, Xj0,) of r
consists of a subgame 'y, of I', and the restrictions €, of € and g, of x to the information
sets in I'jg,. Let iﬂgt be the set of strategies of player i in f|9t. If 0 = (0;)ien be a strategy
profile of I'. We denote the strategy profile induced by o on a subgame I'jg, by og,. If 0 is a
strategy profile of f, then the induced strategy profile oy, is a strategy profile of the subgame
fgt. Whenever we consider several multistage games with possibly different utility functions
simultaneously, we add the game itself as an argument to any utility related functions to
avoid confusion. Thus given any multistage game I', and a strategy profile o of T', U; (o;T)
denotes the expected utility of player ¢ under the strategy profile . The same applies to
functions like Uj;.

A multistage game with the property above is called a game with quasi-perfect informa-
tion. The setting where a multistage game has perfect information is a special case. An

immediate corollary of the necessary condition Proposition 15 follows:

Corollary 4. Suppose I' = (I,N,S, A, Z,p,(,u) is a multistage game with quasi-perfect

information in which every utility function u; is convergent uniformly in probability. Let
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[ = (T',e,x) be a perturbed game of I'. If o is a Borel measurable Nash equilibrium of f,
then for everyt > 0 and P? almost every 0; € Oy, oye, is a Borel measurable Nash equilibrium

Of f‘gt.

Proof. For every it € W, one can take the function U i 0; — R to be
5:05T) = Ui (00, e ) -

Then by Proposition 15, there exists a universally measurable subset B; C ©, for every ¢ € [

such that P?[9; € B;] =1 and for each 6, € B;,

Ui (016,;T0,) > sup Ui (g, 0-ij6,; Tja ) -

’ SB
Uz‘\etezllet

Let B = NierB;. Then we have P7(¢; € B) = 1 and for each 6, € B, the inequality above
holds. That is, o}y, is a Borel measurable Nash equilibrium of f‘gt for P? almost every

0, € O,. O

B.3 Generic Rubinstein alternating-offers game

We begin with a generic two-player bargaining game, defined as follows. Two players, 1 and
2, bargain over an outcome in some compact metric set K, the set of possible agreements.
Failure to agree, a “breakdown,” results an outcome denoted by D. As an example, we may
have K = {(z1,22) €ER? : z1 + 25 =1} and D = (0,0). Endowing K U D with its Borel
o-algebra, each player i has a measurable Borel utility function 4, : K U{D} — R.
Rubinstein (1982) suggested the following dynamic bargaining game. In each period,
one of the players proposes an outcome x in K. The other player accepts the offer, an
action denoted Y, or rejects (denoted N). Acceptance ends the bargaining and the agreement
is implemented. Rejection leads, with some given probability 7, to a breakdown of the
negotiation, denoted B, in which case the outcome of the game is D. Otherwise, the game
advances to the next period, a result called A, when the offer is made by the other player.

We suppose that Player 1 is the first to propose.
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The resulting multistage game is denoted I'. We use the same notation as in the descrip-

tion of an abstract multistage game, unless otherwise specified.

B.3.1 Histories, Lower Convergence of Utility Functions and Behavioral Strate-
gies
A complete history h = (¢,74, 5¢)i>1 of everything that happens over the course of the
game consists of a sequence of offers © = (7;);>; € K%, a sequence of responses r =
(re)e>1 € {Y,N}2+, and a sequence of choices by nature s = (s;);>1 € {A,B}?+. The
complete set of histories is H = (K x {Y,N} x {A,B})”*. Each utility function u; induces
a Borel measurable utility u; : H — R. Specifically, given a history h = (x,r,s), let
7 = inf {t > 1,r;, = Yors = B}. That is, 7 is the period in which the bargaining
process ends. If 7 < oo, then each player’s utility is well defined on such a history with

ui(h) = 4;(z.) 1{r; = Y} +w(D)L{r, = N}. If 7 = o0, we let u;(h) = @;(D) by convention.

Proposition 16. Each utility function u; is lower convergent and convergent uniformly in

probability.

Proof. Because 0 < u; < 1, we may take 0 and 1 as a uniform lower and upper bounds on
@;. Given a history h = (x,r,s), let 7 = inf {t >1,r,=Yors = B} be the period in
which the bargaining ends. If 7 if finite, then for all ¢ > 7, we have w;(h:) = w;(h). If 7
is infinite, then by definition lim; o w;,(h) = wi(h) = @;(D) for every ¢ > 1. Therefore
limy oo gi‘t(ht) = u;(h), that is, the utility function u; is lower convergent.

On the other hand, @, and w,, are different only on the event {r > ¢}, an event with
probability less than (1 — 7)" under any strategy profile. Therefore the utility function w; is

convergent uniformly in probability. O

To simplify notation, we will simply denote a partial history (x<; <, S<;) by its offer
history ' = (x1,...,2;). We can do so because r, =Y or s, = B for some 7 < ¢, the game
would have ended by period ¢ and no more description is needed for what happens thereafter.
Therefore an offer history ' = (x1,...,2;) denotes the partial history (zf,r<;, s<;) where

r.=Nand s, = A for all 7 <t¢.
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We denote by p; an offer strategy in period ¢, and by p; a response strategy. Thus p;
is a universally measurable probability kernel from K'~! to K, mapping a history of prior
rejected offers /™! = (z1,...,2,.1) € K'! to a probability measure on K, and p; is a
universally measurable probability kernel from K* to {Y, N}, mapping a history of prior and
current offers ' to a probability measure on {Y,N}. A behavioral strategy o; of Player 1

is a sequence (u1, p2, U3, P4, - - -) of such mappings. A strategy oo of Player 2 is likewise a

sequence of such functions of the form (p1, u2, p3, fa, - - ).

B.3.2 Perturbed Game, Independence of Strategically Irrelevant Information

The Rubinstein’s game I" is a multistage game with perfect information. All subgames that
starts with an offer of Player 1 (Player 2) are strategically isomorphic, and all subgames
that starts with an response of Player 1 (Player 2) and have the same current offer are

strategically isomorphic. Then we have the following proposition:

Proposition 17. If a perturbed game [ = (T, e, x) of I' respects independence of strategically

wrrelevant information, then

€it (:L‘t_l)

=i (2771, xi (@71 = xir (@77Y), if t,7 and i are of the same parity.
€ (') = € (27), Xit () = xir (27), if t, T are of the same parity, different from i.

Recall the notation f|$t71, which denotes the subgame of T which follows the history of
prior rejected offers 2~ and starts with a player making an offer. The following corollary

is an immediate consequence:

Corollary 5. Suppose T isa perturbed game of I'. If I respects independence of irrelevant

information, then for allt > 1, x'~t € K¥1 and 2}, € K,

§|xt—l =T if t is odd.

Lppe-1 = Dy if t is even.

We now consider the original Rubinstein’s game in which two players bargain to split
a “pie” of size 1. The goal of the next subsection is to show that this game has a unique

outcome that is induced by a restricted equilibrium, and that this outcome is the same as the
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subgame perfect equilibrium outcome. We will also provide some extension of these results

in preparation of our proof of Theorem 1.

B.4 The Original Rubinstein’s alternating-offers game

The original Rubinstein’s alternating-offers game corresponds to the case where
K = {(fﬂl,l'g) € Ri X+ X = 1}

and D = (0,0). We assume quasi-linear utilities for both players, that is u;(x) = x;, and
u;(D) = 0 for ¢ = 1,2. This form of Rubinstein’s alternating-offers game can be viewed as
a special case of our three-node bargaining game.'® Let 'y denote the original Rubinstein’s
alternating-offers game.

The game I'g exhibits certain symmetry between Player 1 and 2, in that every subgames
that starts with an offer of Player 1 is strategically isomorphic to every subgames that starts
with an offer of Player 2, and every subgames that starts with an response of Player 1 is
strategically isomorphic to every subgames that starts with an response of Player 2 with the
same current offer. For each ¢, let i(f) be the player designated to offer in period ¢, and
denote by j(t) the responding player. We have the following characterization of a perturbed
game of I'p that respects independence of strategically irrelevant information.
Proposition 18. A perturbed game T = (Tr,€,x) of T'r respects independence of strategi-
cally irrelevant information if and only if
e (7Y =€, xa (@) =y, ifi = i().
€it ($t) = e (71), X ($t) = xa1(z1), ifi=j(t).

The following corollary is an immediate consequence:

Corollary 6. Suppose Tisa perturbed game of U'g. If I respects independence of irrelevant

YIndeed, if we let the treatment sets So = {sJ} and S3 = {s3} to be singleton sets (so that we freeze
the treatments of Node 2 and 3), and let Cy (sg) = {8(1), 51} be a binary set, then the three node bargaining
problem is reduced to the original Rubinstein’s alternating offer game between Nodes 1 and 2.
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information, then for allt > 1 and x'~!' € K¢ 1,
f|xt—1 = f

To simplify notation, we reparametrize the offer set K by the unit interval [0, 1] in the
following obvious way: in each period, one player offers a share y € [0, 1] to his opponent,
which is equivalent to offering (1 — y,y) € K in the old parametrization.

Let

1 1=

v = —— —

= S vy = >
It is known that there is a unique subgame perfect equilibrium to this game. In equilibrium
each player proposes vs whenever it is his turn to make an offer, and accepts an offer y of
the other player if and only if ¥ > v5. The equilibrium outcome is that Player 1 proposes v,
in period 1, and Player 2 immediately accepts this offer. Thus the equilibrium payoff is v,
for Player 1, and vy for Player 2.
We write this equilibrium in the form of a behavioral strategy profile. Let o* = (u*, p*)
be the behavioral strategy profile defined by the following: for every ¢ > 1 and for every
offer history y* € [0, 1]" up to period t,

o 1 (y') = d,, (&, is the Borel probability measure on [0,1] corresponding to the

point mass at vs.);

1 if y, > vy (recall that y; is the current offer in period t)

* ({Y}Iyt)={

0 ify < vy

Given a behavioral strategy profile o, let p,(c) denote the probability that the two play-
ers conclude the game by reaching an agreement when playing o, and U;(o|agreement) =

E?[u;(h)| Ui>1 Ay] be the expected payoff of Player ¢ under o, conditional on the two players
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14

eventually reaching an agreement."* Then we have

Ui(0) = pa(0) U;(o|agreement),
and on a separate account,
U (olagreement) + Us(o|agreement) = 1.

We can now state the following proposition:

Theorem 3. Rubinstein’s alternating offer game has a restricted equilibrium. In particular,
the pure strategy profile o* is a restricted equilibrium. Fvery restricted equilibrium o induces

the same outcome as o*. Moreover,

(a) There ezists a restricted trembling sequence (0™),>0 for o* such that the followings are
true:
(i) for every n, U;(c"|agreement) = v; (1 =1,2).
(i) Asn — oo, the probability pI' of an eventual agreement converges to 1.
(111) As a consequence, the unconditional payoff U;(c™) of Player i under o™ converges

to v;.

(b) For each restricted trembling sequence (0™)n>o for some restricted equilibrium, the fol-

lowings are true:

(i’) Asn — oo, the unconditional payoff U;(c™) of Player i under ™ converges to v;;
(1) The probabilities p converge to 1;

(111’) As a consequence, U;(o™|agreement) — v;.

Remark 3. (a) and (b) will be useful for the proof of Theorem 1.

14Given a behavioral strategy profile, the event that the two players reach an agreement is U;>1 A; where
Ay is the event that the players reach an agreement in period ¢. Likewise the event that the bargaining
process eventually breaks down is U;>1 B (o). Both are measurable events. Moreover, if o is a totally mixed
behavioral strategy profile, then P7[U;>1 4] > 0, P7[U;>1B;] > 0. Hence conditional probabilities given
either agreement or breakdown events are uniquely defined.

64



Proof. Existence and (a): We will show that ¢* is a restricted equilibrium of Rubinstein’s
game. For this, we fix an arbitrary positive scalar A < (1 —n)/2, a positive sequence €" — 0,
and a strictly positive measure £ on [0, (1 — 1 — 2A\)vy]. For each n, let x™ € A([0,1]) be
defined by

X' = (€)% + (L—a” — (")) U(0.4") + " U(Y", 1),

where U(a,b) denotes the uniform distribution on [a, b], @™ and 4™ are two positive numbers
in (0,1) that we will determine. By definition, x™ is a strictly positive distribution on the
unit interval [0, 1], and will serve as the reference measure for the n'® perturbed game along
the sequence.

For each n and each ¢, let uy and p} be defined by
pr (y' ) = (=€) 0y + €)X,

for every history of offers y* € [0, 1]*, and

(6”)2 if Y c [0, ’)/n — 2)\1)1),
" €" if yp € [Y" — 2 v1,7"),
pr (YY) = . .
1—e¢ if ye € [Y", 7™ + 22 vy),
1—(e")? ify, € [y 42Xy, 1].

Recall that i(t) is the player designated to offer in period ¢, and j(¢) is the the responding
player. The combination o™ = (u", p™) defines a behavioral strategy profile for the perturbed
game [ whose minimum probabilities €}, and reference measures x}; are as follows: for every

offer history 3 € [0, 1],

e (y) = 2€m, Xie (v') = 30y + 30y ifi=(t) and g € [Y" — 201,97 + 2Awy),
2(e")?, 300y + 30y i = ()t and g, & [y — 2201, 9" + 22w),

where %5{1/} + %5{ ~} is the probability measure on the set of responses {Y, N} which assigns

1/2 probability to each response. The sequence (I'"),>¢ is a test sequence for I'. For each n,

since the minimum probabilities €}, and the reference measures xJ; are constant and identical
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across all pairs (i, t) such that ¢ = i(¢), and only depend on the current offer y; in a identical
manner across all pairs (,¢) such that ¢ = j(¢), the perturbed game rr respects independence
of strategically irrelevant information.

We look for values of o™ and 7" such that all strategies u and p}" at each period t(t > 1)
are everywhere optimal against ¢” in [™. As the unimprovability property is sufficient for
being a Nash equilibrium (Proposition 14), this would imply that o™ is a Nash equilibrium
of T™. Then we verify that o™ is a (2, €")-extended proper equilibrium of I'g in extensive
form. Upon verifying that o™ converges weak™®, pointwise, to o*, we would prove that o* is
a restricted equilibrium of I'p.

Notice that the Rubinstein’s game I'p and the strategy profiles ¢” are both stationary
and symmetric between Player 1 and 2. Therefore the value is the same for both the offering
and the responding player in all subsequent continuation games. Let v} = U;(c™) be the

value of the offering player, and v} = Us(c™) be that of the responding player. Then

o= =) [(L= ) (1=9") + (1 = o]
+€" [(1 —a") (1 —€e")(1 —n)vy (37)
+ e (1 ="+ Avy) +a" (1 — 7")/2} +a”0 ((€")?) + O ((e")?),
where O(€") denotes as usual a term that is asymptotically bounded by €. To derive this
value for v}, consider period 1 when
e with probability 1 — €¢”, Player 1 offers v" to Player 2. This offer is

— accepted with probability 1 — €”, in which case Player 1 receives 1 —~", and

— rejected with probability €, in which case, with probability 1—n, Player 1 receives
its value in the subsequent continuation game (That value is v} by symmetry and

stationarity);

e With probability €”, Players 1 offers an amount y with distribution x”. Such an offer

is
— rejected with probability (1 —a™)(1 — €") + a"O(€") + O ((¢")?), and
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— conditional on the offer y being accepted and being in the interval [y — 2\vy, ™),
an event with probability € + a"O(e") + O ((¢")?), Player 1 receives an expected
value of 1 — 7™ 4+ Avy; whereas conditional on y being accepted and being in
the interval [y, 1], an event with probability a” + a™O(€"), Player 1 receives an

expected value of (1 —~™)/2. The probability that y is in the interval [0,~") is
O (()?).

This leads to the value v} of Player 1 as showed in equation (37) above. Likewise, we can

obtain that
v = (1= &) [ (L= ey + (1 =]

+ e [(1 —a™)(1—€")(1 —n)o}

(" = ) +a (1497)/2] + a0 (1)) + O (")),

Consider the everywhere optimality of p] as a response to ¢™: In period 1, knowing that
his value in the subsequent continuation game is (1 — n)v] if he rejects an offer from Player
1, Player 2’s best response is such that it rejects, with maximum probability, all offers that
are strictly less than (1 — n)o}, and accepts all offers that are strictly larger than (1 — 7)o}
with maximum probability. Thus, p} is everywhere optimal if and only if 4™ = (1 — 7).

That is,

v = (1 =€) (1= (L=n)of) + (2= a") (1 = e")e" (1 —n)vy

e [ (L (1= )} + Avg) +a™ (1= (1 —n)ef) /2] + a0 ((€")?) + O (")) ,
(38)

v = (1 =€) (L=n)of + (2 —a")(1 =" (1 —n)oy
+e [ =)ol — Avr) +a” (1+ (1 =n)v))/2] + 0”0 ((€")) + O (")), (39)

This condition is also necessary and sufficient for the everywhere optimality of p} for all

t > 1, by stationarity and symmetry of both I and o™.
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Equations (38) and (39) form a linear system of equations with unknowns (v, v3). Adding

equations (38) and (39), we obtain

v + 05 = (1 =€)+ (") + " + "0 ((€")%) + O ((¢")?)
+ (226" = a")e" (1 —n)(vy + v3),

= v + vy =1—(2—a"ne® —2(1 = 2n)ne™ + a0 ((¢")?) + O ((€")?) . (40)

Recall that p!' denotes the probability that the two players conclude the game by reaching
an agreement. Conditional on an eventual agreement, the total payoff of the two players is

1. Conditional on a breakdown, the total payoff is 0. Thus, we have v} + v = p[!. Therefore
P =1 (2= a")ne — 21— (") + 0”0 (()?) + O ((")?) (41)

Substituting equation (40) into equation (38), we obtain

of = (1 =€) (L= (L=n)of) + (2 = 26" — a™)e"(1 = n)(py — o)

+e [¢"(1— (1 =n)of + Avy) +a” (1= (=)o) /2] + a0 ((€")?) + O ((€")?) -
(42)
Equation (42) is a linear equation in v} with a unique solution in [0, 1]. We shall choose a”

so that

n n
V1 = P, V1.

This particular choice for o™ would imply that, conditional on an eventual agreement, the
expected payoff U(c"|agreement) of Player 1 is vy (thus, the corresponding conditional
expected payoff Us(c"|agreement) of Player 2 is 1 — U, (0" |agreement) = v,). We now show
that such a choice for the value of a™ exists.

We denote the righthand side of equation (42) by g(v};a™), and let f(a™) = pv;. Both

a™) and g(pTvi; ™) are continuous in «”. For n sufficiently large,
9\Pg y larg

f() ~vy —nuy € > v — (1/2+n)vy € >~ g(phog; 1).
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f(0) = vy —2nvy €* — 2n(1 — 2n)v; (€")?
< v —2nuy €+ (A= 2n(1 — 2n)]v; (€")? =~ g(plvy;0).

By the Intermediate Value Theorem, there exists a o™ € (0, 1) such that pllv; = f(a™) =
g(plvuy;a™). We fix such a ", implying that v} = pllv; is the solution to equation (42).
Since p!' — 1, v} converges from below to vy, and equation (40) then implies v} — vs.
Given these values of o™ and ~", now we verify the optimality of u} against ¢”: In
period 1, if Player 1 offers some y € [0, (1 — n)v] — 2Av;), then such an offer is rejected with
probability 1— (¢")?, in which case Player 1 gets the same continuation value (1—n)v} for all
offers y in this interval. Conditional on y being accepted, the expected payoff of Player 1 is
decreasing in y. Thus the unconditional payoff of Player 1 is decreasing in y in this interval.
Likewise, the unconditional payoff of Player 1 is decreasing in y in all other three intervals
(1 = n)vf — 2 vy, (1 — n)ov}), [(1 —n)oy, (1 —n)vl + 2Avy) and [(1 — n)v] + 2Avq, 1]. Thus
we need only compare the payoffs of Player 1 at y = 0, (1 — n)vf — 2Avy, (1 —n)v} and
(1 — n)v} + 2Av;. The unconditional payoff of Player 1 at these values of y are respectively
(€")? + (L= (")*)(L = n)vy "1 — (1 —n)of + Avoy) + (1 — €")(1 — vy
(1= =@ —m?) + e —nog | (1 (")) — (1 =)o} — dv) + (€")*(1 — n)vy

When n — oo, these payoffs converge to

(1=n)vz | (1 =n)va | v1 | (1 =)

As (1 — n)vy < vy, we know that for n sufficiently large, offering y = (1 — n)v} yields a
strictly higher payoff than offering any other three values of y. On the other hand, an offer
11 must be bounded below by €¢"x™ in the perturbed game f", thus an offer is optimal if
and only if its probability distribution is (1 — €")d(1 ) + €"x", which is precisely p7. This
proves the optimality of p}'. By stationarity and symmetry of I and o™, we also obtain the
everywhere optimality of ' for all ¢ > 1.

