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Abstract

We model bargaining in over-the-counter network markets over the terms and prices
of contracts. Of concern is whether bilateral non-cooperative bargaining is sufficient to
achieve efficiency in this multilateral setting. For example, will market participants as-
sign insolvency-based seniority in a socially efficient manner, or should bankruptcy laws
override contractual terms with an automatic stay? We provide conditions under which
bilateral bargaining over contingent contracts is efficient for a network of market partic-
ipants. Examples include seniority assignment, close-out netting and collateral rights,
secured debt liens, and leverage-based covenants. Given the ability to use covenants and
other contingent contract terms, central market participants efficiently internalize the
costs and benefits of their counterparties through the pricing of contracts. We provide
counterexamples to efficiency for less contingent forms of bargaining coordination.
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1 Introduction

For a network market setting, we propose a theory of bilateral bargaining over the terms and

pricing of contracts that may be contingent on the contracts signed by other pairs of agents

in the network. We state conditions under which contingent bilateral contracting is socially

efficient, subject to the available sets of contracts. We provide counterexamples to efficiency

in settings with less effective forms of bargaining coordination. We develop two solution

concepts: an extensive form alternating-offers bargaining game equilibrium refinement, and

an axiomatic-bargaining solution. We show that the solutions arising from these approaches

coincide in the case of three-player networks. (Our extensive-form alternating-offers game

treats only the case of three-player networks.)

An example application depicted in Figure 1 is the contracting between a debtor firm and

a creditor, and between the same debtor firm and a derivatives counterparty. The unique

trembling-hand perfect equilibrium in our basic alternating-offers contingent contract bar-

gaining game specifies socially efficient actions by the three firms. Efficiency arises through

the ability of the debtor to internalize the costs and benefits of its two counterparties through

the pricing of contracts with each of them. For example, if a particular change in contract

terms would have large benefits for the swap counterparty, and could be accommodated at a

small total cost to the debtor and creditor firms, then this change in contract terms will be

chosen in the course of pairwise contingent contract bargaining, given that the debtor firm

can extract a compensating payment from the swap counterparty that provides a sufficient

incentive to the debtor and creditor.

creditor debtor swap counterparty
swaploan

Figure 1 – An illustrative three-firm financial contracting network.
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An illustrative issue of concern in this setting is whether the equilibrium contract terms

would efficiently assign recovery priority to the creditor and the swap counterparty in the

event of the debtor’s insolvency. Assignment of priority in either direction is currently

permitted under U.S. bankruptcy law through exemptions for qualified financial contracts

such as swaps, repos, clearing agreements, and securities lending contracts. This exemption

allows for enforceable ipso facto clauses that assign the right to terminate a contract in the

event of insolvency and to liquidate collateral. This sort of clause is standard in current

swap and repo contracts.

There has been a debate over allowing qualified financial contracts to include ipso facto

clauses, unrestricted by bankruptcy law. Roe (2013) suggests that contractual assignment

to swaps of the right to terminate and keep collateral in the event of the debtor’s insolvency

should be unenforceable or subject to rejection under an automatic stay. This issue is

modeled in a different setting by Bolton and Oehmke (2015), who instead assume price-taking

competitive markets and rule out the negotiation of covenants regarding the assignment of

priority. Like Bolton and Oehmke (2015), our model does not cover externalities such as

firesales, a tradeoff discussed by Duffie and Skeel (2012).

In our model, each pair of directly connected firms bargains over contractual terms.

In the example setting illustrated in Figure 1, the equilibrium contract prices reflect the

relative distress costs of the two counterparties, allowing the debtor to efficiently internalize

its counterparties’ distress costs and assign contractual priority efficiently. For example, if the

creditor suffers greater distress from loss of default priority than does the swap counterparty,

then in the naturally selected equilibrium, the pricing of the swap contract will include a

price concession that is sufficient to “convince” the swap counterparty to give up priority.

The creditor would in this case be willing to accept a lower interest rate in order to receive

effective seniority. Conversely, if the creditor is better equipped to suffer losses at the debtor’s

default than the swap counterparty, then in equilibrium the debtor will offer a high enough

interest rate to the creditor to encourage the creditor to agree to loss of priority, and the

debtor will receive a correspondingly higher upfront payment from the swap counterparty.

The debtor’s shareholders have no direct concern with seniority at the debtor’s own default,
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and are therefore able to act as a conduit by which the creditor and the swap counterparty

can indirectly compensate each other for priority assignment.

Our results are based on an extension to network settings of the alternating-offers bargain-

ing game of Rubinstein (1982). Bargaining is conducted by each pair of directly connected

nodes, which we call “firms.” Our model allows for incomplete information. While a given

pair of firms is bargaining, they are unaware of the bargaining offers and responses being

made elsewhere in the network. In order to isolate natural equilibria, we therefore extend

the notion of trembling-hand perfect equilibrium of Selten (1975) to this network bargaining

setting. The trembling-hand perfect equilibrium choices are socially efficient by virtue of

the assumed ability to sign contracts whose terms are contingent on the terms of other con-

tracts. For instance, in the setting of our illustrative example, the creditor and the debtor

can choose to make the terms of their loan agreement contingent on the terms of the swap

contract chosen by the debtor at its swap counterparty.

The efficiency of the trembling-hand perfect equilibrium contract terms does not depend

on some aspects of the bargaining protocol, such as which pair of counterparties writes

contingent contracts and which pair of counterparties uses only simple contracts. In practice,

covenants in a given contract normally restrict the terms of future contracts, but our setting

is static.

We show that equilibrium contract prices converge, as exogenous breakdown probabilities

go to zero, to those associated with the unique axiomatic solution that satisfies, on top of

some obvious bargaining axioms, two newly proposed axioms, “multilateral stability” and

“bilateral optimality.” In particular, the non-cooperatively bargained prices do not depend

on which pair of firms writes contingent contracts. Our axioms apply to more general types

of networks, under conditions that rule out general cross-network externalities.

An extensive literature on network bargaining games includes some prior work that,

like ours, focuses on non-cooperative bilateral bargaining. Until now this literature has

studied settings in which there are two key impediments to socially efficient outcomes: (i)

general cross-network externalities, and (ii) coordination failures that arise from a restriction

to contracts that are not contingent on other bilateral contracts. We assume an absence
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of general network externalities and we allow contracts to have unlimited cross-contract

contingencies, such as covenants. These “ideal” conditions are not to be expected in practical

settings. We nevertheless believe that it is valuable to characterize a theoretical benchmark

network market setting in which bilateral contracting is socially efficient, subject to the

restrictions imposed by the feasible sets of contractible actions. Even in our “ideal” setting,

our analysis suggests that apparently reasonable changes to our proposed bargaining protocol

can lead to additional equilibria that are not efficient.

Several papers provide non-cooperative bilateral bargaining foundations for the Myerson-

Shapley outcomes and values, as defined by Myerson (1977a). In the first of these papers,

Stole and Zwiebel (1996) provide a non-cooperatove foundation for the Myerson-Shapley

values as those arising in the unique sub-game perfect equilibrium of a network game in

which a firm negotiates bilateral labor contracts with each of its potential workers. Their

bargaining protocol, like ours, is based on the Rubinstein alternating offers game. In their

case, however, breakdown in a given bilateral bargaining encounter results in a re-start of the

bargaining of the firm with other workers, in which any previously “agreed” labor contract is

discarded. In this sense, the labor contracts are non-binding. The work of Stole and Zwiebel

(1996) is extended to more general settings by de Fontenay and Gans (2013). In a different

setting, Navarro and Perea (2013) provide a bilateral bargaining foundation for Myseron

values, with a sequential bilateral bargaining protocol in which pairs of linked nodes bargain

over their share of the total surplus created by the connected component of the graph in

which they participate.

2 A Simple Network with Three-Node in a Line

We begin with a simple three-firm network. Firms 1 and 2 bargain over the terms of one

contract. Firms 2 and 3 bargain over the terms of another contract. The contracts specify

the actions to be taken by each firm. Firm i takes an action in a given finite set Si. We

denote by S =
∏3

i=1 Si the set of all possible action vectors. For each action s2 ∈ S2 of the

central firm, there is a limited subset C1(s2) ⊆ S1 of feasible actions that can be undertaken
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by firm 1, and a limited set C3(s2) ⊆ S3 of feasible actions for firm 3. That is, Ci is

a correspondence on S2 into the non-empty subsets of Si. These correspondences describe

compatibility conditions on actions taken by bilaterally contracting counterparties. We write

(s1, s2) ∈ C12 and (s2, s3) ∈ C23 to indicate that a pair of actions is compatible. For a given

action vector s, s is said to be feasible if both pairwise compatibility conditions are satisfied.

We denote by C the set of feasible action vectors.

In applications, the actions of two linked firms could represent the terms of their bilateral

contract, other than the initial compensating payment. These terms could include, for

example, maturity date, stipulated future actions or payments (contingent perhaps on future

states of the world), seniority assignment, and so on. Each pair of contracting firms is also

able to exchange an initial monetary payment. Firm 2 pays firms 1 and 3 the amounts y1

and y3 respectively. These amounts are any real numbers, positive or negative. Later we

will specify intervals by which the payments are bounded. Equivalently, firm i pays firm 2

the amount −yi. In summary, firms choose actions s ∈ S = S1 × S2 × S3 and compensation

amounts y ∈ R2, with respective quasi-linear utilities

u1(y, s) = f1(s1, s2) + y1

u2(y, s) = f2(s1, s2, s3)− y1 − y3

u3(y, s) = f3(s2, s3) + y3,

for some f1 : S1 × S2 → R, f2 : S → R, and f3 : S2 × S3 → R, as illustrated in Figure

2. It is important for our efficiency results that a firm’s utility depends only on its direct

compensation, and on the actions of itself and its direct bilateral counterparty. Nevertheless,

the compatibility condition s3 ∈ C3(s2) and the dependence of f3(s2, s3) on s2 imply that

firms 1 and 2 contracting over (s1, s2) has an influence over firm 3 through the choice of s2.

A symmetric situation applies to contracting between firms 2 and 3.

In the event of a failure to reach contractual agreement, there are some pre-arranged

“outside options,” which can be viewed as the “status quo.” We let (s0, y0) ∈ S × R2 be
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Firm 1

action : s1 ∈ C1(s2)

u1(y, s) = f1(s1, s2) + y1

Firm 2

action : s2 ∈ S2

u2(y, s) = f2(s1, s2, s3)− y1 − y3

Firm 3

action : s3 ∈ C3(s2)

u3(y, s) = f3(s2, s3) + y3

Figure 2 – Actions and utilities in the three-firm financial contracting network.

the status-quo actions and payments. Without loss of generality via a normalization, we let

y0 = (0, 0), f1 (s0
1, s

0
2) = 0, f3 (s0

2, s
0
3) = 0, and f2 (s0

1, s
0
2, s

0
3) = 0.

If the bargaining between Nodes 1 and 2 break down, an event that can arise in the

extensive-form bargaining game to be defined, then Node 2 has a limited set of actions

that can be taken with Node 3, and likewise with a breakdown between Nodes 2 and 3.

Specifically, in the event of a bargaining breakdown between Nodes 1 and 2, the action of

Node 1 is its status quo action s0
1, whereas the pair (s2, s3) of actions of Nodes 2 and 3 must

be chosen from

SB2,3 =
{

(s2, s3) : s2 ∈ S1
2 , s3 ∈ C3(s2)

}
,

where S1
2 is a given non-empty subset of S2 with the property that any action in S1

2 is

compatible with s0
1. That is, s0

1 ∈ C1(s2) for any s2 ∈ S1
2 . Likewise, in the event of a

breakdown in the bargaining between Nodes 2 and 3, the action of Node 3 is its status quo

action s0
3, whereas the actions of Nodes 1 and 2 must be chosen from

SB1,2 =
{

(s1, s2) : s2 ∈ S3
2 , s1 ∈ C1(s2)

}
,

where S3
2 is a given non-empty subset of S2 with the property that any action in S3

2 are

compatible with s0
3. By assumption, SB2,3 and SB1,2 are not empty.

We assume for simplicity that each stated argmax is a singleton (that, is the associ-

ated maximization problem has a unique solution). This is generically true in the space of
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utilities.1 The socially optimal result is

(s∗∗1 , s
∗∗
2 , s

∗∗
3 ) = argmax

s∈C
U(s).

where U : S → R be the “social welfare function” defined by

U(s) = f1(s1, s2) + f2(s1, s2, s3) + f3(s2, s3).

We also adopt the following two standing assumptions regarding outside option values.

First, for i = 1 and i = 3, we have

fi (s
0
i , s

i
2) = fi (s

0
i , s

0
2) , si2 ∈ Si2,

This condition means that that if there is a breakdown between Node 2 and another Node

i, then the utility of Node i does not vary across the restricted choices remaining to Node 2.

Basically, if they don’t sign a contract, Node 2 cannot help or hurt Node i, no matter what

Node 2 chooses or whether Node 2 also takes its outside option.

The second assumption is

max
s1∈C1(s2)

U(s1, s2, s3) ≥ U
(
s0

1, s
1B
2 , sB3

)
, (s2, s3) ∈ C23, (1)

where (
s1B

2 , sB3
)

= argmax
(s1b2 ,sb3)∈SB2,3

f2

(
s0

1, s
1b
2 , s

b
3

)
+ f3

(
s1b

2 , s
b
3

)
.

This condition means that Node 1 always has a feasible choice that is a strict welfare im-

provement over any breakdown option.

Our main result is a protocol for contingent pairwise bargaining under which the unique

extensive form trembling hand perfect equilibrium, for any sufficiently small trembles, achieves

the socially optimal actions s∗∗. We also provide alternative plausible bargaining approaches
1That is, fixing all other primitives of the model, we can view the vectors of utilities of the firms (or of a

subset of firms) defined by the utilities f1, f2, and f3 as elements of a Euclidean space. A condition is said
to hold “generically” in a Euclidean space if it holds except for a closed subset of zero Lebesgue measure.
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that do not lead to this efficient result.

3 Simple Illustrative Example

For an extremely simple illustrative example, we may imagine a situation in which firm 2

is negotiating credit agreements with firms 1 and 3. The creditor firms 1 and 3 each begin

with 1 unit of cash at time zero. Firm 2 initially has c < 1 in cash, and has the opportunity

to undertake a project that requires 2 units of cash. At time 1, the project will pay some

amount A > 2 with success probability p, and otherwise pays B, where 1 < B < 2. For

some negotiated note discount yi, creditor firm i will provide firm 2 with 1 − yi in cash at

time zero in return for a note promising to pay 1 at time 1. Without loss of generality for

this example, we can take S1 = S3 = {0} and C1(s2) = C3(s2) = {0}. Firm 2 chooses from

S2 = {0, 1} × {0, 1} × {1, 3}, each element of which specifies, respectively, whether credit is

taken from 1, whether credit is taken from 3, and whether firm 1 or firm 3 receives seniority.

If there is no agreement, all firms consume their initial cash. If firm 2 can negotiate funding

from each of the creditors, then at time zero it will invest 2 in the risky project and consume

all of its excess cash, which is c− y1 − y3. At time 1, firm 2 will consume A− 2 if the risky

project is successful and nothing otherwise. If the project is funded, then at time 0 firms

1 and 3 will consume y1 and y3 respectively. At time 1, these creditors will each consume

1 if the project is successful. Otherwise, the senior creditor will consume 1 and the junior

creditor will consume B − 1.

Firm i has utility c0 + γiE(c1) for consumption c0 in period 0 and c1 in period 1. We

suppose that γ2 < γ1 < γ3. The status-quo (breakdown) actions is taken to be s0
2 =

(0, 0, 3). (Which of the creditors is senior in the event of no funding is irrelevant, and is

taken to be firm 3 without loss of generality.) The model’s primitive set of parameters is

thus (A,B, p, c, γ1, γ2, γ3, s
0
2).

We suppose that the project is worth funding, in terms of total utility, no matter which

creditor is senior. The unique efficient outcome, subject to the limited available forms of

credit agreements, is therefore to fund the project and for firm 3 to be the senior creditor.
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That is, s∗∗2 = (1, 1, 3). We assume that y1 + y3 < c for any discounts y1 and y3 that are

individually rational for firms 2. This is the condition c > γ2p(A − 2). With this, c is

irrelevant and can be ignored when calculating an equilibrium. We also assume that the set

of discounts (y1, y3) that are individually rational for all firms is not empty, even if the “wrong”

creditor, firm 1, is senior. This is the condition γ2p(A− 2) > 2− γ1− γ3(p+ (1− p)(B− 1)).

After normalizing by subtracting the initial cash utility of 1, firms 1 and 3 receive nothing

in the event that the project is not funded fully, and otherwise receive utility yi + fi(1, 1, j)

where
fi(1, 1, i) = γi

fi(1, 1, i
′) = γi(p+ (1− p)(B − 1)),

(2)

depending on whether firm i′ 6= i obtains seniority. (We have suppressed from the notation

the dependence of fi on s1 and s3, since this is trivial.)

After normalizing by subtracting the initial cash utility of c, firm 2 receives nothing in

the event that the project is not funded fully, and otherwise receives utility

−y1 − y3 + f2(1, 1, j) = −y1 − y3 + γ2p(A− 2),

regardless of which firm j obtains seniority.

4 The Axiomatic Solution

Appendix C provides foundations for an axiomatic solution of network bilateral bargaining

problems. As we will show, the axiomatic solution coincides with the proposed equilibrium

for the associated non-cooperative extensive-form bargaining game.

In addition to (i) axioms for two-node networks that support the bargaining solution

of Nash (1950), our axioms are (ii) multilateral stability, (iii) independence of irrelevant

actions, and (iv) bilateral optimality. Under these axioms, we show that there is a uniquely

defined solution, which we call the axiomatic solution, and moreover the axiomatic solu-

tion outcome is socially efficient. We briefly motivate the axiomatic solution here, and

provide details in Appendix C. A key objective of the paper is to show conditions under
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which the unique extensive-form trembling-hand-perfect equilibrium for our non-cooperative

extensive-form alternating-offers bargaining game associated with contingent network con-

tracting reaches the same payments and the same (efficient) actions as those uniquely spec-

ified by the axiomatic solution. This can be viewed as an extension to network games of the

non-cooperative-game foundation established by Binmore, Rubinstein, and Wolinsky (1986)

for Nash bargaining.

Formally, our axioms concern the properties of a “solution” F : Σ → Ω, a function that

maps the space Σ of network bilateral bargaining problems to the space Ω of associated

actions and payments. These spaces Σ and Ω are formally defined in Appendix C.

Our first axiom is that when applied to a network bilateral bargaining problem σ whose

graph merely consists of two connected nodes, the solution F (σ) is effectively the Nash

Bargaining Solution, specifying actions s∗ = (s∗1, s
∗
2) and a payment y∗12 that solve

max
s∈C
{f1(s) + f2(s)}

y∗1,2 =
1

2
([f1(s∗)− u1]− [f2(s∗)− u2]) ,

where u1 and u2 are the respective outside option values of nodes 1 and 2. In Appendix C, we

discuss underlying axioms for two-player games that support this Nash Bargaining Solution.

Roughly speaking, a solution F satisfies our second axiom, multilateral stability, if, for

any given network bilateral bargaining problem σ, whenever one “freezes” the actions and

payments among a subset of pairs of directly connected nodes, and then applies F to the

bargaining problem σsub induced for the remaining sub-network Gsub, the solution F (σsub)

of the sub-network bilateral bargaining problem σsub coincides on the sub-network with that

prescribed by the solution F (σ) to the entire network problem σ. Multilateral stability is

illustrated in Figure 3.

Our third axiom, independence of irrelevant actions, states roughly that if the solution

specifies some outcome (s∗, y∗) for a network bilateral bargaining problem, and if we alter

this network bilateral bargaining problem merely by reducing the set of feasible actions while

still admitting s∗ as feasible, then (s∗, y∗) remains the solution.
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s1

s2

s5

s3

s4

y12

y25

y23

y24

y34

s̃1

s̃2

s̃5

s3

s4

ỹ12

ỹ25

ỹ23

ỹ24

Figure 3 – Multilateral stability. By freezing the bargaining outcome of nodes 3 and 4 (blue) off
the sub-network formed by edges other than (3, 4), the solution on the induced sub-network game
coincides with the blue solution. That is, s̃i = si and ỹij = yij .

A solution F satisfies the final axiom, bilateral optimality, if for any given network

bilateral bargaining problem σ, when any two directly connected nodes maximize the sum

of their total payoff under the assumption that the remaining nodes will react according the

solution F applied to their sub-network, then the maximizing actions they would choose

are consistent with the solution F (σ) of the entire network bilateral bargaining problem.

Bilateral optimality is illustrated in Figure 4.

A result stated in Appendix C implies that the axiomatic solution (ya, sa) associated with

our our present three-firm network setting is given by the efficient actions sa = s∗∗ and the

upfront payments ya = (ya1 , y
a
3) that uniquely solve the equations

u1(ya, s∗∗)− u12 = u2(ya, s∗∗)− u21

u3(ya, s∗∗)− u32 = u2(ya, s∗∗)− u23,
(3)

11



s1

s̃2

s5

s̃3

s4

y12

y25

ỹ23

y24

y34

s1

s2

s5

s3

s4

y12

y25

y23

y24

y34

Figure 4 – Suppose the orange nodes, 2 and 3, maximize their total payoff assuming that the
remaining network will react according to the (blue) solution. Bilateral optimality implies that the
actions (s̃2, s̃3) coincides with applying the blue solution to the whole network. That is, (s̃2, s̃3) =
(s2, s3).

where uij is the outside-option value of node i in its bargaining with node j. Here

u12 = u32 = 0

u21 =
1

2
max

(s2,s3)∈SB2,3
U
(
s0

1, s2, s3

)
u23 =

1

2
max

(s1,s2)∈SB1,2
U
(
s1, s2, s

0
3

)
.

(4)

The main result of the paper, stated in Section 8, provides simple conditions under which

this axiomatic solution is also the unique extensive-form trembling-hand equilibrium of the

non-cooperative contingent-contract bilateral bargaining game to be described. In this sense,

bilateral bargaining over complete contingent contracts is socially efficient in our network

market setting. It also follows that our non-cooperative equilibrium solution concept for

extensive-form bilateral bargaining over contingent contracts satisfies multilateral stability,

irrelevance of independent actions, and bilateral optimality.
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5 Counterexamples

This section explores variants of the model definition or solution concept that do not lead

to efficient equilibrium outcomes. Our objective here is to promote an understanding of the

dependence of our main efficiency results on our assumptions. For this purpose, we will

restrict attention to the simple special case in which f1 = 0, f3 = 0, and S2 = {s0
2}. That is,

utility is obtained only by the central node, and the treatment of the central node is fixed.

We will simply write f for f2.

5.1 Bargaining Without Communication

We will first consider bilateral bargaining without the ability of either pair of connected

nodes to contract on the bargaining outcome of the other pair. That is to say, when Nodes

1 and 2 bargain, Nodes 1 and 2 are unable write a contract that depends on the action s3 of

Node 3 or the payment y3. Likewise, when Nodes 2 and 3 bargain, Node 3 cannot contract

on the action s1 of Node 1 or the payment y1. The behavior of Nodes 1 and 3 in such a game

depends on their beliefs about the contracted action and payment of other nodes.

In this setting, it is common to restrict attention to passive beliefs in which, after observ-

ing a deviation, each node continues to believe that other nodes receive their equilibrium

offers. This is typical in Hart, Tirole, Carlton, and Williamson (1990) and Segal (1999).

Let (s∗1, s
∗
3; y∗1, y

∗
3) denote the equilibrium outcome. With passive beliefs, if Node i is offered

(si, yi) 6= (s∗i , y
∗
i ), he still believes that other nodes make their equilibrium choices of treat-

ments and prices. We suppose that the outcomes of bilateral negotiations are given by the

Nash Bargaining Solution (NBS). The passive-beliefs equilibrium must therefore be a pair-

wise stable Nash bargaining solution. That is, (s∗i , y
∗
i ) is the Nash solution to the bargaining

problem between Node i and Node 2, under the belief that
(
s∗j , y

∗
j

)
is the agreed choice by
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Node j and Node 2. Hence (s∗, y∗) solves2
max

s1∈S1,y1∈R
y1 · [f(s1, s

∗
3)− y∗3 − y1]

max
s3∈S3,y3∈R

y3 · [f(s∗1, s3)− y∗1 − y3] .
(5)

From (5), it is straightforward to characterize pairwise-stable NBS by

s∗1 = argmax
s1∈S1

f(s1, s
∗
3)

s∗3 = argmax
s3∈S3

f(s∗1, s3)

y∗1 = y∗3 =
1

3
f(s∗1, s

∗
3).

In a pairwise stable NBS, each node has the same utility

u1 = u2 = u3 =
1

3
f(s∗1, s

∗
3).

We can see that the efficient vector of treatments s∗∗ is indeed consistent with a pairwise

stable NBS. Not every pairwise stable NBS, however, is necessarily efficient. This is so

because (s∗1, s
∗
3) merely solves

s∗1 ∈ argmax
s1∈S1

f(s1, s
∗
3)

s∗3 ∈ argmax
s3∈S3

f(s∗1, s3),
(6)

whereas (s∗∗1 , s
∗∗
3 ) jointly maximizes f(s1, s3). Depending on the utility function f , there may

be other pairwise stable NBS, which are Pareto ranked. In a pairwise stable NBS, Nodes 1

and 3 cannot be sure of making efficient choices because of the inability to contract based

on communication between the two spoke-end nodes in the solution concept. Node i cannot

be certain that node j will choose the efficient treatment s∗∗j . Suppose a pair of treatments

(s∗1, s
∗
3) satisfies (6). If Node i believes that Node j chooses s∗j , then the outcome of her

2One may argue that Bi = {(f(si, s
∗
j ) − y∗j − yi, yi) : si ∈ Si, yi ∈ R} is not convex, whereas the Nash

solution requires convexity. Indeed, the payoff pairs form a finite number of parallel lines in the Euclidean
plane. One can convexify this set by filling in the gaps between the lines. Then the axiom of Independence
of Irrelevant Alternatives implies that the unique solution is given by maximizing the utility products in
equation (5).
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bargaining with the central node is s∗i .

One can construct a non-cooperative alternating-offers game whose Perfect Bayesian

Nash equilibria with passive beliefs coincide with the pairwise stable NBS, in the limit as

players become infinitely patient. This is shown by de Fontenay and Gans (2013). In such a

game, the central node is assumed to be able to bargain only over prices, but not the actions

to be chosen by the spoke-end nodes. Thus the central node cannot efficiently coordinate

the actions of the spoke ends. In practice, a borrowing firm is typically able to credibly

assign higher seniority to one lender over another, in return for a low interest rate. A junior

lender, through accounting disclosure or covenants, is typically able to receive information

on its relative and absolute loss of priority and demand a correspondingly high interest rate.

In other cases, however, firms in a network may fail to coordinate their contracts and use

price negotiations to promote efficient outcomes due to a lack verifiable and contractible

information.

5.2 Distortion of Outside Option Values

We now allow Nodes 1 and 2 to sign enforceable contingent contracts. For each action s3

chosen by Node 3, Nodes 1 and 2 can choose a different action-payment pair (s1, y1). Nodes

2 and 3 sign a simple, non-contingent binding contract (s3, y3), to which both nodes commit.

This setting is equivalent to the following 2-stage game: Nodes 2 and 3 first bargain over

(s3, y3) in Stage 1. Then, in Stage 2, Node 2 bargains with Node 1 over (s1(s3), y1(s3)), with

common knowledge of the action s3 chosen by Node 3.

We show that the socially efficient outcome (s∗∗1 , s
∗∗
3 ) may not be an equilibrium.

Suppose in Stage 1, Nodes 2 and 3 choose (s3, y3). Then, in Stage 2, a breakdown between

Nodes 1 and 2 leads to payoffs of u0
12(s3) = 0 for Node 1 and u0

21(s3) = f (s0, s3) − y3 for

Node 2. Therefore u0
12(s3) and u0

21(s3) are the respective outside option values for Nodes 1

and 2 in their bilateral bargaining in Stage 2. Likewise, the outside option values for Nodes

2 and 3 in Stage 1 are u0
23 = 0.5f (s∗1 (s0

3)) and u0
32 = 0, where s∗1(s3) = argmaxs1∈S1

f(s1, s3).

By the same argument used to determine the pairwise stable NBS, the Nash bargaining
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outcome (s1(s3), y1(s3)) between Nodes 1 and 2 in Stage 2 is

s∗1(s3) = argmax
s1∈S1

f(s1, s3),

whereas the payment y1(s3) is determined by y1(s3) = f(s∗1(s3), s3)− y1(s3)− y3 − u0
21(s3)

y3 = f(s∗1(s3), s3)− y1(s3)− y3 − u0
23.

Hence
y1(s3) =

1

2

[
f(s∗1(s3), s3)− f

(
s0

1, s3

)]
,

2y3 =
1

2

[
f(s∗1(s3), s3) + f

(
s0

1, s3

)]
− 1

2
f
(
s1

(
s0

3

)
, s0

3

)
.

Therefore, in Stage 2, when choosing s3, Nodes 2 and 3 s3 both receive the payment

g(s3) =
1

2

(
1

2

(
f(s∗1(s3), s3) + f

(
s0

1, s3

)]
− 1

2
f
(
s1

(
s0

3

)
, s0

3

))
.

One can easily choose f so that the maximum of g is not attained at s3 = s∗∗3 . In this case,

the socially efficient outcome (s∗∗1 , s
∗∗
3 ) cannot be an equilibrium.

Indeed, by committing to s3, when bargaining with Node 1, Node 2 has an outside option

value u0
21(s3) = f (s0, s3)− y3 that depends on s3. In this sense, the choice of s3 in Stage 1

may distort the outside option value of Node 2 in Stage 2. A low value of u0
21 forces Node

2 to make a high payment to Node 1, which is detrimental to both Nodes 2 and 3. Thus

the distortion caused by this outside option value u0
21 can create an incentive for inefficient

equilibrium outcomes.

5.3 Incentives to Lie Distort the Distribution of Surplus

We again allow nodes to sign contingent contracts. For each action s3 chosen by Node 3,

Nodes 1 and 2 choose some action-payment pair (s1, y1), and vice versa. We now assume,

however, that the contingent contracts are not enforceable. We will see, not surprisingly,

that the central node may have an incentive to misreport to one end node the outcome of
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its bargain with the other end node.

We assume that the outside option values for both bilateral bargaining problems (that

between Nodes 1 and 2, and that between Nodes 2 and 3) are all 0. This assumption allows

us to isolate the effect of dishonesty by the central node. As this rules out the distortion of

outside option values through commitment to a contract, we consider only binding contracts.

Consider the following 2-stage game. In Stage 1, Nodes 2 and 3 first bargain over (s3, y3).

In Stage 2, Node 2 communicates to Node 1, not necessarily truthfully, that the action chosen

by Node 3 is s̃3. Then Nodes 1 and 2 bargain over (s1(s̃3), y1(s̃3)) . Truthful communication

by Node 2 and the socially efficient outcome (s∗∗1 , s
∗∗
3 ) need not be an equilibrium of the

game. In order to see this, suppose this is in fact an equilibrium. In Stage 1, Nodes 2 and 3

choose the treatment s∗∗3 along with some payment y3 ∈ R. If Node 1 believes the report from

Node 2 that Node 3 agreed to take the action s̃3, then following the earlier determination

of pairwise stable NBS, the Nash bargaining outcome (s1(s̃3), y1(s̃3)) between Nodes 1 and

2 in Stage 2 would be:

s∗1(s̃3) = argmax
s1∈S1

f(s1, s̃3).

The associated payment y1(s̃3) is determined by y1(s̃3) = f(s∗1(s̃3), s̃3)− y1(s̃3)− y3

y3 = f(s∗1(s̃3), s̃3)− y1(s̃3)− y3.

Hence y1(s̃3) = 1
3
f(s∗1(s̃3), s̃3). The value to Node 2 associated with reporting s̃3 is

f (s∗1(s̃3), s∗∗3 )− y1(s̃3)− y3 = f (s∗1(s̃3), s∗∗3 )− 1

3
f(s∗1(s̃3), s̃3)− y3.

We define g : S3 → R by

g(s̃3) = f (s∗1(s̃3), s∗∗3 )− 1

3
f(s∗1(s̃3), s̃3).

One can choose f so that the maximum of g is not attained at s̃3 = s∗∗3 . It is therefore

not credible that Node 2 correctly reports. This could destroy the socially efficient outcome

17



(s∗∗1 , s
∗∗
3 ) for being an equilibrium.

We have shown that if Node 1 believes the report of Node 2, then Node 2 will not report

truthfully, so there is no truth-telling equilibrium. There are other possibilities, based on

a definition of equilibrium in which Node 1 does not necessarily believe Node 2, but rather

makes an inference about s3 based on the report s̃3. In this setting, it is conceivable that an

equilibrium may not exist, or that there may be either efficient or inefficient equilibria. We

intend to go further into this in the next version of the paper.

6 Contingent-Contract Network Bargaining

Our main objective now is to extend and apply the bargaining protocol of Rubinstein

(1982) and Binmore, Rubinstein, and Wolinsky (1986). The associated unique extensive-

form trembling-hand perfect equilibrium outcome of the corresponding negotiation game

converges, as the breakdown probability goes to zero, to the axiomatic solution (sa, ya), and

in particular achieves the socially efficient choice sa = s∗∗. As explained in the previous

section, not all plausible extensions of the Rubinstein model to our network setting have this

efficiency property.

We allow the actions negotiated by Nodes 1 and 2 to be contractually contingent on the

actions chosen by Nodes 2 and 3 from S2,3 = {(s2, s3) : s2 ∈ S2, s3 ∈ C3(s2)}. As we shall

see, Nodes 2 and 3 may experience a breakdown in their negotiation, a contingency that we

label B2,3. Thus, the set of conceivable contingencies is S2,3 ∪ {B2,3}. The contingent action

to be negotiated between Nodes 1 and 2 is
(
s1(·), sb1, s1b

2

)
, where s1 is chosen from

C = {s1 : S2,3 → S1 : s1(s2, s3) ∈ C1(s2)},

and
(
sb1, s

1b
2

)
is chosen from SB1,2. That is, s1(·) is a “menu” of actions such that, for each

pair of conceivable actions (s2, s3) ∈ S2,3 by Nodes 2 and 3, s1(s2, s3) specifies an action,

compatible with s2, to be taken by Node 1. In the event B2,3 that bargaining between Nodes

2 and 3 breaks down, the pair of actions to be taken by Nodes 1 and 2 is
(
sb1, s

1b
2

)
. Nodes

1 and 2 also bargain, separately, over a contingent payment
(
y1, y

b
1

)
, where y1 is a mapping
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from S2,3 to R, and yb1 is a real number that specifies the amount of payment from Node 2

to 1 in the breakdown event B2,3. Thus, the contract between Nodes 1 and 2 takes the form

of some contingent action
(
s1, s

b
1, s

1b
2

)
and some contingent payment

(
y1, y

b
1

)
.

On the other hand, the contract to be chosen by Nodes 2 and 3 specifies (s2, s3) ∈ S2,3

and an associated payment y3 ∈ R, as well as also some
(
s3b

2 , s
b
3

)
∈ SB2,3 and associated

payment yb3 ∈ R to be taken in the event of a breakdown between Nodes 1 and 2.

The proposed four-stage extensive-form network bargaining game is defined as follows.

Stage a: In Stage a, Nodes 1 and 2 bargain over their contingent action. Node 1 is the first

proposer and offers a contingent action s1 in C and some
(
sb1, s

1b
2

)
∈ SB1,2 in period 0. (The

identity of the first proposer is irrelevant for the ultimate solution concept.) For each contin-

gency (s2, s3) ∈ S2,3, Node 2 either accepts or rejects the offered action s1(s2, s3). Likewise,

for the contingency B2,3, Node 2 either accepts or rejects
(
sb1, s

1b
2

)
. Acceptance closes the

bargaining between Nodes 1 and 2 over the action s1 (respectively,
(
sb1, s

1b
2

)
) contingent on

(s2, s3) (respectively, on B2,3). Agreement or rejection at one contingency does not bind be-

havior at any other contingency. Rejection at a particular contingency (including B2,3) leads,

with a given probability η ∈ (0, 1), to a breakdown of the negotiation over that contingency.

If Nodes 1 and 2 break down when they are bargaining over
(
sb1, s

1b
2

)
, the resulting actions

for both Nodes 1 and 2 are the exogenous status-quo choices,
(
sb1, s

1b
2

)
= (s0

1, s
0
2). These

breakdown events are independent across contingencies. The process continues to the next

period, when Node 2 is the proposer and Node 1 responds, as illustrated in Figure 5. This

alternating-offers procedure is iterated until agreement or breakdown. Let St2,3 be the set of

contingencies (including B2,3) that are still open for negotiation. That is, St2,3 is the set of

contingencies for which Nodes 1 and 2 have reached neither agreement nor breakdown by the

beginning of period t. In period t, Nodes 1 and 2 bargain over s1(s2, s3) for these remaining

contingencies (s2, s3) in St2,3, and over
(
sb1, s

1b
2

)
for the contingency B2,3 if B2,3 ∈ St2,3. The

bargaining between Nodes 1 and 2 concludes at the first time by which they have reached

an agreement or have broken down for all of contingencies in S2,3 ∪ {B2,3}. This is a finite

time, almost surely. The breakdown probability η is an exogenous parameter of the model.
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Figure 5 – The first four stages of a generic Rubinstein alternating-offers game.

We will later be interested in the limit behavior as η → 0. The result of Stage a of the

bargaining game is some random set Ξ2,3 ⊆ S2,3 ∪ {B2,3} on which Nodes 1 and 2 reach

agreement, and for each contingency in Ξ2,3, the agreed action s1(s2, s3) for Node 1, as well

as the agreed pair of actions
(
sb1, s

1b
2

)
in the contingency B2,3, if it is in Ξ2,3.