Given that all strategies ' and p} at each period t (t > 1) are everywhere optimal

n

against ¢” in I, the strategy profile 0" = (o7, 08) is such that o] is unimprovable with

respect to ¢”; in the perturbed game rr (¢ = 1,2). Thus o™ is a Nash equilibrium of f”,
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by Proposition 14. The strategy profile ¢™ is Borel measurable, therefore o™ is a Borel
measurable Nash equilibrium.

Now we verify that ¢” is a (2Avq,€") extended proper equilibrium of 'y in extensive
form. For every t that is odd, and every history of offers y'~! € [0,1]*"!, the optimal offer in
period t is y; = (1 — n)v}. On the other hand, the offer strategy pj' assigns 0 probability to

any offer that is not optimal:

,LL? ({yt} | yt_l) = 07 vyt—l € [07 1]t_17 Y 7é y;fk

Thus the offer strategies i}’ in each period ¢ satisfy the requirement that the probability of a
costly deviation being played is at most € times the probability of a costless deviation. For
every t that is even, and every history of offers y* € [0,1]" (including the current offer y;),
the optimal response in period ¢ is to accept if y; > v/, and reject if v, < y;. The expected
loss of a deviation is |y —y;|. On the other hand, when |y — ;| < 2\vy, a deviation is being
played with probability €” under the response p'(- | y"); when |y — y;| > 2A\vy, a deviation is
being played with probability (€")2. This shows that the offer strategies pJ satisfy the same
requirement that the probability of a costly deviation being played is at most €” times the
probability of a costless deviation. Therefore the strategy profile o™ is a (2Avy, €") extended
proper equilibrium of I'g in extensive form.

Finally, when letting n go to infinity, uf (y*") = (1 — €") da_yor + €"x" weakly* con-
verges to uj (y*=!) = 4, for every t > 1 and for every offer history y*=* € [0,1]""! up to
period t; Likewise, p} (") weakly™ converges to p; (y*) because v} converges from below to

v1. Therefore, we conclude that o* = (u*, p*) is a restricted equilibrium, and that (a) holds.

Unique equilibrium outcome and (b):
Step 1: Consider a strategy profile o = (p, p), for a y; € [0, 1], replace the offer u; of Player
1 in period 1 by 6,,. Denote the new strategy profile by o/y;. If o is an Nash equilibrium of
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a perturbed game T = (T', €, x), then we have

Ui(o") > (1 —¢€fy) sup Ui(o"/y1) > (1 —supe”) sup Ui(a”/y1). (43)
y1€[0,1] y1€[0,1]

This is because one can let the time 1 offer to be (1 — €11)d5, + €11Xx11 where §; € [0,1] is

such that Uy (0" /1) > supy, o1 Ui(0"/y1) — 0 for some § > 0. This implies that

Up(o™) > (1 —en) ( sup Ui(o"/y1) — 5) :

y1€[0,1]

As § can be arbitrarily small, one obtains equation (43).

Suppose o is a restricted equilibrium of I'g, and I = (Tg, €, x™) is a restricted test
sequence for ¢. In particular, sup e” — 0 and each rn respects independence of strategically
irrelevant information. For any multistage game I', let £(I") be the set of Borel measurable
Nash equilibria of I'. Then it is clear that £ (f”) # (. Let

M = limsup sup Ui(o"),

n—oo oneg(f'n)

m = liminf inf  Uy(o").
n—oo O—neg(l“n)

Because &£(I'™) # ), we have M > —oo and m < co. We first show that

1
2-n
In order to do this, we will show that
m>1—(1-n)M, (45)
M<1-(1—-nm. (46)
1
Then, equations (45) and (46) would together imply that M = m = oy
—-n

Fix an arbitrary 6 > 0. There exists ng, such that for all n > ns, we have Uy (0") < M 446
for any 0" € £ (f"), and sup €” < J. Fix some o™ = (u", p") € € (f”) Let y; be an offer
from Player 1 to Player 2 in period 1, and let § = (1—n)(M +9). It follows from Corollaries 4
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and 6 that for p7 almost every' y; € [y, 1], the value of Player 2 in the continuation game
is strictly less than g if he rejects the offer y;. On the other hand, the necessary condition
Proposition 15 implies that for u} almost every'® y; € [y, 1], the response pf(-|y;) of Player
2 to the offer y; is optimal. Thus for uj} almost every y; € [y, 1], Player 2 accepts y; with
maximum probability:

pI({Y}y1) >1—supe” >1—34.

Since pf is a strictly positive measure on unit interval [0, 1], thus there is a dense subset
D C [y, 1] such that for every y; € D, Player 2 accepts y; with probability at least 1 — 4.
Thus Yy, € D,

Ur(0"/y1) = (1= 0)(1 —y1)

It follows from equation (43) that

Ui(e") > (1=0) sup Uy(o"/y1) > (1= 8)* sup (1 —y1) > (1= 0)*[1 = (1 —n)(M +9)].

y1€[0,1] y1€D

We therefore have for any 6 > 0, there exists n§ such that for every n > ns,

inf  U(0") > (1 —0)*[1 — (1 —n)(M +9)].

oneg(Tn)

Hence

m = liminf inf Uy(c") >1—(1—n)M.

no0  gneg(Tn)
establishing equation (45).

We show equation (45) with a similar argument. Fix a 0 > 0, let y = (1 —n)(m — 9).
There exists ns such that for all n > ns and o® = (", p") € (™), the followings are
true: (1) for p} almost every y; € [0, 1], the value of Player 2 in the continuation game is
strictly greater than y if he rejects the offer y;. Let m(y1) denote this continuation value of

Player 2 as a function of y; € [0, 1], and let m1(y;) denote the value of Player 1 in the same

15This means, “there exists a universally measurable A C [f, 1] such that u}(A) = p?([y,1]) and for every
Y1 € A”.

16This means, “there exists a universally measurable B C [y, 1] such that u7(B) = p?([y, 1]) and for every
y1 € B”.

72



continuation game. Then for uf almost every y; € [0, 1],

T2 (Y1)
(1)

Y

1—n)—m(yy) <1l-n-y,

IN V
NS

(2) For u} almost every y; € [O, g}, Player 2 rejects y; with maximum probability:
P'({N}y1) =1—supe” >1—0.
Hence for every n > ny,

Uy (o) = /[ R AN ) 7o)

v ) A ) (=) + [ ) Y (-

(y:1]

< (1-n-y) /[ ) AN )

54 (1=y) [ ) A )

(y:1]

(T=n—y)ut ([0,9]) + (1 —y) i ((y,1]) +9

< 1—-y+od.

IN

Therefore for every n > ns,

inf Ui(e") <1—(1—-n)(m—29)+9.
oneg(I'm)

Hence M <1 — (1 — n)m, establishing equation (46). Therefore Equation (44) holds.

Step 2: Now we show (b). Equation (44) implies that for any restricted trembling sequence

(6™)n>0 of some restricted equilibrium o,
Ui(o™) — vy. (47)

Then we have

UQ(O’n) < 1_U1(0.n) — V2. (48)
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On the other hand, by rejecting all offers y; € [0, 1] from Player 1 with maximum probability,

Player 2 can ensure a payoff of at least

/[ ) (L= sup ) o).
0,1

where as in step 1, mo(y1) is the value of Player 2 in the continuation game after he rejects
the offer y;. Then as step 1 show, for any J, there exists ns such that for all n > ng,
mo(y1) > vy — 6 for p} almost every y; € [0,1] and supe® < §. Hence the integral above is
bounded below by (1 — §)(ve — §), for all n > ns. Thus for all n > ng,

Us(o™) > (1= 8)(s — 5). (49)
Equations (48) and (49) together imply that
Uy(o™) — vs.
Thus
pa(0™) = plt [Uy (0" |agreement) 4+ Uy (0" |agreement)] = Uy (o) 4+ Uz(0") — 1
Therefore U; (0" |agreement) — v; for i = 1,2, establishing (b).

Step 3: Suppose 0 = (u, p) is a restricted equilibrium of I'g, now we show that o induces the

same outcome as 0. Let I'" = (g, €, x™) be a restricted test sequence for o, and (¢"),>0

~

a corresponding restricted trembling sequence for ¢ associated with (I'"),>0. As in step 1,

we fix a 6 > 0, there exists ns such that for all n > ns,

PtAY 1) > 1 —supe” > 1 — 62 for u} almost every y; € [v2 + 0, 1], (50)

PTANY y) > 1 —supe” > 1 — 62 for p} almost every y; € [0,v9 — ¢]. (51)

Since uf is a strictly positive measure, equation (50) implies that there exists a y* € [vg +
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J,v9 + 20] such that
Pr{Y}Hy) > 1-6%

We show that ' assigns minimal probability to offers y; € [vy + 36,1] and y; € [0, v2 — J].
That is,

i ([va + 36, 1]) = €ty x1 ([v2 + 36, 1)), (52)
11 ([0, v2 — 36]) = €7y x11 ([0, v2 — 0]). (53)

Since the probability measure uf is bounded below by €7 x1;, it can be decomposed as

Py = €11 X1+ (1 - 6?1)#

for some probability measure g on the unit interval [0, 1]. Let 8 = p([va + 34, 1]). If 8 > 0,

we define a probability measure v on [0, 1] as

v=exn+ (- 57111)11[0,11#36) + (1 - 6?1)55y*v

where fi[0,v,+35) is the measure on [0, 1] defined by fij0,,+35)(B) = ([0, v, +36) N B) for every
Borel subset B of [0, 1]. That is, v “moves” all the extra mass of u} in the interval [vy + 30, 1]
relative to the minimally required measure €}, x7; to the point y*. Thus v is a valid Borel
measurable offer strategy of Player 1 in period 1 in the perturbed game ™. Let o™ /v be the
strategy profile (v, pa, i3, ... ). Then

Ui(o"/v) = Ui(o™)

(1—€ey)B( —y*) pt({Y} ")
- u(dyn) (Y ) (1 — ) — / u(dyn) AN} | 1)

[’U2+35,1] [U2+35,1]

v

> (1=0%)B(1 -y )(1—0%) — (1 —vy—35)8 - &°B
> Bo(1— 35 — 262).

Thus if 5> 0, Uy(c"/v) — Uy(0™) > 0 when § is sufficiently small. This contradicts the fact

that ¢” is a Nash equilibrium of ™. Therefore B = 0, establishing equation (52). One can
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show equation (53) in a similar way.
Now we show that p; = d,,. Since u} converges weak™ to u, and (ve + 34, 1] is a relative

open subset of [0, 1], we have by Portemanteau Theorem,
p1((ve + 36, 1)) < liminf 1} ((ve + 34, 1]) = 0.

Likewise, we have

11([0, 05 — 8)) < liminf u([0, vs — 3)) = 0.

As 0 can be arbitrarily small, we have j; = d,,.

Now we consider py. Since (f")nzo is a test sequence for I, there exists a strictly positive
probability measure x1; on [0, 1] that is absolute continuous with respect to x7; for every n.
Then inequality 50 implies that for all n > ngs, there exists a Borel subset A, C [vy + 6, 1]
such that x(4,) = x([v2 + 0, 1]) and

pI({Y}|y1) > 1 —supe”  Vy € Ay,
Letting As = Ny>n;An, we have x(As) = x([v2 + 4, 1)) for n > ny,
Pt{Y}|y) >1—supe” Yy € As.

Therefore

p2({Y} ) = lim pr({Y}Hy) =1 Vi € As.

Since x is a strictly positive probability measure and x(As) = x([v2 + 0,1]), As is a dense
subset in [vg 4 6,1]. Then A = Us_,0As is dense in [vg, 1], and we have po({Y}|y1) = 1 for
all y; € A. That is, ps accepts all offers in A with certainty.

We already know that p; offers vy with certainty. If p, does not accept vy with certainty
(that is, py either randomizes between accept and reject, or py rejects vy with certainty),
then it must be that the value my(vy) of Player 2 in the continuation game after he rejects
vy 18 at least vy (recall that since o = (u, p) is a restricted equilibrium of T'g, o is a Nash

equilibrium of I'g to begin with). Thus the value 7 (v2) of Player 1 in the same continuation
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game is at most m(vy) < 1 —1n—m(ve) < vy —n. However, by offering some y; € A, Player
1 is guaranteed to secure a payoff of 1 — y;. Thus Player 1 can achieve a payoff that is
arbitrarily close to v;. This contradicts the fact that ¢ is a Nash equilibrium of I'g. Thus it

must be that ps accepts vy with certainty. Therefore o induces the same outcome as o*. [

Remark 4. In the proof of uniqueness and (b) above, we did not use the requirement that a
costly deviation is less likely than a costless one. That is, Theorem 3 still holds if the last
condition in the definition of restricted equilibrium Definition 2 was removed. However this

requirement will be useful later, when the total size of the pie to be shared is non-positive.

We now prepare some careful corollaries and extensions to Theorem 3, which will be
useful for the proof of Theorem 1. In the original Rubinstein’s alternating offer game, the
set of possible payments is constrained to be the interval [0, 1], because any payment that
is not in this interval would not be individually rational for one of the players. However
the proof of Theorem 3 did not use this fact other than [0, 1] is a compact interval. Thus
Theorem 3 still holds if the set of possible payments is some larger compact interval that

contains [0, 1]. Therefore we have the following corollary:

Corollary 7. Theorem 3 still holds if the set of possible payments is some compact interval

that contains [0, 1].

Let I'(m, u;, uy) be the Rubinstein’s game in which the size of the “pie” to be shared by the
two players is 7, and the outside option values of the two players are u; and u, respectively.
We always assume that Player 1 is the one that starts offering at time 1. We first consider
the case where m > u; +u,. The associated set of possible payments in the game is assumed
to be some compact interval that contains the payment interval [0, 7 — u; — u,] prescribed
by individual rationality. Let o*(m,u;,u,) be the unique subgame perfect equilibrium of
I(m, uy, u).

An immediate corollary to Theorem 3 is the following:

Corollary 8 (Constant Rubinstein’s Game). Consider the Rubinstein’s game I'(m, u,, u,)

with m > uy + uy. The game has a restricted equilibrium. In particular, the pure strategy
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profile o*(m,uy,us) is a restricted equilibrium. FEvery restricted equilibrium o induces the

same outcome as o*. Moreover,

(a) There exists a restricted trembling sequence (0™)n>o for o*(m,uy,uy) such that the fol-

lowings are true:

(i) for every m, the expected payoff of Player i under o™, conditional on the game
reaching an eventual agreement, is constant and equal to v;(m — u; — uy) + Y;
(i=1,2).

(ii) Asn — oo, the probability of an eventual agreement converges to 1.

(111) As a consequence of (ii), the unconditional payoff of Player i under o™ converges

to vi(m — uy — uy) + u,.

(b) For each restricted trembling sequence (0™)n>o for some restricted equilibrium, the fol-

lowings are true:

(i’) Asn — oo, the unconditional payoff of Player i under o™ converges to v;(m —uy —

Uy) + ;.
(17’) The probability of an eventual agreement converge to 1.

(11i°) As a consequence of (i) and (ii), the expected payoff of Player i under o™, condi-
tional on the game reaching an eventual agreement, converges to v;(m—1u, —uy)+u;

(i=1,2).

In Corollary 8 (Constant Rubinstein’s Game), there is a fixed game I'(m,u,,u,) that
does not depend on n. This is why we name Corollary 8 the “Constant Rubinstein’s Game”.
We next consider the situation where the the total payoff 7 and the outside option values
n

u.

" (i = 1,2) depends on n and converges to some (7, u;,u,). Recall the assumption that

T > uy + uy. So for n sufficiently large, we have 7™ > u} + uf. Consider the sequence of
multistage games I'™ = ['(7", u}', u%). The associated set of possible payments in all those
games is assumed to be some compact interval [0, 3] (independent of n) that contains the

intervals [0, 7" — u} — u3] for all n. Thus the set of strategy profiles of I'" are the same for
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all n. The utility functions, however, are different across n. We look for a strategy profile
o that is “almost” a restricted equilibrium of I'(7, u,, u,), in that satisfies the conditions in
Definition 2 upon replacing the environment game ['(m, uy,u,) by I'" along the converging
sequence of strategy profiles. We will establish existence and uniqueness results that are
similar to the ones in Corollary 8. The only difference is that, along the converging sequence
of strategy profiles, the environment game is the sequence of games I'" = I'(7", u}, u}) in
the place of the constant game I'(7, u,, u,).

We first introduce the following definition. Consider a sequence of generic Rubinstein’s
game (I'™),>o. For each n, the set of all conceivable agreements is some set K, and the
breakdown outcome is D. Each player ¢’s utility function is some u} : K U{D} — R. When
n — 00, ul' converges to some u; pointwise. Let I' be the Rubinstein’s game with parameters
(K, D, (u;)i=12). The sequence of games ['" = I'(7", u}, u%) is an example of such “converging

games”’ | with the “limiting game” " = I'(7, u,, u,).

Definition 4. Let (I'"),>¢ and I' be given as above. Define R((I'"),>¢) to be the set of
strategy profiles of I' such that o € R((I"),>0) if and only if o is a Nash equilibrium of the
limiting Rubinstein’s game I', and there exists A > 0 such that for all strictly positive scalar

A\ < ), there exists a sequence ¢” of strategy profiles satisfying the following properties.

1. There exists a sequence = (I'™, €", x™) such that, (I, €, x")n>0 constitutes a test
sequence for I', and each I respects independence of strategically irrelevant informa-

tion.

2. For each n, 0" is a Borel measurable Nash equilibrium of I and also a (A, 8™)-extended
proper equilibrium of I'™ in extensive form, for some strictly positive scalar sequence

0" converging to zero.
3. o™ converges weak™®, pointwise, to o, as n — co.

For every o € R((I')n>0) and every A sufficiently, let T [A, o; (I'"),>0] be the set of such

sequences o" of converging equilibria.
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Given a strategy profile o, for each n, recall that U;(o; I'™) is the expected utility of Player
i under o in the game I'". Let p,(c;I'™) be the probability that the two players conclude
the game by reaching an agreement in I when playing o, and U;(o; T"|agreement) be the
expected utility of Player ¢ under ¢ in ', conditional on the two players eventually reaching

an agreement.

Lemma 11. Suppose (1™),>0 is a sequence of total payoffs converging to m, and (u}),>o are

two sequences of outside option values converging tow,; (i = 1,2), m > u,+uy and m > uf' +ub
for all n. Let T™ = T'(7"™, uf,ul). The unique sub-game perfect equilibrium o*(m,uy,u,) of
the game I'(m,uy, uy) is in the set R((I"™)n>0). Every strategy profile in R((I'),>0) induces

the same outcome as o*(mw,u,,u,). Moreover,

(a) For X\ sufficiently small, there exists a sequence (0™)p>0 i T [X, 0™ (7, uy, us); (I™)n>0]
such that the followings are true:
(i) for every n, Ui(c™;T"|agreement) = vi(m — uy — uy) + u, for Player 1.
(i) Asn — oo, the probability p,(c™;T"™) of an eventual agreement converges to 1.
(111) U;(a™;T™) converges to vi(m — uy — uy) +u; (i=1,2).

(b) For each sequence (6"),>0 € T [0, (I'"™)n>0] for some o € R((I"™)n>0), the followings

are true:

(1’) Asn — oo, the unconditional payoff U;(c™;T™) converges to v;(m — u, — uy) + u,
(i=1,2).
i e probabilities p,(o"; converge to 1;
(1) The probabilities p,(c™; ™) ge to 1,
(11i°) As a consequence, U;(a™; I |agreement) — v;(m —uy; —uy) +u; (i =1,2).
The proof is very similar to that of Theorem 3. There is only one small adjustment that

need to be made when showing existence and (a) which is the following: In Theorem 3, we

simply took an arbitrary positive sequence ¢” — 0. In the lemma above, we should take a
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positive sequence € — 0 such that
7" = |+ Juf — |+ Jup — | = o0 ((¢")?)

That is, the deviation of the total payoffs 7 and the outside option values u; from their
respective limits (7, u,, u,) are very small relative to the minimum tremble probabilites €™
asymptotically. Then all the calculation in the proof of Theorem 3 remains valid, upon
replacing the total payoff by 7 and the outside option values by u;. The proof of uniqueness
and (b) are simply a reiteration of that of Theorem 3, which we do not repeat here.

In the setting of Lemma 11, we next consider the situation where u} = u; and 7 < u, +u,.
This means the outside option value of Player 1 is independent of n and the total payoff is
less than the combined outside option values in the limit. Thus agreement on any payment
would make at least one of the players worse off than taking his outside value. Therefore
agreement should not happen in equilibrium since it violates individual rationality. To ease
exposition, we reparametrize the set of possible payments by the payoff of Player 1. That is,
instead of saying that “Player 1 offers a payment y to Player 27, we say “Player 1 proposes
that he gets a = m — y and Player 2 gets us(a) = y”. Under the new parametrization with
a, ui(a) = a and ug(a) = m — a. We suppose the set of possible payoffs to Player 1 is some
compact interval [u,, §] (8 > u,) for all n. That is, Player 1 always gets at least his outcome

option value.
Lemma 12. In the setting of Lemma 11, suppose u} = u, and If 1 < uy + us,.