Stage b: In Stage b, Nodes 2 and 3 bargain without contingencies over some
(
s2, s3, s

3b
2 , s

b
3

)
such that (s2, s3) ∈ S2,3 and

(
s3b

2 , s
b
3

)
∈ SB2,3. One should understand

(
s3b

2 , s
b
3

)
to be the

actions of Nodes 2 and 3 that apply in the event that Nodes 1 and 2 break down at the

contingency (s2, s3), actions that Nodes 2 and 3 would have liked to choose. Simultaneous

with the bargaining in Stage a, Nodes 2 and 3 play a similar alternating-offers bargaining

game. We suppose that Node 3 proposes first. (Again, the identity of the first proposer does

not matter in the limit as η → 0.) The two negotiations, between Nodes 1 and 2 in Stage a,

and between Nodes 2 and 3 in Stage b, are not coordinated in any way. Specifically, Stage b

strategies cannot depend on information from ongoing play or breakdowns in Stage a, and

vice versa. Let A2,3 ∈ {Y,N} be the binary variable indicating whether Node 2 and 3 reach

an agreement (Y ) or not (N) over (s2, s3). If Nodes 2 and 3 break down when bargaining

over
(
s3b

2 , s
b
3

)
, the resulting actions for both Node 2 and 3 are their exogenous status-quo

choices,
(
s3b

2 , s
b
3

)
= (s0

2, s
0
3).
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Stage a′: Once Nodes 1 and 2 have finished bargaining over their contingent actions in

Stage a, they bargain in Stage a′ over the corresponding payments y1(s2, s3) and yb1. Stage a

precedes Stage a′ so that the play of Stage a is available information to both players at the

beginning of Stage a′, information including the bargaining outcome of Stage a. If B2,3 6∈ Ξ2,3,

that is, if Nodes 1 and 2 did not reach an agreement over
(
sb1, s

1b
2

)
in Stage a, then yb1 is not

subject to negotiation and is fixed to be the null payment yb1 = 0. Otherwise when bargaining

over the payments y1(s2, s3) and yb1, Nodes 1 and 2 use the same form of alternating-offer

game. For any contingency in Ξ2,3, breakdown of the associated payment bargaining leads to

the status-quo action s0
1 (respectively, actions (s0

1, s
0
2)) and the null payment, y0

1 = 0. That

is, unless they can agree on the payment y1(s2, s3) (respectively, yb1), the contingent action

s1(s2, s3) (respectively, actions
(
sb1, s

1b
2

)
) agreed in Stage a is discarded. We let Ξt

2,3 be the

set of contingencies that are still open for negotiation at the beginning of period t in Stage a′.

The result of Stage a′ is a random set A2,3 ⊆ Ξ2,3 at which there is ultimately agreement on

both an action s1(s2, s3) and a payment y1(s2, s3), as well as actions
(
sb1, s

1b
2

)
and a payment

yb1 for the contingency B2,3.

Stage b′: Similarly, following Stage b, Nodes 2 and 3 bargain over the payment y3 associated

with (s2, s3) and the payment yb3 associated with
(
s3b

2 , s
b
3

)
to be made in the event that

Nodes 1 and 2 do not reach agreement at the choice (s2, s3) of Nodes 2 and 3. As with the

paired Stages a and b, the negotiations and breakdowns in Stages a′ and b′ are carried out

independently.

In summary, given the results
(
s1(·), sb1, s1b

2 ; y1, y
b
1;A2,3

)
and

(
s2, s3, s

3b
2 , s

b
3 ; y3, y

b
3, A2,3

)
of the first four stages, the actions and payments of the game are determined as follows. If

A2,3 = Y and (s2, s3) ∈ A2,3, then the ultimate actions and payments are

[s1(s2, s3), s2, s3 ; y1(s2, s3), y3(s2, s3)].

If, instead, A2,3 = Y and (s2, s3) 6∈ A2,3, the outcome of the bargaining game is then

[
s0

1, s
3b
2 , s

b
3 ; y0

1 = 0, yb3
]
.
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Finally, in the event A2,3 = N , the final outcome is
[
sb1, s

1b
2 , s

0
3 ; yb1, y

0
3 = 0

]
. This combination

of the above four stages into final results is illustrated in Figure 6.

Nodes 1 and 2 in Stage a

{s1(s2, s3) : (s2, s3) ∈
Ξ2,3},

(
sb1, s

1b
2

) Nodes 2 and 3 in Stage b(
s2, s3; s3b2 , s

b
3

)

Nodes 1 and 2 in Stage a′

{y1(s2, s3) : (s2, s3) ∈ A2,3}, yb1

Nodes 2 and 3 in Stage b′(
y3, y

b
3

)

Final result
[s1(s2, s3), s2, s3; y1(s2, s3), y3(s2, s3)]
if A2,3 = Y and (s2, s3) ∈ A2,3(

s01, s
3b
2 , s

b
3; y01 , y

b
3

)
if A2,3 = Y and (s2, s3) 6∈ A2,3(
sb1, s

1b
2 , s

0
3; yb1, y

0
3

)
if A2,3 = N

Figure 6 – The stages of the bilateral bargaining encounters

To complete the description of the extensive form game, we can use individual rationality

to bound, without loss of generality, payments into specified compact intervals. For any

contingency (s2, s3) ∈ Ξ2,3, a monetary payment y1(s2, s3) from Node 2 to 1 that is being

negotiated in Stage a′ must be individually rational for both nodes. This is so for Node 1 if

and only if

f1(s1(s2, s3), s2) + y1(s2, s3) ≥ f1

(
s0

1, s
0
2

)
= 0.

Likewise, a payment y3 that is being negotiated in Stage a′ is individually rational for Node

3 if and only if

f3(s2, s3) + y3 ≥ f3

(
s0

2, s
0
3

)
= 0.
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Individual rationality for Node 2 is the condition

f2(s1(s2, s3), s2, s3)− y1(s2, s3)− y3 ≥ f2

(
s0

1, s
0
2, s

0
3

)
= 0.

So, it must be the case that

y1(s2, s3) ≤ f2(s1(s2, s3), s2, s3)− y3 ≤ f2(s1(s2, s3), s2, s3) + f3(s2, s3),

y3 ≤ f2(s1(s2, s3), s2, s3)− y1(s2, s3) ≤ f2(s1(s2, s3), s2, s3) + f1(s1(s2, s3), s2)

≤ f2(s∗1(s2, s3), s2, s3) + f1(s∗1(s2, s3), s2),

where

s∗1(s2, s3) = argmax
s1∈C1(s2)

f1(s1, s2) + f2(s1, s2, s3).

Let y
1
and ȳ1 be the real-valued functions, on C1,2 and S, respectively, determined by

y
1
(s1, s2) = −f1(s1, s2), (7a)

ȳ1(s1, s2, s3) = f2(s1, s2, s3) + f3(s2, s3). (7b)

Let y
3
and ȳ3 be the real-valued functions on C2,3 determined by

y
3
(s2, s3) = −f3(s2, s3), (8a)

ȳ3(s2, s3) = f2(s∗1(s2, s3), s2, s3) + f1(s∗1(s2, s3), s2, s3). (8b)

Given individual rationality, we can therefore restrict the set of potential payment between

Nodes 1 and 2 to the interval [y
1
(s1(s2, s3), s2), ȳ1(s1(s2, s3), s2, s3)], on the contingency

(s2, s3), given an agreed contingent treatment s1( · ) from Stage a. Likewise, the poten-

tial payment y3 between Nodes 2 and 3 is restricted to [y
3
(s2, s3), ȳ3(s2, s3)] when the agreed

treatments from Stage b is (s2, s3).

Individual rationality also bounds the payments yb1 and yb3 by
[
yB

1

(
sb1, s

3b
2

)
, ȳB1

(
sb1, s

3b
2

)]
and

[
yB

3

(
s1b

2 , s
b
3

)
, ȳB3

(
s1b

2 , s
b
3

)]
, where yB

1
and ȳB1 are the real-valued functions on SB1,2 deter-
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mined by

f1

(
sb1, s

3b
2

)
+ yB

1

(
sb1, s

3b
2

)
= 0, (9a)

f2

(
sb1, s

1b
2 , s

0
3

)
− ȳB1

(
sb1, s

3b
2

)
= 0, (9b)

and yB
3
and ȳB3 are the real-valued functions on SB2,3 determined by

f3

(
s1b

2 , s
b
3

)
+ yB

3

(
s1b

2 , s
b
3

)
= 0, (10a)

f2

(
s0

1, s
1b
2 , s

b
3

)
− ȳB3

(
s1b

2 , s
b
3

)
= 0. (10b)

Any payment that is not in these intervals is not individually rational for at least one of the

nodes, thus is ruled out from the bargaining game.

An extensive-form bargaining game is defined in this manner for each list (η, S, C, f, s0)

of model parameters, where S = (S1, S2, S3, S
1
2 , S

3
2), C = (C1, C3), f = (f1, f2, f3), and

s0 = (s0
1, s

0
2, s

0
3).

We could have merged Stages a and a′ (and likewise have merged Stages b and b′) without

strategic difference. We split the game into these stages, however, in order to take advantage

of the refinement associated with extensive form trembling hand perfection, which we turn

to next. As we explain in Section 8.3, a failure to split the game into stages would admit

additional “weird” and inefficient equilibria that survive the equilibrium refinement.

7 Solution Concept

Our solution concept is a variant of extensive form trembling hand perfection, due to Selten

(1975), to which we add two requirements. The first of these is that minimum tremble

probabilities do not depend on strategically irrelevant information. Despite the simplicity of

its motivation, the ultimate mathematical definition of this property is long and complicated,

so relegated to Appendix F. The second requirement is adapted from the refinement concept

of Milgrom and Mollner (2016), extended proper equilibrium, under which a costless deviation
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by one player must be more likely than a costly deviation by the same or another player.

This section provides a complete definition of the final resulting solution concept, “restricted

equilibrium.”

7.1 Multistage Games, Strategies, and Nash Equilibria

In this subsection we define n-person extensive-form games in which the action spaces can

be discrete or continuum, and in which the time horizon can be finite or countably infinite.

We combine the treatments of finite and infinite time horizon games. Thus when N = ∞,

the notation of the form S1, S1, . . . , SN or t ≤ N mean S1, S1, . . . and t <∞ respectively.

A noncooperative n-person game in extensive form, or simply a multistage game, consists

of the following objects:

(i) A finite set I of players.

(ii) A number N , which is either a positive integer or ∞, called horizon. We let W =

{(i, t) : i ∈ I, t ∈ {1, . . . , N}}. We write it for (i, t).

(ii) A (finite or infinite) sequence S1, S2, . . . , SN of nonempty Borel spaces called state

spaces.

(iii) For every it ∈ W , a nonempty Borel space Ait called action space. Here, Ait is the

space of potential actions of player i in period t.

(iv) For every it ∈ W , a nonempty compact metric space3 Zit called information space. An

element zit ∈ Zit is called an information set.

We apply the subscript “< t” to denote the projection that maps a set of the form A =∏N
k=1Ak to A<t =

∏t−1
k=1 Ak, and likewise maps an element (ak)

N
k=1 to a<t = (ak)

t−1
k=0. We

similarly apply the subscripts “≤ t” and “> t” for projection to periods weakly before and

strictly after t respectively. We define the space Ht = S≤t × A≤t of partial histories to time

t, the space Θt = S≤t×A<t of preplays to time t (Θ1 = S1), as well as the space H = S ×A
3 A compact metric space is necessarily separable and complete, thus a Borel space.
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of (complete) histories, where S =
∏

t≥1 St. The remaining elements of a multistage game

are as follows.

(v) A sequence (pt)t≥1, where p1 ∈ ∆(S1) and, for t > 0, pt is a Borel-measurable prob-

ability kernel from Ht−1 to St. These kernels are called state transition kernels. For

simplicity, we assume that the probability measure pt( · |ht−1) has full support for all

ht−1 in Ht−1. All of the following results remain valid without this assumption, by

ignoring states that are not in the support.

(vi) For every player i, a sequence (ζit)t≥1 of Borel-measurable information functions, where

ζi1 : S1 → Zi1 and, for t > 0, ζit : Θt → Zit. This means that, given a preplay θt ∈ Θt

of the game to period t, at time t player i is “at the information set” (or “has the

information”) ζit(θt).

(vii) For every player i, a Borel measurable payoff function ui : H → R.

These primitives determine a multistage game Γ = (I,N, S,A, Z, p, ζ, u). Roughly speak-

ing, this game is played as follows. In period 1, nature chooses a state s1 ∈ S1 whose prob-

ability distribution is p1. For each i, player i is informed of zi1 = ζi1(s1), representing the

information given to player i before his move in period 1. Player i then chooses an action

ai1 in Ai1, possibly using a behavioral (mixed) strategy, which we will formally define. The

initial partial history h1 = (a1, s1) ∈ H1 is thus determined. Nature then chooses a state s1

with the probability distribution p1( · |h1). For each i, player i is then informed of ζi1(s1, a1)

and chooses an action ai1 ∈ Ai1 in period 1. The partial history h1 = ((s1, s1), (a1, a1)) ∈ H1

is thus determined, and the game continues recursively in this manner, period by period. A

play of the game results in a complete history h = (s, a) ∈ H, under which the payoff of

player i is ui(h). This differs from the classical “tree” form4 of Kuhn (1953).
4When one represents a finite extensive-form game in the classical tree model of Kuhn (1953), a non-

terminal node of the game tree corresponds to some partial history of the form ht or (s≤t, a<t), whereas a
terminal node corresponds to a complete history h ∈ H. Furthermore, an information set (a subset of nodes)
corresponds to the inverse image ζ−1it (zit) of an information set zit ∈ Zit, via the information function ζit.
As Aumann pointed out, on page 511 of Aumann (1964), “not all finite extensive games in the sense of Kuhn
. . . are included in the above definition; however all games of perfect recall are included,. . . The condition for
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A multistage game is said to have perfect recall if, for all t ∈ W and all τ < t, there is a

Borel measurable functon ritτ : Zit → Ziτ × Aiτ such that

ritτ (ζit(s≤t, a<t)) = (ζiτ (s≤τ , a<τ ), aiτ ), s ∈ S, a ∈ A.

That is, any player can infer from the information that he currently possesses his information

set and his action chosen at a previous date. The functions ritτ are called the recall functions.

From now on we assume that a multistage game always has perfect recall.

Given a multistage game Γ = (I,N, S,A, Z, p, ζ, u), a behavioral strategy of player i is

a sequence (σit)it∈W of universally measurable probability kernels σit from Zit to Ait. (The

notion of universal measurability is reviewed in Appendix A.) We let Σit denote the set of

behavioral strategies of player i at time t, and then let Σi =
∏

t≥1 Σit denote the set of

behavioral strategies of player i. The set of behavioral strategy profiles5 is Σ =
∏

i∈I Σi.

We say that σ = (σ)it∈W is a Borel measurable strategy profile if for every it ∈ W , σit

is a Borel measurable probability kernel from the information space Zit to the action space

Ait. So when we refer to a strategy profile σ without the qualification “Borel measurable”,

we mean that σ is universally measurable, but not necessarily Borel measurable.

A strategy profile σ = (σi)i∈I determines,6 via the Ionescu-Tulcea Extension Theorem,

a unique probability measure Pσ on the space (H,B(H)) of histories, such that the finite

dimensional distribution of Pσ on Ht is given by ⊗tk=0

[
pk ⊗

∏
i∈I(σik ◦ ζik)

]
. The expected

utility of player i determined by the strategy profile σ is

Ui(σ) = Eσ(ui) ≡
∫
H

ui(h) Pσ(dh),

where Eσ denotes expectation with respect to Pσ.

a Kuhn game to be included is that the game can be ‘serialized’ timewise,. . . the possibility of serialization
is not at all equivalent with perfect recall (but the latter implies the former).”

5 We do not provide here a formal definition of “mixed strategies” because (1) it is not needed for the
subsequent development of the model; (2) Aumann (1964) showed that Kuhn’s theorem remains valid for
infinite extensive games as defined above, so that it is sufficient to consider behavioral strategies when a
game has perfect recall. We sometimes omit the qualification “behavioral” when the notation makes this
obvious.

6See Proposition 7.45 in Bertsekas and Shreve (1978).

27



A Nash equilibrium is a strategy profile σ = (σi)i∈I ∈ Σ such that

Ui(σ) ≥ Ui (σ
′
i, σ−i)

for every i ∈ I and for every behavioral strategy σ′i ∈ Σi of player i, where σ−i as usual

denotes (σj)j∈I\{i}.

7.2 Perturbed Game and Trembling Hand Perfect Equilibrium

We now extend the notions of “perturbed game” and “trembling hand perfect equilibrium,”

due to Selten (1975), to multistage games that may have continuum action spaces. For a

topological space E, let ∆̂(E) be the set of strictly positive probability measures on E. That

is, χ ∈ ∆̂(E) if and only if for, any non-empty open subset O ⊂ E, we have χ(O) > 0.

For a multistage game Γ = (I,N, S,A, Z, p, ζ, u), a perturbed game Γ̂ is a triple (Γ, ε, χ)

defined by:

• Minimum tremble probabilities, defined by some ε = (εit)it∈W , where εit is a Borel

measurable mapping from Zit to (0, 1].

• Reference strategy profile χ = (χit)it∈W , where χit is a Borel measurable probability

kernel from Zit to Ait, and χit(zit) ∈ ∆̂(Ait) for every zit ∈ Zit.

The perturbed game Γ̂ has the same game structure and utility functions as those of the

original game Γ, but the behavioral strategies of Γ̂ are restricted as follows. A behavioral

strategy profile σ of Γ̂ is a behavioral strategy profile of Γ such that, for each information set

zit and each Borel measurable subset B ⊂ Ait of actions, the probability σit(B | zit) assigned

to actions in B is bounded below by εit(zit)χit(B | zit). As εit is always strictly positive, this

means that a strategy for Γ̂ is “bounded away from” being a pure strategy.

Letting Σ̂i denote the set of behavioral strategies of player i in the perturbed game Γ̂,

the associated set of behavioral strategy profiles is Σ̂ =
∏

i∈I Σ̂i. A Nash equilibrium of the

perturbed game Γ̂ is then a strategy profile σ = (σi)i∈I ∈ Σ̂ such that, for every player i,

Ui(σ) ≥ Ui (σ
′
i, σ−i)
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for every σ′i ∈ Σ̂i.

A sequence Γ̂1, Γ̂2 . . . where Γ̂n = (Γ, εn, χn) is a perturbed game of Γ, is called a test

sequence for Γ if (1) sup εn → 0, where, for any minimum tremble probabilities ε,

sup ε ≡ sup
it∈W

sup
zit∈Zit

εit(zit),

and (2) there exists a reference strategy profile χ = (χit)it∈W such that for every n ≥ 0,

it ∈ W and zit, χit(zit) is absolute continuous with respect to χnit(zit).

A behavioral strategy profile σ ∈ Σ of Γ is a limit equilibrium point for
(

Γ̂n
)
n≥0

if, for

each n, a Borel measurable Nash equilibrium σn ∈ Σ̂n of Γ̂n can be found such that, as n

goes to infinity, σnit(zit) converges weak* to σit(zit) for every it ∈ W and every information

set zit ∈ Zit. That is, σn converges weak*, pointwise, to σ. If, in addition, σ is an Nash

equilibrium7 for Γ, then we say that σ is an extensive form trembling hand perfect equilibrium

of Γ.

7.3 Extended Properness in Extensive Form Games

We now adapt to our setting the refinement concept of Milgrom and Mollner (2016), extended

proper equilibrium, under which a costless deviation by one player must be more likely than

a costly deviation by the same or another player. We extend this notion from finite games

in normal form to extensive-form games in which the action spaces can be finite, countably

infinite, or a continuum, and in which the time horizon can be finite or countably infinite.

We fix a multistage game Γ = (I,N, S,A, Z, p, ζ, u). Given a strategy σi ∈ Σi of player i,

a time t, and a potentially different time-t strategy σ′it ∈ Σit, let σi/σ′it denote the strategy

which is σiτ in any period τ 6= t and which is σ′it in period t. For some ait ∈ Ait, we let

σi/ait be the strategy σi/xit(ait), where xit(ait) is the time-t pure strategy that maps any
7In Selten’s original treatment of finite games, it is not required, as a matter of definition, that the limit

strategy profile σ is a Nash equilibrium for it to be extensive form perfect. This is because in finite games,
being the weak* limit of perturbed Nash equilibria implies being a Nash equilibrium itself. However this
implication no longer holds in infinite games of our setting without some sort of continuity conditions on
the payoff function. For example, see Carbonell-Nicolau (2011b,a) for counter examples and such continuity
conditions.
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information sets zit ∈ Zit to the fixed action ait. For a strategy profile σ ∈ Σ, we let σ/σ′it
denote the strategy profile (σi/σ

′
it, σ−i), and likewise let σ/ait denote the strategy profile

(σi/ait, σ−i).

Given a strategy profile σ ∈ Σ and some it ∈ W , consider a Borel measurable M ⊂ Zit

with the property that Pσ(HM) > 0, where HM = {(s, a) : ζit(s≤t, a<t) ∈ M}. Given an

action ait ∈ Ait, we define Lσi (ait |M) to be the expected loss for player i from playing ait

instead of a best response in period t against σ, conditional on the event that player i is in

some information set in M . That is,

Lσi (ait |M) = sup
ãit∈Ait

Eσ/ãit (ui |HM)− Eσ/ait (ui |HM) .

We also define pσit(ait |M) as the probability that player i chooses ait in period t, conditional

on the event that the information set of player i at time t is in M . That is, letting

H(ait) = {(s′, a′) ∈ H : a′it = ait},

we will write pσit(ait |M) = Pσ [H(ait) |HM ] .

We now introduce a notion of approximate equilibrium that will subsequently play a role

in the final solution concept. For any metric space such as a typical information-set space

Zit, we let B(x, r) denote as usual the open ball of radius r centered at a point x.

Definition 1. For strictly positive scalars λ and δ, a (λ, δ)-extended proper equilibrium of Γ

in extensive form is a strategy profile σ ∈ Σ with the following property. For every it ∈ W ,

there exists a function αit : Zit → R+ satisfying two properties:

1. For every zit ∈ Zit, the ball M = B(zit, αit(zit)) ⊂ Zit centered at zit is reached with

positive probability, in the sense that P σ(HM) > 0.

2. For any player j and time τ , and any information sets zit ∈ Zit and zjτ ∈ Zjτ , if there

are Borel measurable Mi ⊂ B(zit, αit(zit)) and Mj ⊂ B(zjτ , αjτ (zjτ )) that are reached

with positive probability and satisfy Lσi (ait |Mi) > λ and Lσj (ajτ |Mj) < λ, then we

must have pσit(ait |Mi) ≤ δ pσjτ (ajτ |Mj) .
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Property 2 of the above definition requires that whenever a deviation is costly (in that its

expected loss is larger than the threshold value λ), then the probability that this deviation

is being played is at most a multiple δ of the probability of a costless deviation.

The notion of a (λ, δ)-extended proper equilibrium is similar in spirit to the concept

due to Milgrom and Mollner (2016) of approximate equilibrium solution. Our version is

prompted by the need to treat a continuum action space.

To conclude this section, we provide the solution concept for our main result concerning

network bargaining problems. This definition refers to the property “independence of strate-

gically irrelevant information,” which was motivated earlier in this section and is completely

defined in Appendix F.

Definition 2 (Restricted Equilibrium). Given a multistage game Γ, a behavioral strategy

profile σ is a restricted equilibrium if σ is a Nash equilibrium, and if, for all strictly positive

scalar λ, sufficiently small, there exists a sequence σn of behavioral strategy profiles and a

sequence {δn} of strictly positive reals converging to zero such that: satisfying the following

properties.

1. There exists a test sequence Γ̂n = (Γ, εn, χn) for Γ, such that each Γ̂n respects inde-

pendence of strategically irrelevant information.

2. For each n, σn is a Borel measurable Nash equilibrium of Γ̂n and is also a (λ, δn)-

extended proper equilibrium of Γ in extensive form.

3. σn converges weak*, pointwise, to σ, as n→∞.

If σ is a restricted equilibrium of Γ, then a test sequence (Γ̂n)n≥0 associated with σ as

in the definition above is called a restricted test sequence for σ, and a converging sequence

(σn)n≥0 of equilibria associated with σ is called a restricted trembling sequence for σ.

8 Equilibrium Network Bargaining Solution

The game described in Section 6 can now be treated as a three-agent multistage game

with perfect recall in which players have a continuum of potential actions. The specific
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action or state spaces, depending on the stage of the game, are finite (consisting of proposed

treatments, or {accept, reject}) or are real intervals (consisting of proposed payments). Any

finite space is given its discrete topology, real intervals are given the topology defined by the

usual “distance” metric m(x, y) = |x− y|, and a product space is given its product topology.

We show existence and uniqueness of restricted equilibrium of this extensive-form network

market bilateral bargaining game, and explicitly calculate the unique associated equilibrium

treatments and payment outcomes, showing that they coincide in the limit (as Nature’s

breakdown probability η goes to zero) with the treatments and payments of the axiomatic

solution. In particular, the equilibrium treatments maximize total social surplus.

8.1 Equilibrium Strategies

We first define candidate equilibrium strategies, beginning with some notation. The candi-

date equilibrium contingent action s∗1( · ) in C is defined by

s∗1(s2, s3) = argmax
s1∈C1(s2)

f1(s1, s2) + f2(s1, s2, s3). (11)

We will later use the fact that

s∗1(s2, s3) = argmax
s1∈C1(s2)

U(s1, s2, s3), (12)

recalling that U is the social welfare function.

Recall that (
sB1 , s

1B
2

)
= argmax

(s1,s2)∈SB1,2

f1 (s1, s2) + f2

(
s1, s2, s

0
3

)
and (

s3B
2 , sB3

)
= argmax

(s2,s3)∈SB2,3

f2

(
s0

1, s2, s3

)
+ f3 (s2, s3) .

We let S = {(s1, s2, s3) : s1 ∈ C1(s2), s2 ∈ S2, s3 ∈ C3(s2)} be the set of feasible actions. For
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each η ∈ [0, 1], we define yη1 : S → R and yη3 : S2,3 → R so that

f2(s1(s2, s3), s2, s3)− yη1(s1, s2, s3)− yη3(s2, s3)− uη21

= (1− η) [f1(s1(s2, s3), s2) + yη1(s1, s2, s3)− uη12]
(13)

and
f2(s∗1(s2, s3), s2, s3)− yη1(s∗1(s2, s3), s2, s3)− yη3(s2, s3)− uη23

= (1− η) [f3(s2, s3) + yη3(s2, s3)− uη32] ,
(14)

where
uη12 = uη32 = 0

uη21 =
1− η
2− η

U
(
s0

1, s
3B
2 , sB3

)
uη23 =

1− η
2− η

U
(
sB1 , s

1B
2 , s0

3

)
.

(15)

One can view uηij as the outside option value of Node i in the bilateral bargaining between

Nodes i and j, given the exogenous breakdown probability η.

In order to see that the payments yη1 and yη3 are uniquely well defined, first take s1 =

s∗1(s2, s3) in (13). In this case, (13) and (14) together uniquely determine yη1(s∗1(s2, s3), s2, s3)

and yη3(s2, s3) for any (s2, s3) in S2,3. Then, for any s1 ∈ C1(s2), one can solve for the unique

payment yη1(s1, s2, s3) from (13).

Continuing to build needed notation, let ỹη1 : S → R and ỹη3 : S2,3 → R be such that

(1− η) [f2(s1(s2, s3), s2, s3)− ỹη1(s1, s2, s3)− yη3(s2, s3)− uη21]

= f1(s1(s2, s3), s2) + ỹη1(s1, s2, s3)− uη12

(16)

and
(1− η) [f2(s∗1(s2, s3), s2, s3)− yη1(s∗1(s2, s3), s2, s3)− ỹη3(s2, s3)− uη23]

= f3(s2, s3) + ỹη3(s2, s3)− uη32.
(17)

Next, let yBη1 and ỹBη1 be the real-valued functions on SB1,2 satisfying

f2

(
sb1, s

1b
2 , s

0
3

)
− yBη1

(
sb1, s

1b
2

)
= (1− η)

[
f1

(
sb1, s

1b
2

)
+ yBη1

(
sb1, s

1b
2

)]
(18)

33



and

(1− η)
[
f2

(
sb1, s

1b
2 , s

0
3

)
− ỹBη1

(
sb1, s

1b
2

)]
= f1

(
sb1, s

1b
2

)
+ ỹBη1

(
sb1, s

1b
2

)
. (19)

Let yBη3 and ỹBη3 be the real-valued functions on SB2,3 satisfying

f2

(
s0

1, s
3b
2 , s

b
3

)
− yBη3

(
s3b

2 , s
b
3

)
= (1− η)

[
f3

(
s3b

2 , s
b
3

)
+ yBη3

(
s3b

2 , s
b
3

)]
(20)

and

(1− η)
[
f2

(
s0

1, s
3b
2 , s

b
3

)
− ỹBη3

(
s3b

2 , s
b
3

)]
= f3

(
s3b

2 , s
b
3

)
+ ỹBη3

(
s3b

2 , s
b
3

)
. (21)

Our candidate equilibrium strategy profile σ∗η is defined as follows:

• In Stage a, Nodes 1 and 2 offer each other, at any period t, the contingent treatment

contract s∗1(s2, s3) for all contingencies (s2, s3) ∈ St2,3, and
(
sB1 , s

1B
2

)
for the breakdown

contingency B2,3 if B2,3 is still open for negotiation in period t, that is if B2,3 ∈ St2,3.

These offers are immediately accepted. Given any other feasible contingent offer s1 :

St2,3 → S1 and
(
sb1, s

1b
2

)
∈ SB1,2, Nodes 1 and 2 both accept s1(s2, s3) (respectively,(

sb1, s
1b
2

)
) at any (s2, s3) for which s1(s2, s3) = s∗1(s2, s3) (respectively, if

(
sb1, s

1b
2

)
=(

sB1 , s
1B
2

)
), and otherwise reject s1(s2, s3) (respectively,

(
sb1, s

1b
2

)
).

• Suppose (s1( · ),Ξ2,3) is the outcome of Stage a. (Recall that Ξ2,3 is the set of all

contingencies on which Nodes 1 and 2 reached an agreement after Stage a). At each

period t in Stage aa, contingent on any (s2, s3) in Ξt
2,3, Node 1 offers the payment

1

{
yη1(s1, s2, s3) > y

1
(s1, s2)

}
yη1(s1, s2, s3) +1

{
yη1(s1, s2, s3) ≤ y

1
(s1, s2)

}
ȳ1(s1, s2, s3)

if it is the turn of Node 1 to make an offer, while Node 2 offers

max
{
ỹη1(s1, s2, s3), y

1
(s1, s2)

}
.

If yη1 > y
1
, then Node 1 accepts offers that are at least ỹη1 and rejects the rest; If

yη1 ≤ y
1
, then Node 1 accepts all offers that are strictly larger than y

1
but rejects y

1
.
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If yη1 ≥ y
1
, Node 2 accepts offers that are at most yη1 and rejects the rest. If yη1 < y

1
,

Node 2 rejects all offers.

If B2,3 ∈ Ξ2,3, then contingent on B2,3, Node 1 offers the payment

1

{
yBη1

(
sb1, s

1b
2

)
> yB

1

(
sb1, s

1b
2

)}
yBη1

(
sb1, s

1b
2

)
+1
{
yBη1

(
sb1, s

1b
2

)
≤ yB

1

(
sb1, s

1b
2

)}
ȳB1
(
sb1, s

1b
2

)
if it is the turn of Node 1 to make an offer, while Node 2 offers

min
{
ỹBη1

(
sb1, s

1b
2

)
, yB

1

(
sb1, s

1b
2

)}
.

If yBη1 > yB
1
, then Node 1 accepts offers that are at least ỹBη1 and rejects the rest. If

yBη1 ≤ yB
1
, then Node 1 accepts all offers that are strictly larger than yB

1
but rejects

yB
1
. If yBη1 ≥ yB

1
, Node 2 accepts offers that are at most yη1 and rejects the rest. If

yBη1 < yB
1
, Node 2 rejects all offers.

• In Stage b, Nodes 2 and 3 offer the simple contingent treatment contract
(
s∗∗2 , s

∗∗
3 ; s3B

2 , sB3
)

at each period. Both of these nodes accept this simple contingent treatment contract,

and only this one.

• In Stage bb, given any simple contingent treatment contract
(
s2, s3 ; s3b

2 , s
b
3

)
agreed in

Stage b, Node 3 offers the simple contingent payment[
1

{
yη3(s2, s3) > y

3
(s2, s3)

}
yη2(s2, s3) + 1

{
yη3(s2, s3) ≤ y

1
(s2, s3)

}
ȳ3(s2, s3),

1

{
yBη3

(
s3b

2 , s
b
3

)
< yB

3

(
s3b

2 , s
b
3

)}
yBη3

(
s3b

2 , s
b
3

)
+ 1

{
yBη3

(
s3b

2 , s
b
3

)
≤ yB

3

(
s3b

2 , s
b
3

)}
ȳB3
(
s3b

2 , s
b
3

) ]
while Node 2 offers the simple contingent payment

[
min

{
ỹη3(s2, s3), y

3
(s2, s3)

}
, min

{
ỹBη3

(
s3b

2 , s
b
3

)
, yB

3

(
s3b

2 , s
b
3

)}]
.

The first element of each payment pair applies when Nodes 1 and 2 reach agreement,

while the second applies when Nodes 1 and 2 break down.

When Nodes 1 and 2 reach agreement:
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If yη3 > y
3
, then Node 3 accepts offers that are at least ỹη3 and rejects the rest. If

yη3 ≤ y
3
, then Node 3 accepts all offers that are strictly larger than y

3
but rejects y

3
.

If yη3 ≥ y
3
, Node 2 accepts offers that are at most yη3 and rejects the rest. If yη3 < y

3
,

Node 2 rejects all offers.

When Nodes 1 and 2 break down:

If yBη3 > yB
3
, then Node 3 accepts offers that are at least ỹBη3 and rejects the rest. If

yBη3 ≤ yB
3
, then Node 3 accepts all offers that are strictly larger than yB

3
but rejects

yB
3
. If yBη3 ≥ yB

3
, Node 2 accepts offers that are at most yη3 and rejects the rest. If

yBη3 < yB
3
, Node 2 rejects all offers.

8.2 The Main Result

Our main result provides the following sense in which contingent bilateral contracting is

efficient.

Theorem 1. Fix a contracting network (S,C, f, s0). There is an η∗ > 0 such that the

following is true. For any breakdown probability η ∈ (0, η∗), the pure strategy profile σ∗η

is a restricted equilibrium of the network market bargaining game Γ (η, S, C, f, s0). For any

restricted equilibrium of this game, with probability 1, the (same) deterministic outcome[
s∗∗,

(
yη1(s∗∗), yη3(s∗∗2 , s

∗∗
3 )
)]

is immediately implemented as an accepted offer in period 1 of

the respective bargaining stages.

This theorem is proved in Appendix B.

Proposition 1. As η → 0, the unique restricted equilibrium payments of the game Γ (η, S, C, f, s0)

converge to the axiomatic solution payments ya.

8.3 Why Separate Stages a and aa, or Stages b and bbb?

In Section 6, we mentioned that although splitting Stage a from Stage aa, or Stage b from

Stage bb, makes no strategic difference, this separation allows us to take advantage of the

refinement associated with extensive form trembling-hand perfection. If we were to merge
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Stages a and aa, or Stages b and bb, then in general there would be extensive form trembling-

hand perfect equilibria that are not efficient. This is explained as follows.

If we were to merge Stages b and bb while Stages a and aa separate, then Nodes 1 and

2 would have the same equilibrium behavior in Stage a and aa. The outcome of those two

stages is that Nodes 1 and 2 agree on the contingent contract (s∗, sB1 , s
1B
2 ). Now, suppose

we wish to sustain an equilibrium in which Nodes 2 and 3 sign a contract (s̄2, s̄3) ∈ S2,3

that is different from the socially efficient choice (s∗∗2 , s
∗∗
3 ). When Stages b and bb are merged

into a single stage, nodes 2 and 3 offer a pair of actions (s2, s3) ∈ S2,3 and a payment y3 in

each round. Conditional on making a “trembling mistake,” Nodes 2 and 3 could then make

“unreasonable” mistakes in their payment. For example, for any (s2, s3) that is not (s̄2, s̄3),

the bargaining outcome of Nodes 2 and 3 could be (s2, s3; y3 = −M) with some probability ε.

That is, conditional on signing the contract (s2, s3), Node 3 would need to pay the maximum

payment M to Node 2. This payment would place Node 2 in an extremely bad bargaining

position when he bargains with Node 1 on the contingency (s2, s3). This is so because if

Node 2 wishes to secure this large payment M from Node 3, then Node 2 would be forced

to share his surplus with Node 1. Thus the total payoff of Nodes 2 and 3 as a whole would

be less for the contract choice (s2, s3) than for (s̄2, s̄3). This is so for any (s2, s3) 6= (s̄2, s̄3).

This shows that an equilibrium in which Nodes 2 and 3 sign an arbitrary contract (s̄2, s̄3)

can be sustained by allowing uneasonable payment trembles.

If we were to merge Stages a and aa, the same argument shows that Nodes 1 and 2 need

not agree, in equilibrium, on the efficient contingent contract s∗1. It may be that some other

natural refinement concept would not require a separation of these bargaining stages in order

to achieve efficiency.
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Appendices

A Auxiliary Measure Theoretic Facts

A.1 Borel and Analytic Sets, Semi-analytic Functions

For an extensive-form game that allows players a continuum of potential actions, some care

must be taken regarding the measurability of mixed and behavioral strategies. Aumann

(1964) was the first to address this concern.

A topological space is said to be a Borel space, if it is topologically homeomorphic to

a Borel subset of a Polish space. By Kuratowski’s Theorem,8 Borel spaces can be easily

classified by isomorphism via cardinality. That is, a Borel space is either finite or denumerable

with the discrete structure, or it is isomorphic with the unit interval [0, 1]. For any topological

Y , we denote its Borel σ-algebra B(Y ), and denote by ∆(Y ) the set of probability measures

on B(Y ) endowed with the weak* topology. When Y is a Borel space, ∆(Y ) is a Borel

space9. The property of being a Borel space is preserved when taking countable Cartesian

products.10

However the Borel σ-algebra has a deficiency in the context of optimization that it does

not preserve measurability under projection. It is well known that if Y and Z are Borel

spaces, and if B a Borel subset of Y × Z, then the projection of B on Y need not be

Borel. To circumvent this difficulty, the literature of stochastic optimal control works with

an enriched σ-algebra, the universal σ-algebra11. We introduce this concept into the context

of noncooperative games in extensive form.

The universal σ-algebra U (Y ) of a Borel space is the intersection of all completions of
8 A formal statement and proof of Kuratowski Theorem is provided by Bertsekas and Shreve (1978),

Corollary 7.16.1.
9See Section 7.4 in Bertsekas and Shreve (1978).

10See Proposition 7.13 in Bertsekas and Shreve (1978).
11Interested readers are referred to Appendix A of Bertsekas (2012) or Section 7 of Bertsekas and Shreve

(1978) for a detailed treatment.
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B(Y ) with respect to all probability measures. That is,

U (Y ) =
⋂

P∈∆(Y )

BP(Y )

where BP(Y ) is the complete σ-algebra with respect to the probability measure P. Clearly,

we have B(Y ) ⊂ U (Y ). A probability measure P on (Y,B(Y )) has a unique extension to a

probability measure P on (Y,U (Y )). We write simply P instead of P.