(a) There exists a strategy profile in the set R((I'),>0), which is the following: Player
1 proposes that he gets 8 in payoff and Player 2 gets m — 3, while Player 2 proposes
that Player 1 gets uy in each round. Player 1 accepts offers in which his payoff is
strictly larger than u, and rejects w,, while Player 2 rejects all offers from Player 1.
We denote this strategy profile also by o*(mw,uy,u,), the same notation as for the case

where ™ > uy + uy.

(b) Every strategy profile in R((I'"™)n>0) induces the same payoff as o*(m, uy, u,), in which
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both players get their respective outside option values w, (i = 1,2). For each A
sufficiently small, and for each sequence (0"),>0 € T [N, 0,(I"™)y>0] for some o €

R((I'™)n>0), the followings are true:

(i) Asn — oo, the unconditional payoff U;(c™;T™) converges to u,; (i =1,2).

(i) limsup Uy (o™; T | agreement) < uy + 2\ for Player 1.

n—oo
Proof. (a). When m < u; + us,, we show that o*(m, uy, uy) € R((I'™)n>0). For this, we fix an

arbitrary positive scalar A < (8 —u,)/2, a positive sequence €” — 0 such that
7" — |+ Juy — uy| = O ("),

and a strictly positive measure y on [uy, 5]. For each n > 0 and t > 1, let u} and p}' be

defined by
py o (@) = (=g +e'x, oy (a®71) = [1—(€")?] by, + (€")x,

and

€ if agr € [uy,y™),

Py ((YH @) = (") ph ({Y}a*) =4 1—€"  ifay €[y, 7"+ ),
1— (€2 ifay € Y+ A, B).

for every history of offers a?=2 € [uy, 8]**72, a1 € [uy, 8% L.
The combination o™ = (u", p") defines a behavioral strategy profile for the perturbed

game I of I whose minimum probabilities €], and reference measures xJ, are as follows:

for every offer history a' € [u,, 8],

€", X if ¢t is odd,
€7 (at) =< 26", X1t (at) = %5{5/} + %5{]\/} if ¢ is even and a; € [uy,y" + ),
2(e")?, 15y + 18y if tis even and a; € [y + N, 4],
2y} T 50{N}
and
2(e")? 150+ 16 if ¢ is odd
no(ty _ € no(ty _ ) 29y} T 30{n} HTI1s0dd,
€2t(&)_ n\2 Qt(a)_ . .
()2, X if ¢ is even,



One can verify that the sequence (I',€", x"),>0 is a test sequence for I, and for each n,
the perturbed game = (I, €™, x™) of I'™ respects independence of strategically irrelevant
information.

Let v} = Uy(¢™; ™). As in the proof of Theorem 3, ¢™ is a Borel measurable Nash
equilibrium of I if v = (1 = n)v} + nu,. In this case, v} is determined by the following

linear system of equations with unknowns (v}, 07):

vl = nuy + (1 —n)o} 4+ O(e),
o = nuy + (1 —n)vf + O(e).

Thus v} converges to u,, so does v = (1 — n)v} + nu;. One can also verify that ¢" is
a (A, €") extended proper eqiulibrium of I'" in extensive form. Finally, when letting n go

n

to infinity, ¢ converges weak™, pointwise, to o*(m,u,,uy). Therefore, we conclude that

o (7, w5 ) € R )nz0)-

Proof of (b). The first claim is easy to show: If 7 < w; + u,, every strategy profile
o € R((I'")n>0) must be a Borel Nash equilibrium of the limiting Rubinstein’s game I' =
(7, uy, usy). In the game I', both player can secure their outside option values u; (i = 1,2)
by rejecting all offers from the other player in every round. This implies that U;(o;T") > w,.
On the other hand,

Ur(o;T) + Ua(0;T) = pa(o; D) + [1 = pa(o; D) (wy + uy) < uy + uy.

Thus we have U;(0;T) = u; (i = 1,2). That is, o induces the same payoff as o* (7, uy, u,), in
which both players get their respective outside option values u; (i = 1,2).

For the rest, we will proceed in three steps as in the proof of the uniqueness part of
Theorem 3. There is one major difference, which is that we make use of the requirement

that a costly deviation is less likely than a costless one in step 3.

Step 1: Suppose 0 € R((I')n>0), and = (I'™, €™, x™) is a sequence of perturbed games
of T™ associated with o as in Definition 4. Since I'™ respects irrelevance of strategically

information, we have, from Corollary 5, the continuation game fﬁh after the offer a; in
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period 1 is rejected are identical for all a; € [u,, 5]. To simplify, we denote this continuation
game by fg, and let I'} denote the subgame of I' which starts in period 2 with an offer of
Player 2. Let

mg = liminf inf Uy(o™;IT™),
n—00 O.neg(]_“n)

my = liminf inf U (6™ T5).
"o ones(ly)

Fix an arbitrary ¢ > 0. There exists ns such that for all n > ns, we have US (6™;T™) > ma—06
for all o™ € £ <f§>, and sup€” < . Fix some o™ = (ub, py, pu, p%,...) € S(fg) In the
game fg, Player 2 first makes an offer ay to Player 1, for uf almost every as, the value of

Player 1 in the continuation game after he rejects a, is at least
v (T) = oy + (1) inf U(o"5T"). (54)

oneg(Tn)

by Corollaries 4 and 5. In the game f", Player 1 gets at least his outside option value uy,
and strictly better whenever there is an agreement and the agreement is not w,. For any
strategy profile o of rr (0 does not need to be a Nash equilibirium), ¢ is bounded below
by some reference strategy profile, hence UJ (o) is bounded below by some value m} > w,

independent of the strategy profile o. Therefore,

v (T7) > nuy + (1= mym]. (55)

Since the response ps(-|ag) of Player 1 to the offer ay is optimal for uf almost every as by
Proposition 15. Thus for pf almost every as € [uy, nu, + (1 —n)my], Player 1 rejects as with
maximum probability :

p2({N}|az) >1—supe” >1—4.

Hence by Corollaries 4 and 5, for pf almost every as € [uy, nu, + (1 — n)m?],
Ua(0™ [az; T5) = 6(m — B) + (1 = 6)nug + (1 = 6)(1 = n)(ma — 9).

Since pf is a strictly positive measure on [u,, ], thus there is a dense subset D C [u,, nu, +
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(1 — n)m?] such that the inequality above holds for every as € D. It follows that

U(o™;T5) > (1-19) s1[1p ]U2(6”/a2;F§) +d(m — B)
az€uq,B

> (2=0)0(m = B) + (1= 6)? nui + (1 = 6)*(1 = n)(mz — 0).

We therefore have for any ¢ > 0, there exists n§ such that for every n > ns,

inf  Up(0™;T3) 2 (2= 0)d(m — B) + (1 = 8)*nuy + (1 = 0)*(1 — n)(ma — 9).

o'neg(Tp)

Hence

my = liminf  inf  Us(o™;T%) > nuy + (1 — n)ma. (56)

n—00 U’"Gg(fg)
Likewise, in the game f", Player 2 can do at least as well as rejecting all offers a; from Player

1 in period 1 with maximum probability. Thus by Corollaries 4 and 5,
Un(0™;T7) > 6(r — B) + (1 — S + (1 — 6)(1 — n)iina.

Therefore

mo > Nuy + (1 — n)ma. (57)

Inequalities (56) and (57) together imply that

mo = ﬁ’LQ = Uy. (58)

Step 2: Since for any n and any strategy profiles o of I'", ¢’ of I'}, we have

(58) then implies that,

lim inf U(o™T") = lim inf  Us(0o™;T%) = u,.
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Let

vy (T") = nuy + (1 —7n) inf_ Us(a™;Th), (59)
ome&(Ty)

it immediately follows that

lim v, (T"™) = u, (60)

n—oo

Letting M{" = sup,cgny) Ur(0™; ™), it follows that

limsup M7 <limsup |u; +uy — inf Us(c™;IM)| = .
n—o0 n—o0 o'"ES(F")

On the other hand, we already see that M}* > u, for all n, therefore

lim M} = u,. (61)

n—0o0

In particular, we have for every o™ € £(I'),

lim Uy(a™; ") = uy, lim Us(a™; ™) = uy.

Let @1(f") =nu, + (1 —n)M7. From (61) we have

~

u, <y + (1 —n)my < v, (T") < 0,(T") = .

~

Thus o1 (I'™) — uy.

Step 3: Now fix a A sufficiently small, and fix a sequence o™ = (u", p") € Tlo, \;I"] of
converging equilibria associated with the sequence (fn)nZO of perturbed games. That is, for
each n, " € £ (f”) and 0" is also a (), ") extended proper equilibrium of I'" in extensive
form, for some strictly positive scalar sequence §" converging to zero. For every it € W such
that ¢ = j(¢) (that is, player i is the one responding in period t), suppose «;; : [u;, 5] — R* is
the function that has the properties stated in the definition of an extended proper equilibrium
in extensive form (Definition 1).

ay,a2

For any (a1, as) € [uy, 8] of the first-two-period offers, recall that Ollar.az) 1 the strategy

profile induced on the subgame I'[! ap) Py 0. By Corollaries 4 and 5, the strategy profile

‘(alv
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n

Ol(ar,a2) 18 & Nash equilibrium of I for P°" almost every (aj,as) € [uy,f])?. The value of

ai,a2

Player 1 in the continuation game after he rejects some offer (aq,as) in period 2 is

nuy + (1 =nU7" (0)(ay,a2), 1) -

Thus this continuation value is upper bounded by o(I'™) for P*" almost every (ay, as).
Now we evaluate the “cost” to Player 1 from accepting offers in period 2, relative to
his best response. We shall see that this cost is less than A, for n sufficiently large. As

5, (I"™) = wy, there exists ny such that for all n > ny,

5 (I < uy + .

Let 75(Y") denote the time-2 pure response strategy that accepts all offers (a1, as) € [u,, 5]?

with certainty, and ro(NN) the one that rejects all offers. Fix some (ay,as) € [uy, 8%, recall

that B(a<z, aia(a<s)) is the open ball centered at a<s with radius ajs(a<s)). Let

M(a<s) = B(a<z, a12(a<2)) N ([2175] X [ﬂp@l(fn)}) :

For any subset M(a<s) C M(a<s), if the probability P7" <HM(a<2)> that Player 1 receives
an offer in the set M (a<2) in period 2 is strictly positive, then conditional on receiving such

an offer, his expected payoff from accepting the offer is lower bounded by
Eo"/r2(Y) |:U1 | HM(agz)] > Uy,
while his expected payoff from rejecting the offer is upper bounded by
EU“/T‘Q(N) [ul | HM(

| <o,

a<2)

Therefore conditional on an offer in M (a<3), the expected loss L7 (r5(Y) | M (a<2)) for Player

1 from accepting the offer is upper bounded by

n ~ n n + =
LY (r2(Y) | M (aza)) = {B7/09 g | Hyg | = B77200 [un | By ] b < 000 —y < X
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Now we evaluate the “cost” to Player 2 from accepting offers in period 1, when facing
an offer a; € [uy; + 2, B]. We shall see that accepting offers in this region costs more than

A to Player 2, for n sufficiently large. Recall that QQ(fS) is given by (59), and we have

~

vy (I'%) — uy from (60). There exists ny such that for all n > n,,
0y (T2) + uy — 7" > =\,
Fix some a; € [u; + 2, 5], let
M (ay) = B(ay, ao1(ar)) N [uy + 2X, F].

For any subset M (d,) C M (a,), if the probability P°" (H Ni(ay)) that Player 2 receives an offer
in the set M (@1) in period 1 is strictly positive, then conditional on receiving such an offer,

his expected payoff from accepting the offer is upper bounded by
o /mY) |:U2 | HM(al)] <7 —uy — 2,
while his expected payoff from rejecting the offer is upper bounded by
B/ [U2 | HM(al)} > Qz(fg)

Therefore conditional on an offer in M (d,), the expected loss L?" (r1(Y)| M(a,)) for Player

2 from accepting the offer is lower bounded by
n ~ n n + ~
LY (rn(Y) | M(an)) = {E" /ri(N) [uQ | Hml)] _ g /n®) [u2 | HM(al)]} > vy (T0) 7"y +2) > A,

As o™ is a (), 6") extended proper equilibrium of I'™ in extensive form, then for any M(a,) C

M (ay), M(a<s) C M(a<s) such that P“n(HM(al)) > 0 and P"n(HM(a<2)) > 0, we have

P [Hl(YHHM >] She [HQ(YHHM(“S”]

(@1

where H,(Y') = {(a,r,s) : r, = Y'}. That is, the probability that Player 2 accepts an offer in
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M (ay), conditional on him receiving such an offer, is at most a multiple " of the probability
that Player 1 accepts an offer in M (a<2), conditional on him receiving such an offer. It then

follows that
P HL(Y) 0 Higay | < 0P (V)| Hiacy| P (Hlia)

This inequality holds even when P°"(H M(al)) = 0, as both sides of the inequality are zero.
The collection {B(a1, a21(a1))}a;efu,+21,8 of open balls forms an open cover of the com-

pact set [u; .y, 3], thus there exists an finite subcover
Uarea, B(a1, a21(a1)) = [uy + 2A, f]

for some finite set A; C [u; +2A, B]. This implies that Uz, c 4, M (@1) = [u, +2A, B]. Therefore

by letting one can find a finite partition of the interval

Ud1€A1M(dl)[ul + 22, 5]
such that for each a; € Ay, M(a;) C M(a,). Then

pe [Hl (Y> A H@l‘*‘”‘ﬂ] - EalGAl P [Hl (Y) n HJ\Z(FM)]
" P [H2(Y> | HM(aSQ)] ZaleAl P (HM(a1)>
< P [ H(V) | Hgay | P (Hiagio01)

IA

Thus for every Borel subset M(a<y) C M(a<s), we have

1 _
5P [H(Y) | Hiyon] P7

n

This inequality holds even when P" [H M(a<2)] = 0. By considering a finite partition of the

compact set [u,, 3] X [uy,u,; + 2], we can obtain

P [H\(Y) | Hu,on8] < 0"P7" [Ho(Y) | Hiwy 813y 0, 120]] - (62)
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That is, the probability that Player 2 accepts an offer in [u; + 2\, 5], conditional on him
receiving such an offer, is at most a multiple " of the probability that Player 1 accepts
an offer in [u; + 2\, 8] in period 2, conditional on him receiving such an offer. To simplify

notation, we let

p" =P [Ho(Y) | Hiu, 5 fu, uy +20)]

Let HS be the event that bargaining continues in period 2,
HS ={(a,r,s): 1 = N,s; = A},

then we have Hiy gx[u,.u,+2n) C Hs by definition. By a similar argument, one can upper
bound, as follows, the probability that Player 2 offers some as € [u; + 2\, 5] to Player 1 in
period 2 conditional on the event HS that bargaining continues in period 2, because offering

such an as is a costly deviation for Player 2:

n

P7" [Hiu, g)x[uyu, 124 | Hs| < 6"p". (63)

We upper bound the probability of HS as follows:

P7"(H3) = P7 (H\(N))(1 =) (1 = m)P™" (Hy(N) | Hiy,+208) P (Hiw, 420,5))

>(1—n)(1—0"p")PT" (H[gﬁz,\,b’]) . (64)

The last inequality follows from (62).

Now we upper bound the the expected utility of Player 1, conditional on the two players
reaching an agreement in the first two periods of the bargaining game. The event that the
two players reach an agreement in period 1 is simply H;(Y"). The event that the two players

reach an agreement in period 2 is HS N Hy(Y'). Let a; be the projection mapping a complete
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history (a,r, s) to the period-t offer a;. Thus

E?" (u1 | {The two players reach an agreement in the first two periods})

B (a1 La, vy +E7 [asLgnm,v)]
P [H\(Y)] + Po"[HS N Hy(Y)]

E" a1 Lo, (v)]

< (uy +20) P [Hi(Y) | Hpuy iy +23] P [Hiuy g +23)]
+BP7 [H\(Y) | Hy, 005 P [Hiu,+2051]
E7" a2 Largom, (v)]
< (wy +20) P7 [Ho(Y) | i, ety g +201] P [Flay 1, 23]
+BP7" [Hy(Y) | H [ul,ﬁleuﬁ%\,ﬁﬂ P [Hi, f1x[u, +22,51]
By letting

wi =P [H\(Y) | Hyuy iy +20] P7" [Hiuy g r2n) ]| + 2P [Hiuy )¢ 1wy, +20]]
wy =P7" [H\(Y) | Huuyron0) P [Hiwyv2r81] +P7" [Ho(Y) | Hy )5y +25,81) P7 [ Huy )¢, +20,6]]

we have

(g + 2N wi + fwy

E?" (uy | {The two players reach an agreement in the first two periods}) < n
w1 Wo

It follows from (62), (63) and (64) that

wi = p"P" [Hiu, g)x(u, 0, +2x) | H| P (HS) > p™(1 — 6"p")P7" (HS)
wy < 6"p" P(HS) [1+1/(1 = 6"p")(1 = n)]

Since a weighted average of x and y (z < y) increases with the weight on y and decreases

Twityws -~ W1 +YW2
witwe —  Wi+w2

with the weight on x:

if w; < wq, Wy > wy, we obtain

E?" (u1 | {The two players reach an agreement in the first two periods})

(1 +20)(1 = 0"p") + BO"[L 4+ 1/ (1= 0"p") (L= 1)] move,
- (1 — dmpm) + 6n[1 + 1/(1 — ompn) (1 — n)] rup + 2A
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Thus for every € > 0, there exists n, such that for all n > n.,

E?" (uy | {The two players reach an agreement in the first two periods}) < u + 2\ + ¢
Likewise, one can show that for every ¢t > 1,

E?" (u1 | {The two players reach an agreement in period 2t — 1 or 2t}) < u+ 2\ + e

for all n > n.. Thus Uy (c™; T | agreement) < u + 2\ + € for all n > n,, implying

limsup Uy (c™; I | agreement) < u + 2\

n—0o0

This completes the proof. O

We further introduce the following lemma, which will be useful in determining equilibrium
choice of contingent treatment in Stage a and Stage b in our three node game. Formally,
let IT = {m,---,m} be a set of total payoffs. Without loss of generality, suppose 7 is the
unique maximum value of II. Suppose for each j = 1,--- , [, there are two sequences (U{Lj)n> 0
and (vgj)n>0 such that

n e +
U = Vi = (T = uy — Uy) T+,

for i = 1,2. Suppose there are two sequences of outside option values u} converging to v,

(i=1,2).

n

For each n > 0, consider the following alternating game I' | (v7%) =12 , (u]')i=1,2|: In each
=1,

period, one of the players proposes a choice of total payoff m; € II. :Fl’levother player accepts
or rejects this proposal. Acceptance ends the bargaining and the agreement is implemented.
Rejection leads, with some given probability 7, to a breakdown of the negotiation. Absent
breakdown, the game proceeds to the next period, when offers are made in alternating order.
If some agreement 7; € II is implemented, then Player i’s payoff is v}, (i = 1,2); Otherwise
breakdown leads to a payoff of u! for Player ¢ (i = 1,2). We suppose Player 1 is the

first to propose. This is a Rubinstein’s alternating offer game, with finite a set of possible

92



agreements. For simplicity of notation, we write I'" for the game I" |:(UZ) =12 , (U])iz10
=1,

when stating the next lemma, and I" for I' | (v;;) =12 , (gi)i172:| :
=1,

Lemma 13. Under the above setting and notation for I'™ and T,

o Ifm > u, + u,, then there is an n* > 0, such that for every breakdown probability
n < n*, there exists a unique strategy profile o in R((I'™)n>0). It consists of the
following: both players propose w1 in each period, and accept (and only accept) wy. The
payoff of player i in the game I is U;(o;T") = vi(m —uy —uy) +u,; (1=1,2).

o [fm < uy+u,, then for every breakdown probability n € (0,1], there exists a strategy
profile o= in R((I"™)n>0): both players propose m in each period, and reject all proposals
(including w1 ). Every strategy profile in R((I'™),>0) induces the same outcome as o™, in
which alternating offers in every period are rejected and the game ends when bargaining

breaks down, and both players get their respective outside option values u; (i =1,2).

e In both cases, for each sequence o™ € Tlo; (I'™)n>0, the payoff of Player i under o™
in the game T™ satisfies U;(a™;T™) — U;(0;T), where o is ot or o=, depending on
whether @ > uy + Uy or mp < Uy + Uy,

One can easily adapt the proof of Theorem 3 and lemma 12 to show the lemma above.
The proof is indeed much simpler, as the set of possible agreements in each Rubinstein’s
game [ is finite rather than continuum. Moreover, because of the discrete nature of action
sets, one obtains uniqueness in the strategy profile ¢ € R((I'"),>0) when m > uy + u,, a

stronger result than uniqueness in outcome. We omit the proof to avoid repeating the same

argument that we provided earlier.
Now we are ready to prove Theorem 1.
Proof of Theorem 1. We proceed in four steps in each of the existence and uniqueness proofs:

Existence: We need to show that the strategy profile *" is a restricted equilibrium for the

three-node bargaining game ['spoqc (17, S, C, f, s°). Recall that ¢*7 is defined in Section 8.2.
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To this end, we construct a restricted trembling sequence (0"),>¢, by “pasting” together
sequences of restricted trembling equilibria in the Rubinstein’s alternating offer game across
every stage.

Step 1: We first consider the negotiation between Nodes 1 and 2 in Stage aa over
b (sl{, s%b) - the payment from Node 2 to Node 1 associated with some choice of treatments
(sl{,sg’b) € SB for the contingency Bs s, if Nodes 1 and 2 agreed on the pair of treat-
ments (31, s%b) in Stage a. The negotiation process is identical to that of the Rubinstein’s

alternating-offers game I (7‘(‘1 (31, ) 0 ()) where!”

7Tll) (817 So ) fl (317 b) + f2 (8175367 82) (65>

For simplicity, we will write 7% for 7 (slf, ) Therefore we need to show that the strategy

profile a o - the restriction of 6*7 to Stage aa and the choice of breakdown treatments

b .3b
87,85 )

(SI{, S5 ) at the contingency B3 - is a restricted equilibrium in the game I (7r1,0 0) and
construct a restricted trembling sequence ( o™ , , ., for o™, .,
aa (51,52 ) >0 a <31,52 )

If 72 < 0, then by Lemma 12, o* (71'11),0,0) is a restricted equilibrium for the game

r (7r1,0 0) Recall that the strategy profile o* (7?51’,0,0) is defined in Lemma 12. There

exists a restricted trembling sequence T (s .539) for o (7‘[‘1, 0, O) such that

U, (aga (o) T (7#1’,0,0)> 50, i=1.2

Following equations (9a) and (9b), we note that o* (7%,0,0) consists of Node 1 asking for
the maximum payment 77 (sl{, 55 ) from Node 2, and Node 2 offering the minimum payment
Yy (51, 55 ) to Node 1 in each round. Node 1 accepts offers 3% (31, b) that are strictly larger
than 31 (31, s%b) while Node 2 rejects all offers. Therefore o* (7r1, 0, 0) aa( )’

If 7% > 0, then by Corollary 8, o* (7%,0,0) is a restricted equilibrium for the game
I'(7%,0,0). Recall that the strategy profile o* (7%,0,0) is defined in Corollary 8. There

17 This is so because breakdown leads to f1 (s7,53) = fa (s, 9, s§) = 0 in payoff for both Nodes 1 and 2,
and agreement leads to total a total payoff of f1 (s%,s3%) + f2 (s}, s3%, s3) for the two nodes to share.
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exists a restricted trembling sequence T (sh.530) for o (7‘(‘1, 0, O) such that

lﬁ@zwng@m0®>%wﬂ, i=1,2.

51,52

Following equations (18) and (19), we note that o* (7?,0,0) consists of Node 1 asking for

yP 7 (s}, s3) from Node 2, and Node 2 offering gr (s}, s3%) to Node 1; Node 1 accepts offers

that are at least gjf (31{,32 ), while Node 2 accepts offers that are at most y1 (s’{,sgb)

Again we have o* (7%,0,0) = o™ ( b 30)”
aa,|( s7,s

Combining the two cases of 70 < 0 and 7% > 0, we conclude that a (st

) is a restricted
17

equilibrium in the game I (7r1, 0, O), and we have a restricted trembling sequence aga (sh.53)
) 1:°2

*1)
for aaa’(S%Sb) such that

w(w/b%yrﬁiam>%w.@9ﬂ i=1,2. (66)

aa,(sl,s2

Likewise for the negotiation between Nodes 2 and 3 in Stage bb over 3 (52 ,33) the

bargaining process is identical to that of the game I’ (7r3 (52 ,33) 0 ()) where

T3 (S%b? Sg) = f2 (S(l)a S9 783) + f3 (SQ 783) (67)
The strategy profile 0;) (s30.58) is a restricted equilibrium for the game I’ (ﬂll’, 0, O), and we
537,53

have a restricted trembling sequence ¢” , |, ,\ for o, |, .\ such that
bb,(32 ,53) bb,(s2 ,53)
n + ,
lﬁ@%@gﬁf@m0®>%w-h@, i=23, (68)
1
where v3 :=v; = ——.
2=

Step 2: We next consider the negotiation between Nodes 1 and 2 in Stage a over (sl{, sgb) €
852 - the choice of treatments for the contingency B 3. Given that Nodes 1 and 2 will follow

. . . . 3b
the strategy profile aZa’ (sh.52) in Stage aa, implementation of any pair of treatments (sl, S5 )

aa,(sl,s2

leads to a payoft of v} (51, S5 ) =U; ( b )’ ;T (7r1,0 O)) for Node ¢ (i = 1,2), where by
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equation (66),
vy (s?,sQ) 27 - (ﬂll’ (sl{,sgb))+, 1=1,2.
On the other hand, a breakdown of the negotiation over (s4,s3") € SP, would give both
nodes their respective outside option values 0. Thus we are in the setting of Lemma 13,
where | = |SP|, TT = {x} (s}, s3) : (sh,s3) € SE,}, vy = o (%, s3), and uf = 0, for
1=1,2,7=1,---,1,n > 0. For simplicity of notation, let
FZBQ?, =T |:(UZ) i=12 ,uy =0,uy = 0}
=1,

and

Lo, =T |:(U7jj) =12 Uy = 0,uy = 0] :
J=1

We need to show that the strategy profile 0’:732 ,isin theset R ((F”

. Bo 3>n>0) , and construct
eT [ O Bay’ (FZBn) >0} Since

a sequence (03’ B, 3) o
n>

(e:r%glaXB m (sh,s3°) = (sf,s37)
57,85 65172

and 7t (8119, s%B) > 70 (s, 59) = 0. Hence by Lemma 13, there exists a strategy profile in

R((T2 g, ,Jn=0), which is that both nodes propose (sf,s37) in each period, and accept (and

only accept) (3’13 ,3%3). This strategy profile is identical to the candidate strategy profile
aBg; Under o B, 4+ the payoff of node ¢ in I'y p, ; is Uj ( QBN,F(I,BZ?,) = v; - w5 (s7, s35)

(i = 1,2). Note that by equation (15), the payoff of Node 2
e (50 87) = (©9)

where ug, is, we recall, the outside option value of Node 2 in its bargaining with Node 3.

a,Ba 3

Also by Lemma 13, there exists a sequence o Bay € T ( 0a,Bos> ( " > ), such that
n>0

Ui <O-Z,BQ,3; FZ,Bng) — U < a B2 37 Fa,BQ,3> = U'i . b <81B7 SgB) (70)
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The same analysis applies to the negotiation between Nodes 2 and 3 in Stage b over

(s3°,54) € S5%5. We define Op.p, , In a similar way.

For every n, the strate rofiles | 0" . ., 0l'n , |0" ,
y gy b ( a,B2,37 9b,B1 2 { aa,(s}{,sgb)} (hs2)es, { bb( 53 753):|( 16 b)eSB>

determine the strategies for all three nodes at the breakdown contingency in the four Stages

of bargaining game. Let O(B1 2.Bas} denote this combined strategy profile.

Remark 5. The restriction of the strategy profile 0*” to the breakdown contingencies B; » and
Bs 3 fixes the outside option values in the three-node bargaining game I's poqe (1,9, C, f, %),
for all the bilateral bargaining problems in all stages and across all contingencies. By equa-
tion (69), (QZ) is the outside option value of Node i in its bargaining against Node j. Along
the converging sequence of trembling equilibria OBy 2 Bas} the corresponding outside option

values uj; converge to w;; by equation (70).

Step 8: Now consider the negotiation between Nodes 1 and 2 in Stage aa over y; (s1; 2, S3)
- the payment from Node 2 to Node 1 associated with some choice of treatment s; € Cy(s2)
for the contingency (sg,s3) € Sa3. Following Remark 5, we already know that the outside
option values of Nodes 1 and 2 are u!, and ul}; respectively along the sequence of 1B, 5 By 5}
and

n n. n n
Uig = Uga; Uy — Ugy- (71)

For each (sq, s2,53) € S, let

1 (515 S, 83) = f1(s1,82) + fa(s1, 52, 53) — Y4 (2, S3), (72)

where v is defined in equation (14).

Claim 1. We claim that 7 (s1; 2, s3) is the total payoff to be shared by Nodes 1 and 2 if the

two nodes agreed on the treatment s; for the contingency (sq, $3) in Stage a.

This is the case if and only if the expected payment from Node 2 to Node 3, conditional

on the two nodes agreeing on (s, s3) in Stage b and Stage bb, does not depend on n and
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is equal to y4(sq,s3). When we later complete the construction of the sequence ¢", we will

verify that this claim is correct. Note that 7 (s1; $2, s3) does not depend on n.

Let I'

a(s1sn,ss) = L (M1(515 82, 83), uly, ugy ). If we assume that Claim 1 holds, then we need

m

to show that o™, cER |
aa,(s1;52,53)

n
aa, (51;52,33)) n>0] , and construct a sequence <a )n>0

aa,(s1;52,53)
T [95:2 (s1:59,55)° (an,(sl;SQ,SS))nZO]' Following the same argument as in Step 1, Lemma 11 and

Lemma 12 imply that

Q

aZ,(sl;32,53) €R |:( 207(81§82,83))n20] ’ <73)

. *7)
and there exists a sequence <03a7(81;52,83)>n>0 eT [aaa’(sus%sg), (FZG:(51§32,33)>H>01 , such that

n n N—00 + .
Ui (0—(10,,(81;82753); Faa,(sl;sg,sg)) Vg - (71—1 (sl; 82, 33) - Q?Q - le) + Q_L?(:}fi)? 1= 1? 2.
(74)
U (O-Za,(sl;sg,sg); FZ&,(sl;sg,sg) { agreement) i (7T1 (81; 52, 53) - Q7172 - le)+ + Q7172' (75)

We next consider the negotiation between Nodes 1 and 2 in Stage a over s; € C1(s2)
- the choice of treatment for the contingency (sg,s3). Given that Nodes 1 and 2 will play
(a;la7(81;52753)> in Stage aa, implementation of any choice of treatment s; for the contingency
(s2, s3) leads to a payoff of v} (s1; s2, s3) :=U; (03@7(81;82753); FZa,(sl;52,53)> for Node i (i = 1, 2),

where by equation (74),
U;L (51; S92, 53) n—>—oo> V; - (71'1(81; S, 53) — Q;’Z - le)Jr + Q?(?)_i), ] = 1, 2.

Thus we are in the setting of Lemma 13, where [ = |Cy(s2)]|, IT = {m(s1; $2,53) : 51 € C1(s2)},

n

vy = vj (815 82, 83), and u! = Ujz ), fori=1,2,j=1,---,1,n>0. Let

n — n i n__,n n__,n
Fa,(32,53) =T |:(Uij) ’1:1172l yUp = Uqg, Uy = Q21:|
J=1L

and

_ . N — 27
Fa,(52,83) =T {(Uij) ‘2:1172l yUp = Uqpg, Uy = 2211 .
‘]: 7...7
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Following the same argument as in Step 2, Lemma 13 implies that

U:,n(sz,sg) €R |:( Z,(82,83))n20i| (76>

and there exists a sequence (UZ’(S2’S3)>n>o eT [‘7:7(52,33)3 (FZ’(SQ’”))wo} such that

U, (O-?H,,aa},(sg,sg);FZ,(SQ,S:;) ‘ agreement)

" vy [ma(s7(s2, 83); 2, 83) — wly — ul] + by equation (75)  (77)

= f1(s*(s2,53), 82) + 4/ (57 (82, $3); S2, S3) by equations (13) and (72)

Recall that s is defined in Section 8.1.

Step 4: We next consider the negotiation between Nodes 2 and 3 in Stage bb over y3(sa, s3) -
the payment from Node 2 to Node 3 associated with some choice of treatment (s9, s3) € Sa 3.
Following Remark 5, we already know that the outside option values of Nodes 2 and 3 are

n n 3 n
ufs and uf, respectively along the sequence of OBy 2 Bas}> and
n n . n 7
Ugz = Ugs; Ugy — Usgy-

Given that Nodes 1 and 2 play Ol a0} 1 Stage a and Stage aa, the total payoff 7§ (sq, s3) to
be shared by Nodes 2 and 3 satisfies

nhﬁr{.lo 7y (82, 83) = U(s](s2,83), S, S3) — 7}1320 Ut (0700} (s2.55); Lo (s0.55) | agreement)

= U(s1(s2,83), 52, 83) — [f1(5" (52, 83), 52) + 4] (5] (52, 83); 52, 53))]
= (2—=n)[fs(s2,53) + yg(s2,83)] = (1 — n)ug, +ugy

~
:=m3(s2,83)

The first equality follows from equation (77), and the second from equation (14). Let

Lhb (5255 = L (75 (82, 83), Uy, up;). Following the same argument as in Step I, Lemma 11

and Lemma 12 imply that

O-ZI?,(SQ,S?,) E R |:(F2b7(52733))n20:| ) (78)
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and there exists a sequence (Ul?b (59 33)> eT {02;7 (59,55)° (ng (5 53)> } , such that
92, (52, 152:33) ) >0

n>0

n n n—oo .
Ui (O—bb,(sz,sg); be,(sz,sg)) — Ui : (7T3(827 83) - QgQ - Q7273)+ + g?({,fi)’ 1= 2’ 3 <79)

n n _ n N\t n
Us (Ubb,(52,53)7 be,(52,53) ‘ agreement) = vy - (m3(82, 83) — Ugy — Ug3) " + Ugy

(80)
= [3(s2,53) + y3(s2, 53)

Equation (80) shows that the expected payment from Node 2 to Node 3, conditional on the
two nodes agreeing on (s9, s3) in Stage b and Stage bb, does not depend on n and is equal
to y4(s2, s3). Hence we have verified Claim 1.

Finally we consider the negotiation between Nodes 2 and 3 in Stage b over (sq, 3) € Sa3.

Given that Nodes 2 and 3 will play (u{}@( )> in Stage bb, implementation of any choice

52,53

of treatments (sq,s3) leads to a payoff of v} (s9,s3) 1= U; (O—l?b,(sz,%); re )> for Node i

bb,(s2,s3

(1 = 2,3), where by equation (79),
U? (827 33) H—oo> v; - (7T3(82, 33) — qu - ugg)+ +Q’7L'7(57’L')7 Z = ]_, 3

Thus we are in the setting of Lemma 13, where | = |Sa 3], II = {m3(s2, s3) : (82, 53) € Sa3},

.

= vf (s2,s3), and uf = Uj5_;); fori=2,3,5=1,---,1,n>0. Let

n L ny . n __ n __
bA12 T r |:(Uij)ji:11’2l y Uy = 071_1'2 - O:|

and

Lya, =T {(Uij) =12 Uy = 0,uy = 0} :

]:]‘"“ ?l
where A; 5 denotes the contingency that Nodes 1 and 2 reach an agreement. Following the

same argument as in Step 2, Lemma 13 implies that

o ER {( )} (1)

By combining equations (73), (76), (78) and (81), we conclude that ¢*" is a restricted
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equilibrium in the three-node bargaining game I's.oqe (7,9, C, f,s"). This completes the

proof of the existence part.

Uniqueness: We will proceed in four steps, as in the proof of the existence part. Suppose
o is a restricted equilibrium of the three-node contracting game I's_ 4 (1, S, C, f, s°), and
(6™)ns0 € T [0, A T3n0de (1,9, C, f,8°)] is a restricted trembling sequence for o, for some
A > 0 sufficiently small. We need to show that the strategy profile o induces the same de-
terministic outcome [s**, (y{(s™), y1(s3*, s5%))] as o*". Instead of using the existence results
provided by Corollary 8 and Lemmas 11 to 13, we will use their uniqueness counterparts.
There is one issue that we will need to deal with: when applying Lemmas 11 to 13, we need
to first verify the convergence of total payoff 7™ of a bargaining pair. We can guarantee the
convergence of this value by taking subsequences.

One will see that Step I and Step 2 in the uniqueness part are very similar to that of
the existence part, since the total payoff and the outside option values of any pair of nodes’

bargaining problem are constant contingent on breakdown of the other pair of nodes.

Step 1: Consider the negotiation between Nodes 1 and 2 in Stage aa over the y? (s}, s3).

The negotiation process is identical to that of the Rubinstein’s alternating-offers game
I (7% (s%,53"),0,0), where m? is defined in (65). As o is a restricted equilibrium of the
three-node contracting game I's 040 (1,9, C, f,s°), then its restriction T g (31,530 to Stage
aa and the choice of breakdown treatments (5’{, s%b) at the contingency B3 is a restricted

equilibrium in the game I’ (WI{,O,O). The sequence aga( - is a restricted trem-

51,59 ) n>0

bling sequence for o, (shs2) in the game I’ (Wll’ , 0, 0). Corollary 8 and lemma 12 imply that

T aa,(sh,5) induces the same payoff to Nodes 1 and 2 as 0*”( ) in the game I’ (7r’1’, 0, O).
(51 aa,( 57,55

That is,

U, <am,(s,{7sgb);r(wl{,o,o)> =, (UZZ (+ Sb);r (79,0, o)> = (ﬁ’)*, i=1,2.

1-52
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. : n
Along the restricted trembling sequence o (shsit)?

U, (02@7(51, Sgb);r(ﬂ,o,o» = Us (0 () T (70,0,0)) =i (7)), =12,

i S

Similar results can be obtained for the negotiation between Nodes 2 and 3 in Stage bb

over 5 (s3?, s4). Letting w5 be given by (67), we have,
U (Ubb(1b b) F(7T3,O 0)) = V; (7T§)+, i:2,3.

Along the restricted trembling sequence o , |, .\,
bb,(52 ,53)

Ui (0 (o s T (75:0.0)) =i (=) =23 (82)

Step 2: We next consider the negotiation between Nodes 1 and 2 in Stage a over (sl{, s%b) €
81372 - the choice of treatments for the contingency Bj 3. Given that Nodes 1 and 2 will follow

the strategy profile a" (sh.53) in Stage aa, implementation of any pair of treatments (sl{, sg’b)

leads to a payoff of v]" (s}, s3°) := U; ( , 3b);F (3,0, O)) for Node i (i = 1,2), where by

aa,(sl,s2

equation (82),
v (31{,52) H—Oo>vl-(7rlf (sg,sgb))Jr, 1=1,2.
On the other hand, a breakdown of the negotiation over (s}, s3’) € SP’, would give both
nodes their respective outside option values 0. Thus we are in the setting of Lemma 13,
where | = |SP|, IT = {n} (s}, 83") : (s5,s3") € 8Py}, vy = vf (s4,53°), and w} = 0, for
1=1,2,7=1,---,1,n > 0. For simplicity of notation, let
FZB” =T {(vg) ‘i:11,2l cuy = 0,uy = 0]
.7: IR
and

Fa7BQ,3 =T [(Uz’j) i=12 U = 0,uy = 0] .

j:l’- al
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Then 04p,, € R <(r3,32’3)n>0), and (03,3273)@0 eT {03732’3; (FQ,BZS)M} . Since

g (4 8) = (.52)
51,85 €SI,

and 7t (sP, s37) > 78 (s, s3) = 0.

Hence by Lemma 13, 0,4,p,, is such that both nodes propose (3119 , 3%3) in each period,

B 3B

and accept (and only accept) (s?,s35). Thus o4p,, = o,

a,Ba 3

. Applying Lemma 13 again,

we obtain

n .Tn . _ *7 . — N
UQ (O—G,BQ,;g? Fa,B273> - U2 (Ja,Bz,:sﬂ Fa,BQ,s) - U2 <0a,B273’ F%Bz,s) = Ugs. (83)

The same analysis applies to the negotiation between Nodes 2 and 3 in Stage b over (séb, sg) €
S2Bi3 .