Let Y and Z be Borel spaces, and consider a function g : Y → Z. We say that g

is universally measurable if g−1(B) ∈ U (Y ) for every B ∈ B(Z). A probability kernel q

from Y to Z is function from Y to ∆(Z). We sometimes denote by q(dz | y) the probability

measure q(y) on Z. A probability kernel q is Borel measurable (universally measurable) if and

only if for each Borel set B ∈ B(Z), the function q(B | y) is Borel measurable (universally

measurable, respectively) in y. (See Proposition 7.26 in Bertsekas and Shreve (1978).)

A proof of Kuratowski’s theorem can be found in Chapter I, Section 3 of Parthasarathy

(1972).

Proposition 2 (Kuratowski’s theorem). Let X be a Borel space, Y a separable metrizable

space, and ϕ : X → Y be one-to-one and Borel measurable. Then ϕ(X) is a Borel subset of

Y and ϕ−1 is Borel measurable. In particular, if Y is a Borel space, then X and $(X) are

isomorphic Borel spaces.

Suppose (Ω,F ,P) is a probability space, (Ω1,F1) is a measurable space, and X a mea-

surable function from Ω to Ω1. We will simply write “for P almost every x ∈ X” to mean

“∀x ∈ N , where N ∈ F1 is such that P(X ∈ N) = 0”. If P̃ is another probability measure

on (Ω,F ) such that X has the same probability distribution under P and P̃, that is, if for

any A ∈ F1,

P(X ∈ A) = P̃(X ∈ A),

then it is clear that “for P almost every x ∈ X” is means the same as “for P̃ almost every

x ∈ X”.

Now suppose Y is an extended real-valued random variable on Ω for which either EP(Y +)

39



or EP(Y −) is finite, so that the conditional expectation EP(Y |G ) of Y given a sub-sigma-

algebra G is well defined. Suppose g : Ω1 → R is measurable and EP(Y |X) = g(X), P

almost surely. We define, for every x ∈ Ω1,

EP(Y |X = x) = g(x).

For any measurable g̃ : Ω1 → R such that EP(Y |X) = g̃(X), P almost surely, we have

EP(Y |X = x) = g̃(x)

for P almost every x ∈ Ω1.

Proposition 3. Let (Ω,F) be a measurable space, and Y is an extended real-valued random

variable on Ω for which either E(Y +) or E(Y −) is finite. Let (Ω1,F1) be a measurable

spaces, and X is a measurable function from Ω to Ω1. Suppose P and P̃ are two probability

measures on (Ω,F). If (X, Y ) has the same probability distribution under P and P̃, that is,

if for every A ∈ F1, B ∈ F ,

P(X ∈ A, Y ∈ B) = P̃(X ∈ A, Y ∈ B),

then

EP(Y |X = x) = EP̃(Y |X = x), (22)

for P and P̃ every x ∈ Ω1.

Proof. For any bounded measurable f : Ω→ R, we have∫
Ω1

EP̃(Y |X = x) f(x) P ◦X−1(dx)

=

∫
Ω1

EP̃(Y |X = x) f(x) P̃ ◦X−1(dx)

= EP̃
[
EP̃(Y |X)f(X)

]
= EP̃ [Y f(X)] = EP [Y f(X)] .

Therefore the function g̃ : x → EP̃(Y |X = x) satisfies g̃(X) = EP(Y |X), P almost surely.

Thus Equation (22) holds for P every x ∈ Ω1. Likewise, Equation (22) holds for P̃ every
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x ∈ Ω1

Proposition 4 (Propostion 7.44 in Bertsekas and Shreve (1978)).

Let X, Y and Z be Borel spaces. Suppose f : X → Y and g : Y → Z are Borel measur-

able (universally measurable). Then the composition g ◦ f is Borel measurable (universally

measurable, respectively).

Proposition 5 (Proposition 7.26 and Lemma 7.28 in Bertsekas and Shreve (1978)).

Let X and Y be Borel spaces, E is a collection of subsets of Y which generates B(Y ) and

is closed under finite intersections, and q a probability kernel from X to Y . Then q is Borel

measurable (universally measurable) if and only if the mapping X 3 x 7→ q(E |x) ∈ [0, 1] is

Borel measurable (universally measurable, respectively) for every E ∈ E .

Proposition 6. Let X, Y and Z be Borel spaces, and let q be a Borel-measurable (univer-

sally measurable) probability kernel from X to Y × Z. Then there exists Borel measurable

(universally measurable) probability kernels b from X × Y to Z, and m from X to Y such

that

q(Y × Z |x) =

∫
Y

b(Z |x, y)m(dy |x), ∀Y ∈ B(Y ), Z ∈ B(Z)

Proof. The Borel measurabibility part is precisely Corollary 7.27.1 in Bertsekas and Shreve

(1978). The universal measurabibility part is an immediate application of Proposition 7.27

in Bertsekas and Shreve (1978) along with the fact that U (X)⊗U (Y ) ⊂ U (X × Y ).

Proposition 7 (Proposition 7.29 and 7.46 in Bertsekas and Shreve (1978)).

Let X and Y be Borel spaces and q a Borel-measurable (universally measurable) probability

kernel from X to Y . If f : X × Y → R is Borel measurable (universally measurable) and

bounded either above or below, then the function X 3 x 7→
∫
f(x, y)q(dy |x) ∈ R is Borel

measurable (universally measurable, respectively).

Corollary 1 (Extension of Corollary 7.29.1 and 7.46.1 in Bertsekas and Shreve (1978)).

Let X and Z be Borel spaces, and let f : X×Y → [−∞,∞] be Borel measurable (universally

measurable) and bounded either above or below. The function θf : X × ∆(Y ) → [−∞,∞]
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given by

θf (x, p) =

∫
Y

f(x, y)p(dy)

is Borel measurable (universally measurable, respectively).

Proof. Define a Borel measurable probability kernel on X×∆(Y ) to Y by q(dy |x, p) = p(dy)

and apply Proposition 7.

A subset A of a Borel space X is said to be analytic if there exits a Borel space Y and a

Borel subset B of X × Y such that A = projX(B), where projX is the projection mapping

from X × Y to X. It is clear that every Borel subset of a Borel space is analytic. It is also

true that every analytic set is universally measurable12.

Let X be a Borel space and let f : X → [−∞,∞] be a function. We say that f is upper

semianalytic if the level set

{x ∈ X | f(y) > c}

is analytic for every c ∈ R. Likewise, f is lower semianalytic if {x ∈ X | f(x) < c} is ana-

lytic for every c ∈ R. Every upper or lower semianalytic function is universally measurable.

Moreover, upper (lower) semianalycity is preserved under partial maximization (minimiza-

tion, respectively), and under integration with respect to a Borel measurable probability

kernel:

Proposition 8 (Proposition 7.47 in Bertsekas and Shreve (1978)).

Let X and Y be Borel spaces, and consider a function f from X × Y to [−∞,∞]. Let

f̄ : X → [−∞,∞] and f : X → [−∞,∞] be defined by

f̄(x) = supy∈Y f(x, y),

f(x) = infy∈Y f(x, y).

If f is upper semianalytic, then f̄ is upper semianalytic; If f is lower semianalytic, then f

is lower semianalytic.

12for a proof, see Bertsekas and Shreve (1978), Corollary 7.42.1.
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Proposition 9 (Proposition 7.48 in Bertsekas and Shreve (1978)).

Let X and Y be Borel spaces, and let q(dy |x) be a probability kernel from X to Y . Consider

a function f from X × Y to [−∞,∞] that is bounded either above or below. If q is Borel

measurable and f is upper (lower) semianalytic, then the function ` : X → [−∞,∞] given

by

`(x) =

∫
Y

g(x, y)q(dy |x)

is upper (lower, respectively) semianalytic.

Corollary 2 (Extension of Corollary 7.48.1 in Bertsekas and Shreve (1978)).

Let X and Z be Borel spaces, and let f : X × Y → [−∞,∞] be upper (lower) semianalytic

and bounded either above or below. The function θf : X ×∆(Y )→ [−∞,∞] given by

θf (x, p) =

∫
Y

f(x, y)p(dy)

is upper (lower, respectively) semianalytic.

Proof. Define a Borel measurable probability kernel on X×∆(Y ) to Y by q(dy |x, p) = p(dy)

and apply Proposition 9.

We conclude this subsection by stating the universally measurable selection theorem. A

proof can be found in Bertsekas and Shreve (1978) Proposition 7.50:

Theorem 2 (Universally Measurable Selection Theorem). Let X and Y be Borel spaces,

B ⊂ X × Y an analytic set, and let f : (X, Y ) → [−∞,∞] be upper semianalytic. Define

f ∗ : projX(D)→ [−∞,∞] by

f ∗(x) = sup
y∈Bx

f(x, y).

For any ε > 0, there exists a universally measurable function ϕ : projX(D) → Y such that

for every x ∈ X, ϕ(x) ∈ Bx and

f(x, ϕ(x)) ≥ f ε(x) := (f ∗(x)− ε)1f∗(x)<∞ +
1

ε
1f∗(x)=∞.
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B Appendix: Proof of Theorem 1

We now provide a proof of Theorem 1.

B.1 Filtering in an Multistage Game

We first provide the following basic results about filtering, that is adapted from Section

10.3.1 in Bertsekas and Shreve (1978).

Given a multistage game Γ = (I,N, S,A, Z, p, ζ, u). Suppose a strategy profile σ is

Borel measurable. Then given σ−i, player i faces a single person imperfect state information

stochastic control problem. Recall that ζit : Θt → Zit is the (Borel measurable) information

function of player i in period t. ζit can be lifted to be a Borel measurable function ζ̂ on H by

ζ̄(s, a) = ζ(s≤t, a<t). We write simply ζit instead of ζ̄it. Likewise, if g is a function defined

on a domain which is a projected space of H, we sometimes lift g to be a function on H and

write g for the lifted function. We first fix a Borel-measurable strategy profile σ.

Lemma 1. For every it ∈ W , there exist Borel-measurable probability kernels bit(dθt | p, zit)

from ∆ (Θt)× Zit to Θt which satisfy∫
Θt

1 {ζ(θt) ∈ Zit} p(dθt) =

∫
Zit

bit(Θt | p, zit)
(
p ◦ ζ−1

it

)
(dzit) (23)

Proof. For fixed p ∈ ∆(Θt), define a probability measure q on Θt × Zit by specifying its

values measurable rectangles to be

q(Θt × Zit | p) =

∫
Θt

1 {ζ(θt) ∈ Zit} p(dθt).

By Proposition 5 and corollary 1, q is Borel-measurable probability kernel from ∆(Θt) to

Θt × Zit. By Proposition 6, this probability kernel can be decomposed into its marginal

from Zit given ∆(Θt) and a Borel-measurable probability kernel b(dθt | p, zit) on Θt given

∆(Θt)× Zit such that Equation (23) holds.

It is customary to view bit as a belief updating operator of player i in period t: given a
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prior distribution of the preplay θt of the game, player i observes zit and updates his belief

about θt to be the posterior distribution bit(dθt | p, zit).

For every it ∈ W , consider the function f̄it : ∆(Θt)× Ait → ∆(Θt+1) defined by

f̄it(q, ait)(Θt+1) =

∫
(θt,ait,(ajt)j 6=i,st+1)∈Θt

q(dθt)
∏

j∈I\{i}

σjt(dajt | ζjt(θt)) (24)

pt+1

[
dst+1

∣∣ (θt, ait, (ajt)j∈I\{i})] , ∀Θt+1 ∈ B(Θt+1).

Equation (24) is called the one-stage prediction equation. If player i has a posterior distri-

bution qit about Θt and takes an action ait in period t, then his a priori belief of Θt+1 is

f̄it(qit, ait). The mapping f̄ is Borel measurable (Propositions 5 and 7).

Define the probability kernels qit from Zit × Ait to Θt+1 (t ≥ 1) recursively by

qi1(zi1, ai1) =f̄i1(bi1(p1, zi1), ai1), (25)

qit (zit, ait) =f̄it
(
bit
[
qi(t−1)

(
rit(t−1) (zit)

)
, zit
]
, ait
)

where rit(t−1) is the recall function.
(26)

Note that for each t ≥ 1, qt is Borel measurable by composition of Borel measurable functions.

Equations (23) to (25) are called filtering equations corresponding to the multistage game

Γ and the Borel measurable strategy profile σ. The probability kernels qit provide a version of

the conditional distribution about the preplay of the game given player i current information,

as the following lemma shows.

Let ait be the projection mapping from H to Ait. That is, ait(s, a) = ait.

Lemma 2. Given a multistage game Γ. For every Borel measurable strategy profile σ, it ∈ W

and Θt+1 ∈ B(Θt+1), we have

Pσ[Θt+1 | ζit, ait] = qit(Θt+1 | ζit, ait) Pσ almost surely.

Proof. The proof works by induction in t, and uses the filtering equations and Fubini’s

theorem. We omit the details and refer to Lemma 10.4 in Bertsekas and Shreve (1978) for a

complete proof of a very similar result.
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Fix some Borel measurable strategies σt+1, . . . and the state transition kernels pt+2, . . .

determine, a probability measure qt on Θt+1 determines, via the Ionescu-Tulcea Extension

Theorem, a unique probability measure κσ(dh | qt) on the space (H,B(H)) of histories,

such that the finite dimensional distribution of κσ(dh | qt) on Θt+1+τ is given by qit ⊗τk=1[∏
i∈N
(
σi(t+k) ◦ ζi(t+k)

)
⊗ pt+k+1

]
for every τ ≥ 0. The function that maps every qt ∈

∆(Θt+1) to κσ(dh | qt) is Borel measurable, as the following lemma shows.

Lemma 3. The function κσ : ∆(Θt+1)→ ∆(H) defined above is Borel measurable.

Proof. Fix any Borel rectangle
∏

k≤t+1+τ Sk ×
∏

i∈N,k≤t+τ Aik in Θt+1+τ , the function

∆(Θt+1) 3 qt 7→ κσ

( ∏
k≤t+1+τ

Sk ×
∏

i∈N,k≤t+τ

Aik

∣∣∣ qt) ∈ [0, 1]

is Borel measurable by Corollary 1. Thus κσ is Borel measurable by Proposition 5.

Since both qit : Zit × Ait → ∆(Θt+1) and κ : ∆(Θt+1) → ∆(H) are Borel measurable,

their composition κ ◦ qit defines a Borel measurable probability kernel from Zit × Ait to H.

We immediately obtain the following corollary.

Corollary 3. Suppose σ is a Borel measurable strategy profile and g : H → R is upper

semianalytic and bounded. Then for every it ∈ W , there exists a bounded upper semianalytic

function ĝ : Zit × Ait → R such that

ĝ(zit, ait) = Eσ[g | ζit = zit, ait = ait] (27)

for Pσ almost every (zit, ait).

Proof. Define ĝ : Zit × Ait → R by

ĝ(zit, ait) =

∫
g(h) (κσ ◦ qit) (dh | zit, ait).

By Proposition 9, ĝ is upper semianalytic. Equation (27) is an immediate consequence of

Lemma 2.
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One can see from the construction of the function ĝ in Corollary 3 and the filtering

equations Equations (23) to (25) that ĝ does not depend on (σi1, . . . , σit). This result is

intuitive in the following sense: player i can infer perfectly his previous actions before date t

from his current information set zit, due to perfect recall; The action of player i in the current

stage is also conditioned upon; Thus he does not need to rely on his previous strategies(
σi1, . . . , σi(t−1)

)
nor his current strategy σit to compute the conditional expectation. We

combine Corollary 3 and this remark to obtain the following proposition.

Proposition 10. Suppose σ is a Borel measurable strategy profile and g : H → R is upper

semianalytic and bounded. Then for every it ∈ W , there exists a bounded upper semianalytic

function ĝ : Zit × Ait → R such that for every (σ′iτ )τ≤t,

ĝ(zit, ait) = Eσ/(σ′iτ )τ≤t [g | ζit = zit, ait = ait] (28)

for Pσ/(σ′iτ )τ≤t almost every (zit, ait).

Similar to Proposition 10, we have the following lemma:

Proposition 11. Suppose σ is a Borel measurable strategy profile and g : H → R is upper

semianalytic and bounded. Then for every it ∈ W , there exists a bounded upper semianalytic

function ĝ : Zit → R such that for every (σ′iτ )τ<t,

ĝ(zit) = Eσ/(σ′iτ )τ<t [g | ζit = zit] (29)

for Pσ/(σ′iτ )τ<t almost every zit.

Note the difference between the two propositions above, Equation (29) holds only for

every (σ′iτ )τ<t, as opposed to (σ′iτ )τ≤t in Equation (28). This is because in Equation (29)

the action of player i in period t not conditioned upon, thus σit needs to be specified for the

computation of the conditional expectation.

If the strategy profile σ and the function g are only a universally measurable, then same

construction above lead to a universally measurable function ĝ with the same property, via
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the universally measurable part of Propositions 4 and 7 and corollary 1. Formally, we have

the following propositions.

Proposition 12. Suppose σ is a universally measurable strategy profile and g : H → R

is universally measurable and bounded. Then for every it ∈ W , there exists a bounded

universally measurable function ĝ : Zit × Ait → R such that for every (σ′iτ )τ≤t,

ĝ(zit, ait) = Eσ/(σ′iτ )τ≤t [g | ζit = zit, ait = ait]

for Pσ/(σ′iτ )τ≤t almost every (zit, ait).

Proposition 13. Suppose σ is a universally measurable strategy profile and g : H → R

is universally measurable and bounded. Then for every it ∈ W , there exists a bounded

universally measurable function ĝ : Zit → R such that for every (σ′iτ )τ<t,

ĝ(zit) = Eσ/(σ′iτ )τ<t [g | ζit = zit]

for Pσ/(σ′iτ )τ<t almost every zit.

B.2 A Sufficient Condition and A Necessary Condition for Nash

Equilibrium

Now that we finish establishing the basic results about filtering, we provide a sufficient and

then a necessary condition for a strategy profile to be a Nash equilibrium.

Given a multistage game Γ = (I,N, S,A, Z, p, ζ, u). For every t, let ϑt be the projection

from H to Θt. We define, for every time t and every preplay θt ∈ Θt of the game,

ūi|t(θt) = sup
{h∈H:ϑt(h)=θt}

ui(h),

ui|t(θt) = inf
{h∈H:ϑt(h)=θt}

ui(h).

Since ui is Borel measurable, thus upper and lower semianalytic, therefore by Proposition 8,

ūi|t and ui|t are upper and lower semianalytic functions on Θt respectively, thus universally
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measurable. Both functions can be lifted to be an upper and lower semianalytic function

respectively, on H.

We say that ui is lower convergent if for each history h ∈ H,

lim
t→∞

ui|t(ϑt(h)) = ui(h),

and there is a uniform lower bound on ui. The notion of upper convergence of a ui is

symmetrically defined.

For every it ∈ W and strategy profile σ, there exists (Proposition 13) a universally

measurable function Uσ
i|t : Zit → R such that for every (σ′iτ )τ<t,

Uσ
i|t(zit) = Eσ/(σ′iτ )τ<t [ui | ζit = zit],

for Pσ/(σ′iτ )τ<t almost every zit. Uσ
i|t(zit) is the expected utility of player i conditional on

observing zit.

Fix a perturbed game Γ̂ = (Γ, ε, χ). Consider a strategy profile σ = (σi)i∈I ∈ Σ̂. We say

that the strategy σi of player i is unimprovable with respect to the strategies σ−i of all other

players in Γ̂ if and only if for every t ≥ 1 and for every strategy σ′i ∈ Σ̂i of player i,

Uσ
i|t (ζit) ≥ Eσ/σ′i

[
Uσ
i|t+1

(
ζi(t+1)

) ∣∣∣ ζit] Pσ/σ′i almost surely. (30)

Remark 1. Unimprovability, also called the one-shot deviation principle, was originally for-

mulated by Blackwell (1965) in the context of dynamic programming. In the context of

extensive games, after fixing the strategy of the other players to be σ−i, player i faces a

potentially infinite-horizon dynamic programming problem. To say that a strategy σi is

unimprovable is to say that it cannot be improved upon in one step by any other strategy

σ′i. If at any time t, when presuming that he will revert to the strategy σi beginning in next

period, he does as well as possible by using σi in this period. for every σ′i, t, k ≥ 0, and every

partial history ht−1 ∈ Ht−1.

By induction and the law of iterated expectations, this easily extends to k-period unim-
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provability, as follows.

Lemma 4. If σi is unimprovable with respect to σ−i in Γ̂, then for every t, k ≥ 0 and for

every strategy σ′i ∈ Σ̂i of player i,

Uσ
i|t (ζit) ≥ Eσ/σ′i

[
Uσ
i|t+k

(
ζi(t+k)

) ∣∣∣ ζit] Pσ/σ′i almost surely. (31)

Proof. Suppose inequality 31 holds for some k ≥ 1, since

Uσ
i|(t+k)

(
ζi(t+k)

)
≥ Eσ/σ′i

[
Uσ
i|t+k+1

(
ζi(t+k+1)

) ∣∣∣ ζi(t+k)

]
Pσ/σ′i almost surely,

we then have

Uσ
i|t (ζit) ≥ Eσ/σ′i

[
Eσ/σ′i

[
Uσ
i|t+k+1

(
ζi(t+k+1)

) ∣∣∣ ζi(t+k)

] ∣∣∣ ζit]
≥ Eσ/σ′i

[
Uσ
i|t+k+1

(
ζi(t+k+1)

) ∣∣∣ ζit] Pσ/σ′i almost surely.

This establishes k-period unimprovability by induction.

Now we are ready state a sufficient condition for being a Nash equilibrium.

Proposition 14 (A sufficient condtion). Suppose Γ = (I,N, S,A, Z, p, ζ, u) is a multistage

game in which every utility function ui is lower convergent, and Γ̂ = (Γ, ε, χ) is a perturbed

game of Γ (if ε ≡ 0, then Γ̂ = Γ by convention). If σ is a strategy profile such that σi is

unimprovable with respect to σ−i in Γ̂ for all i ∈ N , then σ is a Nash equilibrium of Γ̂.

Proof. Suppose σ ∈ Σ̂ has the stated unimprovability property. For every t, k ≥ 0 and for

every σ′i ∈ Σ̂i, from the definition of the function Uσ
i|t+k we have,

Uσ
i|t+k

(
zi(t+k)

)
= Eσ/(σ′iτ )τ<t+k

[
ui | ζi(t+k) = zi(t+k)

]
for Pσ/(σ′iτ )τ<t+k and Pσ/σ′i almost every zi(t+k),

≥ Eσ/(σ′iτ )τ<t+k
[
ui|t+k

∣∣ ζi(t+k) = zi(t+k)

]
for Pσ/(σ′iτ )τ<t+k and Pσ/σ′i almost every zi(t+k),

≥ Eσ/σ′i
[
ui|t+k

∣∣ ζi(t+k) = zi(t+k)

]
for Pσ/(σ′iτ )τ<t+k and Pσ/σ′i almost every zi(t+k).

where the last inequality follows from Proposition 3, as the probability distributions of both
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ui|t+k and ζi(t+k) are the same under Pσ/(σ′iτ )τ<t+k and Pσ/σ′i . This is also why all equalities

and inequalities above hold for Pσ/(σ′iτ )τ<t+k and Pσ/σ′i almost every zi(t+k).

Thus inequality (31) implies that,

Uσ
i|t (ζit) ≥ Eσ/σ′i

[
Eσ/σ′i

[
ui|t+k

∣∣ ζi(t+k)

] ∣∣∣ ζit]
= Eσ/σ′i

[
ui|t+k

∣∣∣ ζit] Pσ/σ′i almost surely.

As k →∞, ui|t+k converges monotonically (upwards) to ui (since ui is lower convergent), so

an application of monotone convergence implies that

Uσ
i|t (ζit) ≥ Eσ/σ′i [ui | ζit] = U

σ/σ′i
i|t (ζit) Pσ/σ′i almost surely.

In particular, Uσ
i|1 (zi1) ≥ U

σ/σ′i
i|1 (zi1) for Pσ/σ′i almost every zi1. Since the probability dis-

tribution of ζi1 does not change with the strategy profile (it is always p1 ◦ ζ−1
i1 ), thus

Uσ
i|1 (zi1) ≥ U

σ/σ′i
i|1 (zi1) for p1 almost every zi1. Thus,

Ui(σ) =

∫
Zi1

Uσ
i|1 (zi1)

(
p1 ◦ ζ−1

i1

)
(dzi1) ≥

∫
Zi1

U
σ/σ′i
i|1 (zi1)

(
p1 ◦ ζ−1

i1

)
(dzi1) = Ui(σ

′
i, σ−i).

Therefore σ is a Nash equilibrium of Γ̂.

Now we provide a necessary condition for a strategy profile to be a Nash equilibrium.

Definition 3. We say that a utility function ui is convergent uniformly in probability if

∀ ε > 0,

sup
σ∈Σ

Pσ
[
ūi|t − ui|t > ε

]
→ 0.

Proposition 15 (A nessary condition). Suppose Γ = (I,N, S,A, Z, p, ζ, u) is a multistage

game in which every utility function ui is convergent uniformly in probability. Let Γ̂ =

(Γ, ε, χ) be a perturbed game of Γ. If σ is a Borel measurable Nash equilibrium of Γ̂, then for

every it ∈ W ,

Uσ
i|t(zit) ≥ sup

σ′i∈ Σ̂i

U
σ/σ′i
i|t (zit) for Pσ almost every zit. (32)

We need some intermediate results to establish the necessary condition above.
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Lemma 5. If σ is a Nash equilibrium of Γ̂, then for every σ′i ∈ Σ̂i,

Uσ
i|1(zi1) ≥ U

σ/σ′i
i|1 (zi1), for almost every zi1.

Proof. Let Zi1 =
{
zi1 ∈ Zi1 : Uσ

i|1(zi1) < U
σ/σ′i
i|1 (zi1)

}
. Intuitively, Zi1 is the set of places

where player i can improve by adopting the strategy σ′i in place of σ. Zi1 is a universally

measurable subset of Zi1. Define a strategy σ̃i ∈ Σ̂i of player i as follows: for every t ≥ 1,

σ̃it(zit) = σit(zit) if rit0(zit) 6∈ Zi1,

σ̃it(zit) = σ′it(zit) if rit0(zit) ∈ Zi1

where rit0 is one of the recall functions of player i. Then

Ui(σ̃i, σ−i) =

∫
zi1 6∈Zi1

Uσ
i|1(zi1)

(
p1 ◦ ζ−1

i1

)
(dzi1) +

∫
zi1∈Zi1

U
σ/σ′i
i|1 (zi1)

(
p1 ◦ ζ−1

i1

)
(dzi1)

=

∫
Zi1

Uσ
i|1(zi1)

(
p1 ◦ ζ−1

i1

)
(dzi1) +

∫
zi1∈Zi1

[
U
σ/σ′i
i|1 (zi1)− Uσ

i|1(zi1)
] (
p1 ◦ ζ−1

i1

)
(dzi1)

= U(σ) +

∫
zi1∈Zi1

[
U
σ/σ′i
i|1 (zi1)− Uσ

i|1(zi1)
] (
p1 ◦ ζ−1

i1

)
(dzi1).

Since Ui(σ̃i, σ−i) ≤ Ui(σ), then the integral on the right hand side of the equation above

must be non positive. But the integrand
[
U
σ/σ′i
i|1 (zi1)− Uσ

i|1(zi1)
]
is strictly positive when

zi1 ∈ Zi1, so it must be that
(
p1 ◦ ζ−1

i1

)
(Zi1) = 0. This completes the proof.

For every it ∈ W , let

Bit = {(zit, p) ∈ Zit ×∆(Ait) : p(B) ≥ εit(zit)χit(B | zit), ∀B ⊂ Ait}.

Lemma 6. For every it ∈ W , Bit is a Borel subset of Zit ×∆(Ait).

Proof. Define ϕ : Zit ×∆(Ait)→ ∆(Ait) by

ϕ(zit, p) = (1− εit(zit))p+ εit(zit)χit(zit).

The function ϕ is Borel measurable, as εit(·) and χit(·) are. Let ϕ̂ : Zit×∆(Ait)→ Zit×∆(Ait)

be defined as ϕ̂(zit, p) = (zit, ϕ(zit, p)). Then ϕ̂ is Borel measurable and bijective, and
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ϕ̂(Zit × ∆(Ait)) = Bit. By Kuratowski’s theorem (Proposition 2), Bit is a Borel subset of

Zit ×∆(Ait).

Suppose σ is a Borel measurable Nash equilibrium of Γ̂. Without lose of generality, we will

show Equation (32) for t = 0. Let g : H → R be universally measurable and bounded. For

every it ∈ W and θt ∈ Θt, there exists, by Proposition 12, a bounded universally measurable

function ĝ : Zit × Ait → R such that for every (σ′iτ )τ≤t,

ĝ(zit, ait) = Eσ/(σ′iτ )τ≤t [g | ζit = zit, ait = ait], for Pσ/(σ′iτ )τ≤t almost every (zit, ait). (33)

Define f : Bit → R by

f(zit, p) =

∫
Ait

ĝ(zit, ait)p(dait). (34)

The function f is universally measurable and bounded, because ĝ is (Corollary 1).

For every σ′it ∈ Σ̂it, the operator Jσ′it mapping g into Jσ′it(g) : Θt → R is defined by

Jσ
′
it(g) (θt) = f (ζit(θt), σ

′
it [dait | ζit(θt)]) .

for every θt ∈ Θt. The function Jσ′it(g) is bounded and universally measurable by Proposi-

tion 4. Thus the operator Jσ′it maps a bounded universally measurable function g : H → R

to a bounded universally measurable function Jσ
′
it(g) : H → R. From the definition of

Jσ
′
it(g) and the law of iterated expectation, it follows that for every (σ′iτ )τ<t,

Jσ
′
it(g) (ϑt(h)) = Eσ/(σ′iτ )τ≤t [g | ζit](h), Pσ/(σ′iτ )τ≤t almost surely. (35)

Lemma 7. For every t ≥ 1, (σ′iτ )τ≤t ∈
∏

τ≤t Σ̂iτ and bounded universally measurable g :

H → R, we have

(
Jσ
′
i1 . . . Jσ

′
it

)
(g) = Eσ/(σ′iτ )τ≤t [g | ζi1], almost surely.

where Jσ′i1 . . . Jσ′it denotes the composition of Jσi1,. . . ,Jσit.

Proof. We proceed by induction on t. The case where t = 0 reduces to the definition of Jσ′i1 .
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Suppose Lemma 7 holds for some t − 1 ≥ 0. Since Jσ′it(g) is defined on Θt, thus it has the

same probability distribution under Pσ/(σ′iτ )τ<t and Pσ/(σ′iτ )τ≤t . Thus we have

(Jσi1 . . . Jσit) (g)

= Eσ/(σ′iτ )τ<t
[
Jσ
′
it(g) | ζi1

]
(induction hypothesis at t− 1)

= Eσ/(σ′iτ )τ≤t
[
Jσ
′
it(g) | ζi1

]
(Proposition 3)

= Eσ/(σ′iτ )τ≤t
[
Eσ/(σ′iτ )τ≤t [g | ζit] | ζi1

]
(Equation (35))

= Eσ/(σ′iτ )τ≤t [g | ζi1] Pσ/(σ′iτ )τ≤t almost surely.

Since both sides of the equation are functions defined on Θt, their probability distributions

are unaffected by the underlying probability measure. Therefore the equations above hold

almost surely. This establishes Lemma 7 by induction.

Given a zit ∈ Zit, let Bzit be the section of Bit at zit. That is,

Bzit = {p ∈ ∆(Ait) : (zit, p) ∈ Bit}.

The operator Jit mapping g into Jit(g) : Θt → R is defined by

Jit(g)(θt) = sup
p∈Bζit(θt)

f(ζit(θt), p).

If the function g is upper semianalytic, then the function ĝ in Equation (33) can be taken

to be upper semianalytic (Proposition 10), and thus the function f in Equation (34) is

also upper semianalytic (Corollary 2). Therefore the function Jit(g) is upper semianalytic

(Propositions 4 and 8). Thus the operator J maps a bounded upper semianalytic function

g : H → R to a bounded upper semianalytic function Jit(g) : H → R.

It is clear that (
Jσ
′
i1 . . . Jσ

′
it

)
(g) ≤ (Ji1 . . . Jit) (g)

for every t ≥ 1, (σ′i1, . . . , σ
′
it) ∈

∏
τ≤t Σ̂iτ and bounded upper semianalytic function g : H →

R. But the inequality can be arbitrarily tight, as the following result shows.

Lemma 8. For every t ≥ 1, bounded upper semianalytic function g : H → R and ε > 0,
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there exists σ′it ∈ Σ̂it such that for every h ∈ H,

Jσ
′
it(g) (h) ≥ Jit(g) (h)− ε

Proof. An application of Theorem 2 to the upper semianalytic function f defined in Equa-

tion (34) implies the existence of a universally measurable probability function: σ′it : Zit →

∆(Ait) such that for every zit ∈ Zit, σ′it ∈ Bzit and for every zit ∈ Zit,

f(zit, σ
′
it(zit)) ≥ sup

p∈Bzit
f(zit, p)− ε.

Thus σ′it ∈ Σ̂it and for every h ∈ H,

Jσ
′
it(g) (h) ≥ Jit(g) (h)− ε

Lemma 9. For every t ≥ 1, bounded upper semianalytic function g : H → R and ε > 0,

there exists (σ′i1, . . . , σ
′
it) ∈

∏
τ≤t Σ̂iτ such that for every h ∈ H,

(
Jσ
′
i1 . . . Jσ

′
it

)
(g) (h) ≥ (Ji1 . . . Jit) (g) (h)− ε

Proof. We proceed by induction on t. The case where t = 0 reduces to Lemma 8. Suppose

it is true for some t− 1 ≥ 0. Then there exists
(
σ′i1, . . . , σ

′
i(t−1)

)
∈
∏

τ<t Σ̂iτ such that

(
Jσ
′
i1 . . . Jσ

′
i(t−1)

)
(Jit(g)) ≥ (Ji1 . . . Jit) (Jit(g))− ε.

By Lemma 8, there exists σ′it ∈ Σ̂it such that

Jσ
′
it(g) ≥ Jit(g)− ε.

Combining the two inequalities above, we obtain

(
Jσ
′
i1 . . . Jσ

′
it

)
(g) ≥ (Ji1 . . . Jit) (g)− 2ε.

55



This establishes Lemma 9 by induction.

Let J∗ : Zi1 → R be defined by

J∗(zi1) = sup
σ′i∈ Σ̂i

U
σ/σ′i
i|1 (zi1).

Lemma 10. For every t ≥ 1, J∗(ζi1) ≤ (Ji1 . . . Ji(t−1))
(
ūi|t
)
almost surely.

Proof. For every σ′i ∈ Σ̂i,

U
σ/σ′i
i|1 (ζi1) = Eσ/σ′i

[
U
σ/σ′i
i|t (ζit) | ζi1

]
≤ Eσ/σ′i

[
ūi|t(ζit) | ζi1

]
, almost surely.

As the probability distribution of ūi|t(ζit) and ζi1 does not depend on the choice of (σ′it, . . . , ),

thus

Eσ/σ′i
[
ūi|t(ζit) | ζi1

]
= Eσ/(σ′iτ )τ<t

[
ūi|t(ζit) | ζi1

]
=
(
Jσ
′
i1 . . . Jσ

′
i(t−1)

)
(ūi|t) ≤

(
Ji1 . . . Ji(t−1)

)
(ūi|t).

almost surely. Therefore J∗(ζi1) ≤
(
Ji1 . . . Ji(t−1)

)
(ūi|t) almost surely.

Now we are ready to show Proposition 15.

Proof. Let σ be a Borel measurable Nash equilibrium of Γ̂ as in the statement of Propo-

sition 15. For every i ∈ I, let M = supui − inf ui. Since ui is convergent uniformly in

probability, thus for every ε > 0, there exists t ≥ 1 such that

Pσ′
(
ūi|t − ui|t > ε

)
< ε (36)

for every σ′ ∈ Σ̂. Fix such a t, then there exists (σ′i1, . . . , σ
′
i(t−1)) ∈

∏
τ<t Σ̂iτ such that

(
Jσ
′
i1 . . . Jσ

′
i(t−1)

)
(ūi|t) ≥

(
Ji1 . . . Ji(t−1)

)
(ūi|t)− ε ≥ J∗(ζi1), almost surely
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by Lemmas 9 and 10. On the other hand,(
Jσ
′
i1 . . . Jσ

′
i(t−1)

)
(ūi|t)

= Eσ/(σ′iτ )τ<t [ūi|t | ζi1] (Lemma 7)

≤ Eσ/(σ′iτ )τ<t [ui|t | ζi1] + ε+Mε (Inequality 36)

≤ Eσ/(σ′iτ )τ<t
[
U
σ/(σ′iτ )τ<t
i|t (ζit) | ζi1

]
+ (M + 1)ε

= U
σ/(σ′iτ )τ<t
i|1 (ζi1) + (M + 1)ε almost surely.

Therefore

U
σ/(σ′iτ )τ<t
i|1 (ζi1) + (M + 1)ε ≥ J∗(ζi1) almost surely.

Let

Aε =
{
Uσ
i|1(ζi1) + (M + 1)ε < J∗(ζi1)

}
.

Since Uσ
i|1(ζi1) ≥ U

σ/(σ′iτ )τ<t
i|1 (ζi1) almost surely (Lemma 5), we have Pσ(Aε) = 0. As ε is

arbitrary, thus Pσ(A) = 0, where

A =
⋃
k→∞

A1/k =
{
Uσ
i|1(ζi1) < J∗(ζi1)

}
.

Therefore Uσ
i|1(ζi1) ≥ J∗(ζi1) =

(
supσ′i∈ Σ̂i

U
σ/σ′i
i|1

)
(ζi1) almost surely, completing the proof.