Following Remark 5 and (83), we have

gfj — g?j (84)

where u;; are the outside option values determined by the breakdown strategies (U?Bl ) By 3}) .
25235 ) >0

Step 3: In Step 3, we first consider the negotiation between Nodes 2 and 3 in Stage bb over
y3(s2, s3). Under o™, suppose 75 (s, s3) is the total payoff to be shared by Nodes 2 and 3 in
Stage bb, if the two nodes agreed on the treatments (s, s3) in Stage b. For every n > 0,

since the payoff of Node 1 under o™ is at least his outside option value u], = 0, we have
7y (89, 83) < U (s](s2, 83), S2, S3) -
Since (75 (52, 83)),>¢ i @ bounded real sequence, there exists a converging subsequence:
Wép(n)(S% 53) > T3(82, 53), (85)

for some 73(s2, 53) < U (57(52, $3), 52, 53). Let Ysjagreement <U;}b,(52,53)) be the expected payment

from Node 2 to Node 3 under ¢", conditional on the two nodes agreeing on (ss, s3) after
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bargaining in Stage b and Stage bb. By only considering the subsequence ¢(n), we have
a sequence of converging total payoffs (7?50 (n)(SQ, 83)> and two sequences of converging
n>0

outside option values (uj3),~, and (u3,),>, (by equation (84)) for the bargaining problem

between Nodes 2 and 3.

o If m3(s2, 53) > uls, then we are in the setting of Lemma 11. We thus have

}Ilgg y3|agreement (05(77(22753)> = U3 [71—3(3% 33) - 233] - f3(32> 33)

< ws [U (s1(s2,S3), S2,83) — Uss | — f3(s2,53)
Recall that v = 1/(2 —n).

o If m3(s2, 53) < uds, then we are in the setting of Lemma 12. We thus have

lim Sup ¥3jagreement <O—Z;)(,n€?2,33)> < —f3(s2,83) + 2.

n—o0

Since the subsequence (y3|agreement (aﬁ€?32783)>> . is bounded, there further exists a con-
n

verging subsequence:

y3|agreement (O’Z)(f(;)%sg)) TH—OO> y3|agreement<527 33) (86>
for some ys3jagreement (52, 53). Here (¢(n))n>o is a subsequence of the sequence (p(n))n>o-

Combining the two inequalities above, we have

y3|agreement($2a s3) < wgU (s7(s2,583), 52,53) — f3(s2,53) + 2. (87)

Now we consider the negotiation between Nodes 1 and 2 in Stage aa over the payment
y1 (s1; 82, 83), and then the negotiation between the two nodes in Stage a over the choice
of treatment s1(s2,s3) € Ci(sq2) for the contingency (sq,s3). Since we fix a contingency
(s2,83) € Sa3, thus we can, for simplicity, write s; for s;(sg, s3).

Under o, let 7} (s1;$2,53) be the total payoff to be shared by Nodes 1 and 2 if the

two nodes agreed on the treatment s; for the contingency (so,s3) in Stage a. Along the
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subsequence o™ we have

Wf(")(sl; 592, 33) = f1(817 82) + f2(817 S92, 83) — Y3|agreement (051,(722,83»
— f1(81> 52) + f2(81> 52, 33) - Z/3\agreement($2, 33) by (86)- (88)

-~
:=m1(51;52,53)

By only considering the subsequence ¢(n), we have a sequence of converging total pay-

offs (Wf(n)(sl; 59, 83)> and two sequences of converging outside option values (g%n)>
n>0 n>0

and (@3@) for the bargaining problem between Nodes 1 and 2. Let N =
n>0

aa,(s1;52,53)

r (ﬂf(n)(sl; S9, 53),g‘f§”),g§§”>>. By Lemmas 11 and 12, we have

Ui <0¢(n) .o ) %% v - (T (815 82, 83) — uly — ul) " + s, i=1,2.

aa,(s1;52,83)7 ~ aa,(s1;52,53)

U, <a¢(n) L) ) | agreement) = vy - (m1(51; 89, 53) — uly — uly) " + . (89)

aa,(s1;52,53)' ~ aa,(s1;52,53

On the other hand, (87) implies that
m1(87 (82, 83); S2, $3) > v U(s] (82, S3), Sa, 83) — 2.
Since we have the assumption (1) that
U(s}(s9,83), 52, 83) > U(sY, 835, s5),

and A > 0 can be chosen to be aribitrarily close to 0, then by choosing a A sufficiently small,

we have
1 (57 (52, 53); 82, 83) > v U(sY, 557, s8) = ;. (90)

We next consider the negotiation between Nodes 1 and 2 in Stage a over s; € Cy(s2) - the

choice of treatment for the contingency (ss,s3) - along the subsequence ¢(n). Given that
»(n)

aa,(s1;52,53)

Nodes 1 and 2 will play o in Stage aa, implementation of any choice of treatment s;

for the contingency (s2, s3) leads to a payoff of v)" (s1; s, s3) := U; (afgl(ll;sz%); ch(:()susz’sg))

for Node ¢ (i = 1,2). Thus we are in the setting of Lemma 13, where [ = |Cy(s2)], II =

{mi(s1;52,53) : 51 € Ci(s2)}, vf; = vf (515 82, 83), and uf! = gf(gn_)i), fori =1,2,7=1,---,1,
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n > 0, and the maximum total payoff

m(s](s2, 3); S2, 53) > agl.

Let

no_
=12 U] = Ujo T Uy = Ugp

om) n ¢(n)}
Jj=1,-1

L7 (ess) =T [(v;;.)
and

— Y — 0 1
Doy(sayss) =T |:(UU) ,Z=11,2l YUy = Uy, Uy = 221} .
J=1Ly

As o) converges weak™, pointwise, to o,

a,(s2,83) ) and

52,53

$(n) *1) . (TN
(Ua,(32,53)>n>0 S T |:0-a,(52,83)’ (Fa7(82783))n20:| )

Lemma 13 implies that o, (s, s,) consists of Nodes 1 and 2 offer each other the contingent
treatment contract si(ss, s3) at each period. Both nodes accept this offer si(ss, s3) and reject

all other offers s; € C(s2)\{s7(s2,s3)}. It then follows that from (89) that

U, <0¢(n) o) ) | agreement) =0, vy - [m1(8] (82, 83); 82, 83) — ui | (91)

{a,aa},(s2,53)" = a,(s2,53

Step 4: We next consider the negotiation between Nodes 2 and 3 in Stage bb over y3(s2, s3) -
the payment from Node 2 to Node 3 associated with some choice of treatment (s2, s3) € Sa 3.
Following Remark 5, we already know that the outside option values of Nodes 2 and 3 are

n n 3 n
uys and ug, respectively along the sequence of of Bro,Bag}> A0
n . n n
Ugz — Usps; Uszy = Usy.

Along the subsequence ¢(n), given that Nodes 1 and 2 play a?é?a} in Stage a and Stage
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aa, the total payoff ﬂf(n)(sg, s3) to be shared by Nodes 2 and 3 satisfies

nlg& Wf(n)(SQ, s3) = U(s](s9,83), S2,83) — hm U, ( Orn aa} (SQ’SS)TZ’((’; o) ‘ agreement>
= Ul(si(s2,83), 52, 83) —v1 - [m(s7(s2, 83); 52, 83) —ug,] by (91).
2=7T3E;2,83)

Let y1(s7(s2,83), S2, 83) = v1 + [m1(87(82, 83); S2, 83) — uaq | — f1(s7(s2,83), $2), then we have

f2(81(82, 33)7 S92, 33) - y1(8i(82, 83), 52, 53) - y3|agreement(s27 83) - 27271

= (1 —n) [f1(s1(s2, 53), 52) + y1(57(52, 83), 82, 83) — ulo] -
m3(S2, 53) = f2(s1(82, S3), S2,83) + f3(s2,53) — y1(s7(S2, S3), 52, 53).

Letting T2 =T (72" (sy, s3), usd™, us{™ ), then
bb,(s2,53) 3 =32 =23
#(n)
Tbb,(s2,55) € R |:<be,(52,33)>n>0:| )

and (Ufb((g%%)) e eT {abb’(”,%); <Ffl’(’22’53)>n>0} Lemmas 11 and 12 imply that

n n n—00 + i
U; (Ufb((s)Q 53)’ Ffb( (352,53)> D72 vy - (352, 83) — ully) ™ + gﬁ(f)—i)v i=2,3,
Us ( Th (53,53 Ffb(T(LSQ s3) ‘ agreement> RSN (73(s9, 83) — ugg)Jr.

By the definition of y3jagreement (52, 83), we know that

U3 <0l(37(,r(22,33)’ Fflfj(l;,%) ‘ agreement) TH_OO) f3(52a 33) + y3\agreement<32> 53)'

(92)

(93)

(94)

(97)

We obtain, from (93) and (96), a linear equation of ysjagreement (52, 53), when m3(s2, 53) > uds:

J2(s7(s2, 83), 52, 53) — y1(s7(52, 53), 52, 53) — y3|agreement(527 S3) — 27273

= (1 - 7]) [f3(827 83) + y3|agreement(827 83) - QQQ} .

Equations (92) and (98) form a linear system of two equations with two unknowns

(y1<3>{(527 83)) 52, 53)7 y3\agreement<327 53)) .
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The equations are exactly the same as the ones for
(y1(s1(52, 83); 52, 83), Y3 (52, 83))
given by equations (13) and (14). Hence when m3(sa, s3) > uas,

y1(s1(82, 83), 82, 53) = Y (s7(52, 83), 52, 83) (99a)

y3|agreement(827 83) - yg(827 83) (99b>

Then it follows from (93) that

7T3(52, 83) = U(ST(S% 53),52, 53) — V- [ﬁ(ST(Sz, 33); S92, 33) - 27271]
9 _
ﬁU(S;(SQ,Sg),SQ,Sg) +C, (100)

where ¢ is a constant that only depends on the outside option values (uJ;,ud;), but not on

(82, 83).

On the other hand, we show that
m3(s3", 857) > ugs.

Recall that (s7*, s3*, s3*) is the socially efficient vector of treatments. If m3(s3*, s5*) < uas,

then by (96) and (97), we have
fS(sz*a 33*) + y3|agreement(sz*> Si‘;*) = 0.
Since (57, 557, 55%) = f1(577, 55°) + a1, 857, 55°) — Ysfagreement (55% 537), we have

m(si', s, 857) = UGsit 5,55,
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It then follows from (93) that

W3(3§*,5§*) = U(ST*,S?’ 5§*) — U1 [7T1(8T(52, 33); 52783) - le]
= v U(s7", 83", 857) + v1 ug
> 0y U(s?, 3P, 59)

_.m
= Ugs.

This leads to a contradiction. Therefore m3(s3*, s5*) > u,.
Finally we consider the negotiation between Nodes 2 and 3 in Stage b over (s, s3) € Sa 3.
Given that Nodes 2 and 3 will play Jfb(?zz 53) in Stage bb, implementation of any choice

of treatments (sq,s3) leads to a payoff of v} (sa,s3) = U; <O-l?b(r(b.22 53)’ I‘fb(?;Q 53)> for Node ¢

(1 = 2,3), where by equation (79),
U? (827 83) 77,—>—OO> Ui . (7T3(82, Sg) - qu - ﬂ;73>+ +Q’7(5—’i)’ 'L = ]_, 3

Thus we are in the setting of Lemma 13, where [ = |Sa3|, IT = {73(s2, s3) : (2, 3) € Sa3},

vy = vf (s2,83), and uj! = gz(;_)i), fori =2,3,7=1,---,l, n > 0, and the maximum total
payoff
(s2.59) = 2 U (55 (52 ) 82,55) +
max 73(Sy,83) = —— max s7(s2,83), 89, 8 c
(52,83)6323 3172 3 3 — 77 (82,83)6823 11°2 3 23
9 _

- — Z U(st, 85, s5%) + ¢

= my(sps5) >
Let

Ia, =T {(U?j) i=12 Uy = 0,uy = 0}
: j=1, 1

and

Lpa,=T [(%’) =12 U = 0,uy = 0} :

]:17 7l

where A; 5 denotes the contingency that Nodes 1 and 2 reach an agreement. As 02%)2

converges weak™, pointwise, to oy 4, ,, and

#(n) . (1n
<O-b’A1’2>n>0 €T |:O-b,A1,2’ < b,A1,2)>n>0:| ’
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Lemma 13 implies that oy 4, , consists of Nodes 2 and 3 offer each other the socially efficient

treatments (s3*, s5*) at each period. Both nodes accept this offer (s3*,s3*) and reject all

other offers (sq, s3) € Sa3\{(s5*,s5)}.

Combining the four steps above, we conclude that under the strategy profile o induces the
same deterministic outcome as o7, in which with probability 1, [s**, (y{(s™), y1(s5", s3))]
is immediately implemented as an accepted offer in period 1 of the respective bargaining

stages. This establishes uniqueness of Theorem 1.

C Foundations for an Axiomatic Solution

Here, we extend the axioms of Nash (1950) to a network setting. Under the stated axioms for
a solution to a network bilateral bargaining problem (with exogeneous outside option values),
the unique outcome is socially efficient. Our axioms are preliminary and may be adjusted in

subsequent versions.

C.1 Network Bargaining Problem with Exogenous Outside Values

The players of a network bilateral bargaining problem are the nodes of an undirected graph
G = (V, E), defined by a finite set V' of at least two nodes, and by a set £ C V x V of edges,
which are the pairs of “directly connected” nodes. The network G is assumed to contain no
circles. '® The set of nearest neighbors of node i is denoted by N;(G) = {j € V : (i,j) € E}.
The action of node i is chosen from a finite non-empty set S;. If 7 is an isolated node (that
is, if N;(G) = 0), then its action set S; is assumed to be a singleton. As we shall see, this is
without loss of generality. We let S =[], S;. Node i has a utility function f; : S; x :51 — R,
where §Z =11 JENIG) S;. We let f = (f;)iev denote the collection of utility functions of all

nodes. For simplicity, we often abuse the notation by writing f;(s) in place of f; (si, S M(G)).

18 An ordered list (i1, ...,4m,) of nodes in V is a circle if i, and i,11 are directly connected for all p, where
by convention, i,,4+1 = 1.
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For any pair (7, j) € E of direct counterparties, given some action s; of Node j, the action
of Node 1 is restricted to C;;(s;), for a given correspondence C;; from S; into the non-empty
subsets of S;. Without loss of generality, we assume that C;; and C}; are consistent, in that
s; € Ci;(s;) if and only if s; € Cj;(s;). A pair of actions (s;,s;) € S; x S; is said to be
compatible if and only if s; € C;;(s;). With a slight abuse of notation, we sometimes write
(si,85) € Cyj for s; € Cyj(s;). We let C' = (Cyj)5er and write s € C if s; € Cy;(s;) for
every pair (i,j) € E. We say that C' is feasible if there is some s in C'. Any such s is likewise
called feasible.

The total social welfare of a feasible action vector s is

Us(s) =Y fils)

eV
We assume that there is a unique action vector s**(¢) that is socially efficient. That is, the
maximum of the social welfare U, (s) is uniquely achieved at s (o),

s (o) = argmax U,(s).
seC

The uniqueness of the maximizer is a generic property of the utility functions (f;);cyv that
are non-degenerate.”

We consider a setting in which each pair of directly connected nodes bargain over their
actions and the payment between them. For each such pair (7, j) € E, the associated outside
option value of 7 is some given parameter u;;. We later endogenize these outside option

values. For condensed notation, we let u = (u denote the collection of outside

;) (i.j)eE
options.

A network bilateral bargaining problem (with exogenous outside options) is defined as

g = (G7S7C7f7g)7

9 A utility function f; is degenerate if the dependence of f; on at least one of its arguments is superficial.
Letting the set of collections f of non-degenerate utility functions be endowed with Lebesgue measure, then
for almost every f, the social welfare )", ., fi(s) admits a unique maximizer.
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with the property that C' is feasible and u satisfies a condition for outside option values, to
be provided. An outcome (s,y) of o consists of some feasible action vector s € C' and some
payments y € R” assigning to each edge (i,7) a payment y;; from i to j, with y;; = —y;;.

The total utility for node 7 is

Uz’(&y) = fi (SiysM(G)) - Z Yij-
JENI(@)
A solution mapping for network bargaining problems (with exogenous outside option values)
is some function F' that maps such a problem to an associated outcome.
The solution outcome (s*(o),y* (o)) is anticipated to be socially efficient (s*(0) = s**(0)),

and the payment vector y* satisfies

wi(s™(0),y"(0)) — wy; = u;(s7(0), y"(0)) —wy,  V(i,5) € E.

That is, nodes 7 and j has equitable gain from trade relative to their respective outside option
values. The equations above constitute a fully determined linear system in the payments
(y;‘j(a)) )eE The payment vector y*(o) is thus uniquely determined by the linear system.

The outside option values () j)ce are assumed to satisfy the following condition
ui(s™(0),y"(0)) = w; = u;(s™(0),y"(9)) —uy; 20, V(i,j) € E.

We assume this condition for every NBBP with exogenous outside option values. Once we
introduce endogenous outside options through an overlaying model structure, we will demon-
strate that this condition is automatically satisfied, without any additional assumption.
Such a network bargaining problem features |E| pairs of bilateral bargaining problems,
where |E| is the number of edges in the network. Given its decentralized nature, a network bi-
lateral bargaining problem (with exogenous outside option values) has the following intrinsic

characteristics regarding its information structure, which are implicit in its definition.

(i) Each node has complete information over the primitives (G, S, C, f,u) of the problem,

but observes only the actions of its direct counterparties. In this sense, the infor-
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mation structure of a network bilateral bargaining problem is similar to that of a

non-cooperative game with complete but imperfect information.

(ii) If node j is a direct counterparty to both nodes i and k, then j is able to inform k of
the action of ¢+ when j bargains with k. Likewise, 7 can provide information about the

action of k to node ¢ when j bargains with .
(iii) This possibility of communication is common knowledge.

Property (i) is a key aspect where a network bilateral bargaining game conceptually differs

® In a cooperative game, groups of players (“coalitions”) may

from a cooperative game.?
enforce cooperative behavior. In this sense, a network bilateral bargaining game is, by
nature, not cooperative, as it lacks a direct mechanism by which coalitions may enforce
coordinated behavior on the members of the coalition. On the other hand, properties (i),
(#i) provide a possibility for coordination among different bargaining pairs. Whether this
possibility comes to fruition, however, depends on the incentives of internal nodes to make
these communications truthfully.

We propose a solution concept for of network bilateral bargaining problems (with exoge-
nous outside option vallues) that respects these characteristics. In particular, our solution
concept uses the possibility of communication as a coordination device. We will show that

internal nodes indeed have incentive to make these communications truthfully in the setting

of our solution concept.

C.2 Axioms

We define a set of axioms for network bargaining game solutions. We show that there exists
a unique solution mapping F* satisfying these axioms, and F* (o) is socially efficient for each

problem o.

Axiom I: Consistency with Nash Bargaining.

20Many classic cooperative games are studied by, for examples, Shapley (1953) and Myerson (1977a,b,c).
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We say that F' is consistent with Nash Bargaining if for any two-node network bilateral
bargaining problem o = (G, S, C, f,u) (with exogenous outside options), the outcome F(o) =
(s(0),y(o)) is that implied by the Nash Bargaining Solution. That is,

s(o) = argmax {fi(s) + fa(s)}

seC

1

yi(o) = 5 ([fils(0)) = w] = [f5(s(0)) — )

We shall treat consistency with Nash Bargaining as an axiom, although it can be based on
more primitive underlying axioms, such as the the original four axioms of Nash (1950), or

the axioms of fairness and Pareto optimality of Myerson (1977b).

Axiom II: Multilateral Stability

Our next axiom, Multilateral Stability, provides a notion of stability of solutions. The
spirit of the axiom, to be given a precise definition, is that if the bargaining outcomes for some
subset of edges are “frozen” at those prescribed by a multilaterally stable solution mapping
F'; then applying the solution mapping F' to the NBBP induced on the residual network
will not change the bargaining outcomes on the residual network. One may also interpret
multilateral stability as an axiom of self-consistency, in that a solution mapping F' must be
consistent with its own prediction when applied to a problem induced on a subnetwork.

Formally, for a solution mapping F, a given network bilateral bargaining problem o =
(G, S, C, f,u) with exogenous outside options, and a subset £’ C F of edges, we let og,,(F, 0, E')
be the network bilateral bargaining problem induced by solution mapping F' on the subnet-

work with edge set E’. Letting F'(0) = (s(0),y(0)), then the primitives of o, (F, o, E) are
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given by

G/:(ME/)7 Q/:U

i =439
Si = {s;(0)} if (i,7) € E\E' for some j €V, S = S; otherwise,
Cij = {(si;s;) € S; x S} + (si,85) € Cyj}

le S;X H Sj/'as = fi(S)_ Z yij(U)GR.

(i,9)eE’ (i,§)EE\E'

We say that a solution mapping F' satisfies multilateral stability if, for any given network
bilateral bargaining problem o (with exogenous outside option values) and any given subset

E’' C E of edges, when letting ¢’ denote the subproblem oy, (F, o, E'), we have
P (o) = F(o)a, (101)

where F'(0)q denotes the restriction of the outcome F(o) to the subnetwork G'. When

applied to the special case E' = (), (101) places no restriction on the solution mapping F'.

Axiom III: Independence of Irrelevant Actions

We first introduce the notion of a reduced network bilateral bargaining problem.

Definition 5. If 0 = (G,S,C, f,u) and ¢’ = (G,S’,C’, f',u) are two network bilateral
bargaining problems (with exogenous outside options) with the same underlying graph G
and the same outside option values u. We say that o’ is a reduced network bilateral bargaining

problem of o if S C S, C' C C and f’ is the restriction of f to S’.?!

Our third axiom is an adaptation to this network setting of Nash’s Independence of
Irrelevant Alternatives. We say that F' satisfies Independence of Irrelevant Actions if it

respects the following property. We suppose that o/ = (G, 5", ", f’,u) is a reduced network

21That is, the utility function f! is the restriction of f; to the set S/ x S/, for all i € V.
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bilateral bargaining problem of o = (G, S, C, f,u). Letting F (o) = (s(0),y(0)), if s(o) is
in C’ (that is, if the actions associated with the outcome F(o) are feasible for the reduced
problem ¢’), then F(o¢') = F(0).

The idea of the axiom is as follows. Suppose that the agents in a given network find a
solution (s(o),y(c)) to their network bilateral bargaining problem. Then, for some reason,
they realize that some of their feasible actions are no longer valid choices, although s(o)
itself remains feasible. Under Independence of Irrelevant Alternatives, taking away some
actions that they would not have chosen anyway has no effect on their solution outcome:
they continue to choose (s(o),y(0)).

The axiom of Independence of Irrelevant Actions is compelling only in the setting of
exogenous outside options. With endogenous outside options, the removal of some ‘“non-
equilibrium” actions may influence the outside options. We will address this issue by an

overlaying model structure once we introduce endogenous outside options.

Aziom IV: Bilateral Optimality

For the axiom of Bilateral Optimality, we only consider networks that are connected.??
We will see that this restriction provides the weakest form of the axiom, yet without losing
any strength. The first three axioms have not made use of the possibility of communication
between pairs of connected nodes. The last axiom, Bilateral Optimality, relies critically on
that (i) information is able to propagate in the network through a series of local communica-
tion between pairs of connected nodes, and that (7i) network players has the right incentive
to make these communication truthfully. In other words, Bilateral Optimality may not be
applied to any network bilateral bargaining problems. We first motivate the conditions under

which Bilateral Optimality is applicable, then provide a formal definition of the axiom.

Information propagation in a network bilateral bargaining problem.

22 A network G is connected if any given pair of nodes are path-connected.
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We always proceed under the premise that the actions of a pair of connected nodes are
directly observable to each other. We now consider how information about actions can be
propagated more widely in a network through only a series of local communication between
pairs of directly connected nodes. We will define a notion of information transfer along a
path in a graph GG, which is defined as an ordered list (i1, s, .. .,%,) of distinct nodes with
the property that ¢, is directly connected to i, for all A < m. Two nodes are said to be
path-connected if they are elements of the same path.

Given a network bargaining problem o = (G, S, C, f,u), we fix some pair (a, b) of directly
connected nodes, along with a compatible pair (s,,s;) of respective actions for these two
nodes. We call o = (a, s,,b,s,) a “message.” Our objective is to consider the ability to
transfer such a message from node to node along a path in the graph GG. Freezing the actions
s, and s for a and b, and leaving the problem otherwise minimally affected, a restricted
network bargaining problem o(«a) = [G, S, C%, f,u] is induced by a = (a, s,,b, s) in the

obvious way.??

Definition 6. Given a solution mapping F', a network bilateral bargaining problem ¢ with a
connected graph and a message of the form a = (a, s4, b, s), letting F(o(a)) = (s(a), y(a)),

we say that a path (i, 7, k) can transfer the message « if

(Sk(aij)> ykj(aij)> = (sr(a), ykj(a))> (102)

where ay; = (7, 54(), J, 55(c)).

In order to motivate this notion of information transfer, we let the actions of nodes a and
b be (84, 55) and o = (a, Sq4, b, sp). We suppose that the information contained in the message
a is available to nodes ¢ and j, and that nodes ¢ and j choose actions (s;(), s;(c)) based
on the message «. If Node k were to observe o and adhere to the solution mapping F', then
the action of k£ and her payment to j would be given by (s;(«),yx;(c)). However, Node k

cannot directly observe « (unless k& = a or b). Instead, node k directly observes the action

23That is, the action set S® is constructed from S by replacing S, with {s,} and S, with {s;}, the pairwise
compatibility correspondences and the utility functions are the restrictions of C' and f to the new action set
S%. The network and outside option values of o(«) remain the same as those of o.
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of 7 and “listens” to her report regarding the action of ¢ . If j truthfully reports the action
si(a) of i to k , then the action of k and her payment to j would be (sy(a;), yr;(cj)). If
(102) holds, node k thus indirectly learns any payoff relevant information about «. In this

sense, node j can “virtually” transfer the information about « to k.

Figure 7 — A 4-node path illustration of information transfer

To give a concrete example, we consider the 4-node path illustrated in Figure 7. We
suppose that nodes 1 and 2 have chosen actions (s, s2), while nodes 3 and 4 have yet to
choose their actions. Node 3 can observe sy but not s;. Node 2, however, has the ability to
inform Node 3 of s; when bargaining with Node 3. Hence, upon truthful report by Node 2,
the information about o = (1, 81,2, s2) can be transferred to Node 3 via the path (1,2, 3).
Likewise, Node 4 is able to observe the action of Node 3, and Node 3 can provide information
about sy when bargaining with Node 4. Now, we suppose that Node 3 has incentive to make
truthful communication to 4 , and to choose action s3(a) based on the message . Then
Node 4 observes the action s3(a) of Node 3 and learns the action so of Node 2. From the
perspective of Node 4, having these information is equivalent to knowing « if equation (102)
holds for ¢ = 2, 7 = 3 and k = 4. In this way, Node 4 would effectively learn s;. In other
words, information about the actions of nodes 1 and 2 reaches Node 4 by “flowing” through
the network through only a series of local communication.

More generally, if a network bilateral bargaining problem admits information propaga-
tion via a solution mapping F' (a property that we will next define), then payoff-relevant
information about the actions of any pair of direct counterparties can “flow” to the entire
network through only a series of local communication, provided that the utilities and solu-
tion mapping F' supply the internal nodes of the network with the “right” incentives to carry
out truthful communication and act accordingly. We will discuss the strategic aspect of the

internal nodes shortly.
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Definition 7. A network bargaining problem ¢ with graph G admits information propaga-
tion via a bargaining solution mapping F' if any path of the form (4, 7, k) in G' can transfer

any message of the form (a, s4,0, sp).

If 0 admits information propagation via F', a simple induction implies that for any com-
patible actions (s,, sp) of directly connected nodes (a, b), and for any node k that is connected
by some path to a or b, the message a = (a, s,, b, s5) can be recursively transferred to Node
k through that path via the solution mapping F'. For a path of length m > 2, message «
experiences m — 1 consecutive transfers by the internal nodes along the path before reaching
node k. Figure 7 corresponds to the case where m = 3.

The next proposition gives an equivalent characterization of this property regarding in-
formation propagation, which is based on a “global” property of the bargaining problem o.
This global property of ¢ is easier to be verified than its local version (102). Given a message

a, we write F(o(a)) = (s(a),y(a)).

Definition 8 (Stable Actions). Given a solution mapping F' and an network bargaining
problem o, a feasible action vector s is stable with respect to (F,o) if, for any directly

connected pair (7, j) of nodes, when letting o = (4, s;, j, 5;), we have
s(a) = s.

That is, s is stable with respect to (F, o) if, when applying the solution mapping F' to
the version of ¢ obtained by freezing the actions of nodes ¢ and j, we obtain the same action

vector s.

Proposition 19. Given a solution mapping F' that satisfies the axiom of Multilateral Stabil-
ity, a network bargaining problem o admits information propagation via F if and only if the
following holds: for any pair (i,7) of directly connected nodes, and for any pair of compatible
actions (s;, sj), when letting o = (i, s;, 7, ;), the vector s(a) of actions is stable with respect

to (F,o).
The type of “frozen behavior” that is considered here differs in two respects from that
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associated with the axiom of Multilateral Stability. Information propagation is applied in
each instance by freezing only the actions of a single pair of nodes, whereas for Multilat-
eral Stability, the actions and the payments of a general subgraph are frozen. Second, for
information propagation, the frozen behavior need not be that determined by the solution
mapping F', whereas for Multilateral Stability, the frozen behavior is prescribed by F. Al-
though the two notions of stability are mildly related, they serve rather different purposes
in characterizing a solution.

In the notion of information propagation, all nodes are assumed to (i) choose actions as
prescribed by the solution mapping F', and (i) carry out truthful communication with its
direct counterpatires. Any strategic deviation by nodes is ruled out by assumption. Next,
we will give conditions on utility functions under which it is incentive compatible for nodes

to act as such.
Incentive Compatibility.

We fix a network bilateral bargaining problem o = (G, S, C, f, u) and a solution mapping
F. Given a node i, since the graph G is connected and contains no circle, G can be viewed
as a tree with root node 7. Suppose that node j is an immediate offspring of 7 in the tree.

We write D;(7) for the set of all descendants of j (including node j itself) in this tree.

Definition 9. A given solution mapping F' is incentive compatible for a given network
bilateral bargaining problem o = (G, S, C, f,u) (with exogenous outside option values) if the

following two conditions are satisfied:
(i) The problem o admits information propagation via F'.

(ii) For every nodesiand j' € N;(G), every action s; of node 7, and every actions (s;)jen; ()

of the nearest neighbors of i that are compatible with s;, letting o; ; = (¢, s:, 7, s5),

U (51 (51 (0 jonopemn) = 3o Do e (F(0/(00,)) < s (F (0 (1))

JEN;(G) keD; ()
(103)
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To motivate this notion of incentive compatibility, we fix a node ¢, and view the graph
G as a tree with root node 7. Suppose the action of node i is s;. We consider whether
node ¢ has incentive to coordinate the actions (s;);en;(q) of its nearest neighbors according
to the bargaining solution mapping F. Given a nearest neighbor j' € N;(G) of i, if Node i
truthfully communicate the action s; of j' to its other nearest neighbors, then the net payoff
of Node i is w; (F' (0 (a;j))). This is the benchmark payoff of node i that we will compare
against when evaluating alternative choices of ¢. If Node ¢ misguides its direct counterparties

in a way that results in their actions being (s;);ecn; (@), then the net payoff of Node i is

ui (si, (s))jenvue)) — D wiloug). (104)
JENG(G)
In particular, this payoff only depends on the actions (si, (8)jen; (G)) of Node ¢ and its direct
countarparties j € N;(G), and not on the bargaining outcomes further down the tree. This
plays a key role in simplifying the calculation of the payoff of node i.

Suppose that every node j € NV;(G) truthfully communicates the action s; of Node i to
its immediate offsprings, who then carry out truthful communication with their immediate
offsprings, etcetera, then the message (i, s;, j, s;) would be transferred to all descendants of
node j. The utility of some descendant node k € D;(j) is thus uy (F (0 (a;;))) , and the total

utility of all nodes in the network is

v (s (sk (aivj))jeM(G),keDi(j)> '

Thus, the net payoff of node ¢ is given by the left hand side of (103). The two payoffs of
node i, given by (104) and the left hand side of (103) respectively, must be equal. If this
payoff is less than the benchmark payoff u; (F' (o (o ;))) (that is, if inequality (103) holds),
then node ¢ has incentive to truthfully communicate the action s; of j' to its other direct
counterparties.

Roughly speaking, if a solution mapping F’ is incentive compatible for a network bilateral

bargaining problem, then every node, given its information, has the incentive to carry out
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truthful communication and to choose actions as prescirbed by F. Incentive compatibility
implies that if a pair (7,j) of directly connected nodes is committed to some respective
actions (s;, s;), then the behavior of the entire network would be given by F'(o(s;, s;)). This
is true even when (s;, s;) differ from those prescribed by the solution mapping F'. By way of
comparison, when thinking of F' as an “equilibrium” solution concept, Multilateral Stability
is concerned with behavior “in equilibrium,” whereas Incentive Compatibility can apply to
“out-of-equilibrium” behavior.

The next proposition gives a sufficient condition for incentive compatibility, which is

easier to be verified than the original definition.

Proposition 20. A solution mapping F is incentive compatible for a network bilateral bar-

gaining problem o = (G, S, C, f,u) (with exogenous outside option values) if
(i) the problem o admits information propagation via F, and

(1t) for any feasible action vector s € C, associating a message o = (ig, Siy, Jks S5,) (for

some (ix, jr) € E) to every node k, we have

> fun(F (o)) — fils)] > 0.

keV

Bilateral Optimality.

Loosely speaking, a solution mapping F' satisfies Bilateral Optimality if, whenever two
directly connected nodes assume that other nodes will react to their chosen actions as spec-
ified by F', it is optimal for these two nodes to themselves choose outcomes implied by
F'. More precisely, solution mapping F' satisfies Bilateral Optimality if, for any network
bilateral bargaining problem o = (G, S, C, f,u) (with exogenous outside option values) for

which F' is incentive compatible, and for any directly connected nodes i and j, letting
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F(o) = (s(0),y(0)), the actions (s;(0), s;(0)) solve

(Sr?z)ié{_c { f’t (Si78j7(8k(7:,81‘,j, SJ))kGM(G)\{]}> - Z yik‘(i7$’i7j7 SJ)
irSj ij ke N;(G\ {5}

+ J <Sj’3ia (sk(7, 84, J, Sj))ke/vj(a)\{i}> - Z Y (i, 8i, J, Sj)}.

ke N;(G)\{i}

That is, the actions (s;(0), s;(c)) maximize the total utility of nodes i and j associated
with the common conjecture that the remaining network G, = (V, E\{(i,7)}) will achieve

its own solution outcome F'(c (1,7, S;, Sj)), given the actions (s;, s;) agreed by nodes ¢ and j.

The Aziomatic Solution

Theorem 4. There is a unique solution mapping F* satisfying Axioms I-1V. For each NBBP
o= (G,S,C, f,u), the solution outcome F*(o) = (s*(0),y*(0)) is socially efficient (that is,

s*(0) = s**(0)), and the payment vector y*(o) solves the system of linear equations

ui(s7(0),y"(0)) = wi; = u;(s™(0),y"(9)) —uy,  (4,7) € E. (105)

The system (105) of payment equations states that the solution outcome F*(o) provides
for an equal sharing of the surplus between each pair of directly connected nodes, relative

to their respective outside options.

C.3 Endogenous Outside Option Values

The assumption of exogenous outside option values u is a useful modeling technique, in
that it allows us to establish the four natural axioms that uniquely determine the solution
mapping F*. Without this assumption, Independence of Irrelevant Actions is no longer an
compelling axiom, since the removal of some “non-equilibrium” actions may influence the

“threat point” of various contracting pairs, and thus their bargaining outcomes.
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In this section, we consider a more natural model of network bilateral bargaining prob-
lems, in which the outside option values are endogenously determined by the set of available
actions of each node in the event that the node fails to reach an agreement with some of
its direct counterparties. A network bilateral bargaining problem with endogenous outside

option values is defined as

v7=(G,5,C,f.5),

where G, S, C and f are the same model components as for a network bilateral bargaining
problem with exogenous outside option values, and S consists of subsets S,;(N;) of S;, for
each node i and each subset N; of nearest neighbors of i. The set S;(1V;) consists of actions
that are available to i if ¢ fails to reach an agreement with all its nearest neighbors in the
set N;. If disagreements are reached between node i and all its direct counterpatires (that
is, if N; = NV;(G)), then by convention, the S?(N;) is a singleton. Naturally, no payment is
made between a pair of disagreeing nodes. When applying this setting to the special case of
a two-node network, a unique “conflict outcome” is thus implemented if the two nodes fail
to reach an agreement, as in Nash (1950).

All disagreement events are assumed to be observed by the entire network, and thus
become common knowledge prior to any agreement is made. This assumption is identical
to the possibility of renegotiation in the bargaining protocol of Stole and Zwiebel (1996).
In contrast, the actions and payment negotiated by a given pair of direct counterparties are
not observable to other nodes in the network, an assumption that remains the same as for
a network bilateral problem with exogenous outside option values. In other words, whether
or not a given pair of nodes reaches an agreement is common knowledge, the detailed terms
of the agreed-upon contract (if there is one) is nevertheless not observable to other nodes.

An outcome, in the case of endogenous outside option values, remains the same as that
for the case of exogenous outside option values. That is, an outcome (s, y) specifies a feasible
action vector and a payment for each edge. A solution mapping is some function ® that maps
an network bilateral bargaining problem with endogenous outside options to an outcome.

Given a network bilateral bargaining problem v = ((V, E), S, C, f, S) with endogenous
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outside option values, our approach is to transform v into an NBBP with exogenous outside
options, and then deduce the solution outcome using the unique solution mapping F* that
satisfies the four axioms. Given a pair (¢,j) € E of directly connected nodes. In the event
that the pair fails to reach an agreement, we obtain a network bargaining problem ~;; (with
endogenous outside option values) that is induced from « in the obvious way.?* In particular,
there are |E| — 1 edges in the network of v;;, as the edge (7, 7) is removed. When nodes i
and j carry out bilateral bargaining, their outside option values (gij, gﬂ) are given by their

respective payoffs in the event of a disagreement between the pair. Therefore,

w;; = ui (P (7i5)) wy = uj (P (i) - (106)

We let s™(y) be the socially efficient action vector for «, and y*(u) be the unique payment

vector that solves the linear system

wi(s™ (1), ¥ (W) = wy = u;(s7(0), ¥ (W) —wy, V(i j) € E.

If the outside option values u, derived from equation (106), satisfy

ui(s™(7),y" (W) — wy = ui(s™(7),y" (W) —uy; 20, V(i j) € F, (107)

we say that wu satisfies the condition for outside option values. If this is the case, then
a(v) = (G,S,C, f,u) is a well defined NBBP (with exogenous outside option values), and
the problem v, which has endogenous outside option values, can be equivalent transformed

to o(). Hence, the solution outcome for v must be given by

®(y) = F*(a(v)).

The next theorem establishes results on existence, uniqueness and efficiency of the solution

24That is, the network of ~;; is given by G’ = (V, E\{(i,j)}), the action set S’ is constructed from S by
replacing S; with S;({j}) and S; with S;({i}), the pairwise compatibility correspondences and the utility
functions are the respective restrictions of C' and f to the new action set S’, and the disagreement action
sets are constructed from S by replacing S,;(N;) with S;(V; U {j}) and S;(N;) with S;(N; U {i}), for every
subsets N; C NV;(G’) and N; C N;(G').
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to network bilateral bargaining problems with endogenous outside option values.

Theorem 5. (i) There is a unique solution mapping ®* such that, for every network bilateral

bargaining problem v = [(V, E), S, C, f,S] (with endogenous outside option values), letting
wi;(7) = wi (D (i), wu(v) = uy (27 (7)) - (108)

for every pair (i,7) € E, and
o(y) = (G, S,C, f,u),

if u*(7y) satisfies the condition for outside option values, then

*(y) = F*(e(7))- (109)

(i) For any given network bilateral bargaining problem ~ (with endogenous outside option
values), the condition for outside option values holds for u*(y) derived from equation (108).
(iii) For every network bilateral bargaining problem ~ with endogenous outside option values,

we have ®*(v) = F*(o(7)). In particular, ®*(vy) is socially efficient.

The proof of Theorem 5, given in Appendix D.6, relies on a useful intermediate result
regarding how the hold-up power of various nodes differentiates in a network. We next define
this hold-up power and establish this intermediate result.

We fix a network bilateral bargaining problem v = (G, S,C, f,S). Again without loss
of generality, we assume that the underlying graph G = (V,E) is connected. Given a
pair (i,7) € E of direct counterparties, if one removes the edge (i,7), the graph G’ =
(V, E\{(4,7)}) can be viewed as two disjoint trees with roots i and j respectively. Any given
node k£ € V either belongs to the tree rooted at ¢ or at 5. If k is in the tree rooted at 7, and
the length of the shortest path connecting from ¢ to k is d, we say that k is a d-to-i node.
A d-to-j node is similarly defined. We now suppose that & is a 1-to-i node (that is, k is a

direct counterparty of i and k # j), and consider the bilateral bargaining problem between
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1 and k. The gap between the outside option values of the two nodes is

wi () — wi (7). (110)

In the event that the pair (i, 7) fails to reach an agreement, node k is able to hold up node

1, and this gap becomes
i (Vig) — win(vig)- (111)

The second outside option value gap (111) is wider than the first one (110), as

(111) — (110) = wzy (Vi) — wip (7ij) — g (7) — wip(7)]
= up (P ((Var)is)) — wi( @ ((ir)ig)) — [ur(P* (yir)) — wi( P (vir))] (112)
= ui (P (i) — wi(®*((yir)i)) = 0,

where (7i;);; is the network bilateral bargaining problem (with endogenous outside option
values) that is induced from ~y after both pairs (7, j) and (¢, k) fail to reach an agreement. The
last inequality follows from the induction hypothesis, since the underlying graph of 7;; has
|E|—1 edges. The last equality follows from the fact that node k receives the same net payoff
in vix or (y4x)ij. This is because node k is not connected to ¢ or j in the network bilateral
bargaining problem ~;, the disagreement event between (i, 7j) is thus payoff irrelevant for
node k.