Remark 2. One difference between the sufficient and the necessary conditions, is that be-

tween the qualifications for “almost surely”. In the sufficient condition, inequality 30 holds

Pσ/(σiτ )τ≤t almost surely, where (σ′iτ )τ≤t vary across
∏

τ≤t Σiτ . This effectively requires that

the inequality holds “everywhere”, whether or not it is ruled out by the underlying strategy

profile σ. Formally, unimprovability is equivalent to the following: for every it ∈ W , for

every σ′it ∈ Σit, there exists a universally measurable function g : Zit → R such that for

every (σ′iτ )τ<t,

g(zit) = Eσ/(σ′iτ )τ≤t

[
Uσ
i|t+1

(
ζi(t+1)

) ∣∣∣ ζit = zit

]
for Pσ/(σ′iτ )τ≤t almost every zit,

Uσ
i|t(zit) ≥ g(zit) for every zit.
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In this sense, it is inspirit similar to subgame perfection. It is stronger than the necessary

condition, which only requires inequality Equation (32) to hold P σ almost surely. That is,

every player’s continuation strategy has to be optimal only at points that the strategy profile

σ allows. Optimality is not required at points that σ rules out. For this reason, the necessary

condition is not sufficient for a strategy profile to be a Nash equilibrium, because a player

can have intertemporal coordination failure.

To differentiate the two concepts of optimality, we will refer to the type in the sufficient

condition “everywhere optimality”.

Suppose a multistage game Γ = (I,N, S,A, Z, p, ζ, u) is such that players can perfectly

observe the complete preplay of the game before he acts in any period, that is, Zit = Θit and

ζit : Θit → Zit is the identity mapping for every it ∈ W , then every preplay θt ∈ Θt induces

a subgame Γ|θt of Γ. We apply the subscript “|θt” to denote the components of the subgame

Γ|θt . For example, I|θt is the set of players in Γθt , and ui|θt is the utility function of player

i in Γθt . Let Γ̂ = (Γ, ε, χ) be a perturbed game of Γ, a subgame Γ̂|θt = (Γ|θt , ε|θt , χ|θt) of Γ̂

consists of a subgame Γθt of Γ, and the restrictions ε|θt of ε and χ|θt of χ to the information

sets in Γ|θt . Let Σ̂i|θt be the set of strategies of player i in Γ̂|θt . If σ = (σi)i∈N be a strategy

profile of Γ. We denote the strategy profile induced by σ on a subgame Γ|θt by σ|θt . If σ is a

strategy profile of Γ̂, then the induced strategy profile σ|θt is a strategy profile of the subgame

Γ̂θt . Whenever we consider several multistage games with possibly different utility functions

simultaneously, we add the game itself as an argument to any utility related functions to

avoid confusion. Thus given any multistage game Γ, and a strategy profile σ of Γ, Ui (σ; Γ)

denotes the expected utility of player i under the strategy profile σ. The same applies to

functions like Ui|t.

A multistage game with the property above is called a game with quasi-perfect informa-

tion. The setting where a multistage game has perfect information is a special case. An

immediate corollary of the necessary condition Proposition 15 follows:

Corollary 4. Suppose Γ = (I,N, S,A, Z, p, ζ, u) is a multistage game with quasi-perfect

information in which every utility function ui is convergent uniformly in probability. Let
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Γ̂ = (Γ, ε, χ) be a perturbed game of Γ. If σ is a Borel measurable Nash equilibrium of Γ̂,

then for every t ≥ 0 and Pσ almost every θt ∈ Θt, σ|θt is a Borel measurable Nash equilibrium

of Γ̂|θt.

Proof. For every it ∈ W , one can take the function Uσ
i|t : Θt → R to be

Uσ
i|t(θt; Γ) = Ui

(
σ|θt ; Γ|θt

)
.

Then by Proposition 15, there exists a universally measurable subset Bi ⊂ Θt for every i ∈ I

such that Pσ[ϑt ∈ Bi] = 1 and for each θt ∈ Bi,

Ui
(
σ|θt ; Γ|θt

)
≥ sup

σ′
i|θt
∈Σ̂i|θt

Ui
(
σ′i|θt , σ−i|θt ; Γ|θt

)
.

Let B = ∩i∈IBi. Then we have Pσ(ϑt ∈ B) = 1 and for each θt ∈ B, the inequality above

holds. That is, σ|θt is a Borel measurable Nash equilibrium of Γ̂|θt for Pσ almost every

θt ∈ Θt.

B.3 Generic Rubinstein alternating-offers game

We begin with a generic two-player bargaining game, defined as follows. Two players, 1 and

2, bargain over an outcome in some compact metric set K, the set of possible agreements.

Failure to agree, a “breakdown,” results an outcome denoted by D. As an example, we may

have K =
{

(x1, x2) ∈ R2
+ : x1 + x2 = 1

}
and D = (0, 0). Endowing K ∪ D with its Borel

σ-algebra, each player i has a measurable Borel utility function ûi : K ∪ {D} → R.

Rubinstein (1982) suggested the following dynamic bargaining game. In each period,

one of the players proposes an outcome x in K. The other player accepts the offer, an

action denoted Y, or rejects (denoted N). Acceptance ends the bargaining and the agreement

is implemented. Rejection leads, with some given probability η, to a breakdown of the

negotiation, denoted B, in which case the outcome of the game is D. Otherwise, the game

advances to the next period, a result called A, when the offer is made by the other player.

We suppose that Player 1 is the first to propose.
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The resulting multistage game is denoted Γ. We use the same notation as in the descrip-

tion of an abstract multistage game, unless otherwise specified.

B.3.1 Histories, Lower Convergence of Utility Functions and Behavioral Strate-
gies

A complete history h = (xt, rt, st)t≥1 of everything that happens over the course of the

game consists of a sequence of offers x = (xt)t≥1 ∈ KZ+ , a sequence of responses r =

(rt)t≥1 ∈ {Y,N}Z+ , and a sequence of choices by nature s = (st)t≥1 ∈ {A,B}Z+ . The

complete set of histories is H = (K × {Y,N} × {A,B})Z+ . Each utility function ui induces

a Borel measurable utility ui : H → R. Specifically, given a history h = (x, r, s), let

τ = inf
{
t ≥ 1, rt = Y or st = B

}
. That is, τ is the period in which the bargaining

process ends. If τ < ∞, then each player’s utility is well defined on such a history with

ui(h) = ûi(xτ )1{rτ = Y }+ ui(D)1{rτ = N}. If τ =∞, we let ui(h) = ûi(D) by convention.

Proposition 16. Each utility function ui is lower convergent and convergent uniformly in

probability.

Proof. Because 0 ≤ ui ≤ 1, we may take 0 and 1 as a uniform lower and upper bounds on

ûi. Given a history h = (x, r, s), let τ = inf
{
t ≥ 1, rt = Y or st = B

}
be the period in

which the bargaining ends. If τ if finite, then for all t > τ , we have ui(ht) = ui(h). If τ

is infinite, then by definition limt→∞ ui|t(ht) = ui(h) = ûi(D) for every t ≥ 1. Therefore

limt→∞ ui|t(ht) = ui(h), that is, the utility function ui is lower convergent.

On the other hand, ūi|t and ui|t are different only on the event {τ > t}, an event with

probability less than (1− η)t under any strategy profile. Therefore the utility function ui is

convergent uniformly in probability.

To simplify notation, we will simply denote a partial history (x≤t, r≤t, s≤t) by its offer

history xt = (x1, . . . , xt). We can do so because rτ = Y or sτ = B for some τ ≤ t, the game

would have ended by period t and no more description is needed for what happens thereafter.

Therefore an offer history xt = (x1, . . . , xt) denotes the partial history (xt, r≤t, s≤t) where

rτ = N and sτ = A for all τ ≤ t.
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We denote by µt an offer strategy in period t, and by ρt a response strategy. Thus µt

is a universally measurable probability kernel from Kt−1 to K, mapping a history of prior

rejected offers xt−1 = (x1, . . . , xt−1) ∈ Kt−1 to a probability measure on K, and ρt is a

universally measurable probability kernel from Kt to {Y,N}, mapping a history of prior and

current offers xt to a probability measure on {Y,N}. A behavioral strategy σ1 of Player 1

is a sequence (µ1, ρ2, µ3, ρ4, . . .) of such mappings. A strategy σ2 of Player 2 is likewise a

sequence of such functions of the form (ρ1, µ2, ρ3, µ4, . . .).

B.3.2 Perturbed Game, Independence of Strategically Irrelevant Information

The Rubinstein’s game Γ is a multistage game with perfect information. All subgames that

starts with an offer of Player 1 (Player 2) are strategically isomorphic, and all subgames

that starts with an response of Player 1 (Player 2) and have the same current offer are

strategically isomorphic. Then we have the following proposition:

Proposition 17. If a perturbed game Γ̂ = (Γ, ε, χ) of Γ respects independence of strategically

irrelevant information, then

εit (xt−1) = εiτ (xτ−1) , χit (xt−1) = χiτ (xτ−1) , if t, τ and i are of the same parity.
εit (xt) = εiτ (x

τ ), χit (xt) = χiτ (x
τ ), if t, τ are of the same parity, different from i.

Recall the notation Γ̂|xt−1 , which denotes the subgame of Γ̂ which follows the history of

prior rejected offers xt−1 and starts with a player making an offer. The following corollary

is an immediate consequence:

Corollary 5. Suppose Γ̂ is a perturbed game of Γ. If Γ respects independence of irrelevant

information, then for all t ≥ 1, xt−1 ∈ Kk−1 and x′1 ∈ K,

Γ̂|xt−1 = Γ̂ if t is odd.
Γ̂|xt−1 = Γ̂|x′1 if t is even.

We now consider the original Rubinstein’s game in which two players bargain to split

a “pie” of size 1. The goal of the next subsection is to show that this game has a unique

outcome that is induced by a restricted equilibrium, and that this outcome is the same as the
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subgame perfect equilibrium outcome. We will also provide some extension of these results

in preparation of our proof of Theorem 1.

B.4 The Original Rubinstein’s alternating-offers game

The original Rubinstein’s alternating-offers game corresponds to the case where

K =
{

(x1, x2) ∈ R2
+ : x1 + x2 = 1

}
and D = (0, 0). We assume quasi-linear utilities for both players, that is ui(x) = xi, and

ui(D) = 0 for i = 1, 2. This form of Rubinstein’s alternating-offers game can be viewed as

a special case of our three-node bargaining game.13 Let ΓR denote the original Rubinstein’s

alternating-offers game.

The game ΓR exhibits certain symmetry between Player 1 and 2, in that every subgames

that starts with an offer of Player 1 is strategically isomorphic to every subgames that starts

with an offer of Player 2, and every subgames that starts with an response of Player 1 is

strategically isomorphic to every subgames that starts with an response of Player 2 with the

same current offer. For each t, let i(t) be the player designated to offer in period t, and

denote by j(t) the responding player. We have the following characterization of a perturbed

game of ΓR that respects independence of strategically irrelevant information.

Proposition 18. A perturbed game Γ̂ = (ΓR, ε, χ) of ΓR respects independence of strategi-

cally irrelevant information if and only if

εit (xt−1) = ε11, χit (xt−1) = χ11, if i = i(t).

εit (xt) = ε21(x1), χit (xt) = χ21(x1), if i = j(t).

The following corollary is an immediate consequence:

Corollary 6. Suppose Γ̂ is a perturbed game of ΓR. If Γ respects independence of irrelevant
13Indeed, if we let the treatment sets S2 =

{
s02
}
and S3 =

{
s03
}
to be singleton sets (so that we freeze

the treatments of Node 2 and 3), and let C1

(
s02
)

=
{
s01, s1

}
be a binary set, then the three node bargaining

problem is reduced to the original Rubinstein’s alternating offer game between Nodes 1 and 2.
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information, then for all t ≥ 1 and xt−1 ∈ Kk−1,

Γ̂|xt−1 = Γ̂.

To simplify notation, we reparametrize the offer set K by the unit interval [0, 1] in the

following obvious way: in each period, one player offers a share y ∈ [0, 1] to his opponent,

which is equivalent to offering (1− y, y) ∈ K in the old parametrization.

Let

v1 =
1

2− η
, v2 =

1− η
2− η

.

It is known that there is a unique subgame perfect equilibrium to this game. In equilibrium

each player proposes v2 whenever it is his turn to make an offer, and accepts an offer y of

the other player if and only if y ≥ v2. The equilibrium outcome is that Player 1 proposes v2

in period 1, and Player 2 immediately accepts this offer. Thus the equilibrium payoff is v1

for Player 1, and v2 for Player 2.

We write this equilibrium in the form of a behavioral strategy profile. Let σ∗ = (µ∗, ρ∗)

be the behavioral strategy profile defined by the following: for every t ≥ 1 and for every

offer history yt ∈ [0, 1]t up to period t,

• µ∗t (yt−1) = δv2 ( δv2 is the Borel probability measure on [0, 1] corresponding to the

point mass at v2.);

• ρ∗t ({Y } | yt) =

{
1 if yt ≥ v2 (recall that yt is the current offer in period t)
0 if yt < v2

Given a behavioral strategy profile σ, let pa(σ) denote the probability that the two play-

ers conclude the game by reaching an agreement when playing σ, and Ui(σ|agreement) =

Eσ[ûi(h)| ∪t≥1 At] be the expected payoff of Player i under σ, conditional on the two players
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eventually reaching an agreement.14 Then we have

Ui(σ) = pa(σ)Ui(σ|agreement),

and on a separate account,

U1(σ|agreement) + U2(σ|agreement) = 1.

We can now state the following proposition:

Theorem 3. Rubinstein’s alternating offer game has a restricted equilibrium. In particular,

the pure strategy profile σ∗ is a restricted equilibrium. Every restricted equilibrium σ induces

the same outcome as σ∗. Moreover,

(a) There exists a restricted trembling sequence (σn)n≥0 for σ∗ such that the followings are

true:

(i) for every n, Ui(σn|agreement) = vi (i = 1, 2).

(ii) As n→∞, the probability pna of an eventual agreement converges to 1.

(iii) As a consequence, the unconditional payoff Ui(σn) of Player i under σn converges

to vi.

(b) For each restricted trembling sequence (σn)n≥0 for some restricted equilibrium, the fol-

lowings are true:

(i’) As n→∞, the unconditional payoff Ui(σ
n) of Player i under σn converges to vi;

(ii’) The probabilities pna converge to 1;

(iii’) As a consequence, Ui(σn|agreement)→ vi.

Remark 3. (a) and (b) will be useful for the proof of Theorem 1.
14Given a behavioral strategy profile, the event that the two players reach an agreement is ∪t≥1At where

At is the event that the players reach an agreement in period t. Likewise the event that the bargaining
process eventually breaks down is ∪t≥1Bt(σ). Both are measurable events. Moreover, if σ is a totally mixed
behavioral strategy profile, then Pσ[∪t≥1At] > 0, Pσ[∪t≥1Bt] > 0. Hence conditional probabilities given
either agreement or breakdown events are uniquely defined.
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Proof. Existence and (a): We will show that σ∗ is a restricted equilibrium of Rubinstein’s

game. For this, we fix an arbitrary positive scalar λ ≤ (1−η)/2, a positive sequence εn → 0,

and a strictly positive measure ξ on [0, (1 − η − 2λ)v1]. For each n, let χn ∈ ∆([0, 1]) be

defined by

χn = (εn)2ξ +
(
1− αn − (εn)2

)
U(0, γn) + αn U(γn, 1),

where U(a, b) denotes the uniform distribution on [a, b], αn and γn are two positive numbers

in (0, 1) that we will determine. By definition, χn is a strictly positive distribution on the

unit interval [0, 1], and will serve as the reference measure for the nth perturbed game along

the sequence.

For each n and each t, let µnt and ρnt be defined by

µnt
(
yt−1

)
= (1− εn) δγn + εnχn,

for every history of offers yt ∈ [0, 1]t, and

ρnt
(
{Y } | yt

)
=


(εn)2 if yt ∈ [0, γn − 2λv1),

εn if yt ∈ [γn − 2λv1, γ
n),

1− εn if yt ∈ [γn, γn + 2λv1),

1− (εn)2 if yt ∈ [γn + 2λv1, 1].

Recall that i(t) is the player designated to offer in period t, and j(t) is the the responding

player. The combination σn = (µn, ρn) defines a behavioral strategy profile for the perturbed

game Γ̂n whose minimum probabilities εnit and reference measures χnit are as follows: for every

offer history yt ∈ [0, 1]t,

εnit
(
yt
)

=


εn,

2εn,

2(εn)2,

χnit
(
yt
)

=


χn if i = i(t),
1
2
δ{Y } + 1

2
δ{N} if i = j(t) and yt ∈ [γn − 2λv1, γ

n + 2λv1),
1
2
δ{Y } + 1

2
δ{N} if i = j(t)t and yt 6∈ [γn − 2λv1, γ

n + 2λv1),

where 1
2
δ{Y }+ 1

2
δ{N} is the probability measure on the set of responses {Y,N} which assigns

1/2 probability to each response. The sequence (Γ̂n)n≥0 is a test sequence for Γ. For each n,

since the minimum probabilities εnit and the reference measures χnit are constant and identical
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across all pairs (i, t) such that i = i(t), and only depend on the current offer yt in a identical

manner across all pairs (i, t) such that i = j(t), the perturbed game Γ̂n respects independence

of strategically irrelevant information.

We look for values of αn and γn such that all strategies µnt and ρnt at each period t(t ≥ 1)

are everywhere optimal against σn in Γ̂n. As the unimprovability property is sufficient for

being a Nash equilibrium (Proposition 14), this would imply that σn is a Nash equilibrium

of Γ̂n. Then we verify that σn is a (2λ, εn)-extended proper equilibrium of ΓR in extensive

form. Upon verifying that σn converges weak*, pointwise, to σ∗, we would prove that σ∗ is

a restricted equilibrium of ΓR.

Notice that the Rubinstein’s game ΓR and the strategy profiles σn are both stationary

and symmetric between Player 1 and 2. Therefore the value is the same for both the offering

and the responding player in all subsequent continuation games. Let vn1 = U1(σn) be the

value of the offering player, and vn2 = U2(σn) be that of the responding player. Then

vn1 = (1− εn)
[

(1− εn) (1− γn) + εn(1− η)vn2

]
+ εn

[
(1− αn)(1− εn)(1− η)vn2

+ εn(1− γn + λv1) + αn (1− γn)/2
]

+ αnO
(
(εn)2

)
+O

(
(εn)3

)
,

(37)

where O(εn) denotes as usual a term that is asymptotically bounded by εn. To derive this

value for vn1 , consider period 1 when

• with probability 1− εn, Player 1 offers γn to Player 2. This offer is

– accepted with probability 1− εn, in which case Player 1 receives 1− γn, and

– rejected with probability εn, in which case, with probability 1−η, Player 1 receives

its value in the subsequent continuation game (That value is vn2 by symmetry and

stationarity);

• With probability εn, Players 1 offers an amount y with distribution χn. Such an offer

is

– rejected with probability (1− αn)(1− εn) + αnO(εn) +O ((εn)2), and

66



– conditional on the offer y being accepted and being in the interval [γn − 2λv1, γ
n),

an event with probability εn +αnO(εn) +O ((εn)3), Player 1 receives an expected

value of 1 − γn + λv1; whereas conditional on y being accepted and being in

the interval [γn, 1], an event with probability αn + αnO(εn), Player 1 receives an

expected value of (1 − γn)/2. The probability that y is in the interval [0, γn) is

O ((εn)2).

This leads to the value vn1 of Player 1 as showed in equation (37) above. Likewise, we can

obtain that

vn2 = (1− εn)
[

(1− εn) γn + εn(1− η)vn1

]
+ εn

[
(1− αn)(1− εn)(1− η)vn1

+ εn(γn − λv1) + αn (1 + γn)/2
]

+ αnO
(
(εn)2

)
+O

(
(εn)3

)
,

Consider the everywhere optimality of ρn1 as a response to σn: In period 1, knowing that

his value in the subsequent continuation game is (1− η)vn1 if he rejects an offer from Player

1, Player 2’s best response is such that it rejects, with maximum probability, all offers that

are strictly less than (1− η)vn1 , and accepts all offers that are strictly larger than (1− η)vn1

with maximum probability. Thus, ρn1 is everywhere optimal if and only if γn = (1 − η)vn1 .

That is,

vn1 = (1− εn)2 (1− (1− η)vn1 ) + (2− αn)(1− εn)εn (1− η)vn2

+ εn [εn(1− (1− η)vn1 + λv1) + αn (1− (1− η)vn1 )/2] + αnO
(
(εn)2

)
+O

(
(εn)3

)
,

(38)

vn2 = (1− εn)2 (1− η)vn1 + (2− αn)(1− εn)εn (1− η)vn1

+ εn [εn((1− η)vn1 − λv1) + αn (1 + (1− η)vn1 )/2] + αnO
(
(εn)2

)
+O

(
(εn)3

)
, (39)

This condition is also necessary and sufficient for the everywhere optimality of ρnt for all

t ≥ 1, by stationarity and symmetry of both Γ̂n and σn.
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Equations (38) and (39) form a linear system of equations with unknowns (vn1 , v
n
2 ). Adding

equations (38) and (39), we obtain

vn1 + vn2 = (1− εn)2 + (εn)2 + αnεn + αnO
(
(εn)2

)
+O

(
(εn)3

)
+ (2− 2εn − αn)εn(1− η)(vn1 + vn2 ),

⇐⇒ vn1 + vn2 = 1− (2− αn)ηεn − 2(1− 2η)ηεn + αnO
(
(εn)2

)
+O

(
(εn)3

)
. (40)

Recall that pna denotes the probability that the two players conclude the game by reaching

an agreement. Conditional on an eventual agreement, the total payoff of the two players is

1. Conditional on a breakdown, the total payoff is 0. Thus, we have vn1 + vn2 = pna . Therefore

pna = 1− (2− αn)ηεn − 2(1− 2η)η(εn)2 + αnO
(
(εn)2

)
+O

(
(εn)3

)
. (41)

Substituting equation (40) into equation (38), we obtain

vn1 = (1− εn)2 (1− (1− η)vn1 ) + (2− 2εn − αn)εn(1− η)(pna − vn1 )

+ εn [εn(1− (1− η)vn1 + λv1) + αn (1− (1− η)vn1 )/2] + αnO
(
(εn)2

)
+O

(
(εn)3

)
.

(42)

Equation (42) is a linear equation in vn1 with a unique solution in [0, 1]. We shall choose αn

so that

vn1 = pnav1.

This particular choice for αn would imply that, conditional on an eventual agreement, the

expected payoff U1(σn|agreement) of Player 1 is v1 (thus, the corresponding conditional

expected payoff U2(σn|agreement) of Player 2 is 1− U1(σn|agreement) = v2). We now show

that such a choice for the value of αn exists.

We denote the righthand side of equation (42) by g(vn1 ;αn), and let f(αn) = pnav1. Both

f(αn) and g(pnav1;αn) are continuous in αn. For n sufficiently large,

f(1) ' v1 − ηv1 ε
n > v1 − (1/2 + η)v1 ε

n ' g(pnav1; 1).
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f(0) ' v1 − 2ηv1 ε
n − 2η(1− 2η)v1 (εn)2

< v1 − 2ηv1 ε
n + [λ− 2η(1− 2η)]v1 (εn)2 ' g(pnav1; 0).

By the Intermediate Value Theorem, there exists a αn ∈ (0, 1) such that pnav1 = f(αn) =

g(pnav1;αn). We fix such a αn, implying that vn1 = pnav1 is the solution to equation (42).

Since pna → 1, vn1 converges from below to v1, and equation (40) then implies vn2 → v2.

Given these values of αn and γn, now we verify the optimality of µn1 against σn: In

period 1, if Player 1 offers some y ∈ [0, (1− η)vn1 − 2λv1), then such an offer is rejected with

probability 1−(εn)2, in which case Player 1 gets the same continuation value (1−η)vn2 for all

offers y in this interval. Conditional on y being accepted, the expected payoff of Player 1 is

decreasing in y. Thus the unconditional payoff of Player 1 is decreasing in y in this interval.

Likewise, the unconditional payoff of Player 1 is decreasing in y in all other three intervals

[(1 − η)vn1 − 2λv1, (1 − η)vn1 ), [(1 − η)vn1 , (1 − η)vn1 + 2λv1) and [(1 − η)vn1 + 2λv1, 1]. Thus

we need only compare the payoffs of Player 1 at y = 0, (1 − η)vn1 − 2λv1, (1 − η)vn1 and

(1− η)vn1 + 2λv1. The unconditional payoff of Player 1 at these values of y are respectively

(εn)2 + (1− (εn)2)(1− η)vn2 εn(1− (1− η)vn1 + λv1) + (1− εn)(1− η)vn2

(1− εn)(1− (1− η)vn1 ) + εn(1− η)vn2 (1− (εn)2)(1− (1− η)vn1 − λv1) + (εn)2(1− η)vn2

When n→∞, these payoffs converge to

(1− η)v2 (1− η)v2 v1 (1− λ)v1

As (1 − η)v2 < v1, we know that for n sufficiently large, offering y = (1 − η)vn1 yields a

strictly higher payoff than offering any other three values of y. On the other hand, an offer

µ1 must be bounded below by εnχn in the perturbed game Γ̂n, thus an offer is optimal if

and only if its probability distribution is (1− εn)δ(1−η)vn1
+ εnχn, which is precisely µn1 . This

proves the optimality of µn1 . By stationarity and symmetry of Γ̂n and σn, we also obtain the

everywhere optimality of µnt for all t ≥ 1.

Given that all strategies µnt and ρnt at each period t (t ≥ 1) are everywhere optimal

against σn in Γ̂n, the strategy profile σn = (σn1 , σ
n
2 ) is such that σni is unimprovable with

respect to σn−i in the perturbed game Γ̂n (i = 1, 2). Thus σn is a Nash equilibrium of Γ̂n,
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by Proposition 14. The strategy profile σn is Borel measurable, therefore σn is a Borel

measurable Nash equilibrium.

Now we verify that σn is a (2λv1, ε
n) extended proper equilibrium of ΓR in extensive

form. For every t that is odd, and every history of offers yt−1 ∈ [0, 1]t−1, the optimal offer in

period t is y∗t = (1− η)vn1 . On the other hand, the offer strategy µnt assigns 0 probability to

any offer that is not optimal:

µnt
(
{yt} | yt−1

)
= 0, ∀ yt−1 ∈ [0, 1]t−1, yt 6= y∗t .

Thus the offer strategies µnt in each period t satisfy the requirement that the probability of a

costly deviation being played is at most εn times the probability of a costless deviation. For

every t that is even, and every history of offers yt ∈ [0, 1]t (including the current offer yt),

the optimal response in period t is to accept if yt > y∗t , and reject if yt < y∗t . The expected

loss of a deviation is |y∗t −yt|. On the other hand, when |y∗t −yt| < 2λv1, a deviation is being

played with probability εn under the response ρnt (· | yt); when |y∗t − yt| > 2λv1, a deviation is

being played with probability (εn)2. This shows that the offer strategies ρnt satisfy the same

requirement that the probability of a costly deviation being played is at most εn times the

probability of a costless deviation. Therefore the strategy profile σn is a (2λv1, ε
n) extended

proper equilibrium of ΓR in extensive form.

Finally, when letting n go to infinity, µnt (yt−1) = (1− εn) δ(1−η)vn1
+ εnχn weakly* con-

verges to µ∗t (yt−1) = δv2 for every t ≥ 1 and for every offer history yt−1 ∈ [0, 1]t−1 up to

period t; Likewise, ρnt (yt) weakly* converges to ρ∗t (yt) because vn1 converges from below to

v1. Therefore, we conclude that σ∗ = (µ∗, ρ∗) is a restricted equilibrium, and that (a) holds.

Unique equilibrium outcome and (b):

Step 1: Consider a strategy profile σ = (µ, ρ), for a y1 ∈ [0, 1], replace the offer µ1 of Player

1 in period 1 by δy1 . Denote the new strategy profile by σ/y1. If σ is an Nash equilibrium of
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a perturbed game Γ̂ = (Γ, ε, χ), then we have

U1(σn) ≥ (1− εn11) sup
y1∈[0,1]

U1(σn/y1) ≥ (1− sup εn) sup
y1∈[0,1]

U1(σn/y1). (43)

This is because one can let the time 1 offer to be (1 − ε11)δỹ1 + ε11χ11 where ỹ1 ∈ [0, 1] is

such that U1(σn/ỹ1) ≥ supy1∈[0,1] U1(σn/y1)− δ for some δ > 0. This implies that

U1(σn) ≥ (1− ε11)

(
sup

y1∈[0,1]

U1(σn/y1)− δ

)
.

As δ can be arbitrarily small, one obtains equation (43).

Suppose σ is a restricted equilibrium of ΓR, and Γ̂n = (ΓR, ε
n, χn) is a restricted test

sequence for σ. In particular, sup εn → 0 and each Γ̂n respects independence of strategically

irrelevant information. For any multistage game Γ, let E(Γ) be the set of Borel measurable

Nash equilibria of Γ. Then it is clear that E(Γ̂n) 6= ∅. Let

M = lim sup
n→∞

sup
σn∈E(Γ̂n)

U1(σn),

m = lim inf
n→∞

inf
σn∈E(Γ̂n)

U1(σn).

Because E(Γ̂n) 6= ∅, we have M > −∞ and m <∞. We first show that

M = m =
1

2− η
. (44)

In order to do this, we will show that

m ≥ 1− (1− η)M, (45)

M ≤ 1− (1− η)m. (46)

Then, equations (45) and (46) would together imply that M = m =
1

2− η
.

Fix an arbitrary δ > 0. There exists nδ, such that for all n ≥ nδ, we have U1(σn) < M+δ

for any σn ∈ E
(

Γ̂n
)
, and sup εn < δ. Fix some σn = (µn, ρn) ∈ E

(
Γ̂n
)
. Let y1 be an offer

from Player 1 to Player 2 in period 1, and let ȳ = (1−η)(M+δ). It follows from Corollaries 4
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and 6 that for µn1 almost every15 y1 ∈ [ȳ, 1], the value of Player 2 in the continuation game

is strictly less than ȳ if he rejects the offer y1. On the other hand, the necessary condition

Proposition 15 implies that for µn1 almost every16 y1 ∈ [ȳ, 1], the response ρn1 (· | y1) of Player

2 to the offer y1 is optimal. Thus for µn1 almost every y1 ∈ [ȳ, 1], Player 2 accepts y1 with

maximum probability:

ρn1 ({Y } | y1) > 1− sup εn > 1− δ.

Since µn1 is a strictly positive measure on unit interval [0, 1], thus there is a dense subset

D ⊂ [ȳ, 1] such that for every y1 ∈ D, Player 2 accepts y1 with probability at least 1 − δ.

Thus ∀ y1 ∈ D,

U1(σn/y1) ≥ (1− δ)(1− y1)

It follows from equation (43) that

U1(σn) ≥ (1− δ) sup
y1∈[0,1]

U1(σn/y1) ≥ (1− δ)2 sup
y1∈D

(1− y1) ≥ (1− δ)2 [1− (1− η)(M + δ)].

We therefore have for any δ > 0, there exists n∗δ such that for every n ≥ nδ,

inf
σn∈E(Γ̂n)

U1(σn) ≥ (1− δ)2 [1− (1− η)(M + δ)].

Hence

m = lim inf
n→∞

inf
σn∈E(Γ̂n)

U1(σn) ≥ 1− (1− η)M.

establishing equation (45).

We show equation (45) with a similar argument. Fix a δ > 0, let y = (1 − η)(m − δ).

There exists nδ such that for all n ≥ nδ and σn = (µn, ρn) ∈ E(Γ̂n), the followings are

true: (1) for µn1 almost every y1 ∈ [0, 1], the value of Player 2 in the continuation game is

strictly greater than y if he rejects the offer y1. Let π2(y1) denote this continuation value of

Player 2 as a function of y1 ∈ [0, 1], and let π1(y1) denote the value of Player 1 in the same
15This means, “there exists a universally measurable A ⊂ [ȳ, 1] such that µn1 (A) = µn1 ([ȳ, 1]) and for every

y1 ∈ A”.
16This means, “there exists a universally measurable B ⊂ [ȳ, 1] such that µn1 (B) = µn1 ([ȳ, 1]) and for every

y1 ∈ B”.
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continuation game. Then for µn1 almost every y1 ∈ [0, 1],

π2(y1) > y,

π1(y1) ≤ (1− η)− π2(y1) < 1− η − y,

(2) For µn1 almost every y1 ∈
[
0, y
]
, Player 2 rejects y1 with maximum probability:

ρn({N} | y1) = 1− sup εn > 1− δ.

Hence for every n ≥ nδ,

U1(σn) =

∫
[0,1]

µn1 (dy1) ρn1 ({N} | y1) π1(y1)

+

∫
[0,y]

µn1 (dy1) ρn1 ({Y } | y1) (1− y1) +

∫
(y,1]

µn1 (dy1) ρn1 ({Y } | y1) (1− y1)

≤
(
1− η − y

) ∫
[0,1]

µn1 (dy1) ρn1 ({N} | y1)

+δ +
(
1− y

) ∫
(y,1]

µn1 (dy1) ρn1 ({Y } | y1)

≤
(
1− η − y

)
µn1
([

0, y
])

+
(
1− y

)
µn1
((
y, 1
])

+ δ

≤ 1− y + δ.

Therefore for every n ≥ nδ,

inf
σn∈E(Γ̂n)

U1(σn) ≤ 1− (1− η)(m− δ) + δ.

Hence M ≤ 1− (1− η)m, establishing equation (46). Therefore Equation (44) holds.

Step 2: Now we show (b). Equation (44) implies that for any restricted trembling sequence

(σn)n≥0 of some restricted equilibrium σ,

U1(σn)→ v1. (47)

Then we have

U2(σn) ≤ 1− U1(σn)→ v2. (48)
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On the other hand, by rejecting all offers y1 ∈ [0, 1] from Player 1 with maximum probability,

Player 2 can ensure a payoff of at least∫
[0,1]

µn1 (dy1) (1− sup εn) π2(y1).

where as in step 1, π2(y1) is the value of Player 2 in the continuation game after he rejects

the offer y1. Then as step 1 show, for any δ, there exists nδ such that for all n ≥ nδ,

π2(y1) > v2 − δ for µn1 almost every y1 ∈ [0, 1] and sup εn < δ. Hence the integral above is

bounded below by (1− δ)(v2 − δ), for all n ≥ nδ. Thus for all n ≥ nδ,

U2(σn) ≥ (1− δ)(v2 − δ). (49)

Equations (48) and (49) together imply that

U2(σn)→ v2.

Thus

pa(σ
n) = pna [U1(σn|agreement) + U2(σn|agreement)] = U1(σn) + U2(σn)→ 1

Therefore Ui(σn|agreement)→ vi for i = 1, 2, establishing (b).

Step 3: Suppose σ = (µ, ρ) is a restricted equilibrium of ΓR, now we show that σ induces the

same outcome as σ∗. Let Γn = (ΓR, ε
n, χn) be a restricted test sequence for σ, and (σn)n≥0

a corresponding restricted trembling sequence for σ associated with (Γ̂n)n≥0. As in step 1,

we fix a δ > 0, there exists nδ such that for all n ≥ nδ,

ρn1 ({Y } | y1) > 1− sup εn > 1− δ2 for µn1 almost every y1 ∈ [v2 + δ, 1], (50)

ρn1 ({N} | y1) > 1− sup εn > 1− δ2 for µn1 almost every y1 ∈ [0, v2 − δ]. (51)

Since µn1 is a strictly positive measure, equation (50) implies that there exists a y∗ ∈ [v2 +
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δ, v2 + 2δ] such that

ρn1 ({Y } | y∗) > 1− δ2.

We show that µn1 assigns minimal probability to offers y1 ∈ [v2 + 3δ, 1] and y1 ∈ [0, v2 − δ].

That is,

µn1 ([v2 + 3δ, 1]) = εn11 χ
n
11([v2 + 3δ, 1]), (52)

µn1 ([0, v2 − 3δ]) = εn11 χ
n
11([0, v2 − δ]). (53)

Since the probability measure µn1 is bounded below by εn11 χ
n
11, it can be decomposed as

µn1 = εn11 χ
n
11 + (1− εn11)µ

for some probability measure µ on the unit interval [0, 1]. Let β = µ([v2 + 3δ, 1]). If β > 0,

we define a probability measure ν on [0, 1] as

ν = εn11 χ
n
11 + (1− εn11)µ[0,v2+3δ) + (1− εn11)βδy∗ ,

where µ[0,v2+3δ) is the measure on [0, 1] defined by µ[0,v2+3δ)(B) = µ([0, v2 +3δ)∩B) for every

Borel subset B of [0, 1]. That is, ν “moves” all the extra mass of µn1 in the interval [v2 + 3δ, 1]

relative to the minimally required measure εn11 χ
n
11 to the point y∗. Thus ν is a valid Borel

measurable offer strategy of Player 1 in period 1 in the perturbed game Γ̂n. Let σn/ν be the

strategy profile (ν, ρ2, µ3, . . . ). Then

U1(σn/ν)− U1(σn)

≥ (1− εn11)β(1− y∗) ρn1 ({Y } | y∗)

−
∫

[v2+3δ,1]

µ(dy1) ρn1 ({Y } | y1) (1− y1)−
∫

[v2+3δ,1]

µ(dy1) ρn1 ({N} | y1)

≥ (1− δ2)β(1− y∗)(1− δ2)− (1− v2 − 3δ)β − δ2β

≥ βδ(1− 3δ − 2δ2).

Thus if β > 0, U1(σn/ν)− U1(σn) > 0 when δ is sufficiently small. This contradicts the fact

that σn is a Nash equilibrium of Γ̂n. Therefore β = 0, establishing equation (52). One can
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show equation (53) in a similar way.

Now we show that µ1 = δv2 . Since µn1 converges weak* to µ, and (v2 + 3δ, 1] is a relative

open subset of [0, 1], we have by Portemanteau Theorem,

µ1((v2 + 3δ, 1]) ≤ lim inf µn1 ((v2 + 3δ, 1]) = 0.

Likewise, we have

µ1([0, v2 − δ)) ≤ lim inf µn1 ([0, v2 − δ)) = 0.

As δ can be arbitrarily small, we have µ1 = δv2 .

Now we consider ρ2. Since (Γ̂n)n≥0 is a test sequence for Γ, there exists a strictly positive

probability measure χ11 on [0, 1] that is absolute continuous with respect to χn11 for every n.

Then inequality 50 implies that for all n ≥ nδ, there exists a Borel subset An ⊂ [v2 + δ, 1]

such that χ(An) = χ([v2 + δ, 1]) and

ρn1 ({Y } | y1) > 1− sup εn ∀ y1 ∈ An.

Letting Aδ = ∩n≥nδAn, we have χ(Aδ) = χ([v2 + δ, 1]) for n ≥ nδ,

ρn1 ({Y } | y1) > 1− sup εn ∀ y1 ∈ Aδ.

Therefore

ρ2({Y } | y1) = lim
n→∞

ρn1 ({Y } | y1) = 1 ∀ y1 ∈ Aδ.

Since χ is a strictly positive probability measure and χ(Aδ) = χ([v2 + δ, 1]), Aδ is a dense

subset in [v2 + δ, 1]. Then A = ∪δ→0Aδ is dense in [v2, 1], and we have ρ2({Y } | y1) = 1 for

all y1 ∈ A. That is, ρ2 accepts all offers in A with certainty.

We already know that µ1 offers v2 with certainty. If ρ2 does not accept v2 with certainty

(that is, ρ2 either randomizes between accept and reject, or ρ2 rejects v2 with certainty),

then it must be that the value π2(v2) of Player 2 in the continuation game after he rejects

v2 is at least v2 (recall that since σ = (µ, ρ) is a restricted equilibrium of ΓR, σ is a Nash

equilibrium of ΓR to begin with). Thus the value π1(v2) of Player 1 in the same continuation
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game is at most π1(v2) ≤ 1− η− π2(v2) ≤ v1 − η. However, by offering some y1 ∈ A, Player

1 is guaranteed to secure a payoff of 1 − y1. Thus Player 1 can achieve a payoff that is

arbitrarily close to v1. This contradicts the fact that σ is a Nash equilibrium of ΓR. Thus it

must be that ρ2 accepts v2 with certainty. Therefore σ induces the same outcome as σ∗.

Remark 4. In the proof of uniqueness and (b) above, we did not use the requirement that a

costly deviation is less likely than a costless one. That is, Theorem 3 still holds if the last

condition in the definition of restricted equilibrium Definition 2 was removed. However this

requirement will be useful later, when the total size of the pie to be shared is non-positive.

We now prepare some careful corollaries and extensions to Theorem 3, which will be

useful for the proof of Theorem 1. In the original Rubinstein’s alternating offer game, the

set of possible payments is constrained to be the interval [0, 1], because any payment that

is not in this interval would not be individually rational for one of the players. However

the proof of Theorem 3 did not use this fact other than [0, 1] is a compact interval. Thus

Theorem 3 still holds if the set of possible payments is some larger compact interval that

contains [0, 1]. Therefore we have the following corollary:

Corollary 7. Theorem 3 still holds if the set of possible payments is some compact interval

that contains [0, 1].

Let Γ(π, u1, u2) be the Rubinstein’s game in which the size of the “pie” to be shared by the

two players is π, and the outside option values of the two players are u1 and u2 respectively.

We always assume that Player 1 is the one that starts offering at time 1. We first consider

the case where π > u1 +u2. The associated set of possible payments in the game is assumed

to be some compact interval that contains the payment interval [0, π − u1 − u2] prescribed

by individual rationality. Let σ∗(π, u1, u2) be the unique subgame perfect equilibrium of

Γ(π, u1, u2).

An immediate corollary to Theorem 3 is the following:

Corollary 8 (Constant Rubinstein’s Game). Consider the Rubinstein’s game Γ(π, u1, u2)

with π > u1 + u2. The game has a restricted equilibrium. In particular, the pure strategy
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profile σ∗(π, u1, u2) is a restricted equilibrium. Every restricted equilibrium σ induces the

same outcome as σ∗. Moreover,

(a) There exists a restricted trembling sequence (σn)n≥0 for σ∗(π, u1, u2) such that the fol-

lowings are true:

(i) for every n, the expected payoff of Player i under σn, conditional on the game

reaching an eventual agreement, is constant and equal to vi(π − u1 − u2) + ui

(i = 1, 2).

(ii) As n→∞, the probability of an eventual agreement converges to 1.

(iii) As a consequence of (ii), the unconditional payoff of Player i under σn converges

to vi(π − u1 − u2) + ui.

(b) For each restricted trembling sequence (σn)n≥0 for some restricted equilibrium, the fol-

lowings are true:

(i’) As n→∞, the unconditional payoff of Player i under σn converges to vi(π−u1−

u2) + ui.

(ii’) The probability of an eventual agreement converge to 1.

(iii’) As a consequence of (i) and (ii), the expected payoff of Player i under σn, condi-

tional on the game reaching an eventual agreement, converges to vi(π−u1−u2)+ui

(i = 1, 2).

In Corollary 8 (Constant Rubinstein’s Game), there is a fixed game Γ(π, u1, u2) that

does not depend on n. This is why we name Corollary 8 the “Constant Rubinstein’s Game”.

We next consider the situation where the the total payoff πn and the outside option values

uni (i = 1, 2) depends on n and converges to some (π, u1, u2). Recall the assumption that

π > u1 + u2. So for n sufficiently large, we have πn > un1 + un2 . Consider the sequence of

multistage games Γn = Γ(πn, un1 , u
n
2 ). The associated set of possible payments in all those

games is assumed to be some compact interval [0, β] (independent of n) that contains the

intervals [0, πn − un1 − un2 ] for all n. Thus the set of strategy profiles of Γn are the same for
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all n. The utility functions, however, are different across n. We look for a strategy profile

σ that is “almost” a restricted equilibrium of Γ(π, u1, u2), in that satisfies the conditions in

Definition 2 upon replacing the environment game Γ(π, u1, u2) by Γn along the converging

sequence of strategy profiles. We will establish existence and uniqueness results that are

similar to the ones in Corollary 8. The only difference is that, along the converging sequence

of strategy profiles, the environment game is the sequence of games Γn = Γ(πn, un1 , u
n
2 ) in

the place of the constant game Γ(π, u1, u2).

We first introduce the following definition. Consider a sequence of generic Rubinstein’s

game (Γn)n≥0. For each n, the set of all conceivable agreements is some set K, and the

breakdown outcome is D. Each player i’s utility function is some uni : K ∪{D} → R. When

n→∞, uni converges to some ui pointwise. Let Γ be the Rubinstein’s game with parameters

(K,D, (ui)i=1,2). The sequence of games Γn = Γ(πn, un1 , u
n
2 ) is an example of such “converging

games” , with the “limiting game” Γ = Γ(π, u1, u2).

Definition 4. Let (Γn)n≥0 and Γ be given as above. Define R((Γn)n≥0) to be the set of

strategy profiles of Γ such that σ ∈ R((Γn)n≥0) if and only if σ is a Nash equilibrium of the

limiting Rubinstein’s game Γ, and there exists λ̄ > 0 such that for all strictly positive scalar

λ < λ̄, there exists a sequence σn of strategy profiles satisfying the following properties.

1. There exists a sequence Γ̂n = (Γn, εn, χn) such that, (Γ, εn, χn)n≥0 constitutes a test

sequence for Γ, and each Γ̂n respects independence of strategically irrelevant informa-

tion.

2. For each n, σn is a Borel measurable Nash equilibrium of Γ̂n and also a (λ, δn)-extended

proper equilibrium of Γn in extensive form, for some strictly positive scalar sequence

δn converging to zero.

3. σn converges weak*, pointwise, to σ, as n→∞.

For every σ ∈ R((Γn)n≥0) and every λ sufficiently, let T [λ, σ; (Γn)n≥0] be the set of such

sequences σn of converging equilibria.
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Given a strategy profile σ, for each n, recall that Ui(σ; Γn) is the expected utility of Player

i under σ in the game Γn. Let pa(σ; Γn) be the probability that the two players conclude

the game by reaching an agreement in Γn when playing σ, and Ui(σ; Γn|agreement) be the

expected utility of Player i under σ in Γn, conditional on the two players eventually reaching

an agreement.

Lemma 11. Suppose (πn)n≥0 is a sequence of total payoffs converging to π, and (uni )n≥0 are

two sequences of outside option values converging to ui (i = 1, 2), π > u1+u2 and π > un1 +un2

for all n. Let Γn = Γ(πn, un1 , u
n
2 ). The unique sub-game perfect equilibrium σ∗(π, u1, u2) of

the game Γ(π, u1, u2) is in the set R((Γn)n≥0). Every strategy profile in R((Γn)n≥0) induces

the same outcome as σ∗(π, u1, u2). Moreover,

(a) For λ sufficiently small, there exists a sequence (σn)n≥0 in T [λ, σ∗(π, u1, u2); (Γn)n≥0]

such that the followings are true:

(i) for every n, U1(σn; Γn|agreement) = v1(π − u1 − u2) + u1 for Player 1.

(ii) As n→∞, the probability pa(σn; Γn) of an eventual agreement converges to 1.

(iii) Ui(σn; Γn) converges to vi(π − u1 − u2) + ui (i = 1, 2).

(b) For each sequence (σn)n≥0 ∈ T [σ, (Γn)n≥0] for some σ ∈ R((Γn)n≥0), the followings

are true:

(i’) As n→∞, the unconditional payoff Ui(σ
n; Γn) converges to vi(π − u1 − u2) + ui

(i = 1, 2).

(ii’) The probabilities pa(σn; Γn) converge to 1;

(iii’) As a consequence, Ui(σn; Γn|agreement)→ vi(π − u1 − u2) + ui (i = 1, 2).

The proof is very similar to that of Theorem 3. There is only one small adjustment that

need to be made when showing existence and (a) which is the following: In Theorem 3, we

simply took an arbitrary positive sequence εn → 0. In the lemma above, we should take a
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positive sequence εn → 0 such that

|πn − π|+ |un1 − u1|+ |un2 − u2| = o
(
(εn)2

)
,

That is, the deviation of the total payoffs πn and the outside option values ui from their

respective limits (π, u1, u2) are very small relative to the minimum tremble probabilites εn

asymptotically. Then all the calculation in the proof of Theorem 3 remains valid, upon

replacing the total payoff by π and the outside option values by ui. The proof of uniqueness

and (b) are simply a reiteration of that of Theorem 3, which we do not repeat here.

In the setting of Lemma 11, we next consider the situation where un1 = u1 and π ≤ u1+u2.

This means the outside option value of Player 1 is independent of n and the total payoff is

less than the combined outside option values in the limit. Thus agreement on any payment

would make at least one of the players worse off than taking his outside value. Therefore

agreement should not happen in equilibrium since it violates individual rationality. To ease

exposition, we reparametrize the set of possible payments by the payoff of Player 1. That is,

instead of saying that “Player 1 offers a payment y to Player 2”, we say “Player 1 proposes

that he gets a = π − y and Player 2 gets u2(a) = y”. Under the new parametrization with

a, u1(a) = a and u2(a) = π − a. We suppose the set of possible payoffs to Player 1 is some

compact interval [u1, β] (β > u1) for all n. That is, Player 1 always gets at least his outcome

option value.

Lemma 12. In the setting of Lemma 11, suppose un1 = u1 and If π ≤ u1 + u2.

(a) There exists a strategy profile in the set R((Γn)n≥0), which is the following: Player

1 proposes that he gets β in payoff and Player 2 gets π − β, while Player 2 proposes

that Player 1 gets u1 in each round. Player 1 accepts offers in which his payoff is

strictly larger than u1 and rejects u1, while Player 2 rejects all offers from Player 1.

We denote this strategy profile also by σ∗(π, u1, u2), the same notation as for the case

where π > u1 + u2.

(b) Every strategy profile in R((Γn)n≥0) induces the same payoff as σ∗(π, u1, u2), in which
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both players get their respective outside option values ui (i = 1, 2). For each λ

sufficiently small, and for each sequence (σn)n≥0 ∈ T [λ, σ, (Γn)n≥0] for some σ ∈

R((Γn)n≥0), the followings are true:

(i) As n→∞, the unconditional payoff Ui(σ
n; Γn) converges to ui (i = 1, 2).

(ii) lim sup
n→∞

U1(σn; Γn | agreement) ≤ u1 + 2λ for Player 1.

Proof. (a). When π < u1 + u2, we show that σ∗(π, u1, u2) ∈ R((Γn)n≥0). For this, we fix an

arbitrary positive scalar λ < (β − u1)/2, a positive sequence εn → 0 such that

|πn − π|+ |un2 − u2| = O (εn) ,

and a strictly positive measure χ on [u1, β]. For each n ≥ 0 and t ≥ 1, let µnt and ρnt be

defined by

µn2t−1

(
a2t−2

)
= (1− εn)δβ + εnχ, µn2t

(
a2t−1

)
=
[
1− (εn)2

]
δu1 + (εn)2χ,

and

ρn2t−1

(
{Y } | a2t−1

)
= (εn)2, ρn2t

(
{Y } | a2t

)
=


εn if a2t ∈ [u1, γ

n),

1− εn if a2t ∈ [γn, γn + λ),

1− (εn)2 if a2t ∈ [γn + λ, β).

for every history of offers a2t−2 ∈ [u1, β]2t−2, a2t−1 ∈ [u1, β]2t−1.

The combination σn = (µn, ρn) defines a behavioral strategy profile for the perturbed

game Γ̂n of Γn whose minimum probabilities εnit and reference measures χnit are as follows:

for every offer history at ∈ [u1, β]t,

εn1t
(
at
)

=


εn,

2εn,

2(εn)2,

χn1t
(
at
)

=


χ if t is odd,
1
2
δ{Y } + 1

2
δ{N} if t is even and at ∈ [u1, γ

n + λ),
1
2
δ{Y } + 1

2
δ{N} if t is even and at ∈ [γn + λ, β],

and

εn2t
(
at
)

=

{
2(εn)2,

(εn)2,
χn2t
(
at
)

=

{
1
2
δ{Y } + 1

2
δ{N} if t is odd,

χ if t is even,
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One can verify that the sequence (Γ, εn, χn)n≥0 is a test sequence for Γ, and for each n,

the perturbed game Γ̂n = (Γn, εn, χn) of Γn respects independence of strategically irrelevant

information.

Let vn1 = U1(σn; Γn). As in the proof of Theorem 3, σn is a Borel measurable Nash

equilibrium of Γ̂n if γn = (1 − η)vn1 + ηu1. In this case, vn1 is determined by the following

linear system of equations with unknowns (vn1 , ṽ
n
1 ):

vn1 = ηu1 + (1− η)ṽn1 +O(εn),

ṽn1 = ηu1 + (1− η)vn1 +O(εn).

Thus vn1 converges to u1, so does γn = (1 − η)vn1 + ηu1. One can also verify that σn is

a (λ, εn) extended proper eqiulibrium of Γn in extensive form. Finally, when letting n go

to infinity, σn converges weak*, pointwise, to σ∗(π, u1, u2). Therefore, we conclude that

σ∗(π, u1, u2) ∈ R((Γn)n≥0).

Proof of (b). The first claim is easy to show: If π < u1 + u2, every strategy profile

σ ∈ R((Γn)n≥0) must be a Borel Nash equilibrium of the limiting Rubinstein’s game Γ =

Γ(π, u1, u2). In the game Γ, both player can secure their outside option values ui (i = 1, 2)

by rejecting all offers from the other player in every round. This implies that Ui(σ; Γ) ≥ ui.

On the other hand,

U1(σ; Γ) + U2(σ; Γ) = pa(σ; Γ)π + [1− pa(σ; Γ)](u1 + u2) ≤ u1 + u2.

Thus we have Ui(σ; Γ) = ui (i = 1, 2). That is, σ induces the same payoff as σ∗(π, u1, u2), in

which both players get their respective outside option values ui (i = 1, 2).

For the rest, we will proceed in three steps as in the proof of the uniqueness part of

Theorem 3. There is one major difference, which is that we make use of the requirement

that a costly deviation is less likely than a costless one in step 3.

Step 1: Suppose σ ∈ R((Γn)n≥0), and Γ̂n = (Γn, εn, χn) is a sequence of perturbed games

of Γn associated with σ as in Definition 4. Since Γ̂n respects irrelevance of strategically

information, we have, from Corollary 5, the continuation game Γ̂n|a1 after the offer a1 in
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period 1 is rejected are identical for all a1 ∈ [u1, β]. To simplify, we denote this continuation

game by Γ̂n2 , and let Γn2 denote the subgame of Γ which starts in period 2 with an offer of

Player 2. Let
m2 = lim inf

n→∞
inf

σn∈E(Γ̂n)
U2(σn; Γn),

m̃2 = lim inf
n→∞

inf
σ′n∈E(Γ̂n2 )

Un
2 (σ′n; Γn2 ) .

Fix an arbitrary δ > 0. There exists nδ such that for all n ≥ nδ, we have Un
2 (σn; Γn) > m2−δ

for all σn ∈ E
(

Γ̂n2

)
, and sup εn < δ. Fix some σ′n = (µn2 , ρ

n
2 , µ

n
3 , ρ

n
3 , . . . ) ∈ E(Γ̂n2 ). In the

game Γ̂n2 , Player 2 first makes an offer a2 to Player 1, for µn2 almost every a2, the value of

Player 1 in the continuation game after he rejects a2 is at least

v1

(
Γ̂n
)
≡ ηu1 + (1− η) inf

σn∈E(Γ̂n)
Un

1 (σn; Γn). (54)

by Corollaries 4 and 5. In the game Γ̂n, Player 1 gets at least his outside option value u1,

and strictly better whenever there is an agreement and the agreement is not u1. For any

strategy profile σ of Γ̂n (σ does not need to be a Nash equilibirium), σ is bounded below

by some reference strategy profile, hence Un
1 (σ) is bounded below by some value mn

1 > u1

independent of the strategy profile σ. Therefore,

v1

(
Γ̂n
)
> ηu1 + (1− η)mn

1 . (55)

Since the response ρ2(· | a2) of Player 1 to the offer a2 is optimal for µn2 almost every a2 by

Proposition 15. Thus for µn2 almost every a2 ∈ [u1, ηu1 + (1− η)mn
1 ], Player 1 rejects a2 with

maximum probability :

ρ2({N} | a2) > 1− sup εn > 1− δ.

Hence by Corollaries 4 and 5, for µn2 almost every a2 ∈ [u1, ηu1 + (1− η)mn
1 ],

U2(σ′n/a2; Γn2 ) ≥ δ(π − β) + (1− δ)ηun2 + (1− δ)(1− η)(m2 − δ).

Since µn2 is a strictly positive measure on [u1, β], thus there is a dense subset D ⊂ [u1, ηu1 +
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(1− η)mn
1 ] such that the inequality above holds for every a2 ∈ D. It follows that

U2(σ′n; Γn2 ) ≥ (1− δ) sup
a2∈[u1,β]

U2(σ̂n/a2; Γn2 ) + δ(π − β)

≥ (2− δ)δ(π − β) + (1− δ)2 ηun2 + (1− δ)2(1− η)(m2 − δ).

We therefore have for any δ > 0, there exists n∗δ such that for every n ≥ nδ,

inf
σ′n∈E(Γ̂n2 )

U2(σ′n; Γn2 ) ≥ (2− δ)δ(π − β) + (1− δ)2ηun2 + (1− δ)2(1− η)(m2 − δ).

Hence

m̃2 = lim inf
n→∞

inf
σ′n∈E(Γ̂n2 )

U2(σ′n; Γn2 ) ≥ ηu2 + (1− η)m2. (56)

Likewise, in the game Γ̂n, Player 2 can do at least as well as rejecting all offers a1 from Player

1 in period 1 with maximum probability. Thus by Corollaries 4 and 5,

U2(σn; Γn) ≥ δ(π − β) + (1− δ)ηun2 + (1− δ)(1− η)m̃2.

Therefore

m2 ≥ ηu2 + (1− η)m̃2. (57)

Inequalities (56) and (57) together imply that

m2 = m̃2 = u2. (58)

Step 2: Since for any n and any strategy profiles σ of Γn, σ′ of Γn2 , we have

U2(σ; Γn) ≤ un2 , U2(σ′; Γn2 ) ≤ un2 .

(58) then implies that,

lim
n→∞

inf
σn∈E(Γ̂n)

U2(σn; Γn) = lim
n→∞

inf
σ′n∈E(Γ̂n2 )

U2(σ′n; Γn2 ) = u2.
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Let

v2(Γ̂n) = ηun2 + (1− η) inf
σ′n∈E(Γ̂n2 )

U2(σ′n; Γn2 ), (59)

it immediately follows that

lim
n→∞

v2(Γ̂n) = u2 (60)

Letting Mn
1 = supσn∈E(Γ̂n) U1(σn; Γn), it follows that

lim sup
n→∞

Mn
1 ≤ lim sup

n→∞

[
u1 + un2 − inf

σn∈E(Γ̂n)
U2(σn; Γn)

]
= u1.

On the other hand, we already see that Mn
1 > u1 for all n, therefore

lim
n→∞

Mn
1 = u1. (61)

In particular, we have for every σn ∈ E(Γn),

lim
n→∞

U1(σn; Γn) = u1, lim
n→∞

U2(σn; Γn) = u2.

Let v̄1(Γ̂n) = ηu1 + (1− η)Mn
1 . From (61) we have

u1 < ηu1 + (1− η)mn
1 < v1(Γ̂n) ≤ v̄1(Γ̂n)→ u1.

Thus v̄1(Γ̂n)→ u1.

Step 3: Now fix a λ sufficiently small, and fix a sequence σn = (µn, ρn) ∈ T [σ, λ; Γn] of

converging equilibria associated with the sequence (Γ̂n)n≥0 of perturbed games. That is, for

each n, σn ∈ E(Γ̂n) and σn is also a (λ, δn) extended proper equilibrium of Γn in extensive

form, for some strictly positive scalar sequence δn converging to zero. For every it ∈ W such

that i = j(t) (that is, player i is the one responding in period t), suppose αit : [u1, β]t → R+ is

the function that has the properties stated in the definition of an extended proper equilibrium

in extensive form (Definition 1).

For any (a1, a2) ∈ [u1, β]2 of the first-two-period offers, recall that σn|(a1,a2) is the strategy

profile induced on the subgame Γn|(a1,a2) by σn. By Corollaries 4 and 5, the strategy profile
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σn|(a1,a2) is a Nash equilibrium of Γ̂n for Pσn almost every (a1, a2) ∈ [u1, β]2. The value of

Player 1 in the continuation game after he rejects some offer (a1, a2) in period 2 is

ηu1 + (1− η)Uσn

1

(
σ|(a1,a2),Γ

n
)
.

Thus this continuation value is upper bounded by v̄(Γ̂n) for Pσn almost every (a1, a2).

Now we evaluate the “cost” to Player 1 from accepting offers in period 2, relative to

his best response. We shall see that this cost is less than λ, for n sufficiently large. As

v̄1(Γ̂n)→ u1, there exists nλ such that for all n ≥ nλ,

v̄1(Γ̂n) < u1 + λ.

Let r2(Y ) denote the time-2 pure response strategy that accepts all offers (a1, a2) ∈ [u1, β]2

with certainty, and r2(N) the one that rejects all offers. Fix some (a1, a2) ∈ [u1, β]2, recall

that B(a≤2, α12(a≤2)) is the open ball centered at a≤2 with radius α12(a≤2)). Let

M(a≤2) = B(a≤2, α12(a≤2)) ∩
(

[u1, β]×
[
u1, v̄1(Γ̂n)

])
.

For any subset M̃(a≤2) ⊂ M(a≤2), if the probability Pσn
(
HM̃(a≤2)

)
that Player 1 receives

an offer in the set M̃(a≤2) in period 2 is strictly positive, then conditional on receiving such

an offer, his expected payoff from accepting the offer is lower bounded by

Eσn/r2(Y )
[
u1 |HM̃(a≤2)

]
≥ u1,

while his expected payoff from rejecting the offer is upper bounded by

Eσn/r2(N)
[
u1 |HM̃(a≤2)

]
≤ v̄1(Γ̂n).

Therefore conditional on an offer in M̃(a≤2), the expected loss Lσni (r2(Y ) | M̃(a≤2)) for Player

1 from accepting the offer is upper bounded by

Lσ
n

i (r2(Y ) | M̃(a≤2)) =
{

Eσn/r2(N)
[
u1 |HM̃(a≤2)

]
− Eσn/r2(Y )

[
u1 |HM̃(a≤2)

]}+

≤ v̄1(Γ̂n)−u1 < λ.
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Now we evaluate the “cost” to Player 2 from accepting offers in period 1, when facing

an offer a1 ∈ [u1 + 2λ, β]. We shall see that accepting offers in this region costs more than

λ to Player 2, for n sufficiently large. Recall that v2(Γ̂n2 ) is given by (59), and we have

v2(Γ̂n2 )→ u2 from (60). There exists nλ such that for all n ≥ nλ,

v2(Γ̂n2 ) + u1 − πn > −λ.

Fix some ã1 ∈ [u1 + 2λ, β], let

M(ã1) = B(ã1, α21(ã1)) ∩ [u1 + 2λ, β].

For any subset M̃(ã1) ⊂M(ã1), if the probability Pσn(HM̃(ã1)) that Player 2 receives an offer

in the set M̃(ã1) in period 1 is strictly positive, then conditional on receiving such an offer,

his expected payoff from accepting the offer is upper bounded by

Eσn/r1(Y )
[
u2 |HM̃(ã1)

]
≤ πn − u1 − 2λ,

while his expected payoff from rejecting the offer is upper bounded by

Eσn/r1(N)
[
u2 |HM̃(ã1)

]
≥ v2(Γ̂n2 ).

Therefore conditional on an offer in M̃(ã1), the expected loss Lσni (r1(Y ) | M̃(ã1)) for Player

2 from accepting the offer is lower bounded by

Lσ
n

i (r1(Y ) | M̃(ã1)) =
{

Eσn/r1(N)
[
u2 |HM̃(ã1)

]
− Eσn/r1(Y )

[
u2 |HM̃(ã1)

]}+

≥ v2(Γ̂n2 )−πn+u1+2λ > λ.

As σn is a (λ, δn) extended proper equilibrium of Γn in extensive form, then for any M̃(ã1) ⊂

M(a1), M̃(a≤2) ⊂M(a≤2) such that Pσn(HM̃(ã1)) > 0 and Pσn(HM̃(a≤2)) > 0, we have

Pσn
[
H1(Y ) |HM̃(ã1)

]
≤ δnPσn

[
H2(Y ) |HM̃(a≤2)

]
where Ht(Y ) = {(a, r, s) : rt = Y }. That is, the probability that Player 2 accepts an offer in
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M̃(ã1), conditional on him receiving such an offer, is at most a multiple δn of the probability

that Player 1 accepts an offer in M̃(a≤2), conditional on him receiving such an offer. It then

follows that

Pσn
[
H1(Y ) ∩HM̃(ã1)

]
≤ δnPσn

[
H2(Y ) |HM̃(a≤2)

]
Pσn(HM̃(ã1)).

This inequality holds even when Pσn(HM̃(ã1)) = 0, as both sides of the inequality are zero.

The collection {B(ã1, α21(ã1))}a1∈[u1+2λ,β] of open balls forms an open cover of the com-

pact set [u1+2λ, β], thus there exists an finite subcover

∪ã1∈A1B(ã1, α21(ã1)) = [u1 + 2λ, β]

for some finite set A1 ⊂ [u1 +2λ, β]. This implies that ∪ã1∈A1M(ã1) = [u1 +2λ, β]. Therefore

by letting one can find a finite partition of the interval

∪ã1∈A1M̃(ã1)[u1 + 2λ, β]

such that for each a1 ∈ A1, M̃(ã1) ⊂M(ã1). Then

Pσn
[
H1(Y ) ∩H[u1+2λ,β]

]
=

∑
a1∈A1

Pσn
[
H1(Y ) ∩HM̃(ã1)

]
≤ δnPσn

[
H2(Y ) |HM̃(a≤2)

]∑
a1∈A1

Pσn
(
HM̃(ã1)

)
≤ δnPσn

[
H2(Y ) |HM̃(a≤2)

]
Pσn

(
H[u1+2λ,β]

)
.

Thus for every Borel subset M̃(a≤2) ⊂M(a≤2), we have

1

δn
Pσn

[
H1(Y ) |H[u1+2λ,β]

]
Pσn

[
HM̃(a≤2)

]
≤ Pσn

[
H2(Y ) ∩HM̃(a≤2)

]
.

This inequality holds even when Pσn
[
HM̃(a≤2)

]
= 0. By considering a finite partition of the

compact set [u1, β]× [u1, u1 + 2λ], we can obtain

Pσn
[
H1(Y ) |H[u1+2λ,β]

]
≤ δnPσn

[
H2(Y ) |H[u1,β]×[u1,u1+2λ]

]
. (62)
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That is, the probability that Player 2 accepts an offer in [u1 + 2λ, β], conditional on him

receiving such an offer, is at most a multiple δn of the probability that Player 1 accepts

an offer in [u1 + 2λ, β] in period 2, conditional on him receiving such an offer. To simplify

notation, we let

pn = Pσn
[
H2(Y ) |H[u1,β]×[u1,u1+2λ]

]
Let Hc

2 be the event that bargaining continues in period 2,

Hc
2 = {(a, r, s) : r1 = N, s1 = A},

then we have H[u1,β]×[u1,u1+2λ] ⊂ Hc
2 by definition. By a similar argument, one can upper

bound, as follows, the probability that Player 2 offers some a2 ∈ [u1 + 2λ, β] to Player 1 in

period 2 conditional on the event Hc
2 that bargaining continues in period 2, because offering

such an a2 is a costly deviation for Player 2:

Pσn
[
H[u1,β]×[u1,u1+2λ] |Hc

2

]
≤ δnpn. (63)

We upper bound the probability of Hc
2 as follows:

Pσn(Hc
2) = Pσn(H1(N))(1− η) ≥(1− η)Pσn

(
H1(N) |H[u1+2λ,β]

)
Pσn

(
H[u1+2λ,β]

)
≥(1− η)(1− δnpn) Pσn

(
H[u1+2λ,β]

)
. (64)

The last inequality follows from (62).

Now we upper bound the the expected utility of Player 1, conditional on the two players

reaching an agreement in the first two periods of the bargaining game. The event that the

two players reach an agreement in period 1 is simply H1(Y ). The event that the two players

reach an agreement in period 2 is Hc
2 ∩H2(Y ). Let at be the projection mapping a complete
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history (a, r, s) to the period-t offer at. Thus

Eσn(u1 | {The two players reach an agreement in the first two periods})

=
Eσn

[
a11H1(Y )

]
+ Eσn

[
a21Hc

2∩H2(Y )

]
Pσn [H1(Y )] + Pσn [Hc

2 ∩H2(Y )]

Eσn
[
a11H1(Y )

]
≤ (u1 + 2λ) Pσn

[
H1(Y ) |H[u1,u1+2λ)

]
Pσn

[
H[u1,u1+2λ)

]
+β Pσn

[
H1(Y ) |H[u1+2λ,β]

]
Pσn

[
H[u1+2λ,β]

]
Eσn

[
a21Hc

2∩H2(Y )

]
≤ (u1 + 2λ) Pσn

[
H2(Y ) |H[u1,β]×[u1,u1+2λ]

]︸ ︷︷ ︸
pn

Pσn
[
H[u1,β]×[u1,u1+2λ]

]
+β Pσn

[
H2(Y ) |H[u1,β]×[u1+2λ,β]

]
Pσn

[
H[u1,β]×[u1+2λ,β]

]
By letting

wn1 = Pσn
[
H1(Y ) |H[u1,u1+2λ)

]
Pσn

[
H[u1,u1+2λ)

]
+ pnPσn

[
H[u1,β]×[u1,u1+2λ]

]
,

wn2 = Pσn
[
H1(Y ) |H[u1+2λ,β]

]
Pσn

[
H[u1+2λ,β]

]
+ Pσn

[
H2(Y ) |H[u1,β]×[u1+2λ,β]

]
Pσn

[
H[u1,β]×[u1+2λ,β]

]
,

we have

Eσn(u1 | {The two players reach an agreement in the first two periods}) ≤ (u1 + 2λ)wn1 + βwn2
w1 + w2

.

It follows from (62), (63) and (64) that

wn1 ≥ pnPσn
[
H[u1,β]×[u1,u1+2λ] |Hc

2

]
Pσn(Hc

2) ≥ pn(1− δnpn)Pσn(Hc
2)

wn2 ≤ δnpn Pσn(Hc
2) [1 + 1/(1− δnpn)(1− η)]

Since a weighted average of x and y (x ≤ y) increases with the weight on y and decreases

with the weight on x: xw1+yw2

w1+w2
≤ xw̃1+yw̃2

w̃1+w̃2
if w̃1 ≤ w1, w̃2 ≥ w2, we obtain

Eσn(u1 | {The two players reach an agreement in the first two periods})

≤ (u1 + 2λ)(1− δnpn) + βδn[1 + 1/(1− δnpn)(1− η)]

(1− δnpn) + δn[1 + 1/(1− δnpn)(1− η)]

n→∞−−−→ u1 + 2λ.
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Thus for every ε > 0, there exists nε such that for all n ≥ nε,

Eσn(u1 | {The two players reach an agreement in the first two periods}) ≤ u+ 2λ+ ε

Likewise, one can show that for every t ≥ 1,

Eσn(u1 | {The two players reach an agreement in period 2t− 1 or 2t}) ≤ u+ 2λ+ ε

for all n ≥ nε. Thus U1(σn; Γn | agreement) ≤ u+ 2λ+ ε for all n ≥ nε, implying

lim sup
n→∞

U1(σn; Γn | agreement) ≤ u+ 2λ

This completes the proof.

We further introduce the following lemma, which will be useful in determining equilibrium

choice of contingent treatment in Stage a and Stage b in our three node game. Formally,

let Π = {π1, · · · , πl} be a set of total payoffs. Without loss of generality, suppose π1 is the

unique maximum value of Π. Suppose for each j = 1, · · · , l, there are two sequences
(
vn1j
)
n≥0

and
(
vn2j
)
n≥0

such that

vnij → vij := vi(πj − u1 − u2)+ + ui

for i = 1, 2. Suppose there are two sequences of outside option values uni converging to ui
(i = 1, 2).

For each n ≥ 0, consider the following alternating game Γ

[(
vnij
)
i=1,2
j=1,··· ,l

, (uni )i=1,2

]
: In each

period, one of the players proposes a choice of total payoff πj ∈ Π. The other player accepts

or rejects this proposal. Acceptance ends the bargaining and the agreement is implemented.

Rejection leads, with some given probability η, to a breakdown of the negotiation. Absent

breakdown, the game proceeds to the next period, when offers are made in alternating order.

If some agreement πj ∈ Π is implemented, then Player i’s payoff is vnij (i = 1, 2); Otherwise

breakdown leads to a payoff of uni for Player i (i = 1, 2). We suppose Player 1 is the

first to propose. This is a Rubinstein’s alternating offer game, with finite a set of possible
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agreements. For simplicity of notation, we write Γn for the game Γ

[(
vnij
)
i=1,2
j=1,··· ,l

, (uni )i=1,2

]
when stating the next lemma, and Γ for Γ

[
(vij) i=1,2

j=1,··· ,l
, (ui)i=1,2

]
.

Lemma 13. Under the above setting and notation for Γn and Γ,

• If π1 > u1 + u2, then there is an η∗ > 0, such that for every breakdown probability

η < η∗, there exists a unique strategy profile σ+ in R((Γn)n≥0). It consists of the

following: both players propose π1 in each period, and accept (and only accept) π1. The

payoff of player i in the game Γ is Ui(σ; Γ) = vi(π1 − u1 − u2) + ui (i = 1, 2).

• If π1 < u1 + u2, then for every breakdown probability η ∈ (0, 1], there exists a strategy

profile σ− in R((Γn)n≥0): both players propose π1 in each period, and reject all proposals

(including π1). Every strategy profile in R((Γn)n≥0) induces the same outcome as σ−, in

which alternating offers in every period are rejected and the game ends when bargaining

breaks down, and both players get their respective outside option values ui (i = 1, 2).

• In both cases, for each sequence σn ∈ T [σ; (Γn)n≥0], the payoff of Player i under σn

in the game Γn satisfies Ui(σn; Γn) → Ui(σ; Γ), where σ is σ+ or σ−, depending on

whether π1 > u1 + u2 or π1 < u1 + u2.

One can easily adapt the proof of Theorem 3 and lemma 12 to show the lemma above.

The proof is indeed much simpler, as the set of possible agreements in each Rubinstein’s

game Γn is finite rather than continuum. Moreover, because of the discrete nature of action

sets, one obtains uniqueness in the strategy profile σ ∈ R((Γn)n≥0) when π > u1 + u2, a

stronger result than uniqueness in outcome. We omit the proof to avoid repeating the same

argument that we provided earlier.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. We proceed in four steps in each of the existence and uniqueness proofs:

Existence: We need to show that the strategy profile x∗η is a restricted equilibrium for the

three-node bargaining game Γ3-node (η, S, C, f, s0). Recall that σ∗η is defined in Section 8.2.
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To this end, we construct a restricted trembling sequence (σn)n≥0, by “pasting” together

sequences of restricted trembling equilibria in the Rubinstein’s alternating offer game across

every stage.

Step 1: We first consider the negotiation between Nodes 1 and 2 in Stage aa over

yb1
(
sb1, s

3b
2

)
- the payment from Node 2 to Node 1 associated with some choice of treatments(

sb1, s
3b
2

)
∈ SB1,2 for the contingency B2,3, if Nodes 1 and 2 agreed on the pair of treat-

ments
(
sb1, s

3b
2

)
in Stage a. The negotiation process is identical to that of the Rubinstein’s

alternating-offers game Γ
(
πb1
(
sb1, s

3b
2

)
, 0, 0

)
, where17

πb1
(
sb1, s

3b
2

)
= f1

(
sb1, s

3b
2

)
+ f2

(
sb1, s

3b
2 , s

0
3

)
. (65)

For simplicity, we will write πb1 for πb1
(
sb1, s

3b
2

)
. Therefore we need to show that the strategy

profile σ∗η
aa,(sb1,s3b2 )

- the restriction of σ∗η to Stage aa and the choice of breakdown treatments(
sb1, s

3b
2

)
at the contingency B2,3 - is a restricted equilibrium in the game Γ

(
πb1, 0, 0

)
, and

construct a restricted trembling sequence
(
σn
aa,(sb1,s3b2 )

)
n≥0

for σ∗η
aa,(sb1,s3b2 )

.

If πb1 ≤ 0, then by Lemma 12, σ∗
(
πb1, 0, 0

)
is a restricted equilibrium for the game

Γ
(
πb1, 0, 0

)
. Recall that the strategy profile σ∗

(
πb1, 0, 0

)
is defined in Lemma 12. There

exists a restricted trembling sequence σn
aa,(sb1,s3b2 )

for σ∗
(
πb1, 0, 0

)
such that

Ui

(
σn
aa,(sb1,s3b2 ); Γ

(
πb1, 0, 0

))
→ 0, i = 1, 2.

Following equations (9a) and (9b), we note that σ∗
(
πb1, 0, 0

)
consists of Node 1 asking for

the maximum payment ȳB1
(
sb1, s

3b
2

)
from Node 2, and Node 2 offering the minimum payment

yB
1

(
sb1, s

3b
2

)
to Node 1 in each round. Node 1 accepts offers yb1

(
sb1, s

3b
2

)
that are strictly larger

than yB
1

(
sb1, s

3b
2

)
, while Node 2 rejects all offers. Therefore σ∗

(
πb1, 0, 0

)
= σ∗η

aa,(sb1,s3b2 )
.