This difference (112) between the two outside option value gaps is the hold-power of k
against i in the event of a disagreement between (i,j). The higher this difference is, the
more the disagreement event hurts the bargaining position of 7 relative to k in her bilateral
bargaining against k, and thus to a greater extent node £ is able to hold up node 7. For
simplicity of terminology, we sometimes simply refer to this difference as the hold-up power
of k against i, without specifying the disagreeing pair (i, j).

If k is a d-to-i node, where the distance d is strictly larger than 1, letting (4o, ..., ¢) be
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the unique path?® connecting node k to i, we define the hold-up power of k against i as

U

-1
([ e O0) = e ()

o
Il
=)

~ [ (1)~ Wi, ()]

That is, the hold-up power of k against ¢ is the the sum of the differences between the

pairwise outside option value gaps along the path (¢, ..., ¢;) connecting node k to i.

Proposition 21. Given a pair of direct counterparties (i,j) and a d-to-i node k for some
integer d > 1, The hold-up power of k against i (in the event of a disagreement between

(,7)) is non-negative.

D Proofs for Appendix C

D.1 Determining the Payment Vector

The following proposition determines the payments using Multilateral Stability.

Proposition 22. If a solution mapping F satisfies Multilateral Stability, then for each net-
work bilateral bargaining problem o = (G, S,C, f,u), the solution outcome F(c) satisfies

wi(F(0)) = wy; = u;(F(0)) —u, V(i) € E. (113)

=17

Proof. For any given pair (7, j) of connected nodes, we consider the network bilateral bargain-
ing problem ¢’ = o, (F, 0,{(i,7)}) induced by F on the subnetwork with edge set {(i,7)}.
Then ¢’ is simply a two-person bargaining problem with complete information between i
and j, whose outside options are u,; and u,; respectively. It follows from Axiom I that F'(o’)
is given by the Nash Bargaining Solution. Since ¢ and j have transferable utility, the two

nodes must have equal gain from trading. Thus, equation (113) must hold. O

We let V; be the subset of nodes that are path-connected to ¢, and F(o) = (s(0),y(0)).

25In particular, {o = k, g = i.
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Proposition 23. The system (113) of linear equations, together with

Y w(F(0) = fi(s(0)), (114)

JEV: JeV;

uniquely determines the net payoff u;(F (o)) of each node i,

-y 2 b

JEVE

ui(F(0)) =

where the constant c;(u) depends only on the outside options {u; : j € Vi}, and Yy, cj(u) =
0. The payment vector y(o) is uniquely determined by (113).

Proof. We fixanodei € V. For every node j that is path-connected with ¢, letting (¢o, . . ., £q)

be unique shortest path connecting from j to i, we have

uj(F (o)) = ui(F(o)) + (Qeazuﬂ — U,y 0) -

That is, we can write u;(F (o)) as the sum of w;(F'(0)) and a constant that only depends on
the outside option values u. This is true for every node 5 € V;. Combining this observation
with equation (114), we can thus uniquely solve for u;(F (o)) as the sum of u;(F (o)) and a
constant that only depends on wu.

Since the underlying graph G contains no circles, it is a disjoint union of trees. One
can direct each such tree, by saying that J(7) is the unique parent of node i (and i is an
immediately offspring of J(7)) if ¢ and J(i) are directly connected and if the path from
J(i) to the unique root node is shorter than the path from i to the root node. One can
inductively compute the payments, beginning with those from the leave nodes (the nodes

with no offspring nodes). FEach leave node i pays to her parent J(i) the amount

Yiaiy (@) = fi(s(0)) — ui(F(0)).
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If node i is neither a leave node nor the root node, her payment to her parent node is then

via) = fi(s(0) —w(F(o)) + Y yjilo),

JEK(i)

where K (i) is the set of immediate offspring of node 7, and {y;;(¢) : j € K(i)} have been

determined by induction. The induction ends with the root node, which has no parent. [J

D.2 Proof of Proposition 19

We fix a network bilateral bargaining problem o (with exogenous outside option values) that
admits information propagation via a given solution mapping F', and fix a pair (a, b) of direct
counterparties, along with some pair of compatible actions (s, s;). We let a = (a, 4, b, Sp).

For any path of the form (i, j, k), we have

Fj (0 (i, si(@), J,55())) = (sk(a), yrj (@)

In particular, letting ay; = (4, s;(a), 7, s;(«)), we have

sk(ay) = sg(a).

This is true for every k that is a 1-to-j node. We suppose that the equality above holds
for every k that is a d’-to-j node, for every integer d’ < d with some integer d > 2. Given
a d-to-j node k, letting ({g,...,¥¢;) be the unique shortest path connecting from j to k, we

have

Sk(afd—zfd—l) = Sk(a)' (115>

Since {45 and {41 are (d — 2)-to-j and (d — 1)-to-j nodes respectively, the induction hy-
pothesis implies

Sty_y (a) = S04 (O‘ij)a 5&171(0‘) = 5€d71(04ij)'

Substituting the two equalities above into (115), we obtain

Sk(la2, Sey 5(vj), a1, Sy, (i) = sp(a).
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On the other hand, since the path (¢4_s,l4_1, k) can transfer the message «;;, it follows that

Sk(Ca—ay S0, 5(ij)s la—1, S0, (ij)) = si(auy).

Hence, sj(a) = si(cv;;) for every node k that is a (d+ 1)-to-j node. It follows from induction
and symmetry that this holds for every node k in the graph G. Since (i, j) can be any pair
of direct counterparites, the vector s(«) of actions is thus stable with respect to (F, o).

We now establish the converse. We fix a solution mapping F' that satisfies Multilat-
eral Stability and a network bilateral bargaining problem o (with exogenous outside option
values) such that the stability property stated in Proposition 19 holds. We also fix a pair
(a,b) of direct counterparties, along with some pair of compatible actions (s,,s). We let
a = (a, Sq, b, sp). For any path of the form (4, j, k), we let a;; = (4, s;(0), 7, s;(«)). Since the
action vector s(«) is stable with respect to (F, o), it follows that s(c;;) = s(«). Since F
satisfies Multilateral Stability, it follows from Proposition 23 that y(c;;) = y,. Hence, the

path (7, j, k) can transfer the message a.

D.3 Proof of Proposition 20

Proposition 20 follows from the observation that condition (%) in Definition 9 is a special

case of condition (7i) in Proposition 20.

D.4 Proof of Theorem 4

We first prove uniqueness, then existence.

Uniqueness: We first set up the following definition.

Definition 10 (Quasi-Maximizing Actions). For an NBBP o = ((V, E), S, C, f,u), a feasible
action vector s* € C' quasi-mazimizes social welfare for o if and only if, for any pair (i, j) of

directly connected nodes, s* solves

max  U,(s),

sEC(i,j,sz‘,s;)
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where

C(i,j,sf,sj) ={s€C:s5 =s5],5 =5j)

We let S*(o) denote the set of action vectors that quasi-maximize the social welfare for o.

Lemma 14. Suppose o0 = ((V, E),S,C, f,u) and ' = (V, E),S",C", f',u) are such that o’
is a reduced NBBP of o. If s* € S*(o) N C", then s* € S*(o').

Proof. Fix some (i,j) € E. Because C' C C and s* € C’, we know that s* € C’ (z’,j, sf,sj).
Thus s* solves

max U, (s).

SGC’(i,j,sj,s;)

As U, and U, agree on S’, s* thus solves

max  Uy(s).
sEC’(i,j,s;‘,s;)

Because (i, j) was arbitrary, it follows that s* € S*(o”). O

For a positive integer k, we let ¥, denote the collection of network bilateral bargaining
problems with exogenous outside option values, whose graph (V, E) has |E| = k edges. Sup-
pose F™* is a solution satisfying Axioms I-IV. Letting F*(¢) = (s*(0),y*(¢))), the uniqueness
part is summarized as the following claim, which we will establish by an induction over the

number |E| of edges.

Claim 2. For every NBBP o = [(V, E), S,C, f,u] with exogenous option values, s*(o) =
s**(0) and y*(o) solves (105).

When |E| = 1, we are in the situation of a two-person bargaining problem. Suppose
o € ¥ is such a problem. Then Axiom I implies s*(0) = s**(¢) and the equation (105) of
equitable split of trading gain.

Suppose that Claim 2 holds for |E| = p — 1. We show that it holds for |E| = p. We fix
an arbitrary NBBP ¢ = [(V, E), S, C, f,u] in ¥,,.
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Step 1: The action vector  s*(0) quasi-maximizes the social welfare for o.

For any fixed pair (i,j) of directly connected nodes. We consider the NBBP ¢’ =
Osub(F*,0, E') induced on the edge set E' = FE\{i,j}. Letting G' = (V,E’), since F*
satisfies Multilateral Stability, we have F** (¢/) = F*(0)¢s, which implies that

s*(0") = s*(0).

Since the edge set of the subproblem ¢’ is £', we have ¢’ € ¥,,_;. By the induction hypothesis,

the action vector s*(¢’) of the solution outcome F* (') is given by

s*(0') = s (0') = argmax Ug(5)-
$€C(i,4,57(0),55(0))

Since s*(0) = s* (¢”), and U, (s) = Uy (s) for every s € C (i, j, s} (c), s3(0)), we have

]

s*(0) = argmax Us(s).
5€0 (14,51 (0),55 ()

This is true for all (i, j) € E, therefore, s*(¢) quasi-maximizes social welfare for o. That is,
s*(o) € S*(o).
We summarize the result of Step 1 with the following lemma, which we will later use in

other parts of the proof.

Lemma 15. Assuming the induction hypothesis that Claim 2 holds for |E| = p — 1, Multi-
lateral Stability implies that for any NBBP o € ¥, s*(0) € S*(o).

Step 2:  Application of Independence of Irrelevant Actions.
We let S} (o) be the projection of the quasi-maximizing action set S*(¢) onto S;, and
Si;(0) denote the projection of S*(0) onto S; x S;. We let Sy, (o) = [[;cy i (o) be the

rectangle hull of S*(0), and f*(0) = fs: (o) denote the restriction of f to S, (o). For any
(4,7) € E, we let Cf5(0) = S}5(0), and

C*(0) ={s € S:(si,s;) € C5i(0), V(i,j) € E}.
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Therefore, S*(0) C C*(0), ensuring that C*(o) is feasible. We define the NBBP
0" = |G, 51l0),C*(0), 1 (0), ]

*(0) € S and C*(0) C C. Thus, " is a
reduced NBBP of o. Because s*(0) € S*(¢) and S*(¢0) C C*(0), we have

Comparing ¢* to the original NBBP ¢, we have S*

s*(0) € C*(o).

Because F* satisfies Independence of Irrelevant Actions, we have F*(0) = F*(0*). Hence, it

suffices to characterize the solution outcome F*(o*) for the reduced NBBP o*.

Remark 6. Because S*(o) C C*(0) and the socially optimal actions s**(¢) quasi-maximize

U,, we see that s**(0) € C*(0). Thus,

s (0*) = argmax U,+(s) = argmax U,(s) = s™(0).
seC*(o) s€C*(o)

Step 3: The solution F* is incentive compatible for the NBBP o*.

First, we characterize the set of actions that are stable with respect to (F*,0). A feasible
action vector s € C' is stable with respect to (F*, o) if, for any directly connected pair (i, j)
of nodes, when letting o = (4, s;, j, j), we have s*(a) = s, where s*(a) denotes s*(o(a)). As
o (o) € ¥,, Lemma 15 applied to the NBBP o («) implies that s* (a) quasi-maximizes social
welfare for o (o). In particular, if we fix the actions of (4,j) to be (s;,s;), the remaining
components of s* (a) jointly maximize the total social welfare Uy(q) of o (o). As Uy(q) and
U, are equal on the set C(i, 7, s;, s;), we have

s (a) = argmax U, (8).
§€C(’i,j,si78]‘)

Therefore, a feasible action vector s is stable with respect to (F*, o) if and only if we have,
for all (¢,5) € E,
s = argmax U, (3),

560(17.7"91 7Sj)
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which is equivalent to s € S*(0).

We summarize the result of this first part as follows.

Lemma 16. Assuming the induction hypothesis that Claim 2 holds for |E| = p—1. For any
NBBP o € ¥, Multilateral Stability implies that an action vector s is stable with respect to
(F*,0) if and only if s € S*(0).

Second, we show that the solution F* admits information propagation for the NBBP o*.

We fix a pair (7, j) € E and some actions (s;, s;) € Cj;(0). Letting o’ = (i, si, 7, s;), we need
to show that s* (¢ (o)) is stable with respect to (F*,0*). As ¢* € 3,, Lemma 16 implies

that the stability of s* (¢* (o’)) with respect to (F*,0*) is equivalent to
s* (0" (o)) € S*(07). (116)
As o* (/) € ¥,, Lemma 15 implies that s* (¢* (¢/)) € S* (6* (/). In particular,

s* (0" (o)) = argmax U, (s). (117)

seC* (i,j,sg,sg)

Since (s}, ;) € Cj;(0), then by the definition of Cjj(c), there exists some action vector

§ € S*(0) such that 5; = s} and 5; = s}. Thus, 5 € C* (4, 4,5, 5}) and

§= argmax U,(s)= argmax U,(s)= argmax U, (s). (118)
s€C (i,5,5},5)) s€C* (1., ) s€C* (1,555,
The last equality holds because U, and U, are equal on C*(¢). Comparing the two maxi-
mization problems in (117) and (118), we have § = s* (¢* (a/)). Since o* is a reduced NBBP
of o, and 5 € S*(0) C C*(0), Lemma 14 implies that § € S*(¢*). Combining this fact with
s* (o (/) = 8§, we have s* (0% (o)) € S*(c*). This establishes (116). The solution F*
therefore admits information propagation for the NBBP o*.
Lastly, we will show that condition (i) in Proposition 20 holds for (F*,0*) to complete
the proof that F* is incentive compatible for o*.

We fix some s € C*(o), and associate to every node k € V' a message oy, = (ig, Sy, Jks Sj, )
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as in the statement of Proposition 20. Lemma 15 implies that s* (¢* (ay)) € S* (6" (ax)),
Thus,

UU* (S) S

max  Uy«(8) = Uy« (s (0" (ag))) - (119)

§€C*(ak)
Summing up the inequalities (119) over k € V', we obtain, by Proposition 23,

VI Up () <D [Use (8" (0" (@) + V] enw)] = [V] D wi (F7 (07 (a)) -

keV kev
Dividing both sides by |V leads to the desired inequality:

D [uk(F (0" (aw))) = fils)] = 0.

keV

Therefore, the solution F* is incentive compatible for the NBBP o*.

Step 4:  Apply Bilateral Optimality to (F*,0*) to determine the action vector s*(c*).
As the solution F™ is incentive compatible for the NBBP ¢*, Bilateral Optimality implies
that that for any directly connected pair (i, j) € E, the actions (s*(c*);, s*(c*);) solve

max  {us (F* (0" (i,s:,,5))) + 1 (F* (0" (i s1,,5,)) |- (120)

(Si,Sj)GC;}

It follows from Proposition 22 that

U; (F* (U* (’L, Si,j, Sj))) + Uy (F* (U* (27 Si7j7 Sj)))

_ |_é| Uy (57 (0" (i, 51,5, 53))) + cs(w) + ¢ (u)

2
— max _Ucr* § _'_CZQ +Cg
seC(igsisy) V] (3) + ci(w) + ¢j(u)

Thus the maximization problem (120) is equivalent to maximize U, (s) over s € C*, which
is solved by s = s**(0*). Therefore, the maximum in (120) is achieved by (s;*(c*),s5*(c%)).

As F* satisfies Bilateral Optimality, we have

(57(0"), 53(07)) = (s57"(07), 55" (0")) = (s"(0), 57"()) - (121)
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The second equality above follows from Remark 6. Since equation (121) holds for every
pair (i,j) € E, thus, s*(0*) = s**(¢). Since Independence of Irrelevant Actions implies that

s*(0) = s*(0*) (this is shown in Step 2), we finally obtain
s*(o) = s™(0).
That is, the action vector s*(o) of F*(o) is socially optimal for o.

Step 5:  Apply Multilateral Stability again to determine the payment vector y*(o).

It follows from Proposition 22 that the payment vector y*(o) satisfies

ui<5**(0>7 y*(U)) - Qij = uj (S**(U)a y* (J)) - szﬁ (Zv ]) S E
This establishes that Claim 2 holds for |E| = p.
By induction, we conclude that Claim 2 holds, completing the uniqueness proof.

Existence
We show that the solution F* determined by F*(o) = (s**(¢),y*(0)), where the payment

vector solves (105), satisfies Axiom I-IV.

Axiom I:  For any two-player NBBP o = (G, S,C, f,u), the solution outcome F*(c) =
(s**(0),y*(0)) is the same as that implied by the Nash Bargaining Solution. Therefore, F*

satisfies Axiom I.

Axiom II:  For any NBBP [(V,E),S,C, f,u] and any subset E' C E of edges, we let
o' = ogn(F,0,E") and G' = (V, E’). The action vector of the solution outcome F* (0’) is
given by s** (¢’), which is equal to s** (o) since s**(o) is a feasible action vector for o’.

The system (113) of payment equations for ¢’ says that under both outcomes F™* (o')
and F*(0)g, each pair of nodes equally share the surplus relative to their respective outside

options. Thus, the payment vectors y* (¢/) and y*(0)g are the same. Therefore,

F* (o) = F*(0)q.

137



That is, the solution F* satisfies axiom of Multilateral Stability.

Axiom III:  Given two network bilateral bargaining problems o = (G, S, C, f,u) and ¢’ =

(G,S",C", f',u) such that o’ is a reduced NBBP of o, if s**(0) € C’, then

s (o) = argmax U,/ (s) = argmax U, (s) = s (o).
seC’ seC’

The payment vectors y*(o) and y*(¢’) are determined by the same system of payment equa-
tions (113). Therefore, F*(o) = F*(0’), establishing the axiom of Independence of Irrelevant

Actions.

Axiom IV:  Given an NBBP o = [(V, E),S,C, f,u] and a pair (i,j) € E of directly con-

nected nodes, we consider the maximization problem

ma  {u (F* (0 (6505 5)) + 1 (F (0 i,50,0,5)) | (122)

(si,85)€Cl;

The same argument as in Step 4 of the uniquenesss proof implies that (122) is equivalent to

max max U, (3),
(sissj)  S€C(4,7,8i,55)

The maximization problem above is equivalent to

max Us(s).

which is solved by s = s**(c). Hence, (122) is solved by (s;,s;) = (s;*(0),s5*(c)). Thus,

i » 2]

the solution F™* satisfies the axiom of Bilateral Optimality.

D.5 Proof of Proposition 21

When d = 1, it follows from (112) that the hold-up power of k against i is non-negative.
For any d > 2, letting ({y,...,#4) be the unique path connecting node k to i, we have,

for every integer a between 0 and d — 1,

W00 (Vi5) = Wy (O (Ve 2)i5)) = ey (D" (Vewrna)) = wWoor 0, (7):
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This is because node ¢, is not connected to ¢ or j in the network bilateral bargaining problem
Y las1 . the disagreement event between (4, j) is thus payoff irrelevant for node ¢,. The hold-

up power of k against i can thus be simplified to be

T
L

[H*za Catr (vig) — U, Catr (v )]

o
Il
=)

This hold-up power being non-negative is equivalent to

QL

—1

u'y, (Vi) — u'y, k(7)) < [Q*za losr (vig) — u’y, L1 (’Y)] (123)

a=1

That is, the relative hold-up power (against i) of ¢; with respect to k is weakly less than the
hold-up power of ¢; against i. This relative hold-up power of ¢; with respect to k is equal to

Q*elk(%‘j) - H*zlk(V) = Uy <‘I>* <(Wl k)ij)) — g (D (Vo)) -

Since the network bilateral bargaining problem =, 5 (with endogenous outside option values)
has |E| — 1 edges, the induction hypothesis implies that u*(v,, ) satisfies the condition for
outside option values. Therefore, one has u,(P*(ve, ) = up(E*(0(ye,x))) for every node p.

In particular, for every pair (p,q) € E\{{1 k},

up (D" (Yo, 1)) — g (P (Ver &) = (Ver &) — g (Ver &)

By adding up the equalities above along the path (¢1,...,¢;), we obtain

we, (" (Ver &) — wi(P* (s 1)) = z_: (W, 0 (Ve k) — W, o, (Ve k)]

a=1

Likewise, the induction hypothesis for (v, 1);; implies

U

-1

Uy, (‘P* ((Wl k)z]>> — U (‘P* ((Wl k)ij)) = [Q*ea bot1 (Ve w)is) — Q*LIQH Lo ((vey k)m)}

1

)
Il
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Subtracting the two equations above, we obtain

w (@ (()y) ) = e (@ (i) + [ ® () = (2 (0),5) )|

-y ([E*eazaﬂ (Ve )ig) = Wiy 0o (Ve k)ig)] = (W 00y (Vs k) — W0, (%k)])

TIiMT
= =

(124)

(]

[QZH la (Ver &) — ﬂ*ea+1 o ((vey k)ijﬂ

T
= =

*

= [Q £a+1 ea <7) - u*ga-ﬁ»l Ea (P)//L])} )
1

)
Il

Since the network bilateral bargaining problem -y, ; (with endogenous outside option values)
has |E| — 1 edges, the induction hypothesis implies that u*(v,, ) satisfies the condition for

outside option values. In particular,

0@ (104)) = 0l F* (0 ) 2 15, 1)) = i (@7 (), ))

Combing the inequality above with equation (124), we obtain the desired inequality (123).