If πb1 > 0, then by Corollary 8, σ∗
(
πb1, 0, 0

)
is a restricted equilibrium for the game

Γ
(
πb1, 0, 0

)
. Recall that the strategy profile σ∗

(
πb1, 0, 0

)
is defined in Corollary 8. There

17 This is so because breakdown leads to f1
(
s01, s

0
2

)
= f2

(
s01, s

0
2, s

0
3

)
= 0 in payoff for both Nodes 1 and 2,

and agreement leads to total a total payoff of f1
(
sb1, s

3b
2

)
+ f2

(
sb1, s

3b
2 , s

0
3

)
for the two nodes to share.
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exists a restricted trembling sequence σn
aa,(sb1,s3b2 )

for σ∗
(
πb1, 0, 0

)
such that

Ui

(
σn
aa,(sb1,s3b2 ); Γ

(
πb1, 0, 0

))
→ viπ

b
1, i = 1, 2.

Following equations (18) and (19), we note that σ∗
(
πb1, 0, 0

)
consists of Node 1 asking for

yBη1

(
sb1, s

3b
2

)
from Node 2, and Node 2 offering ỹBη1

(
sb1, s

3b
2

)
to Node 1; Node 1 accepts offers

that are at least ỹBη1

(
sb1, s

3b
2

)
, while Node 2 accepts offers that are at most yBη1

(
sb1, s

3b
2

)
.

Again we have σ∗
(
πb1, 0, 0

)
= σ∗η

aa,(sb1,s3b2 )
.

Combining the two cases of πb1 ≤ 0 and πb1 > 0, we conclude that σ∗η
aa,(sb1,s3b2 )

is a restricted

equilibrium in the game Γ
(
πb1, 0, 0

)
, and we have a restricted trembling sequence σn

aa,(sb1,s3b2 )

for σ∗η
aa,(sb1,s3b2 )

such that

Ui

(
σn
aa,(sb1,s3b2 ); Γ

(
πb1, 0, 0

))
→ vi ·

(
πb1
)+
, i = 1, 2. (66)

Likewise for the negotiation between Nodes 2 and 3 in Stage bb over yb3
(
s1b

2 , s
b
3

)
, the

bargaining process is identical to that of the game Γ
(
πb3
(
s1b

2 , s
b
3

)
, 0, 0

)
, where

πb3
(
s1b

2 , s
b
3

)
:= f2

(
s0

1, s
1b
2 , s

b
3

)
+ f3

(
s1b

2 , s
b
3

)
(67)

The strategy profile σ∗η
bb,(s1b2 ,sb3)

is a restricted equilibrium for the game Γ
(
πb1, 0, 0

)
, and we

have a restricted trembling sequence σn
bb,(s1b2 ,sb3)

for σ∗η
bb,(s1b2 ,sb3)

such that

Ui

(
σn
bb,(s1b2 ,sb3)

; Γ
(
πb3, 0, 0

))
→ vi ·

(
πb3
)+
, i = 2, 3, (68)

where v3 := v1 =
1

2− η
.

Step 2: We next consider the negotiation between Nodes 1 and 2 in Stage a over
(
sb1, s

3b
2

)
∈

SB1,2 - the choice of treatments for the contingency B2,3. Given that Nodes 1 and 2 will follow

the strategy profile σn
aa,(sb1,s3b2 )

in Stage aa, implementation of any pair of treatments
(
sb1, s

3b
2

)
leads to a payoff of vni

(
sb1, s

3b
2

)
:= Ui

(
σn
aa,(sb1,s3b2 )

; Γ
(
πb1, 0, 0

))
for Node i (i = 1, 2), where by
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equation (66),

vni
(
sb1, s

3b
2

) n→∞−−−→ vi ·
(
πb1
(
sb1, s

3b
2

))+
, i = 1, 2.

On the other hand, a breakdown of the negotiation over
(
sb1, s

3b
2

)
∈ SB1,2 would give both

nodes their respective outside option values 0. Thus we are in the setting of Lemma 13,

where l =
∣∣SB1,2∣∣, Π =

{
πb1
(
sb1, s

3b
2

)
:
(
sb1, s

3b
2

)
∈ SB1,2

}
, vnij = vni

(
sb1, s

3b
2

)
, and uni = 0, for

i = 1, 2, j = 1, · · · , l, n ≥ 0. For simplicity of notation, let

Γna,B2,3
:= Γ

[(
vnij
)
i=1,2
j=1,··· ,l

, un1 = 0, un2 = 0

]
and

Γa,B2,3 = Γ

[
(vij) i=1,2

j=1,··· ,l
, u1 = 0, u2 = 0

]
.

We need to show that the strategy profile σ∗ηa,B2,3
is in the setR

((
Γna,B2,3

)
n≥0

)
, and construct

a sequence
(
σna,B2,3

)
n≥0
∈ T

[
σ∗ηa,B2,3

;
(

Γna,B2,3

)
n≥0

]
. Since

argmax
(sb1,s3b2 )∈SB1,2

πb1
(
sb1, s

3b
2

)
=
(
sB1 , s

3B
2

)
and πb1

(
sB1 , s

3B
2

)
> πb1 (s0

1, s
0
2) = 0. Hence by Lemma 13, there exists a strategy profile in

R((Γna,B2,3
)n≥0), which is that both nodes propose

(
sB1 , s

3B
2

)
in each period, and accept (and

only accept)
(
sB1 , s

3B
2

)
. This strategy profile is identical to the candidate strategy profile

σ∗ηa,B2,3
. Under σ∗ηa,B2,3

, the payoff of node i in Γa,B2,3 is Ui
(
σ∗ηa,B2,3

; Γa,B2,3

)
= vi · πb1

(
sB1 , s

3B
2

)
(i = 1, 2). Note that by equation (15), the payoff of Node 2

v2 · πb1
(
sB1 , s

1B
2

)
= uη23 (69)

where uη23 is, we recall, the outside option value of Node 2 in its bargaining with Node 3.

Also by Lemma 13, there exists a sequence σna,B2,3
∈ T

(
σ∗ηa,B2,3

;
(

Γna,B2,3

)
n≥0

)
, such that

Ui

(
σna,B2,3

; Γna,B2,3

)
→ Ui

(
σ∗ηa,B2,3

; Γa,B2,3

)
= vi · πb1

(
sB1 , s

3B
2

)
(70)
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The same analysis applies to the negotiation between Nodes 2 and 3 in Stage b over(
s1b

2 , s
b
3

)
∈ SB2,3. We define σnb,B1,2

in a similar way.

For every n, the strategy profiles

(
σna,B2,3

, σnb,B1,2
,

[
σn
aa,(sb1,s3b2 )

]
(sb1,s3b2 )∈SB1,2

,

[
σn
bb,(s1b2 ,sb3)

]
(s1b2 ,sb3)∈SB2,3

)
determine the strategies for all three nodes at the breakdown contingency in the four stages

of bargaining game. Let σn{B1,2,B2,3} denote this combined strategy profile.

Remark 5. The restriction of the strategy profile σ∗η to the breakdown contingencies B1,2 and

B2,3 fixes the outside option values in the three-node bargaining game Γ3-node (η, S, C, f, s0),

for all the bilateral bargaining problems in all stages and across all contingencies. By equa-

tion (69),
(
uηij
)
is the outside option value of Node i in its bargaining against Node j. Along

the converging sequence of trembling equilibria σn{B1,2,B2,3}, the corresponding outside option

values unij converge to uηij by equation (70).

Step 3: Now consider the negotiation between Nodes 1 and 2 in Stage aa over y1 (s1; s2, s3)

- the payment from Node 2 to Node 1 associated with some choice of treatment s1 ∈ C1(s2)

for the contingency (s2, s3) ∈ S2,3. Following Remark 5, we already know that the outside

option values of Nodes 1 and 2 are un12 and un21 respectively along the sequence of µn{B1,2,B2,3},

and

un12 → uη12; un21 → uη21. (71)

For each (s1, s2, s3) ∈ S, let

π1(s1; s2, s3) = f1(s1, s2) + f2(s1, s2, s3)− yη3(s2, s3), (72)

where yη3 is defined in equation (14).

Claim 1. We claim that π1(s1; s2, s3) is the total payoff to be shared by Nodes 1 and 2 if the

two nodes agreed on the treatment s1 for the contingency (s2, s3) in Stage a.

This is the case if and only if the expected payment from Node 2 to Node 3, conditional

on the two nodes agreeing on (s2, s3) in Stage b and Stage bb, does not depend on n and
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is equal to yη3(s2, s3). When we later complete the construction of the sequence σn, we will

verify that this claim is correct. Note that π1(s1; s2, s3) does not depend on n.

Let Γnaa,(s1;s2,s3) = Γ (π1(s1; s2, s3), un12, u
n
21). If we assume that Claim 1 holds, then we need

to show that σ∗ηaa,(s1;s2,s3) ∈ R
[(

Γnaa,(s1;s2,s3)

)
n≥0

]
, and construct a sequence

(
σnaa,(s1;s2,s3)

)
n≥0
∈

T
[
x∗ηaa,(s1;s2,s3); (Γnaa,(s1;s2,s3))n≥0

]
. Following the same argument as in Step 1, Lemma 11 and

Lemma 12 imply that

σ∗ηaa,(s1;s2,s3) ∈ R
[(

Γnaa,(s1;s2,s3)

)
n≥0

]
, (73)

and there exists a sequence
(
σnaa,(s1;s2,s3)

)
n≥0
∈ T

[
σ∗ηaa,(s1;s2,s3),

(
Γnaa,(s1;s2,s3)

)
n≥0

]
, such that

Ui
(
σnaa,(s1;s2,s3); Γnaa,(s1;s2,s3)

) n→∞−−−→ vi · (π1(s1; s2, s3)− uη12 − u
η
21)+ + uηi(3−i), i = 1, 2.

(74)

U1

(
σnaa,(s1;s2,s3); Γnaa,(s1;s2,s3)

∣∣ agreement
)

= v1 · (π1(s1; s2, s3)− uη12 − u
η
21)+ + uη12. (75)

We next consider the negotiation between Nodes 1 and 2 in Stage a over s1 ∈ C1(s2)

- the choice of treatment for the contingency (s2, s3). Given that Nodes 1 and 2 will play(
σnaa,(s1;s2,s3)

)
in Stage aa, implementation of any choice of treatment s1 for the contingency

(s2, s3) leads to a payoff of vni (s1; s2, s3) := Ui

(
σnaa,(s1;s2,s3); Γnaa,(s1;s2,s3)

)
for Node i (i = 1, 2),

where by equation (74),

vni (s1; s2, s3)
n→∞−−−→ vi · (π1(s1; s2, s3)− uη12 − u

η
21)+ + uηi(3−i), i = 1, 2.

Thus we are in the setting of Lemma 13, where l = |C1(s2)|, Π = {π1(s1; s2, s3) : s1 ∈ C1(s2)},

vnij = vni (s1; s2, s3), and uni = uni(3−i), for i = 1, 2, j = 1, · · · , l, n ≥ 0. Let

Γna,(s2,s3) := Γ

[(
vnij
)
i=1,2
j=1,··· ,l

, un1 = un12, u
n
2 = un21

]
and

Γa,(s2,s3) = Γ

[
(vij) i=1,2

j=1,··· ,l
, u1 = uη12, u2 = uη21

]
.
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Following the same argument as in Step 2, Lemma 13 implies that

σ∗ηa,(s2,s3) ∈ R
[(

Γna,(s2,s3)

)
n≥0

]
(76)

and there exists a sequence
(
σna,(s2,s3)

)
n≥0
∈ T

[
σ∗ηa,(s2,s3);

(
Γna,(s2,s3)

)
n≥0

]
such that

U1

(
σn{a,aa},(s2,s3); Γna,(s2,s3)

∣∣ agreement
)

n→0−−→ v1 · [π1(s∗1(s2, s3); s2, s3)− uη12 − u
η
21] + uη12 by equation (75)

= f1(s∗(s2, s3), s2) + yη1(s∗1(s2, s3); s2, s3) by equations (13) and (72)

(77)

Recall that s∗1 is defined in Section 8.1.

Step 4: We next consider the negotiation between Nodes 2 and 3 in Stage bb over y3(s2, s3) -

the payment from Node 2 to Node 3 associated with some choice of treatment (s2, s3) ∈ S2,3.

Following Remark 5, we already know that the outside option values of Nodes 2 and 3 are

un23 and un32 respectively along the sequence of σn{B1,2,B2,3}, and

un23 → uη23; un32 → uη32.

Given that Nodes 1 and 2 play σn{a,aa} in Stage a and Stage aa, the total payoff πn3 (s2, s3) to

be shared by Nodes 2 and 3 satisfies

lim
n→∞

πn3 (s2, s3) = U(s∗1(s2, s3), s2, s3)− lim
n→∞

U1

(
σn{a,aa},(s2,s3); Γna,(s2,s3)

∣∣ agreement
)

= U(s∗1(s2, s3), s2, s3)− [f1(s∗(s2, s3), s2) + yη1(s∗1(s2, s3); s2, s3)]

= (2− η) [f3(s2, s3) + yη3(s2, s3)]− (1− η)uη32 + uη23︸ ︷︷ ︸
:=π3(s2,s3)

The first equality follows from equation (77), and the second from equation (14). Let

Γnbb,(s2,s3) = Γ (πn3 (s2, s3), un32, u
n
23). Following the same argument as in Step 1, Lemma 11

and Lemma 12 imply that

σ∗ηbb,(s2,s3) ∈ R
[(

Γnbb,(s2,s3)

)
n≥0

]
, (78)
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and there exists a sequence
(
σnbb,(s2,s3)

)
n≥0
∈ T

[
σ∗ηbb,(s2,s3);

(
Γnbb,(s2,s3)

)
n≥0

]
, such that

Ui
(
σnbb,(s2,s3); Γnbb,(s2,s3)

) n→∞−−−→ vi · (π3(s2, s3)− uη32 − u
η
23)+ + uηi(5−i), i = 2, 3. (79)

U3

(
σnbb,(s2,s3),Γ

n
bb,(s2,s3)

∣∣ agreement
)

= v1 · (π3(s2, s3)− uη32 − u
η
23)+ + uη32

= f3(s2, s3) + yη3(s2, s3)
(80)

Equation (80) shows that the expected payment from Node 2 to Node 3, conditional on the

two nodes agreeing on (s2, s3) in Stage b and Stage bb, does not depend on n and is equal

to yη3(s2, s3). Hence we have verified Claim 1.

Finally we consider the negotiation between Nodes 2 and 3 in Stage b over (s2, s3) ∈ S2,3.

Given that Nodes 2 and 3 will play
(
µnbb,(s2,s3)

)
in Stage bb, implementation of any choice

of treatments (s2, s3) leads to a payoff of vni (s2, s3) := Ui

(
σnbb,(s2,s3); Γnbb,(s2,s3)

)
for Node i

(i = 2, 3), where by equation (79),

vni (s2, s3)
n→∞−−−→ vi · (π3(s2, s3)− uη32 − u

η
23)+ + uηi(5−i), i = 1, 3.

Thus we are in the setting of Lemma 13, where l = |S2,3|, Π = {π3(s2, s3) : (s2, s3) ∈ S2,3},

vnij = vni (s2, s3), and uni = uni(5−i), for i = 2, 3, j = 1, · · · , l, n ≥ 0. Let

Γnb,A1,2
:= Γ

[(
vnij
)
i=1,2
j=1,··· ,l

, un1 = 0, un2 = 0

]
and

Γb,A1,2 = Γ

[
(vij) i=1,2

j=1,··· ,l
, u1 = 0, u2 = 0

]
.

where A1,2 denotes the contingency that Nodes 1 and 2 reach an agreement. Following the

same argument as in Step 2, Lemma 13 implies that

σ∗ηb,A1,2
∈ R

[(
Γnb,A1,2

)
n≥0

]
(81)

By combining equations (73), (76), (78) and (81), we conclude that σ∗η is a restricted
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equilibrium in the three-node bargaining game Γ3-node (η, S, C, f, s0). This completes the

proof of the existence part.

Uniqueness: We will proceed in four steps, as in the proof of the existence part. Suppose

σ is a restricted equilibrium of the three-node contracting game Γ3-node (η, S, C, f, s0), and

(σn)n≥0 ∈ T [σ, λ; Γ3-node (η, S, C, f, s0)] is a restricted trembling sequence for σ, for some

λ > 0 sufficiently small. We need to show that the strategy profile σ induces the same de-

terministic outcome
[
s∗∗,

(
yη1(s∗∗), yη3(s∗∗2 , s

∗∗
3 )
)]

as σ∗η. Instead of using the existence results

provided by Corollary 8 and Lemmas 11 to 13, we will use their uniqueness counterparts.

There is one issue that we will need to deal with: when applying Lemmas 11 to 13, we need

to first verify the convergence of total payoff πn of a bargaining pair. We can guarantee the

convergence of this value by taking subsequences.

One will see that Step 1 and Step 2 in the uniqueness part are very similar to that of

the existence part, since the total payoff and the outside option values of any pair of nodes’

bargaining problem are constant contingent on breakdown of the other pair of nodes.

Step 1: Consider the negotiation between Nodes 1 and 2 in Stage aa over the yb1
(
sb1, s

3b
2

)
.

The negotiation process is identical to that of the Rubinstein’s alternating-offers game

Γ
(
πb1
(
sb1, s

3b
2

)
, 0, 0

)
, where πb1 is defined in (65). As σ is a restricted equilibrium of the

three-node contracting game Γ3-node (η, S, C, f, s0), then its restriction σaa,(sb1,s3b2 ) to Stage

aa and the choice of breakdown treatments
(
sb1, s

3b
2

)
at the contingency B2,3 is a restricted

equilibrium in the game Γ
(
πb1, 0, 0

)
. The sequence

(
σn
aa,(sb1,s3b2 )

)
n≥0

is a restricted trem-

bling sequence for σaa,(sb1,s3b2 ) in the game Γ
(
πb1, 0, 0

)
. Corollary 8 and lemma 12 imply that

σaa,(sb1,s3b2 ) induces the same payoff to Nodes 1 and 2 as σ∗η
aa,(sb1,s3b2 )

in the game Γ
(
πb1, 0, 0

)
.

That is,

Ui

(
σaa,(sb1,s3b2 ); Γ

(
πb1, 0, 0

))
= Ui

(
σ∗η
aa,(sb1,s3b2 )

; Γ
(
πb1, 0, 0

))
= vi

(
πb1
)+
, i = 1, 2.
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Along the restricted trembling sequence σn
aa,(sb1,s3b2 )

,

Ui

(
σn
aa,(sb1,s3b2 ); Γ

(
πb1, 0, 0

))
→ Ui

(
σaa,(sb1,s3b2 ); Γ

(
πb1, 0, 0

))
= vi

(
πb1
)+
, i = 1, 2.

Similar results can be obtained for the negotiation between Nodes 2 and 3 in Stage bb

over yb3
(
s1b

2 , s
b
3

)
. Letting πb3 be given by (67), we have,

Ui

(
σbb,(s1b2 ,sb3)

; Γ
(
πb3, 0, 0

))
= vi

(
πb3
)+
, i = 2, 3.

Along the restricted trembling sequence σn
bb,(s1b2 ,sb3)

,

Ui

(
σn
bb,(s1b2 ,sb3)

; Γ
(
πb3, 0, 0

))
= vi

(
πb3
)+
, i = 2, 3. (82)

Step 2: We next consider the negotiation between Nodes 1 and 2 in Stage a over
(
sb1, s

3b
2

)
∈

SB1,2 - the choice of treatments for the contingency B2,3. Given that Nodes 1 and 2 will follow

the strategy profile σn
aa,(sb1,s3b2 )

in Stage aa, implementation of any pair of treatments
(
sb1, s

3b
2

)
leads to a payoff of vni

(
sb1, s

3b
2

)
:= Ui

(
σn
aa,(sb1,s3b2 )

; Γ
(
πb1, 0, 0

))
for Node i (i = 1, 2), where by

equation (82),

vni
(
sb1, s

3b
2

) n→∞−−−→ vi ·
(
πb1
(
sb1, s

3b
2

))+
, i = 1, 2.

On the other hand, a breakdown of the negotiation over
(
sb1, s

3b
2

)
∈ SB1,2 would give both

nodes their respective outside option values 0. Thus we are in the setting of Lemma 13,

where l =
∣∣SB1,2∣∣, Π =

{
πb1
(
sb1, s

3b
2

)
:
(
sb1, s

3b
2

)
∈ SB1,2

}
, vnij = vni

(
sb1, s

3b
2

)
, and uni = 0, for

i = 1, 2, j = 1, · · · , l, n ≥ 0. For simplicity of notation, let

Γna,B2,3
:= Γ

[(
vnij
)
i=1,2
j=1,··· ,l

, un1 = 0, un2 = 0

]
and

Γa,B2,3 = Γ

[
(vij) i=1,2

j=1,··· ,l
, u1 = 0, u2 = 0

]
.
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Then σa,B2,3 ∈ R
((

Γna,B2,3

)
n≥0

)
, and

(
σna,B2,3

)
n≥0
∈ T

[
σ∗ηa,B2,3

;
(

Γna,B2,3

)
n≥0

]
. Since

argmax
(sb1,s3b2 )∈SB1,2

πb1
(
sb1, s

3b
2

)
=
(
sB1 , s

3B
2

)
and πb1

(
sB1 , s

3B
2

)
> πb1 (s0

1, s
0
2) = 0.

Hence by Lemma 13, σa,B2,3 is such that both nodes propose
(
sB1 , s

3B
2

)
in each period,

and accept (and only accept)
(
sB1 , s

3B
2

)
. Thus σa,B2,3 = σ∗ηa,B2,3

. Applying Lemma 13 again,

we obtain

U2

(
σna,B2,3

; Γna,B2,3

)
→ U2

(
σa,B2,3 ; Γa,B2,3

)
= U2

(
σ∗ηa,B2,3

; Γa,B2,3

)
= uη23. (83)

The same analysis applies to the negotiation between Nodes 2 and 3 in Stage b over
(
s1b

2 , s
b
3

)
∈

SB2,3.

Following Remark 5 and (83), we have

unij → uηij (84)

where unij are the outside option values determined by the breakdown strategies
(
σn{B1,2,B2,3}

)
n≥0

.

Step 3: In Step 3, we first consider the negotiation between Nodes 2 and 3 in Stage bb over

y3(s2, s3). Under σn, suppose πn3 (s2, s3) is the total payoff to be shared by Nodes 2 and 3 in

Stage bb, if the two nodes agreed on the treatments (s2, s3) in Stage b. For every n ≥ 0,

since the payoff of Node 1 under σn is at least his outside option value uη12 = 0, we have

πn3 (s2, s3) ≤ U (s∗1(s2, s3), s2, s3) .

Since (πn3 (s2, s3))n≥0 is a bounded real sequence, there exists a converging subsequence:

π
ϕ(n)
3 (s2, s3)

n→∞−−−→ π3(s2, s3), (85)

for some π3(s2, s3) ≤ U (s∗1(s2, s3), s2, s3). Let y3|agreement

(
σnbb,(s2,s3)

)
be the expected payment

from Node 2 to Node 3 under σn, conditional on the two nodes agreeing on (s2, s3) after
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bargaining in Stage b and Stage bb. By only considering the subsequence ϕ(n), we have

a sequence of converging total payoffs
(
π
ϕ(n)
3 (s2, s3)

)
n≥0

and two sequences of converging

outside option values (un23)n≥0 and (un32)n≥0 (by equation (84)) for the bargaining problem

between Nodes 2 and 3.

• If π3(s2, s3) > uη23, then we are in the setting of Lemma 11. We thus have

lim
n≥0

y3|agreement

(
σ
ϕ(n)
bb,(s2,s3)

)
= v3[π3(s2, s3)− uη23]− f3(s2, s3)

≤ v3

[
U (s∗1(s2, s3), s2, s3)− uη23

]
− f3(s2, s3)

Recall that v3 = 1/(2− η).

• If π3(s2, s3) ≤ uη23, then we are in the setting of Lemma 12. We thus have

lim sup
n→∞

y3|agreement

(
σ
ϕ(n)
bb,(s2,s3)

)
≤ −f3(s2, s3) + 2λ.

Since the subsequence
(
y3|agreement

(
σ
ϕ(n)
bb,(s2,s3)

))
n≥0

is bounded, there further exists a con-

verging subsequence:

y3|agreement

(
σ
φ(n)
bb,(s2,s3)

)
n→∞−−−→ y3|agreement(s2, s3) (86)

for some y3|agreement(s2, s3). Here (φ(n))n≥0 is a subsequence of the sequence (ϕ(n))n≥0.

Combining the two inequalities above, we have

y3|agreement(s2, s3) ≤ v3 U (s∗1(s2, s3), s2, s3)− f3(s2, s3) + 2λ. (87)

Now we consider the negotiation between Nodes 1 and 2 in Stage aa over the payment

y1 (s1; s2, s3), and then the negotiation between the two nodes in Stage a over the choice

of treatment s1(s2, s3) ∈ C1(s2) for the contingency (s2, s3). Since we fix a contingency

(s2, s3) ∈ S2,3, thus we can, for simplicity, write s1 for s1(s2, s3).

Under σn, let πn1 (s1; s2, s3) be the total payoff to be shared by Nodes 1 and 2 if the

two nodes agreed on the treatment s1 for the contingency (s2, s3) in Stage a. Along the
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subsequence σφ(n), we have

π
φ(n)
1 (s1; s2, s3) = f1(s1, s2) + f2(s1, s2, s3)− y3|agreement

(
σ
φ(n)
bb,(s2,s3)

)
→ f1(s1, s2) + f2(s1, s2, s3)− y3|agreement(s2, s3)︸ ︷︷ ︸

:=π1(s1;s2,s3)

by (86). (88)

By only considering the subsequence φ(n), we have a sequence of converging total pay-

offs
(
π
φ(n)
1 (s1; s2, s3)

)
n≥0

and two sequences of converging outside option values
(
u
φ(n)
12

)
n≥0

and
(
u
φ(n)
21

)
n≥0

for the bargaining problem between Nodes 1 and 2. Let Γ
φ(n)
aa,(s1;s2,s3) =

Γ
(
π
φ(n)
1 (s1; s2, s3), u

φ(n)
12 , u

φ(n)
21

)
. By Lemmas 11 and 12, we have

Ui

(
σ
φ(n)
aa,(s1;s2,s3); Γ

φ(n)
aa,(s1;s2,s3)

)
n→∞−−−→ vi · (π1(s1; s2, s3)− uη12 − u

η
21)+ + uηi(3−i), i = 1, 2.

U1

(
σ
φ(n)
aa,(s1;s2,s3); Γ

φ(n)
aa,(s1;s2,s3)

∣∣ agreement
)

= v1 · (π1(s1; s2, s3)− uη12 − u
η
21)+ + uη12. (89)

On the other hand, (87) implies that

π1(s∗1(s2, s3); s2, s3) ≥ v2 U(s∗1(s2, s3), s2, s3)− 2λ.

Since we have the assumption (1) that

U(s∗1(s2, s3), s2, s3) > U(s0
1, s

1B
2 , sB3 ),

and λ > 0 can be chosen to be aribitrarily close to 0, then by choosing a λ sufficiently small,

we have

π1(s∗1(s2, s3); s2, s3) > v2 U(s0
1, s

1B
2 , sB3 ) = uη21. (90)

We next consider the negotiation between Nodes 1 and 2 in Stage a over s1 ∈ C1(s2) - the

choice of treatment for the contingency (s2, s3) - along the subsequence φ(n). Given that

Nodes 1 and 2 will play σφ(n)
aa,(s1;s2,s3) in Stage aa, implementation of any choice of treatment s1

for the contingency (s2, s3) leads to a payoff of vni (s1; s2, s3) := Ui

(
σ
φ(n)
aa,(s1;s2,s3); Γ

φ(n)
aa,(s1;s2,s3)

)
for Node i (i = 1, 2). Thus we are in the setting of Lemma 13, where l = |C1(s2)|, Π =

{π1(s1; s2, s3) : s1 ∈ C1(s2)}, vnij = vni (s1; s2, s3), and uni = u
φ(n)
i(3−i), for i = 1, 2, j = 1, · · · , l,
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n ≥ 0, and the maximum total payoff

π1(s∗1(s2, s3); s2, s3) > uη21.

Let

Γna,(s2,s3) := Γ

[(
vnij
)
i=1,2
j=1,··· ,l

, un1 = u
φ(n)
12 , un2 = u

φ(n)
21

]
and

Γa,(s2,s3) = Γ

[
(vij) i=1,2

j=1,··· ,l
, u1 = uη12, u2 = uη21

]
.

As σφ(n)
a,(s2,s3) converges weak*, pointwise, to σa,(s2,s3), and(

σ
φ(n)
a,(s2,s3)

)
n≥0
∈ T

[
σ∗ηa,(s2,s3);

(
Γna,(s2,s3)

)
n≥0

]
,

Lemma 13 implies that σa,(s2,s3) consists of Nodes 1 and 2 offer each other the contingent

treatment contract s∗1(s2, s3) at each period. Both nodes accept this offer s∗1(s2, s3) and reject

all other offers s1 ∈ C1(s2)\{s∗1(s2, s3)}. It then follows that from (89) that

U1

(
σ
φ(n)
{a,aa},(s2,s3); Γ

φ(n)
a,(s2,s3)

∣∣ agreement
)

n→0−−→ v1 · [π1(s∗1(s2, s3); s2, s3)− uη21] (91)

Step 4: We next consider the negotiation between Nodes 2 and 3 in Stage bb over y3(s2, s3) -

the payment from Node 2 to Node 3 associated with some choice of treatment (s2, s3) ∈ S2,3.

Following Remark 5, we already know that the outside option values of Nodes 2 and 3 are

un23 and un32 respectively along the sequence of σn{B1,2,B2,3}, and

un23 → uη23; un32 → uη32.

Along the subsequence φ(n), given that Nodes 1 and 2 play σφ(n)
{a,aa} in Stage a and Stage
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aa, the total payoff πφ(n)
3 (s2, s3) to be shared by Nodes 2 and 3 satisfies

lim
n→∞

π
φ(n)
3 (s2, s3) = U(s∗1(s2, s3), s2, s3)− lim

n→∞
U1

(
σ
φ(n)
{a,aa},(s2,s3); Γ

φ(n)
a,(s2,s3)

∣∣ agreement
)

= U(s∗1(s2, s3), s2, s3)− v1 · [π1(s∗1(s2, s3); s2, s3)− uη21]︸ ︷︷ ︸
:=π3(s2,s3)

by (91).

Let y1(s∗1(s2, s3), s2, s3) = v1 · [π1(s∗1(s2, s3); s2, s3)− uη21]− f1(s∗1(s2, s3), s2), then we have

f2(s1(s2, s3), s2, s3)− y1(s∗1(s2, s3), s2, s3)− y3|agreement(s2, s3)− uη21

= (1− η) [f1(s∗1(s2, s3), s2) + y1(s∗1(s2, s3), s2, s3)− uη12] .
(92)

π3(s2, s3) = f2(s∗1(s2, s3), s2, s3) + f3(s2, s3)− y1(s∗1(s2, s3), s2, s3). (93)

Letting Γ
φ(n)
bb,(s2,s3) = Γ

(
π
φ(n)
3 (s2, s3), u

φ(n)
32 , u

φ(n)
23

)
, then

σbb,(s2,s3) ∈ R
[(

Γ
φ(n)
bb,(s2,s3)

)
n≥0

]
, (94)

and
(
σ
φ(n)
bb,(s2,s3)

)
n≥0
∈ T

[
σbb,(s2,s3);

(
Γ
φ(n)
bb,(s2,s3)

)
n≥0

]
. Lemmas 11 and 12 imply that

Ui

(
σ
φ(n)
bb,(s2,s3); Γ

φ(n)
bb,(s2,s3)

)
n→∞−−−→ vi · (π3(s2, s3)− uη23)+ + uηi(5−i), i = 2, 3, (95)

U3

(
σ
φ(n)
bb,(s2,s3),Γ

φ(n)
bb,(s2,s3)

∣∣ agreement
)

n→∞−−−→ v1 · (π3(s2, s3)− uη23)+ . (96)

By the definition of y3|agreement(s2, s3), we know that

U3

(
σ
φ(n)
bb,(s2,s3),Γ

φ(n)
bb,(s2,s3)

∣∣ agreement
)

n→∞−−−→ f3(s2, s3) + y3|agreement(s2, s3). (97)

We obtain, from (93) and (96), a linear equation of y3|agreement(s2, s3), when π3(s2, s3) ≥ uη23:

f2(s∗1(s2, s3), s2, s3)− y1(s∗1(s2, s3), s2, s3)− y3|agreement(s2, s3)− uη23

= (1− η)
[
f3(s2, s3) + y3|agreement(s2, s3)− uη32

]
.

(98)

Equations (92) and (98) form a linear system of two equations with two unknowns

(
y1(s∗1(s2, s3), s2, s3), y3|agreement(s2, s3)

)
.
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The equations are exactly the same as the ones for

(yη1(s∗1(s2, s3); s2, s3), yη3(s2, s3))

given by equations (13) and (14). Hence when π3(s2, s3) ≥ uη23,

y1(s∗1(s2, s3), s2, s3) = yη1(s∗1(s2, s3), s2, s3) (99a)

y3|agreement(s2, s3) = yη3(s2, s3) (99b)

Then it follows from (93) that

π3(s2, s3) = U(s∗1(s2, s3), s2, s3)− v1 · [π1(s∗1(s2, s3); s2, s3)− uη21]

=
2− η
3− η

U(s∗1(s2, s3), s2, s3) + c, (100)

where c is a constant that only depends on the outside option values (uη21, u
η
23), but not on

(s2, s3).

On the other hand, we show that

π3(s∗∗2 , s
∗∗
3 ) > uη23.

Recall that (s∗∗1 , s
∗∗
2 , s

∗∗
3 ) is the socially efficient vector of treatments. If π3(s∗∗2 , s

∗∗
3 ) ≤ uη23,

then by (96) and (97), we have

f3(s∗∗2 , s
∗∗
3 ) + y3|agreement(s

∗∗
2 , s

∗∗
3 ) = 0.

Since π1(s∗∗1 , s
∗∗
2 , s

∗∗
3 ) = f1(s∗∗1 , s

∗∗
2 ) + f2(s∗∗1 , s

∗∗
2 , s

∗∗
3 )− y3|agreement(s

∗∗
2 , s

∗∗
3 ), we have

π1(s∗∗1 , s
∗∗
2 , s

∗∗
3 ) = U(s∗∗1 , s

∗∗
2 , s

∗∗
3 ).
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It then follows from (93) that

π3(s∗∗2 , s
∗∗
3 ) = U(s∗∗1 , s

∗∗
2 , s

∗∗
3 )− v1 · [π1(s∗1(s2, s3); s2, s3)− uη21]

= v2 U(s∗∗1 , s
∗∗
2 , s

∗∗
3 ) + v1 u

η
21

> v2 U(sB1 , s
3B
2 , s0

3)

= uη23.

This leads to a contradiction. Therefore π3(s∗∗2 , s
∗∗
3 ) > uη23.

Finally we consider the negotiation between Nodes 2 and 3 in Stage b over (s2, s3) ∈ S2,3.

Given that Nodes 2 and 3 will play σ
φ(n)
bb,(s2,s3) in Stage bb, implementation of any choice

of treatments (s2, s3) leads to a payoff of vni (s2, s3) := Ui

(
σ
φ(n)
bb,(s2,s3); Γ

φ(n)
bb,(s2,s3)

)
for Node i

(i = 2, 3), where by equation (79),

vni (s2, s3)
n→∞−−−→ vi · (π3(s2, s3)− uη32 − u

η
23)+ + uηi(5−i), i = 1, 3.

Thus we are in the setting of Lemma 13, where l = |S2,3|, Π = {π3(s2, s3) : (s2, s3) ∈ S2,3},

vnij = vni (s2, s3), and uni = u
φ(n)
i(5−i), for i = 2, 3, j = 1, · · · , l, n ≥ 0, and the maximum total

payoff

max
(s2,s3)∈S23

π3(s2, s3) =
2− η
3− η

max
(s2,s3)∈S23

U(s∗1(s2, s3), s2, s3) + c

=
2− η
3− η

U(s∗∗1 , s
∗∗
2 , s

∗∗
3 ) + c

= π3(s∗∗2 , s
∗∗
3 ) > uη23.

Let

Γnb,A1,2
:= Γ

[(
vnij
)
i=1,2
j=1,··· ,l

, un1 = 0, un2 = 0

]
and

Γb,A1,2 = Γ

[
(vij) i=1,2

j=1,··· ,l
, u1 = 0, u2 = 0

]
.

where A1,2 denotes the contingency that Nodes 1 and 2 reach an agreement. As σφ(n)
b,A1,2

converges weak*, pointwise, to σb,A1,2 , and(
σ
φ(n)
b,A1,2

)
n≥0
∈ T

[
σ∗ηb,A1,2

;
(

Γnb,A1,2)

)
n≥0

]
,
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Lemma 13 implies that σb,A1,2 consists of Nodes 2 and 3 offer each other the socially efficient

treatments (s∗∗2 , s
∗∗
3 ) at each period. Both nodes accept this offer (s∗∗2 , s

∗∗
3 ) and reject all

other offers (s2, s3) ∈ S2,3\{(s∗∗2 , s∗∗3 )}.

Combining the four steps above, we conclude that under the strategy profile σ induces the

same deterministic outcome as σ∗η, in which with probability 1,
[
s∗∗,

(
yη1(s∗∗), yη3(s∗∗2 , s

∗∗
3 )
)]

is immediately implemented as an accepted offer in period 1 of the respective bargaining

stages. This establishes uniqueness of Theorem 1.

C Foundations for an Axiomatic Solution

Here, we extend the axioms of Nash (1950) to a network setting. Under the stated axioms for

a solution to a network bilateral bargaining problem (with exogeneous outside option values),

the unique outcome is socially efficient. Our axioms are preliminary and may be adjusted in

subsequent versions.

C.1 Network Bargaining Problem with Exogenous Outside Values

The players of a network bilateral bargaining problem are the nodes of an undirected graph

G = (V,E), defined by a finite set V of at least two nodes, and by a set E ⊂ V ×V of edges,

which are the pairs of “directly connected” nodes. The network G is assumed to contain no

circles. 18 The set of nearest neighbors of node i is denoted by Ni(G) = {j ∈ V : (i, j) ∈ E}.