D.6 Proof of Theorem 5

We first establish the uniqueness part of the theorem. Suppose that ®* is a solution mapping
that satisfies the condition stated in (7) of Theorem 5. We determine the solution outcome
®*(7) inductively over the number of edges of the problem . If v is a two-node bilateral
bargaining problem, then the outside option values of the two nodes are uj = u;(s;,s,) and
uy = us(sy, 89), where (s, s5) is the unique exogenously given conflict point of the two nodes.
It is clear that (u,u,) satisfy the condition for outside option values. Thus, the solution
outcome ®*(y) is simply given by the Nash Bargaining Solution F*(o).

We suppose that for every network bilateral bargaining problem ~ (with endogenous
outside option values) whose number of edges is less than or equal to |E| — 1, the solution
outcome ®*(7) is uniquely determined, and u*(7) satisfies the condition for outside option

values. This is our induction hypothesis. We now consider a network bilateral bargaining
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problem v = [(V, E), S, C, f, S] (with endogenous outside option values) whose number of
edges is equal to |E|. We will show that u*(7) satisfies the condition for outside option
values.

For any given node 7 € V', we let

u; (7) = ui(s™ (7)) —vi; (W (7)),

which is the candidate net payoff of node i in the network bilateral bargaining problem ~
(with endogenous outside option values), if u*(y) satisfies the condition for outside option
values. We then fix another arbitrary node k (not necessarily a direct counterparty of ),

letting (lo, ..., ¢q) be a path connecting from & to i, we have

S9

-1
*

up(y) —ui (V) =) (W00 (V) — W,y 0, (V)] (125)

a

Il
o

Now we fix a node j that is a direct counterparty of node 7. Since the network bilateral bar-
gaining problem ;; (with endogenous outside option values) has |E| —1 edges, the induction

hypothesis implies that for any given node k,

U

-1
*

up(Vig) — ui (vig) = ) (W, 000y (Vig) — Wy 0, (Vi) (126)

e
i
o

Subtracting equation (125) from equation (126), we obtain

(g, (Yig) = up (V)] = [ (v5) = w5 ()]

s

([Q*ea lasr (Vij) — Q*eaﬂza (%j)] - [Q*za za+1(7) - Q*eaHzG (’Y)D

=)
()

The right hand side of the equation above is the hold-up power of node k against i (in the

event of a disagreement between (4, 7)). Thus, it is non-negative by Proposition 21. If

u; (i) > ui (),
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then it must be that
g (ig) > ug(y)-

This is true for every node k € V', which implies

> uilvi) > Y up(y) = U(s™ (7).

keVv keV

This contradicts the optimality of the socially efficient action vector s**(y). Hence, we have

ui (Vi) < ui(y),
for every pair (i, ) € F, which is precisely the condition for outside option values.

The existence result immediately follows from the observation that the solution mapping

®* constructed inductively in the uniqueness proof satisfies the condition in Theorem 5.

E Axioms for Nash Bargaining Solutions

This appendix provides simple axioms for the Nash Bargaining Solution for network bilateral
bargaining problems (NBBPs) with completely connected graphs. For our main results, we

apply these axioms in the case of a network consisting of two connected nodes.

The feasible utility set of a NBBP o = ((V, E), S,C, f,u) is
Z/{(U) = {(ui(sa y))iEV : (Svy) S Q[G7 Sa C]} U {Q}

The permutation op = ((VF, EF), ST CF, f¥ u) of o is defined by some bijection P : V —
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V as:

VP ={P1),...,P(V])}
EY ={(P(i), P(j) : (i.j) € E}

Sg(i) = 5i
C'1133(1‘) =C;
I/ 15(1') = fi
Up() = U;

A solution F for NBBPs is said to be:

Utility focussed if, for any NBBPs ¢ and ¢’ with the same feasible utility sets, we have
u(F(0)) = u(F(d')).

Pareto optimal if, for each NBBP o, the solution outcome F'(¢) is Pareto Optimal for

g.

Symmetric if for any NBBP o = ((V, E), S,C, f,u) and any permutation op of o by

P, we have

upi) (F(op) = ui(F(o)), i€V.

Translation preserving if for any NNBPs ¢ and ¢’ with

Uo') =U(o) +{v},

for some v, we have u(F(0")) = u(F(0)) + v.

The Nash Bargaining Solution FV for an NBBP ¢ = ((V, E), S, C, f,u) whose graph
(V,E) is completely connected is defined by F~ (o) = (s*,y*), where

st = argér(ljax Z fi(s) (127)
vy =5 (56" — ] = [(7) ~w]), (.)€ B (128)
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Proposition 24. When restricted to NBBPs whose graphs are completely connected, a solu-
tion F' 1s utility focussed, Pareto optimal, symmetric, and translation preserving if and only

if it is the Nash Bargaining Solution.

Proof. The Nash Bargaining Solution is, by simple inspection, utility focussed, Pareto opti-
mal, symmetric, and translation preserving.

Conversely, suppose a solution F' is utility focussed, Pareto optimal, symmetric, and
translation preserving. Consider an NBBP ¢ = ((V, E), S, C, f,u) for which (V, E) is com-
pletely connected. By translation preservation, we can assume without loss of generality
that u = 0. By Pareto optimality and the fact (V, F) is completely connected, u(F(c)) is an

element of the symmetric hyperplane H = {v : ), v; = v*}, where

Moreover, H is contained by the feasible set U(c). By the symmetry of F', it follows that
u;i(F(0)) = u;j(F(0)) for all i and j, implying that F(o) = F¥ (o). O

F Independence of Strategically Irrelevant Information

This appendix motivates and then defines a restriction on perturbed games, by which tremble

probabilities cannot depend on strategically irrelevant information.

F.1 Motivation

In order to motivate the idea of independence of strategically irrelevant information, consider
the 3-person extensive-form game depicted in Figure 8. At all but one of the terminal nodes,
the three players, Column, Row, and Box, have equal payoffs.

The strategy profiles |Left,(Up,Up), West |, marked in red, and |Right,(Up,Up), West |,
marked in blue, are the two Nash equilibria of the game. Both of these Nash equilibria
are in fact extensive form trembling hand perfect in the sense of Selten (1975). However,

[Left,(Up,Up), West | is the only reasonable equilibrium for this game, in the following sense.

144



Column

Figure 8 — a three player game in extensive form

The strategy (Up,Up) weakly dominates all of Row’s other strategies. If one eliminates the
weakly dominated strategies from Row’s strategy space, then for Column, the strategy Left
weakly dominates Right. If Column plays Left, then Box’s best response is to choose West.

On the other hand, |Right, (Up,Up),East | can be sustained as an extensive form trembling
hand perfect equilibria in the following way. Consider the strategy profile by which Column
plays Left with probability e, Box chooses West with probability €2, and Row deviates to
Down with probability e following Left, while he deviates with probability €2 following Right.
It is easy to see that against this strategy profile, (Up,Up) is optimal for Row and Fast is
optimal for Box. To see that Right is optimal for Column requires a little bit of calculation.
The key here is that Row deviates to Down more often following Right than following Left.
Because Column worries about a mistake by Row, and does not care much about the €2
probability that Box chooses West, Column is strictly better off playing Right, because
Row deviates with lower likelihood there. As e goes to 0, one obtains the limiting strategy
profile [Right,(Up, Up),East |. Furthermore, |Right,(Up, Up),East | is also an extended proper
equilibrium (Milgrom and Mollner, 2016), and thus a proper equilibrium (Myerson, 1977a),
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that is sustained by the same sequence of trembling equilibria. This is so because deviating
to Down is indeed more costly for Row when he faces Right than when he faces Left, given
that Right is on the equilibrium path.

However, this is an “unreasonable” tremble for Row, since, when following Left or Right,
Row faces two games that are equivalent to each other, for whatever choice Box makes. If
Box plays West, Row faces a one-person decision problem in which (i) choosing Up gives
him a payoff of 9, whereas choosing Down gives him only 2 at the information set following
Left, and (ii) choosing Up pays him 3, while choosing Down pays only 0 at the information
set following Right. These two problems are essentially the same for Row. Likewise if Box
plays Fast, Row’s problems are also identical irrespective of the information set in which
he finds himself. He therefore has no reason to tremble more often in one information set
than in the other. In other words, the information that Row obtains by observing Column’s
choice is irrelevant for his own play. Minimum tremble probabilities should be independent of
irrelevant information. If one requires that in a perturbed game,?® the minimum probabilities
are the same for Row in the two information sets. That is, if e¢(Left) = e(Right) and
X(Left) = x(Right), then it is strictly better for Column to play Left than Right.

More generally, a player might be facing a multiplayer non-cooperative game at an infor-
mation set, rather than a single-person decision problem. We now formalize our independence
requirement for abstract extensive form games in which both the strategy spaces and the
time horizon can be finite or infinite. We first specify the sense in which two games are

“equivalent,” and then provide a formal definition of this notion of “irrelevant information.”

F.2 Strategic Equivalence between Multistage Games

We fix a multistage game I' = (N, A, Z,0,p, (,u). A pure strategy of a player i is a behavioral
strategy o; = (00,041,...) with the property that, for all ¢ and any I, the probability
measure oy (l;) assigns all probability mass to a single point z; in A;. We use x; =

(20, i1, .. .) to denote such a pure strategy. By letting X, denote the set of measurable

26The perturbation here is in the sense of Selten (1975).
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functions from Z;; to A;;, we can thus equate X; = tho X, with the set of pure strategies of
player i. A pure strategy profile is thus an element of X = [].. X;. The associated normal
form is ((X)ien, (Us)ien)-

The reduced normal form?” of a multistage game is obtained from the normal form by
deleting from Xj;, for each player ¢, any pure strategy x; that is “redundant,” in the sense
that there exists a behavioral strategy o; # wx; such that U;(z;,z_;) = U;(o;,2_;) for all
J€ N and all x_; € X_;.

The normal form of a game, however, does not provide enough information to detect all
such redundant strategies. Consider, for example, the game depicted in Figure 9. Whether
Player 1 chooses A or B is irrelevant for the play of the game, but the normal form illustrated

in Table 1 does not allow us to detect this redundancy.

P1
A B
C,C|] 0|0
C,D| 0] 4
P2 pcl4]o
D,D| 4 | 4
Figure 9 — Extensive form Table 1 — Normal form

Given this, we now propose a method for detecting redundant strategies for I'. For
K C N x Z*, we apply the subscript “K” to denote the projection that maps A to Ax =
H(i,t)eK Ay, and likewise maps a to ax = (ai)unex. Let Z; be the set of measurable
functions from H; to ©. We can view an element of z; of Z; as a “choice of Nature” in period
t.

Consider some some disjoint subsets T and T” of Z* (sets of times) with the property

2TKohlberg and Mertens (1986) argued that the reduced normal form captures all information about a
game that is relevant to decision making.
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that
t¢TUT = t>sup T (129)

For disjoint subsets K and K’ of N x Z* and some zp € Zp, 070 € O, v € X, and
agr € Ak, we let

F[(ZT,I'K),(QT/,CLK/),T, K,T’,K’] (130)
be the multistage game obtained from I' by fixing:

e For each t € T, the choice function of nature in period ¢ to be z;.
e For each (i,t) € K, the strategy of player i in period t to be x;.
e For each t € T', the state of nature in period ¢ to be 6;.

e For each (i,t) € K', the action of player i in period ¢ to be a;.

If one or more of the index sets T, K, 7", and K’ in (130) are empty, we will omit them from
the notation. Given an index set K C N x Z™T, we say that the strategies in K are irrelevant

for the play of the game I' if all of the multistage games in
{F[IK,K] ZSL’KEXK} (131)

have the same reduced normal form. In this case, we denote by I'(K') the common reduced
normal form of the multistage games {I' [zx, K] : 2x € Xk}. (We note that I'(K) may
contain players with a singleton strategy set.) In Figure 9, the strategy of Player 1 in the
first step of the game is irrelevant.

Given two multistage games 'y and I'y with respective player sets N; and Ns, we say that
I'y and I'y are strategically equivalent if there exist K1 C Ny x ZT and Ky C Ny x Z* such
that (i) the strategies in K and K are irrelevant for the play of I'; and I'y respectively, and
(71) T'1 (K4 ) and T'(K3) can be obtained from each other by adding or deleting players with
a singleton strategy set, by performing increasing affine transformations of players’ payoff

functions, and by relabeling players and strategies®.

28Quppose I'1 (K1) = ((Xi)ien,, (ui)ien,) and To(Ka) = ((Y;)ien,, (vi)ien, ), and suppose players with a
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Remark 7. The notion of strategic equivalence here is more general than that obtained by
comparing reduced normal forms, because it removes redundant strategies in the extensive
forms that cannot be detected in the normal forms. As a special case, two multistage games
with the same reduced normal forms are strategically equivalent, in the sense defined above.
As a different example, if I' is a multistage game such that the strategies associated with
some index set K of players and times are irrelevant for the play of the game I', then I' is

strategically equivalent to I' [zx, K| for every zx € Xk.

Consider two multistage games I'y = (Ny, Ay, Zy, Oy, pe, Co,ug), £ € {1,2}. For some
(i,t) € Ny X ZT, (j,7) € Ny x Z*, some information set I; € Zy;; of I'y, some Iy € Ty;, of I'y,
and a homeomorphism g between the action set A in I'y and Ayj; in I'y, we say that I'y
at I is strategically isomorphic to 'y at Iy through the homeomorphism g if the following

conditions hold:
(i) 'y and 'y are strategically equivalent.

(ii) In the equivalence of I'; and I'y defined above, player 7 in 'y is identified®”, through
relabeling of players, with player j in I's.

(ii) The homeomorphism g between A;;; and As;, is defined by relabeling of strategies after

which I'y and 'y are strategically equivalent.?”

F.3 Strategically Irrelevant Information

We fix a multistage game I' = (N, A,Z,0,p,(,u). Given an information set I; € Z; of

player i in period t, (7!([;;) € O« x A can be viewed as the subset of partial histories

singleton strategy set have been deleted from both normal form games. Then what we mean here by relabeling
players and strategies is that there exists a bijection m between N; and N, (which relabels players), and
for every i € Ny, a bijection f; between X; and Yy ;) ((which relabels strategies)), such that u;((z:)ien,) =
aiVx(i) ((fi(Ya(iy)ien,) + bi with a; > 0.
This means, in the notation of Footnote 28, that neither player ¢ nor player j have singleton strategy

sets in (I'y, K1) and (T'2, K3) respectively, and that 7 (i) = j.

30 This means, in the notation of Footnote 28, that g(a;) = as if and only if the subset X;(I1,a1) = {z; €
X : zy(Ih) = a1} of pure strategies of player ¢ matches Y; (I, a2) = {y; € Y; : y;-(I2) = az} through the
bijection f;.
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that “reach” the information set I;. We can represent ¢(~*(I;) as a set of the form
¢ '(Ii) = Hy(Iir) X O, (1)) X Aos,, (1)

where O14(1;;) C {0,...,t}, O(I;x) € N x{0,...,t—1}, and Hy(Li) C OO0y, (1,0) X A0 (1)-
(As usual, S¢ denotes the complement of a set S.) We obtain uniqueness for this represen-
tation by always taking Oy; and O to be minimal, in the sense there there does not exist
a strict subset of Oy nor a strict subset of Og; that also admits such a representation. (We
allow Oy;; and Og; to be empty.) This representation means that player i learns from the

information set I;; precisely the fact that

((98)8601“([@5)7 (ajT>(j,T)€OQit(Iit)) E Hit([it)7

whereas player ¢ learns nothing at all about the complementary elements of the partial
history. The minimality of the index sets O; and O,y implies that Hy (1), whenever it
exists, must be a strict subset, as indicated, thus providing nontrivial information in the
form of a binding restriction on the partial history.

We further define M;;(1;;) € N x {0,...,t — 1} by letting (j,7) € M (I;;) if and only if
for every (0, a) and (9~, a) such that (;(0<¢, act) = I;; and Qt(égt, a<) # Iy, we have

Gir (O<rsa2r) # Gir (Brricr ).

This means that for every (j,7) € My (I;), by period T player j has learned whether the

information set I;; has been reached.
Proposition 25. The index sets Oqu (1) and My (1) are disjoint.

Proof. If (j,7) € Oqit(I;) then there exists a;, € Aj; such that if the action of player j
action in period 7 is a;, the information set I;; is not reached. Formally, a;; = a;, implies
(O<i,act) & C;' (1) for every complete history (6,a). Now let (6,a) be a complete history
under which I;; is reached. That is, (6<¢,a<) € ;' (Iir). Let a = (a_jr,aj,) (that is, a is

obtained from a by replacing a;, by d;,). Then we have (0<;, a;) & (;'(Iir). On the other
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hand, (j;(0<;,d<;) = (j-(0<-,a<,). This shows that player j in period 7 cannot tell whether
the information set I;; has been reached. Thus (j,7) & My (I;). O

Proposition 26. Suppose (j,7) € Oy (1) and (j',7") € My (1y). Then, for every infor-
mation set 1, € I, of player j in period T, we have (j',7") ¢ Oqj-(1j;). (This means that

player j in period T cannot observe the action of player j' in period 7'.)

Proof. 1If (j',7") € Oa;-(I;;) for some I;. € Z;;, then it must be that 7" < 7. Then the same
argument used in the proof of Proposition 25, after replacing (j,7) by (j’,7’), implies that
(', 7") & My (I;;). This leads to a contradiction, completing the proof. O

Definition 11. For any times ¢ and 7 and players ¢ and j, we say that two information sets
Iy and ;. contain the same strategic information if there exist subsets K; and K; of N X Z*,

and a homeomorphism g between the action sets A;; and A;., such that:
(1) KZ N OQit(]it) = @ and K_] N O?j’r<]j‘r) = (Z)
(11) OQit(Iit) U Kz U Mzt(Lt) = N x Z* and OQjT(IjT> U Kj U qu—([j ) =NXxZ".

(iii) Letting T; = {0,...,t}\O1i(L;r) and T; = {0, ..., 7}\ O, (1;;), for every z € Z, x € X,
hi € Hy(I;t), and hj, € Hj;(1;;), at least one of the following conditions applies:

(a) The game I';; = F[(ZT, zk, ), P, (T;, K, (Ori (L), OM(I“))} at I;; is strategically
isomorphic to the game PjT =T [(ZTj, JIK].), th, (7}, KJ) s (Ole(IjT), OQjT(IjT>>] at
I;; through the homeomorphism g.

(b) The strategy of player ¢ in period t is irrelevant in I';; and the strategy of player

J in period 7 is irrelevant in I';;.

We now give an interpretation of this notion of two information sets containing the same
strategic information. Suppose that player ¢ finds himself in some information set I;; at time
t. This informs player i of something specific about Nature’s states (0;)sco,,, (1), and about

the actions (ajfr)(j,T)EOQit(Iit)'
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For each (j,7) ¢ My (I;), however, player j, when in period 7, cannot tell whether the
information set I;; has been reached. In this case, the decision problem of player j in period
7 should not be embedded into the “subgame” faced by player ¢ at the information set I,
because doing so would violate the information structure of the original game. That is,
if (j,7) ¢ My(I;) and if the decision problem of player j in period 7 is embedded into
the “subgame” faced by player ¢ at I;;, then player j naturally knows that the information
set I;; has been reached. He is not supposed to learn this information by period 7 in the
original game. We thus fix the strategy of player j in period 7, for all (j,7) in some index
set K C N x Z*. The construction implies that Oq;(I;;) U K U My (1) = N x Z*, which
guarantees that the set K is large enough to include all indices that are not in M;;([;;). Fixing
Nature’s choice function in the periods of some index set T' guarantees that the multistage
game I'[ (27, 2x), hit, (T, K), (O144(L;t), O2it(I))] is well defined. Thus “containing the same
strategic information” means that, in all conceivable circumstances, player ¢ in period t as
well as player j in period 7 are either indifferent in their choice of strategies, or, in case
they are not indifferent, they face games that are strategically isomorphic, from the vantage
points of their respective information sets.

Given a multistage game I' = (N, A,Z,0,p,(,u), we say that a perturbed game [ =
(I, e, x) of I respects independence of strategically irrelevant information if €, (i) = € (1)
and x;-(Zj;) = xit(Li) © g whenever I; and I, contain the same strategic information for
players ¢ and j, respectively, where g is the homeomorphism between A;; and A;; defined in

Definition 11.
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