The action of node i is chosen from a finite non-empty set Si. If i is an isolated node (that

is, if Ni(G) = ∅), then its action set Si is assumed to be a singleton. As we shall see, this is

without loss of generality. We let S =
∏

i∈V Si. Node i has a utility function fi : Si× Ŝi → R,

where Ŝi =
∏

j ∈Ni(G) Sj. We let f = (fi)i∈V denote the collection of utility functions of all

nodes. For simplicity, we often abuse the notation by writing fi(s) in place of fi
(
si, sNi(G)

)
.

18An ordered list (i1, . . . , im) of nodes in V is a circle if ip and ip+1 are directly connected for all p, where
by convention, im+1 = i1.
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For any pair (i, j) ∈ E of direct counterparties, given some action sj of Node j, the action

of Node i is restricted to Cij(sj), for a given correspondence Cij from Sj into the non-empty

subsets of Si. Without loss of generality, we assume that Cij and Cji are consistent, in that

si ∈ Cij(sj) if and only if sj ∈ Cji(si). A pair of actions (si, sj) ∈ Si × Sj is said to be

compatible if and only if si ∈ Cij(sj). With a slight abuse of notation, we sometimes write

(si, sj) ∈ Cij for si ∈ Cij(sj). We let C = (Cij)(i,j)∈E and write s ∈ C if si ∈ Cij(sj) for

every pair (i, j) ∈ E. We say that C is feasible if there is some s in C. Any such s is likewise

called feasible.

The total social welfare of a feasible action vector s is

Uσ(s) =
∑
i∈V

fi(s)

We assume that there is a unique action vector s∗∗(σ) that is socially efficient. That is, the

maximum of the social welfare Uσ(s) is uniquely achieved at s∗∗(σ),

s∗∗(σ) = argmax
s∈C

Uσ(s).

The uniqueness of the maximizer is a generic property of the utility functions (fi)i∈V that

are non-degenerate.19

We consider a setting in which each pair of directly connected nodes bargain over their

actions and the payment between them. For each such pair (i, j) ∈ E, the associated outside

option value of i is some given parameter uij. We later endogenize these outside option

values. For condensed notation, we let u =
(
uij
)

(i,j)∈E denote the collection of outside

options.

A network bilateral bargaining problem (with exogenous outside options) is defined as

σ = (G,S,C, f, u),

19A utility function fi is degenerate if the dependence of fi on at least one of its arguments is superficial.
Letting the set of collections f of non-degenerate utility functions be endowed with Lebesgue measure, then
for almost every f , the social welfare

∑
i∈V fi(s) admits a unique maximizer.

111



with the property that C is feasible and u satisfies a condition for outside option values, to

be provided. An outcome (s, y) of σ consists of some feasible action vector s ∈ C and some

payments y ∈ RE assigning to each edge (i, j) a payment yij from i to j, with yij = −yji.

The total utility for node i is

ui(s, y) = fi
(
si, sNi(G)

)
−

∑
j ∈Ni(G)

yij.

A solution mapping for network bargaining problems (with exogenous outside option values)

is some function F that maps such a problem to an associated outcome.

The solution outcome (s∗(σ), y∗(σ)) is anticipated to be socially efficient (s∗(σ) = s∗∗(σ)),

and the payment vector y∗ satisfies

ui(s
∗∗(σ), y∗(σ))− uij = uj(s

∗∗(σ), y∗(σ))− uji, ∀(i, j) ∈ E.

That is, nodes i and j has equitable gain from trade relative to their respective outside option

values. The equations above constitute a fully determined linear system in the payments(
y∗ij(σ)

)
(i,j)∈E. The payment vector y∗(σ) is thus uniquely determined by the linear system.

The outside option values (uij)(i,j)∈E are assumed to satisfy the following condition

ui(s
∗∗(σ), y∗(σ))− uij = uj(s

∗∗(σ), y∗(σ))− uji ≥ 0, ∀(i, j) ∈ E.

We assume this condition for every NBBP with exogenous outside option values. Once we

introduce endogenous outside options through an overlaying model structure, we will demon-

strate that this condition is automatically satisfied, without any additional assumption.

Such a network bargaining problem features |E| pairs of bilateral bargaining problems,

where |E| is the number of edges in the network. Given its decentralized nature, a network bi-

lateral bargaining problem (with exogenous outside option values) has the following intrinsic

characteristics regarding its information structure, which are implicit in its definition.

(i) Each node has complete information over the primitives (G,S,C, f, u) of the problem,

but observes only the actions of its direct counterparties. In this sense, the infor-
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mation structure of a network bilateral bargaining problem is similar to that of a

non-cooperative game with complete but imperfect information.

(ii) If node j is a direct counterparty to both nodes i and k, then j is able to inform k of

the action of i when j bargains with k. Likewise, j can provide information about the

action of k to node i when j bargains with i.

(iii) This possibility of communication is common knowledge.

Property (i) is a key aspect where a network bilateral bargaining game conceptually differs

from a cooperative game.20 In a cooperative game, groups of players (“coalitions”) may

enforce cooperative behavior. In this sense, a network bilateral bargaining game is, by

nature, not cooperative, as it lacks a direct mechanism by which coalitions may enforce

coordinated behavior on the members of the coalition. On the other hand, properties (ii),

(iii) provide a possibility for coordination among different bargaining pairs. Whether this

possibility comes to fruition, however, depends on the incentives of internal nodes to make

these communications truthfully.

We propose a solution concept for of network bilateral bargaining problems (with exoge-

nous outside option vallues) that respects these characteristics. In particular, our solution

concept uses the possibility of communication as a coordination device. We will show that

internal nodes indeed have incentive to make these communications truthfully in the setting

of our solution concept.

C.2 Axioms

We define a set of axioms for network bargaining game solutions. We show that there exists

a unique solution mapping F ∗ satisfying these axioms, and F ∗(σ) is socially efficient for each

problem σ.

Axiom I: Consistency with Nash Bargaining.
20Many classic cooperative games are studied by, for examples, Shapley (1953) and Myerson (1977a,b,c).
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We say that F is consistent with Nash Bargaining if for any two-node network bilateral

bargaining problem σ = (G,S,C, f, u) (with exogenous outside options), the outcome F (σ) =

(s(σ), y(σ)) is that implied by the Nash Bargaining Solution. That is,

s(σ) = argmax
s∈C

{f1(s) + f2(s)}

y∗ij(σ) =
1

2

(
[fi(s(σ))− ui]− [fj(s(σ))− uj]

)
.

We shall treat consistency with Nash Bargaining as an axiom, although it can be based on

more primitive underlying axioms, such as the the original four axioms of Nash (1950), or

the axioms of fairness and Pareto optimality of Myerson (1977b).

Axiom II: Multilateral Stability

Our next axiom, Multilateral Stability, provides a notion of stability of solutions. The

spirit of the axiom, to be given a precise definition, is that if the bargaining outcomes for some

subset of edges are “frozen” at those prescribed by a multilaterally stable solution mapping

F , then applying the solution mapping F to the NBBP induced on the residual network

will not change the bargaining outcomes on the residual network. One may also interpret

multilateral stability as an axiom of self-consistency, in that a solution mapping F must be

consistent with its own prediction when applied to a problem induced on a subnetwork.

Formally, for a solution mapping F , a given network bilateral bargaining problem σ =

(G,S,C, f, u) with exogenous outside options, and a subset E ′ ⊆ E of edges, we let σsub(F, σ, E ′)

be the network bilateral bargaining problem induced by solution mapping F on the subnet-

work with edge set E ′. Letting F (σ) = (s(σ), y(σ)), then the primitives of σsub(F, σ, E ′) are
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given by

G′ = (V,E ′), u′ij = uij,

S ′i = {si(σ)} if (i, j) ∈ E\E ′ for some j ∈ V, S ′i = Si otherwise,

Cij =
{

(si, sj) ∈ S ′i × S ′j : (si, sj) ∈ Cij
}
,

f ′i : S ′i ×
∏

(i,j)∈E′
S ′j 3 s 7→ fi(s)−

∑
(i,j)∈E\E′

yij(σ) ∈ R.

We say that a solution mapping F satisfies multilateral stability if, for any given network

bilateral bargaining problem σ (with exogenous outside option values) and any given subset

E ′ ⊆ E of edges, when letting σ′ denote the subproblem σsub(F, σ, E ′), we have

F (σ′) = F (σ)G′ , (101)

where F (σ)G′ denotes the restriction of the outcome F (σ) to the subnetwork G′. When

applied to the special case E ′ = ∅, (101) places no restriction on the solution mapping F .

Axiom III: Independence of Irrelevant Actions

We first introduce the notion of a reduced network bilateral bargaining problem.

Definition 5. If σ = (G,S,C, f, u) and σ′ = (G,S ′, C ′, f ′, u) are two network bilateral

bargaining problems (with exogenous outside options) with the same underlying graph G

and the same outside option values u. We say that σ′ is a reduced network bilateral bargaining

problem of σ if S ′ ⊆ S, C ′ ⊆ C and f ′ is the restriction of f to S ′.21

Our third axiom is an adaptation to this network setting of Nash’s Independence of

Irrelevant Alternatives. We say that F satisfies Independence of Irrelevant Actions if it

respects the following property. We suppose that σ′ = (G,S ′, C ′, f ′, u) is a reduced network

21That is, the utility function f ′i is the restriction of fi to the set S′i × Ŝ′i, for all i ∈ V .
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bilateral bargaining problem of σ = (G,S,C, f, u). Letting F (σ) = (s(σ), y(σ)), if s(σ) is

in C ′ (that is, if the actions associated with the outcome F (σ) are feasible for the reduced

problem σ′), then F (σ′) = F (σ).

The idea of the axiom is as follows. Suppose that the agents in a given network find a

solution (s(σ), y(σ)) to their network bilateral bargaining problem. Then, for some reason,

they realize that some of their feasible actions are no longer valid choices, although s(σ)

itself remains feasible. Under Independence of Irrelevant Alternatives, taking away some

actions that they would not have chosen anyway has no effect on their solution outcome:

they continue to choose (s(σ), y(σ)).

The axiom of Independence of Irrelevant Actions is compelling only in the setting of

exogenous outside options. With endogenous outside options, the removal of some “non-

equilibrium” actions may influence the outside options. We will address this issue by an

overlaying model structure once we introduce endogenous outside options.

Axiom IV: Bilateral Optimality

For the axiom of Bilateral Optimality, we only consider networks that are connected.22

We will see that this restriction provides the weakest form of the axiom, yet without losing

any strength. The first three axioms have not made use of the possibility of communication

between pairs of connected nodes. The last axiom, Bilateral Optimality, relies critically on

that (i) information is able to propagate in the network through a series of local communica-

tion between pairs of connected nodes, and that (ii) network players has the right incentive

to make these communication truthfully. In other words, Bilateral Optimality may not be

applied to any network bilateral bargaining problems. We first motivate the conditions under

which Bilateral Optimality is applicable, then provide a formal definition of the axiom.

Information propagation in a network bilateral bargaining problem.
22A network G is connected if any given pair of nodes are path-connected.
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We always proceed under the premise that the actions of a pair of connected nodes are

directly observable to each other. We now consider how information about actions can be

propagated more widely in a network through only a series of local communication between

pairs of directly connected nodes. We will define a notion of information transfer along a

path in a graph G, which is defined as an ordered list (i1, i2, . . . , im) of distinct nodes with

the property that ih is directly connected to ih+1 for all h < m. Two nodes are said to be

path-connected if they are elements of the same path.

Given a network bargaining problem σ = (G,S,C, f, u), we fix some pair (a, b) of directly

connected nodes, along with a compatible pair (sa, sb) of respective actions for these two

nodes. We call α = (a, sa, b, sb) a “message.” Our objective is to consider the ability to

transfer such a message from node to node along a path in the graph G. Freezing the actions

sa and sb for a and b, and leaving the problem otherwise minimally affected, a restricted

network bargaining problem σ(α) = [G,Sα, Cα, f, u] is induced by α = (a, sa, b, sb) in the

obvious way.23

Definition 6. Given a solution mapping F , a network bilateral bargaining problem σ with a

connected graph and a message of the form α = (a, sa, b, sb), letting F (σ(α)) = (s(α), y(α)),

we say that a path (i, j, k) can transfer the message α if

(sk(αij), ykj(αij)) = (sk(α), ykj(α)), (102)

where αij = (i, si(α), j, sj(α)).

In order to motivate this notion of information transfer, we let the actions of nodes a and

b be (sa, sb) and α = (a, sa, b, sb). We suppose that the information contained in the message

α is available to nodes i and j, and that nodes i and j choose actions (si(α), sj(α)) based

on the message α. If Node k were to observe α and adhere to the solution mapping F , then

the action of k and her payment to j would be given by (sj(α), ykj(α)). However, Node k

cannot directly observe α (unless k = a or b). Instead, node k directly observes the action
23That is, the action set Sα is constructed from S by replacing Sa with {sa} and Sb with {sb}, the pairwise

compatibility correspondences and the utility functions are the restrictions of C and f to the new action set
Sα. The network and outside option values of σ(α) remain the same as those of σ.
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of j and “listens” to her report regarding the action of i . If j truthfully reports the action

si(α) of i to k , then the action of k and her payment to j would be (sk(αij), ykj(αij)). If

(102) holds, node k thus indirectly learns any payoff relevant information about α. In this

sense, node j can “virtually” transfer the information about α to k.

s1 s2 s̃3 s̃4

Figure 7 – A 4-node path illustration of information transfer

To give a concrete example, we consider the 4-node path illustrated in Figure 7. We

suppose that nodes 1 and 2 have chosen actions (s1, s2), while nodes 3 and 4 have yet to

choose their actions. Node 3 can observe s2 but not s1. Node 2, however, has the ability to

inform Node 3 of s1 when bargaining with Node 3. Hence, upon truthful report by Node 2,

the information about α = (1, s1, 2, s2) can be transferred to Node 3 via the path (1, 2, 3).

Likewise, Node 4 is able to observe the action of Node 3, and Node 3 can provide information

about s2 when bargaining with Node 4. Now, we suppose that Node 3 has incentive to make

truthful communication to 4 , and to choose action s3(α) based on the message α. Then

Node 4 observes the action s3(α) of Node 3 and learns the action s2 of Node 2. From the

perspective of Node 4, having these information is equivalent to knowing α if equation (102)

holds for i = 2, j = 3 and k = 4. In this way, Node 4 would effectively learn s1. In other

words, information about the actions of nodes 1 and 2 reaches Node 4 by “flowing” through

the network through only a series of local communication.

More generally, if a network bilateral bargaining problem admits information propaga-

tion via a solution mapping F (a property that we will next define), then payoff-relevant

information about the actions of any pair of direct counterparties can “flow” to the entire

network through only a series of local communication, provided that the utilities and solu-

tion mapping F supply the internal nodes of the network with the “right” incentives to carry

out truthful communication and act accordingly. We will discuss the strategic aspect of the

internal nodes shortly.
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Definition 7. A network bargaining problem σ with graph G admits information propaga-

tion via a bargaining solution mapping F if any path of the form (i, j, k) in G can transfer

any message of the form (a, sa, b, sb).

If σ admits information propagation via F , a simple induction implies that for any com-

patible actions (sa, sb) of directly connected nodes (a, b), and for any node k that is connected

by some path to a or b, the message α = (a, sa, b, sb) can be recursively transferred to Node

k through that path via the solution mapping F . For a path of length m ≥ 2, message α

experiences m−1 consecutive transfers by the internal nodes along the path before reaching

node k. Figure 7 corresponds to the case where m = 3.

The next proposition gives an equivalent characterization of this property regarding in-

formation propagation, which is based on a “global” property of the bargaining problem σ.

This global property of σ is easier to be verified than its local version (102). Given a message

α, we write F (σ(α)) = (s(α), y(α)).

Definition 8 (Stable Actions). Given a solution mapping F and an network bargaining

problem σ, a feasible action vector s is stable with respect to (F, σ) if, for any directly

connected pair (i, j) of nodes, when letting α = (i, si, j, sj), we have

s(α) = s.

That is, s is stable with respect to (F, σ) if, when applying the solution mapping F to

the version of σ obtained by freezing the actions of nodes i and j, we obtain the same action

vector s.

Proposition 19. Given a solution mapping F that satisfies the axiom of Multilateral Stabil-

ity, a network bargaining problem σ admits information propagation via F if and only if the

following holds: for any pair (i, j) of directly connected nodes, and for any pair of compatible

actions (si, sj), when letting α = (i, si, j, sj), the vector s(α) of actions is stable with respect

to (F, σ).

The type of “frozen behavior” that is considered here differs in two respects from that
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associated with the axiom of Multilateral Stability. Information propagation is applied in

each instance by freezing only the actions of a single pair of nodes, whereas for Multilat-

eral Stability, the actions and the payments of a general subgraph are frozen. Second, for

information propagation, the frozen behavior need not be that determined by the solution

mapping F , whereas for Multilateral Stability, the frozen behavior is prescribed by F . Al-

though the two notions of stability are mildly related, they serve rather different purposes

in characterizing a solution.

In the notion of information propagation, all nodes are assumed to (i) choose actions as

prescribed by the solution mapping F , and (ii) carry out truthful communication with its

direct counterpatires. Any strategic deviation by nodes is ruled out by assumption. Next,

we will give conditions on utility functions under which it is incentive compatible for nodes

to act as such.

Incentive Compatibility.

We fix a network bilateral bargaining problem σ = (G,S,C, f, u) and a solution mapping

F . Given a node i, since the graph G is connected and contains no circle, G can be viewed

as a tree with root node i. Suppose that node j is an immediate offspring of i in the tree.

We write Di(j) for the set of all descendants of j (including node j itself) in this tree.

Definition 9. A given solution mapping F is incentive compatible for a given network

bilateral bargaining problem σ = (G,S,C, f, u) (with exogenous outside option values) if the

following two conditions are satisfied:

(i) The problem σ admits information propagation via F .

(ii) For every nodes i and j′ ∈ Ni(G), every action si of node i, and every actions (sj)j∈Ni(G)

of the nearest neighbors of i that are compatible with si, letting αi,j = (i, si, j, sj),

U
(
si, (sk (αi,j))j∈Ni(G),k∈Di(j)

)
−

∑
j∈Ni(G)

∑
k∈Di(j)

uk (F (σ (αi,j))) ≤ ui (F (σ (αi,j′)))

(103)
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To motivate this notion of incentive compatibility, we fix a node i, and view the graph

G as a tree with root node i. Suppose the action of node i is si. We consider whether

node i has incentive to coordinate the actions (sj)j∈Ni(G) of its nearest neighbors according

to the bargaining solution mapping F . Given a nearest neighbor j′ ∈ Ni(G) of i, if Node i

truthfully communicate the action sj′ of j′ to its other nearest neighbors, then the net payoff

of Node i is ui (F (σ (αi,j′))). This is the benchmark payoff of node i that we will compare

against when evaluating alternative choices of i. If Node i misguides its direct counterparties

in a way that results in their actions being (sj)j∈Ni(G), then the net payoff of Node i is

ui
(
si, (sj)j∈Ni(G)

)
−

∑
j∈Ni(G)

yij(αi,j). (104)

In particular, this payoff only depends on the actions
(
si, (sj)j∈Ni(G)

)
of Node i and its direct

countarparties j ∈ Ni(G), and not on the bargaining outcomes further down the tree. This

plays a key role in simplifying the calculation of the payoff of node i.

Suppose that every node j ∈ Ni(G) truthfully communicates the action si of Node i to

its immediate offsprings, who then carry out truthful communication with their immediate

offsprings, etcetera, then the message (i, si, j, sj) would be transferred to all descendants of

node j. The utility of some descendant node k ∈ Di(j) is thus uk (F (σ (αi,j))) , and the total

utility of all nodes in the network is

U
(
si, (sk (αi,j))j∈Ni(G),k∈Di(j)

)
.

Thus, the net payoff of node i is given by the left hand side of (103). The two payoffs of

node i, given by (104) and the left hand side of (103) respectively, must be equal. If this

payoff is less than the benchmark payoff ui (F (σ (αi,j′))) (that is, if inequality (103) holds),

then node i has incentive to truthfully communicate the action sj′ of j′ to its other direct

counterparties.

Roughly speaking, if a solution mapping F is incentive compatible for a network bilateral

bargaining problem, then every node, given its information, has the incentive to carry out
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truthful communication and to choose actions as prescirbed by F . Incentive compatibility

implies that if a pair (i, j) of directly connected nodes is committed to some respective

actions (si, sj), then the behavior of the entire network would be given by F (σ(si, sj)). This

is true even when (si, sj) differ from those prescribed by the solution mapping F . By way of

comparison, when thinking of F as an “equilibrium” solution concept, Multilateral Stability

is concerned with behavior “in equilibrium,” whereas Incentive Compatibility can apply to

“out-of-equilibrium” behavior.

The next proposition gives a sufficient condition for incentive compatibility, which is

easier to be verified than the original definition.

Proposition 20. A solution mapping F is incentive compatible for a network bilateral bar-

gaining problem σ = (G,S,C, f, u) (with exogenous outside option values) if

(i) the problem σ admits information propagation via F , and

(ii) for any feasible action vector s ∈ C, associating a message αk = (ik, sik , jk, sjk) (for

some (ik, jk) ∈ E) to every node k, we have

∑
k∈V

[uk(F (σ(αk)))− fi(s)] ≥ 0.

Bilateral Optimality.

Loosely speaking, a solution mapping F satisfies Bilateral Optimality if, whenever two

directly connected nodes assume that other nodes will react to their chosen actions as spec-

ified by F , it is optimal for these two nodes to themselves choose outcomes implied by

F . More precisely, solution mapping F satisfies Bilateral Optimality if, for any network

bilateral bargaining problem σ = (G,S,C, f, u) (with exogenous outside option values) for

which F is incentive compatible, and for any directly connected nodes i and j, letting
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F (σ) = (s(σ), y(σ)), the actions (si(σ), sj(σ)) solve

max
(si,sj)∈Cij

{
fi

(
si, sj, (sk(i, si, j, sj))k∈Ni(G)\{j}

)
−

∑
k∈Ni(G)\{j}

yik(i, si, j, sj)

+ fj

(
sj, si, (sk(i, si, j, sj))k∈Nj(G)\{i}

)
−

∑
k∈Nj(G)\{i}

yjk(i, si, j, sj)

}
.

That is, the actions (si(σ), sj(σ)) maximize the total utility of nodes i and j associated

with the common conjecture that the remaining network Gsub = (V,E\{(i, j)}) will achieve

its own solution outcome F (σ(i, j, si, sj)), given the actions (si, sj) agreed by nodes i and j.

The Axiomatic Solution

Theorem 4. There is a unique solution mapping F ∗ satisfying Axioms I-IV. For each NBBP

σ = (G,S,C, f, u), the solution outcome F ∗(σ) = (s∗(σ), y∗(σ)) is socially efficient (that is,

s∗(σ) = s∗∗(σ)), and the payment vector y∗(σ) solves the system of linear equations

ui(s
∗∗(σ), y∗(σ))− uij = uj(s

∗∗(σ), y∗(σ))− uji, (i, j) ∈ E. (105)

The system (105) of payment equations states that the solution outcome F ∗(σ) provides

for an equal sharing of the surplus between each pair of directly connected nodes, relative

to their respective outside options.

C.3 Endogenous Outside Option Values

The assumption of exogenous outside option values u is a useful modeling technique, in

that it allows us to establish the four natural axioms that uniquely determine the solution

mapping F ∗. Without this assumption, Independence of Irrelevant Actions is no longer an

compelling axiom, since the removal of some “non-equilibrium” actions may influence the

“threat point” of various contracting pairs, and thus their bargaining outcomes.
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In this section, we consider a more natural model of network bilateral bargaining prob-

lems, in which the outside option values are endogenously determined by the set of available

actions of each node in the event that the node fails to reach an agreement with some of

its direct counterparties. A network bilateral bargaining problem with endogenous outside

option values is defined as

γ = (G,S,C, f, S) ,

where G,S,C and f are the same model components as for a network bilateral bargaining

problem with exogenous outside option values, and S consists of subsets Si(Ni) of Si, for

each node i and each subset Ni of nearest neighbors of i. The set Si(Ni) consists of actions

that are available to i if i fails to reach an agreement with all its nearest neighbors in the

set Ni. If disagreements are reached between node i and all its direct counterpatires (that

is, if Ni = Ni(G)), then by convention, the S0
i (Ni) is a singleton. Naturally, no payment is

made between a pair of disagreeing nodes. When applying this setting to the special case of

a two-node network, a unique “conflict outcome” is thus implemented if the two nodes fail

to reach an agreement, as in Nash (1950).

All disagreement events are assumed to be observed by the entire network, and thus

become common knowledge prior to any agreement is made. This assumption is identical

to the possibility of renegotiation in the bargaining protocol of Stole and Zwiebel (1996).

In contrast, the actions and payment negotiated by a given pair of direct counterparties are

not observable to other nodes in the network, an assumption that remains the same as for

a network bilateral problem with exogenous outside option values. In other words, whether

or not a given pair of nodes reaches an agreement is common knowledge, the detailed terms

of the agreed-upon contract (if there is one) is nevertheless not observable to other nodes.

An outcome, in the case of endogenous outside option values, remains the same as that

for the case of exogenous outside option values. That is, an outcome (s, y) specifies a feasible

action vector and a payment for each edge. A solution mapping is some function Φ that maps

an network bilateral bargaining problem with endogenous outside options to an outcome.

Given a network bilateral bargaining problem γ = ((V,E), S, C, f, S) with endogenous
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outside option values, our approach is to transform γ into an NBBP with exogenous outside

options, and then deduce the solution outcome using the unique solution mapping F ∗ that

satisfies the four axioms. Given a pair (i, j) ∈ E of directly connected nodes. In the event

that the pair fails to reach an agreement, we obtain a network bargaining problem γij (with

endogenous outside option values) that is induced from γ in the obvious way.24 In particular,

there are |E| − 1 edges in the network of γij, as the edge (i, j) is removed. When nodes i

and j carry out bilateral bargaining, their outside option values
(
uij, uji

)
are given by their

respective payoffs in the event of a disagreement between the pair. Therefore,

uij = ui (Φ (γij)) , uji = uj (Φ (γij)) . (106)

We let s∗∗(γ) be the socially efficient action vector for γ, and y∗(u) be the unique payment

vector that solves the linear system

ui(s
∗∗(γ), y∗(u))− uij = uj(s

∗∗(γ), y∗(u))− uji, ∀(i, j) ∈ E.

If the outside option values u, derived from equation (106), satisfy

ui(s
∗∗(γ), y∗(u))− uij = uj(s

∗∗(γ), y∗(u))− uji ≥ 0, ∀(i, j) ∈ E, (107)

we say that u satisfies the condition for outside option values. If this is the case, then

σ(γ) = (G,S,C, f, u) is a well defined NBBP (with exogenous outside option values), and

the problem γ, which has endogenous outside option values, can be equivalent transformed

to σ(γ). Hence, the solution outcome for γ must be given by

Φ(γ) = F ∗(σ(γ)).

The next theorem establishes results on existence, uniqueness and efficiency of the solution
24That is, the network of γij is given by G′ = (V,E\{(i, j)}), the action set S′ is constructed from S by

replacing Si with Si({j}) and Sj with Sj({i}), the pairwise compatibility correspondences and the utility
functions are the respective restrictions of C and f to the new action set S′, and the disagreement action
sets are constructed from S by replacing Si(Ni) with Si(Ni ∪ {j}) and Sj(Nj) with Sj(Nj ∪ {i}), for every
subsets Ni ⊆ Ni(G′) and Nj ⊆ Nj(G′).
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to network bilateral bargaining problems with endogenous outside option values.

Theorem 5. (i) There is a unique solution mapping Φ∗ such that, for every network bilateral

bargaining problem γ = [(V,E), S, C, f, S] (with endogenous outside option values), letting

u∗ij(γ) = ui (Φ
∗ (γij)) , u∗ji(γ) = uj (Φ∗ (γij)) . (108)

for every pair (i, j) ∈ E, and

σ(γ) = (G,S,C, f, u∗),

if u∗(γ) satisfies the condition for outside option values, then

Φ∗(γ) = F ∗(σ(γ)). (109)

(ii) For any given network bilateral bargaining problem γ (with endogenous outside option

values), the condition for outside option values holds for u∗(γ) derived from equation (108).

(iii) For every network bilateral bargaining problem γ with endogenous outside option values,

we have Φ∗(γ) = F ∗(σ(γ)). In particular, Φ∗(γ) is socially efficient.

The proof of Theorem 5, given in Appendix D.6, relies on a useful intermediate result

regarding how the hold-up power of various nodes differentiates in a network. We next define

this hold-up power and establish this intermediate result.

We fix a network bilateral bargaining problem γ = (G,S,C, f, S). Again without loss

of generality, we assume that the underlying graph G = (V,E) is connected. Given a

pair (i, j) ∈ E of direct counterparties, if one removes the edge (i, j), the graph G′ =

(V,E\{(i, j)}) can be viewed as two disjoint trees with roots i and j respectively. Any given

node k ∈ V either belongs to the tree rooted at i or at j. If k is in the tree rooted at i, and

the length of the shortest path connecting from i to k is d, we say that k is a d-to-i node.

A d-to-j node is similarly defined. We now suppose that k is a 1-to-i node (that is, k is a

direct counterparty of i and k 6= j), and consider the bilateral bargaining problem between
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i and k. The gap between the outside option values of the two nodes is

u∗ki(γ)− u∗ik(γ). (110)

In the event that the pair (i, j) fails to reach an agreement, node k is able to hold up node

i, and this gap becomes

u∗ki(γij)− u∗ik(γij). (111)

The second outside option value gap (111) is wider than the first one (110), as

(111)− (110) = u∗ki(γij)− u∗ik(γij)− [u∗ki(γ)− u∗ik(γ)]

= uk(Φ
∗((γik)ij))− ui(Φ∗((γik)ij))− [uk(Φ

∗(γik))− ui(Φ∗(γik))]

= ui(Φ
∗(γik))− ui(Φ∗((γik)ij)) ≥ 0,

(112)

where (γik)ij is the network bilateral bargaining problem (with endogenous outside option

values) that is induced from γ after both pairs (i, j) and (i, k) fail to reach an agreement. The

last inequality follows from the induction hypothesis, since the underlying graph of γik has

|E|−1 edges. The last equality follows from the fact that node k receives the same net payoff

in γik or (γik)ij. This is because node k is not connected to i or j in the network bilateral

bargaining problem γik, the disagreement event between (i, j) is thus payoff irrelevant for

node k.

This difference (112) between the two outside option value gaps is the hold-power of k

against i in the event of a disagreement between (i, j). The higher this difference is, the

more the disagreement event hurts the bargaining position of i relative to k in her bilateral

bargaining against k, and thus to a greater extent node k is able to hold up node i. For

simplicity of terminology, we sometimes simply refer to this difference as the hold-up power

of k against i, without specifying the disagreeing pair (i, j).

If k is a d-to-i node, where the distance d is strictly larger than 1, letting (`0, . . . , `d) be
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the unique path25 connecting node k to i, we define the hold-up power of k against i as

d−1∑
a=0

( [
u∗`a `a+1

(γij)− u∗`a+1 `a
(γij)

]
−
[
u∗`a `a+1

(γ)− u∗`a+1 `a
(γ)
] )

That is, the hold-up power of k against i is the the sum of the differences between the

pairwise outside option value gaps along the path (`0, . . . , `d) connecting node k to i.

Proposition 21. Given a pair of direct counterparties (i, j) and a d-to-i node k for some

integer d ≥ 1, The hold-up power of k against i (in the event of a disagreement between

(i, j)) is non-negative.

D Proofs for Appendix C

D.1 Determining the Payment Vector

The following proposition determines the payments using Multilateral Stability.

Proposition 22. If a solution mapping F satisfies Multilateral Stability, then for each net-

work bilateral bargaining problem σ = (G,S,C, f, u), the solution outcome F (σ) satisfies

ui(F (σ))− uij = uj(F (σ))− uji, ∀ (i, j) ∈ E. (113)

Proof. For any given pair (i, j) of connected nodes, we consider the network bilateral bargain-

ing problem σ′ ≡ σsub(F, σ, {(i, j)}) induced by F on the subnetwork with edge set {(i, j)}.

Then σ′ is simply a two-person bargaining problem with complete information between i

and j, whose outside options are uij and uji respectively. It follows from Axiom I that F (σ′)

is given by the Nash Bargaining Solution. Since i and j have transferable utility, the two

nodes must have equal gain from trading. Thus, equation (113) must hold.

We let Vi be the subset of nodes that are path-connected to i, and F (σ) = (s(σ), y(σ)).
25In particular, `0 = k, `d = i.

128



Proposition 23. The system (113) of linear equations, together with

∑
j∈Vi

uj(F (σ)) =
∑
j∈Vi

fj(s(σ)), (114)

uniquely determines the net payoff ui(F (σ)) of each node i,

ui(F (σ)) = ci(u) +
1

|Vi|
∑
j∈Vi

fj(s(σ)),

where the constant ci(u) depends only on the outside options {uj : j ∈ Vi}, and
∑

j∈Vi cj(u) =

0. The payment vector y(σ) is uniquely determined by (113).

Proof. We fix a node i ∈ V . For every node j that is path-connected with i, letting (`0, . . . , `d)

be unique shortest path connecting from j to i, we have

uj(F (σ)) = ui(F (σ)) +
d−1∑
a=0

(
u `a `a+1

− u `a+1 `a

)
.

That is, we can write uj(F (σ)) as the sum of ui(F (σ)) and a constant that only depends on

the outside option values u. This is true for every node j ∈ Vi. Combining this observation

with equation (114), we can thus uniquely solve for ui(F (σ)) as the sum of ui(F (σ)) and a

constant that only depends on u.

Since the underlying graph G contains no circles, it is a disjoint union of trees. One

can direct each such tree, by saying that J(i) is the unique parent of node i (and i is an

immediately offspring of J(i)) if i and J(i) are directly connected and if the path from

J(i) to the unique root node is shorter than the path from i to the root node. One can

inductively compute the payments, beginning with those from the leave nodes (the nodes

with no offspring nodes). Each leave node i pays to her parent J(i) the amount

yi,J(i)(σ) = fi(s(σ))− ui(F (σ)).
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If node i is neither a leave node nor the root node, her payment to her parent node is then

yi,J(i) = fi(s(σ))− ui(F (σ)) +
∑
j∈K(i)

yji(σ),

where K(i) is the set of immediate offspring of node i, and {yji(σ) : j ∈ K(i)} have been

determined by induction. The induction ends with the root node, which has no parent.

D.2 Proof of Proposition 19

We fix a network bilateral bargaining problem σ (with exogenous outside option values) that

admits information propagation via a given solution mapping F , and fix a pair (a, b) of direct

counterparties, along with some pair of compatible actions (sa, sb). We let α = (a, sa, b, sb).

For any path of the form (i, j, k), we have

Fjk (σ (i, si(α), j, sj(α))) = (sk(α), ykj(α)).

In particular, letting αij = (i, si(α), j, sj(α)), we have

sk(αij) = sk(α).

This is true for every k that is a 1-to-j node. We suppose that the equality above holds

for every k that is a d′-to-j node, for every integer d′ < d with some integer d ≥ 2. Given

a d-to-j node k, letting (`0, . . . , `d) be the unique shortest path connecting from j to k, we

have

sk(α `d−2 `d−1
) = sk(α). (115)

Since `d−2 and `d−1 are (d − 2)-to-j and (d − 1)-to-j nodes respectively, the induction hy-

pothesis implies

s `d−2
(α) = s `d−2

(αij), s `d−1
(α) = s `d−1

(αij).

Substituting the two equalities above into (115), we obtain

sk(`d−2, s `d−2
(αij), `d−1, s `d−1

(αij)) = sk(α).
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On the other hand, since the path (`d−2, `d−1, k) can transfer the message αij, it follows that

sk(`d−2, s `d−2
(αij), `d−1, s `d−1

(αij)) = sk(αij).

Hence, sk(α) = sk(αij) for every node k that is a (d+ 1)-to-j node. It follows from induction

and symmetry that this holds for every node k in the graph G. Since (i, j) can be any pair

of direct counterparites, the vector s(α) of actions is thus stable with respect to (F, σ).

We now establish the converse. We fix a solution mapping F that satisfies Multilat-

eral Stability and a network bilateral bargaining problem σ (with exogenous outside option

values) such that the stability property stated in Proposition 19 holds. We also fix a pair

(a, b) of direct counterparties, along with some pair of compatible actions (sa, sb). We let

α = (a, sa, b, sb). For any path of the form (i, j, k), we let αij = (i, si(α), j, sj(α)). Since the

action vector s(α) is stable with respect to (F, σ), it follows that s(αij) = s(α). Since F

satisfies Multilateral Stability, it follows from Proposition 23 that y(αij) = yα. Hence, the

path (i, j, k) can transfer the message α.

D.3 Proof of Proposition 20

Proposition 20 follows from the observation that condition (ii) in Definition 9 is a special

case of condition (ii) in Proposition 20.

D.4 Proof of Theorem 4

We first prove uniqueness, then existence.

Uniqueness: We first set up the following definition.

Definition 10 (Quasi-Maximizing Actions). For an NBBP σ = ((V,E), S, C, f, u), a feasible

action vector s∗ ∈ C quasi-maximizes social welfare for σ if and only if, for any pair (i, j) of

directly connected nodes, s∗ solves

max
s∈C(i,j,s∗i ,s∗j)

Uσ(s),

131



where

C
(
i, j, s∗i , s

∗
j

)
= {s ∈ C : si = s∗i , sj = s∗j).

We let S∗(σ) denote the set of action vectors that quasi-maximize the social welfare for σ.

Lemma 14. Suppose σ = ((V,E), S, C, f, u) and σ′ = ((V,E), S ′, C ′, f ′, u) are such that σ′

is a reduced NBBP of σ. If s∗ ∈ S∗(σ) ∩ C ′, then s∗ ∈ S∗(σ′).

Proof. Fix some (i, j) ∈ E. Because C ′ ⊆ C and s∗ ∈ C ′, we know that s∗ ∈ C ′
(
i, j, s∗i , s

∗
j

)
.

Thus s∗ solves

max
s∈C′(i,j,s∗i ,s∗j)

Uσ(s).

As Uσ′ and Uσ agree on S ′, s∗ thus solves

max
s∈C′(i,j,s∗i ,s∗j)

Uσ′(s).

Because (i, j) was arbitrary, it follows that s∗ ∈ S∗(σ′).

For a positive integer k, we let Σk denote the collection of network bilateral bargaining

problems with exogenous outside option values, whose graph (V,E) has |E| = k edges. Sup-

pose F ∗ is a solution satisfying Axioms I-IV. Letting F ∗(σ) = (s∗(σ), y∗(σ))), the uniqueness

part is summarized as the following claim, which we will establish by an induction over the

number |E| of edges.

Claim 2. For every NBBP σ = [(V,E), S, C, f, u] with exogenous option values, s∗(σ) =

s∗∗(σ) and y∗(σ) solves (105).

When |E| = 1, we are in the situation of a two-person bargaining problem. Suppose

σ ∈ Σ1 is such a problem. Then Axiom I implies s∗(σ) = s∗∗(σ) and the equation (105) of

equitable split of trading gain.

Suppose that Claim 2 holds for |E| = p − 1. We show that it holds for |E| = p. We fix

an arbitrary NBBP σ = [(V,E), S, C, f, u] in Σp.
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Step 1: The action vector s∗(σ) quasi-maximizes the social welfare for σ.

For any fixed pair (i, j) of directly connected nodes. We consider the NBBP σ′ ≡

σsub(F ∗, σ, E ′) induced on the edge set E ′ = E\{i, j}. Letting G′ = (V,E ′), since F ∗

satisfies Multilateral Stability, we have F ∗ (σ′) = F ∗(σ)G′ , which implies that

s∗(σ′) = s∗(σ).

Since the edge set of the subproblem σ′ is E ′, we have σ′ ∈ Σp−1. By the induction hypothesis,

the action vector s∗(σ′) of the solution outcome F ∗ (σ′) is given by

s∗(σ′) = s∗∗(σ′) = argmax
s∈C(i,j,s∗i (σ),s∗j (σ))

Uσ′(s).

Since s∗(σ) = s∗ (σ′), and Uσ(s) = Uσ′(s) for every s ∈ C
(
i, j, s∗i (σ), s∗j(σ)

)
, we have

s∗(σ) = argmax
s∈C(i,j,s∗i (σ),s∗j (σ))

Uσ(s).

This is true for all (i, j) ∈ E, therefore, s∗(σ) quasi-maximizes social welfare for σ. That is,

s∗(σ) ∈ S∗(σ).

We summarize the result of Step 1 with the following lemma, which we will later use in

other parts of the proof.

Lemma 15. Assuming the induction hypothesis that Claim 2 holds for |E| = p− 1, Multi-

lateral Stability implies that for any NBBP σ ∈ Σp, s∗(σ) ∈ S∗(σ).

Step 2: Application of Independence of Irrelevant Actions.

We let S∗i (σ) be the projection of the quasi-maximizing action set S∗(σ) onto Si, and

S∗ij(σ) denote the projection of S∗(σ) onto Si × Sj. We let S∗rec(σ) =
∏

i∈V S
∗
i (σ) be the

rectangle hull of S∗(σ), and f ∗(σ) = f|S∗rec(σ) denote the restriction of f to S∗rec(σ). For any

(i, j) ∈ E, we let C∗ij(σ) = S∗ij(σ), and

C∗(σ) =
{
s ∈ S : (si, sj) ∈ C∗ij(σ), ∀(i, j) ∈ E

}
.
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Therefore, S∗(σ) ⊆ C∗(σ), ensuring that C∗(σ) is feasible. We define the NBBP

σ∗ =
[
G,S∗rec(σ), C∗(σ), f ∗(σ), u

]
.

Comparing σ∗ to the original NBBP σ, we have S∗rec(σ) ⊆ S and C∗(σ) ⊆ C. Thus, σ∗ is a

reduced NBBP of σ. Because s∗(σ) ∈ S∗(σ) and S∗(σ) ⊆ C∗(σ), we have

s∗(σ) ∈ C∗(σ).

Because F ∗ satisfies Independence of Irrelevant Actions, we have F ∗(σ) = F ∗(σ∗). Hence, it

suffices to characterize the solution outcome F ∗(σ∗) for the reduced NBBP σ∗.

Remark 6. Because S∗(σ) ⊆ C∗(σ) and the socially optimal actions s∗∗(σ) quasi-maximize

Uσ, we see that s∗∗(σ) ∈ C∗(σ). Thus,

s∗∗(σ∗) = argmax
s∈C∗(σ)

Uσ∗(s) = argmax
s∈C∗(σ)

Uσ(s) = s∗∗(σ).

Step 3: The solution F ∗ is incentive compatible for the NBBP σ∗.

First, we characterize the set of actions that are stable with respect to (F ∗, σ). A feasible

action vector s ∈ C is stable with respect to (F ∗, σ) if, for any directly connected pair (i, j)

of nodes, when letting α = (i, si, j, sj), we have s∗(α) = s, where s∗(α) denotes s∗(σ(α)). As

σ (α) ∈ Σp, Lemma 15 applied to the NBBP σ (α) implies that s∗ (α) quasi-maximizes social

welfare for σ (α). In particular, if we fix the actions of (i, j) to be (si, sj), the remaining

components of s∗ (α) jointly maximize the total social welfare Uσ(α) of σ (α). As Uσ(α) and

Uσ are equal on the set C(i, j, si, sj), we have

s∗ (α) = argmax
s̃∈C(i,j,si,sj)

Uσ (s̃) .

Therefore, a feasible action vector s is stable with respect to (F ∗, σ) if and only if we have,

for all (i, j) ∈ E,

s = argmax
s̃∈C(i,j,si,sj)

Uσ (s̃) ,
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which is equivalent to s ∈ S∗(σ).

We summarize the result of this first part as follows.

Lemma 16. Assuming the induction hypothesis that Claim 2 holds for |E| = p−1. For any

NBBP σ ∈ Σp, Multilateral Stability implies that an action vector s is stable with respect to

(F ∗, σ) if and only if s ∈ S∗(σ).

Second, we show that the solution F ∗ admits information propagation for the NBBP σ∗.

We fix a pair (i, j) ∈ E and some actions
(
s′i, s

′
j

)
∈ C∗ij(σ). Letting α′ =

(
i, s′i, j, s

′
j

)
, we need

to show that s∗ (σ∗ (α′)) is stable with respect to (F ∗, σ∗). As σ∗ ∈ Σp, Lemma 16 implies

that the stability of s∗ (σ∗ (α′)) with respect to (F ∗, σ∗) is equivalent to

s∗ (σ∗ (α′)) ∈ S∗(σ∗). (116)

As σ∗ (α′) ∈ Σp, Lemma 15 implies that s∗ (σ∗ (α′)) ∈ S∗ (σ∗ (α′)). In particular,

s∗ (σ∗ (α′)) = argmax
s∈C∗(i,j,s′i,s′j)

Uσ∗ (s) . (117)

Since
(
s′i, s

′
j

)
∈ C∗ij(σ), then by the definition of C∗ij(σ), there exists some action vector

s̄ ∈ S∗(σ) such that s̄i = s′i and s̄j = s′j. Thus, s̄ ∈ C∗
(
i, j, s′i, s

′
j

)
and

s̄ = argmax
s∈C(i,j,s′i,s′j)

Uσ (s) = argmax
s∈C∗(i,j,s′i,s′j)

Uσ (s) = argmax
s∈C∗(i,j,s′i,s′j)

Uσ∗ (s) . (118)

The last equality holds because Uσ∗ and Uσ are equal on C∗(σ). Comparing the two maxi-

mization problems in (117) and (118), we have s̄ = s∗ (σ∗ (α′)). Since σ∗ is a reduced NBBP

of σ, and s̄ ∈ S∗(σ) ⊆ C∗(σ), Lemma 14 implies that s̄ ∈ S∗(σ∗). Combining this fact with

s∗ (σ∗ (α′)) = s̄, we have s∗ (σ∗ (α′)) ∈ S∗(σ∗). This establishes (116). The solution F ∗

therefore admits information propagation for the NBBP σ∗.

Lastly, we will show that condition (ii) in Proposition 20 holds for (F ∗, σ∗) to complete

the proof that F ∗ is incentive compatible for σ∗.

We fix some s ∈ C∗(σ), and associate to every node k ∈ V a message αk = (ik, sik , jk, sjk)
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as in the statement of Proposition 20. Lemma 15 implies that s∗ (σ∗ (αk)) ∈ S∗ (σ∗ (αk)),

Thus,

Uσ∗ (s) ≤ max
s̃∈C∗(αk)

Uσ∗(s̃) = Uσ∗ (s∗ (σ∗ (αk))) . (119)

Summing up the inequalities (119) over k ∈ V , we obtain, by Proposition 23,

|V | Uσ∗ (s) ≤
∑
k∈V

[Uσ∗ (s∗ (σ∗ (αk))) + |V | ck(u)] = |V |
∑
k∈V

uk (F ∗ (σ∗ (αk))) .

Dividing both sides by |V | leads to the desired inequality:

∑
k∈V

[uk(F (σ∗(αk)))− fi(s)] ≥ 0.

Therefore, the solution F ∗ is incentive compatible for the NBBP σ∗.

Step 4: Apply Bilateral Optimality to (F ∗, σ∗) to determine the action vector s∗(σ∗).

As the solution F ∗ is incentive compatible for the NBBP σ∗, Bilateral Optimality implies

that that for any directly connected pair (i, j) ∈ E, the actions (s∗(σ∗)i, s
∗(σ∗)j) solve

max
(si,sj)∈C∗ij

{
ui (F

∗ (σ∗ (i, si, j, sj))) + uj (F ∗ (σ∗ (i, si, j, sj)))
}
. (120)

It follows from Proposition 22 that

ui (F
∗ (σ∗ (i, si, j, sj))) + uj (F ∗ (σ∗ (i, si, j, sj)))

=
2

|V |
Uσ∗ (s∗ (σ∗ (i, si, j, sj))) + ci(u) + cj(u)

= max
s̃∈C∗(i,j,si,sj)

2

|V |
Uσ∗(s̃) + ci(u) + cj(u).

Thus the maximization problem (120) is equivalent to maximize Uσ∗i (s) over s ∈ C∗, which

is solved by s = s∗∗(σ∗). Therefore, the maximum in (120) is achieved by
(
s∗∗i (σ∗), s∗∗j (σ∗)

)
.

As F ∗ satisfies Bilateral Optimality, we have

(
s∗i (σ

∗), s∗j(σ
∗)
)

=
(
s∗∗i (σ∗), s∗∗j (σ∗)

)
=
(
s∗∗i (σ), s∗∗j (σ)

)
. (121)
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The second equality above follows from Remark 6. Since equation (121) holds for every

pair (i, j) ∈ E, thus, s∗(σ∗) = s∗∗(σ). Since Independence of Irrelevant Actions implies that

s∗(σ) = s∗(σ∗) (this is shown in Step 2 ), we finally obtain

s∗(σ) = s∗∗(σ).

That is, the action vector s∗(σ) of F ∗(σ) is socially optimal for σ.

Step 5: Apply Multilateral Stability again to determine the payment vector y∗(σ).

It follows from Proposition 22 that the payment vector y∗(σ) satisfies

ui(s
∗∗(σ), y∗(σ))− uij = uj(s

∗∗(σ), y∗(σ))− uji, (i, j) ∈ E.

This establishes that Claim 2 holds for |E| = p.

By induction, we conclude that Claim 2 holds, completing the uniqueness proof.

Existence

We show that the solution F ∗ determined by F ∗(σ) = (s∗∗(σ), y∗(σ)), where the payment

vector solves (105), satisfies Axiom I-IV.

Axiom I: For any two-player NBBP σ = (G,S,C, f, u), the solution outcome F ∗(σ) =

(s∗∗(σ), y∗(σ)) is the same as that implied by the Nash Bargaining Solution. Therefore, F ∗

satisfies Axiom I.

Axiom II: For any NBBP [(V,E), S, C, f, u] and any subset E ′ ⊆ E of edges, we let

σ′ = σsub(F, σ, E ′) and G′ = (V,E ′). The action vector of the solution outcome F ∗ (σ′) is

given by s∗∗ (σ′), which is equal to s∗∗(σ) since s∗∗(σ) is a feasible action vector for σ′.

The system (113) of payment equations for σ′ says that under both outcomes F ∗ (σ′)

and F ∗(σ)G′ , each pair of nodes equally share the surplus relative to their respective outside

options. Thus, the payment vectors y∗ (σ′) and y∗(σ)G′ are the same. Therefore,

F ∗ (σ′) = F ∗(σ)G′ .
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That is, the solution F ∗ satisfies axiom of Multilateral Stability.

Axiom III: Given two network bilateral bargaining problems σ = (G,S,C, f, u) and σ′ =

(G,S ′, C ′, f ′, u) such that σ′ is a reduced NBBP of σ, if s∗∗(σ) ∈ C ′, then

s∗∗(σ′) = argmax
s∈C′

Uσ′(s) = argmax
s∈C′

Uσ(s) = s∗∗(σ).

The payment vectors y∗(σ) and y∗(σ′) are determined by the same system of payment equa-

tions (113). Therefore, F ∗(σ) = F ∗(σ′), establishing the axiom of Independence of Irrelevant

Actions.

Axiom IV: Given an NBBP σ = [(V,E), S, C, f, u] and a pair (i, j) ∈ E of directly con-

nected nodes, we consider the maximization problem

max
(si,sj)∈Cij

{
ui (F

∗ (σ (i, si, j, sj))) + uj (F ∗ (σ (i, si, j, sj)))
}

(122)

The same argument as in Step 4 of the uniquenesss proof implies that (122) is equivalent to

max
(si,sj)

max
s̃∈C(i,j,si,sj)

Uσ(s̃),

The maximization problem above is equivalent to

max
s∈C

Uσ(s).

which is solved by s = s∗∗(σ). Hence, (122) is solved by (si, sj) =
(
s∗∗i (σ), s∗∗j (σ)

)
. Thus,

the solution F ∗ satisfies the axiom of Bilateral Optimality.

D.5 Proof of Proposition 21

When d = 1, it follows from (112) that the hold-up power of k against i is non-negative.

For any d ≥ 2, letting (`0, . . . , `d) be the unique path connecting node k to i, we have,

for every integer a between 0 and d− 1,

u∗`a+1 `a
(γij) = u `a+1

(
Φ∗
(
(γ `a+1 `a)ij

))
= u `a+1

(
Φ∗
(
γ `a+1 `a

))
= u∗`a+1 `a

(γ).
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This is because node `a is not connected to i or j in the network bilateral bargaining problem

γ `a+1 `a , the disagreement event between (i, j) is thus payoff irrelevant for node `a. The hold-

up power of k against i can thus be simplified to be

d−1∑
a=0

[
u∗`a `a+1

(γij)− u∗`a `a+1
(γ)
]

This hold-up power being non-negative is equivalent to

u∗`1 k(γij)− u
∗
`1 k

(γ) ≤
d−1∑
a=1

[
u∗`a `a+1

(γij)− u∗`a `a+1
(γ)
]

(123)

That is, the relative hold-up power (against i) of `1 with respect to k is weakly less than the

hold-up power of `1 against i. This relative hold-up power of `1 with respect to k is equal to

u∗`1 k(γij)− u
∗
`1 k

(γ) = u `1

(
Φ∗
(

(γ`1 k)ij

))
− u `1 (Φ∗ (γ`1 k)) .

Since the network bilateral bargaining problem γ`1 k (with endogenous outside option values)

has |E| − 1 edges, the induction hypothesis implies that u∗(γ`1 k) satisfies the condition for

outside option values. Therefore, one has up(Φ∗(γ`1 k)) = up(F
∗(σ(γ`1 k))) for every node p.

In particular, for every pair (p, q) ∈ E\{`1 k},

up(Φ
∗(γ`1 k))− uq(Φ∗(γ`1 k)) = u∗p(γ`1 k)− u∗q(γ`1 k)

By adding up the equalities above along the path (`1, . . . , `d), we obtain

u `1(Φ
∗(γ`1 k))− ui(Φ∗(γ`1 k)) =

d−1∑
a=1

[
u∗`a `a+1

(γ`1 k)− u∗`a+1 `a
(γ`1 k)

]
Likewise, the induction hypothesis for (γ`1 k)ij implies

u `1

(
Φ∗
(

(γ`1 k)ij

))
− ui

(
Φ∗
(

(γ`1 k)ij

))
=

d−1∑
a=1

[
u∗`a `a+1

((γ`1 k)ij)− u∗`a+1 `a
((γ`1 k)ij)

]
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Subtracting the two equations above, we obtain

u `1

(
Φ∗
(

(γ`1 k)ij

))
− u `1 (Φ∗ (γ`1 k)) +

[
ui(Φ

∗(γ`1 k))− ui
(

Φ∗
(

(γ`1 k)ij

))]
=

d−1∑
a=1

( [
u∗`a `a+1

((γ`1 k)ij)− u∗`a+1 `a
((γ`1 k)ij)

]
−
[
u∗`a `a+1

(γ`1 k)− u∗`a+1 `a
(γ`1 k)

] )
=

d−1∑
a=1

[
u∗`a+1 `a

(γ`1 k)− u∗`a+1 `a
((γ`1 k)ij)

]
=

d−1∑
a=1

[
u∗`a+1 `a

(γ)− u∗`a+1 `a
(γij)

]
,

(124)

Since the network bilateral bargaining problem γ`1 k (with endogenous outside option values)

has |E| − 1 edges, the induction hypothesis implies that u∗(γ`1 k) satisfies the condition for

outside option values. In particular,

ui(Φ
∗(γ`1 k)) = ui(F

∗(σ(γ`1 k))) ≥ u∗ij(γ`1 k)) = ui

(
Φ∗
(

(γ`1 k)ij

))
Combing the inequality above with equation (124), we obtain the desired inequality (123).

D.6 Proof of Theorem 5

We first establish the uniqueness part of the theorem. Suppose that Φ∗ is a solution mapping

that satisfies the condition stated in (i) of Theorem 5. We determine the solution outcome

Φ∗(γ) inductively over the number of edges of the problem γ. If γ is a two-node bilateral

bargaining problem, then the outside option values of the two nodes are u∗1 = u1(s1, s2) and

u∗2 = u2(s1, s2), where (s1, s2) is the unique exogenously given conflict point of the two nodes.

It is clear that (u1, u2) satisfy the condition for outside option values. Thus, the solution

outcome Φ∗(γ) is simply given by the Nash Bargaining Solution F ∗(σ).

We suppose that for every network bilateral bargaining problem γ (with endogenous

outside option values) whose number of edges is less than or equal to |E| − 1, the solution

outcome Φ∗(γ) is uniquely determined, and u∗(γ) satisfies the condition for outside option

values. This is our induction hypothesis. We now consider a network bilateral bargaining
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problem γ = [(V,E), S, C, f, S] (with endogenous outside option values) whose number of

edges is equal to |E|. We will show that u∗(γ) satisfies the condition for outside option

values.

For any given node i ∈ V , we let

u∗i (γ) = ui(s
∗∗(γ))− y∗ij (u∗(γ)) ,

which is the candidate net payoff of node i in the network bilateral bargaining problem γ

(with endogenous outside option values), if u∗(γ) satisfies the condition for outside option

values. We then fix another arbitrary node k (not necessarily a direct counterparty of i),

letting (`0, . . . , `d) be a path connecting from k to i, we have

u∗k(γ)− u∗i (γ) =
d−1∑
a=0

[u∗`a `a+1
(γ)− u∗`a+1 `a

(γ)]. (125)

Now we fix a node j that is a direct counterparty of node i. Since the network bilateral bar-

gaining problem γij (with endogenous outside option values) has |E|−1 edges, the induction

hypothesis implies that for any given node k,

u∗k(γij)− u∗i (γij) =
d−1∑
a=0

[u∗`a `a+1
(γij)− u∗`a+1 `a

(γij)]. (126)

Subtracting equation (125) from equation (126), we obtain

[u∗k(γij)− u∗k(γ)]− [u∗i (γij)− u∗i (γ)]

=
d−1∑
a=0

([
u∗`a `a+1

(γij)− u∗`a+1 `a
(γij)

]
−
[
u∗`a `a+1

(γ)− u∗`a+1 `a
(γ)
])

The right hand side of the equation above is the hold-up power of node k against i (in the

event of a disagreement between (i, j)). Thus, it is non-negative by Proposition 21. If

u∗i (γij) > u∗i (γ),
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then it must be that

u∗k(γij) > u∗k(γ).

This is true for every node k ∈ V , which implies

∑
k∈V

u∗k(γij) >
∑
k∈V

u∗k(γ) = U(s∗∗(γ)).

This contradicts the optimality of the socially efficient action vector s∗∗(γ). Hence, we have

u∗i (γij) ≤ u∗i (γ),

for every pair (i, j) ∈ E, which is precisely the condition for outside option values.

The existence result immediately follows from the observation that the solution mapping

Φ∗ constructed inductively in the uniqueness proof satisfies the condition in Theorem 5.

E Axioms for Nash Bargaining Solutions

This appendix provides simple axioms for the Nash Bargaining Solution for network bilateral

bargaining problems (NBBPs) with completely connected graphs. For our main results, we

apply these axioms in the case of a network consisting of two connected nodes.

The feasible utility set of a NBBP σ = ((V,E), S, C, f, u) is

U(σ) = {(ui(s, y))i∈V : (s, y) ∈ Ω[G,S,C]} ∪ {u}.

The permutation σP = ((V P , EP ), SP , CP , fP , uP ) of σ is defined by some bijection P : V →
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V as:

V P = {P (1), . . . , P (|V |)}

EP = {(P (i), P (j) : (i, j) ∈ E}

SPP (i) = Si

CP
P (i) = Ci

fPP (i) = fi

uPP (i) = ui.

A solution F for NBBPs is said to be:

• Utility focussed if, for any NBBPs σ and σ′ with the same feasible utility sets, we have

u(F (σ)) = u(F (σ′)).

• Pareto optimal if, for each NBBP σ, the solution outcome F (σ) is Pareto Optimal for

σ.

• Symmetric if for any NBBP σ = ((V,E), S, C, f, u) and any permutation σP of σ by

P , we have

uP (i)(F (σP ) = ui(F (σ)), i ∈ V.

• Translation preserving if for any NNBPs σ and σ′ with

U(σ′) = U(σ) + {v},

for some v, we have u(F (σ′)) = u(F (σ)) + v.

The Nash Bargaining Solution FN for an NBBP σ = ((V,E), S, C, f, u) whose graph

(V,E) is completely connected is defined by FN(σ) = (s∗, y∗), where

s∗ = argmax
s∈C

∑
i∈V

fi(s) (127)

y∗ij =
1

2

(
[fi(s

∗)− ui]− [fj(s
∗)− uj]

)
, (i, j) ∈ E. (128)

143



Proposition 24. When restricted to NBBPs whose graphs are completely connected, a solu-

tion F is utility focussed, Pareto optimal, symmetric, and translation preserving if and only

if it is the Nash Bargaining Solution.

Proof. The Nash Bargaining Solution is, by simple inspection, utility focussed, Pareto opti-

mal, symmetric, and translation preserving.

Conversely, suppose a solution F is utility focussed, Pareto optimal, symmetric, and

translation preserving. Consider an NBBP σ = ((V,E), S, C, f, u) for which (V,E) is com-

pletely connected. By translation preservation, we can assume without loss of generality

that u = 0. By Pareto optimality and the fact (V,E) is completely connected, u(F (σ)) is an

element of the symmetric hyperplane H = {v :
∑

i vi = v∗}, where

v∗ = max
s∈C

∑
i∈V

fi(s).

Moreover, H is contained by the feasible set U(σ). By the symmetry of F , it follows that

ui(F (σ)) = uj(F (σ)) for all i and j, implying that F (σ) = FN(σ).

F Independence of Strategically Irrelevant Information

This appendix motivates and then defines a restriction on perturbed games, by which tremble

probabilities cannot depend on strategically irrelevant information.

F.1 Motivation

In order to motivate the idea of independence of strategically irrelevant information, consider

the 3-person extensive-form game depicted in Figure 8. At all but one of the terminal nodes,

the three players, Column, Row, and Box, have equal payoffs.

The strategy profiles [Left,(Up,Up),West ], marked in red, and [Right,(Up,Up),West ],

marked in blue, are the two Nash equilibria of the game. Both of these Nash equilibria

are in fact extensive form trembling hand perfect in the sense of Selten (1975). However,

[Left,(Up,Up),West ] is the only reasonable equilibrium for this game, in the following sense.
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Figure 8 – a three player game in extensive form

The strategy (Up,Up) weakly dominates all of Row’s other strategies. If one eliminates the

weakly dominated strategies from Row’s strategy space, then for Column, the strategy Left

weakly dominates Right. If Column plays Left, then Box’s best response is to choose West.

On the other hand, [Right,(Up,Up),East ] can be sustained as an extensive form trembling

hand perfect equilibria in the following way. Consider the strategy profile by which Column

plays Left with probability ε, Box chooses West with probability ε2, and Row deviates to

Down with probability ε following Left, while he deviates with probability ε2 following Right.

It is easy to see that against this strategy profile, (Up,Up) is optimal for Row and East is

optimal for Box. To see that Right is optimal for Column requires a little bit of calculation.

The key here is that Row deviates to Down more often following Right than following Left.

Because Column worries about a mistake by Row, and does not care much about the ε2

probability that Box chooses West, Column is strictly better off playing Right, because

Row deviates with lower likelihood there. As ε goes to 0, one obtains the limiting strategy

profile [Right,(Up,Up),East ]. Furthermore, [Right,(Up,Up),East ] is also an extended proper

equilibrium (Milgrom and Mollner, 2016), and thus a proper equilibrium (Myerson, 1977a),
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that is sustained by the same sequence of trembling equilibria. This is so because deviating

to Down is indeed more costly for Row when he faces Right than when he faces Left, given

that Right is on the equilibrium path.

However, this is an “unreasonable” tremble for Row, since, when following Left or Right,

Row faces two games that are equivalent to each other, for whatever choice Box makes. If

Box plays West, Row faces a one-person decision problem in which (i) choosing Up gives

him a payoff of 9, whereas choosing Down gives him only 2 at the information set following

Left, and (ii) choosing Up pays him 3, while choosing Down pays only 0 at the information

set following Right. These two problems are essentially the same for Row. Likewise if Box

plays East, Row’s problems are also identical irrespective of the information set in which

he finds himself. He therefore has no reason to tremble more often in one information set

than in the other. In other words, the information that Row obtains by observing Column’s

choice is irrelevant for his own play. Minimum tremble probabilities should be independent of

irrelevant information. If one requires that in a perturbed game,26 the minimum probabilities

are the same for Row in the two information sets. That is, if ε(Left) = ε(Right) and

χ(Left) = χ(Right), then it is strictly better for Column to play Left than Right.

More generally, a player might be facing a multiplayer non-cooperative game at an infor-

mation set, rather than a single-person decision problem. We now formalize our independence

requirement for abstract extensive form games in which both the strategy spaces and the

time horizon can be finite or infinite. We first specify the sense in which two games are

“equivalent,” and then provide a formal definition of this notion of “irrelevant information.”

F.2 Strategic Equivalence between Multistage Games

We fix a multistage game Γ = (N,A, I,Θ, p, ζ, u). A pure strategy of a player i is a behavioral

strategy σi = (σi0, σi1, . . .) with the property that, for all t and any Iit, the probability

measure σit(Iit) assigns all probability mass to a single point xit in Ait. We use xi =

(xi0, xi1, . . .) to denote such a pure strategy. By letting Xit denote the set of measurable
26The perturbation here is in the sense of Selten (1975).

146



functions from Iit to Ait, we can thus equate Xi =
∏

t≥0Xit with the set of pure strategies of

player i. A pure strategy profile is thus an element of X =
∏

i∈N Xi. The associated normal

form is ((Xi)i∈N , (Ui)i∈N).

The reduced normal form27 of a multistage game is obtained from the normal form by

deleting from Xi, for each player i, any pure strategy xi that is “redundant,” in the sense

that there exists a behavioral strategy σi 6= xi such that Uj(xi, x−i) = Uj(σi, x−i) for all

j ∈ N and all x−i ∈ X−i.

The normal form of a game, however, does not provide enough information to detect all

such redundant strategies. Consider, for example, the game depicted in Figure 9. Whether

Player 1 chooses A or B is irrelevant for the play of the game, but the normal form illustrated

in Table 1 does not allow us to detect this redundancy.

1

2

0

C

4

D

A

2

0

C

4

D

B

Figure 9 – Extensive form

P1
A B

P2

C, C 0 0

C, D 0 4

D, C 4 0

D, D 4 4

Table 1 – Normal form

Given this, we now propose a method for detecting redundant strategies for Γ. For

K ⊆ N × Z+, we apply the subscript “K” to denote the projection that maps A to AK =∏
(i,t)∈K Ait, and likewise maps a to aK = (ait)(i,t)∈K . Let Zt be the set of measurable

functions from Ht to Θ. We can view an element of zt of Zt as a “choice of Nature” in period

t.

Consider some some disjoint subsets T and T ′ of Z+ (sets of times) with the property
27Kohlberg and Mertens (1986) argued that the reduced normal form captures all information about a

game that is relevant to decision making.
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that

t /∈ T ∪ T ′ =⇒ t ≥ sup T ′. (129)

For disjoint subsets K and K ′ of N × Z+ and some zT ∈ ZT , θT ′ ∈ ΘT ′ , xK ∈ XK , and

aK′ ∈ AK′ , we let

Γ [(zT , xK), (θT ′ , aK′), T,K, T
′, K ′] (130)

be the multistage game obtained from Γ by fixing:

• For each t ∈ T , the choice function of nature in period t to be zt.

• For each (i, t) ∈ K, the strategy of player i in period t to be xit.

• For each t ∈ T ′, the state of nature in period t to be θt.

• For each (i, t) ∈ K ′, the action of player i in period t to be ait.

If one or more of the index sets T,K, T ′, and K ′ in (130) are empty, we will omit them from

the notation. Given an index set K ⊆ N ×Z+, we say that the strategies in K are irrelevant

for the play of the game Γ if all of the multistage games in

{Γ [xK , K] : xK ∈ XK} (131)

have the same reduced normal form. In this case, we denote by Γ(K) the common reduced

normal form of the multistage games {Γ [xK , K] : xK ∈ XK}. (We note that Γ(K) may

contain players with a singleton strategy set.) In Figure 9, the strategy of Player 1 in the

first step of the game is irrelevant.

Given two multistage games Γ1 and Γ2 with respective player sets N1 and N2, we say that

Γ1 and Γ2 are strategically equivalent if there exist K1 ⊂ N1 × Z+ and K2 ⊂ N2 × Z+ such

that (i) the strategies in K1 and K2 are irrelevant for the play of Γ1 and Γ2 respectively, and

(ii) Γ1(K1) and Γ2(K2) can be obtained from each other by adding or deleting players with

a singleton strategy set, by performing increasing affine transformations of players’ payoff

functions, and by relabeling players and strategies28.
28Suppose Γ1(K1) = ((Xi)i∈N1

, (ui)i∈N1
) and Γ2(K2) = ((Yi)i∈N2

, (vi)i∈N2
), and suppose players with a
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Remark 7. The notion of strategic equivalence here is more general than that obtained by

comparing reduced normal forms, because it removes redundant strategies in the extensive

forms that cannot be detected in the normal forms. As a special case, two multistage games

with the same reduced normal forms are strategically equivalent, in the sense defined above.

As a different example, if Γ is a multistage game such that the strategies associated with

some index set K of players and times are irrelevant for the play of the game Γ, then Γ is

strategically equivalent to Γ [xK , K] for every xK ∈ XK .

Consider two multistage games Γ` = (N`, A`, I`,Θ`, p`, ζ`, u`), ` ∈ {1, 2}. For some

(i, t) ∈ N1×Z+, (j, τ) ∈ N2×Z+, some information set I1 ∈ I1it of Γ1, some I2 ∈ I2jτ of Γ2,

and a homeomorphism g between the action set A1it in Γ1 and A2jτ in Γ2, we say that Γ1

at I1 is strategically isomorphic to Γ2 at I2 through the homeomorphism g if the following

conditions hold:

(i) Γ1 and Γ2 are strategically equivalent.

(ii) In the equivalence of Γ1 and Γ2 defined above, player i in Γ1 is identified29, through

relabeling of players, with player j in Γ2.

(iii) The homeomorphism g between A1it and A2jτ is defined by relabeling of strategies after

which Γ1 and Γ2 are strategically equivalent.30

F.3 Strategically Irrelevant Information

We fix a multistage game Γ = (N,A, I,Θ, p, ζ, u). Given an information set Iit ∈ Iit of

player i in period t, ζ−1(Iit) ⊆ Θ≤t × A<t can be viewed as the subset of partial histories

singleton strategy set have been deleted from both normal form games. Then what we mean here by relabeling
players and strategies is that there exists a bijection π between N1 and N2 (which relabels players), and
for every i ∈ N1, a bijection fi between Xi and Yπ(i) ((which relabels strategies)), such that ui((xi)i∈N1

) =
aivπ(i)((fi(Yπ(i))i∈N1) + bi with ai > 0.

29This means, in the notation of Footnote 28, that neither player i nor player j have singleton strategy
sets in (Γ1,K1) and (Γ2,K2) respectively, and that π(i) = j.

30 This means, in the notation of Footnote 28, that g(a1) = a2 if and only if the subset Xi(I1, a1) = {xi ∈
Xi : xit(I1) = a1} of pure strategies of player i matches Yj(I2, a2) = {yj ∈ Yj : yjτ (I2) = a2} through the
bijection fi.
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that “reach” the information set Iit. We can represent ζ−1(Iit) as a set of the form

ζ−1(Iit) = Hit(Iit)×ΘOc1it(Iit)
× AOc2it(Iit)

where O1it(Iit) ⊆ {0, . . . , t}, O2it(Iit) ⊆ N×{0, . . . , t−1}, and Hit(Iit) ( ΘO1it(Iit)×AO2it(Iit).

(As usual, Sc denotes the complement of a set S.) We obtain uniqueness for this represen-

tation by always taking O1it and O2it to be minimal, in the sense there there does not exist

a strict subset of O1it nor a strict subset of O2it that also admits such a representation. (We

allow O1it and O2it to be empty.) This representation means that player i learns from the

information set Iit precisely the fact that

(
(θs)s∈O1it(Iit), (ajτ )(j,τ)∈O2it(Iit)

)
∈ Hit(Iit),

whereas player i learns nothing at all about the complementary elements of the partial

history. The minimality of the index sets O1it and O2it implies that Hit(Iit), whenever it

exists, must be a strict subset, as indicated, thus providing nontrivial information in the

form of a binding restriction on the partial history.

We further define Mit(Iit) ⊆ N × {0, . . . , t− 1} by letting (j, τ) ∈ Mit(Iit) if and only if

for every (θ, a) and (θ̃, ã) such that ζit(θ≤t, a<t) = Iit and ζit(θ̃≤t, ã<t) 6= Iit, we have

ζjτ (θ≤τ , a<τ ) 6= ζjτ

(
θ̃≤τ , ã<τ

)
.

This means that for every (j, τ) ∈ Mit(Iit), by period τ player j has learned whether the

information set Iit has been reached.

Proposition 25. The index sets O2it(Iit) and Mit(Iit) are disjoint.

Proof. If (j, τ) ∈ O2it(Iit) then there exists ājτ ∈ Ajτ such that if the action of player j

action in period τ is ājτ , the information set Iit is not reached. Formally, ajτ = ājτ implies

(θ≤t, a<t) /∈ ζ−1
it (Iit) for every complete history (θ, a). Now let (θ, a) be a complete history

under which Iit is reached. That is, (θ≤t, a<t) ∈ ζ−1
it (Iit). Let ã = (a−jτ , ājτ ) (that is, ã is

obtained from a by replacing ajτ by ājτ ). Then we have (θ≤t, ã<t) 6∈ ζ−1
it (Iit). On the other
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hand, ζjτ (θ≤τ , ã<τ ) = ζjτ (θ≤τ , a<τ ). This shows that player j in period τ cannot tell whether

the information set Iit has been reached. Thus (j, τ) /∈Mit(Iit).

Proposition 26. Suppose (j, τ) ∈ O2it(Iit) and (j′, τ ′) ∈ Mit(Iit). Then, for every infor-

mation set Ijτ ∈ Ijτ of player j in period τ , we have (j′, τ ′) /∈ O2jτ (Ijτ ). (This means that

player j in period τ cannot observe the action of player j′ in period τ ′.)

Proof. If (j′, τ ′) ∈ O2jτ (Ijτ ) for some Ijτ ∈ Ijτ , then it must be that τ ′ < τ . Then the same

argument used in the proof of Proposition 25, after replacing (j, τ) by (j′, τ ′), implies that

(j′, τ ′) /∈Mit(Iit). This leads to a contradiction, completing the proof.

Definition 11. For any times t and τ and players i and j, we say that two information sets

Iit and Ijτ contain the same strategic information if there exist subsets Ki and Kj of N×Z+,

and a homeomorphism g between the action sets Ait and Ajτ , such that:

(i) Ki ∩O2it(Iit) = ∅ and Kj ∩O2jτ (Ijτ ) = ∅.

(ii) O2it(Iit) ∪Ki ∪Mit(Iit) = N × Z+ and O2jτ (Ijτ ) ∪Kj ∪Mjτ (Ijτ ) = N × Z+.

(iii) Letting Ti = {0, . . . , t}\O1it(Iit) and Tj = {0, . . . , τ}\O2jτ (Ijτ ), for every z ∈ Z, x ∈ X,

hit ∈ Hit(Iit), and hjτ ∈ Hjτ (Ijτ ), at least one of the following conditions applies:

(a) The game Γit ≡ Γ
[
(zT , xKi), hit, (Ti, Ki), (O1it(Iit), O2it(Iit))

]
at Iit is strategically

isomorphic to the game Γjτ ≡ Γ
[
(zTj , xKj), hjτ , (Tj, Kj) , (O1jτ (Ijτ ), O2jτ (Ijτ ))

]
at

Ijτ through the homeomorphism g.

(b) The strategy of player i in period t is irrelevant in Γit and the strategy of player

j in period τ is irrelevant in Γjτ .

We now give an interpretation of this notion of two information sets containing the same

strategic information. Suppose that player i finds himself in some information set Iit at time

t. This informs player i of something specific about Nature’s states (θs)s∈O1it(Iit), and about

the actions (ajτ )(j,τ)∈O2it(Iit).
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For each (j, τ) /∈ Mit(Iit), however, player j, when in period τ , cannot tell whether the

information set Iit has been reached. In this case, the decision problem of player j in period

τ should not be embedded into the “subgame” faced by player i at the information set Iit,

because doing so would violate the information structure of the original game. That is,

if (j, τ) /∈ Mit(Iit) and if the decision problem of player j in period τ is embedded into

the “subgame” faced by player i at Iit, then player j naturally knows that the information

set Iit has been reached. He is not supposed to learn this information by period τ in the

original game. We thus fix the strategy of player j in period τ , for all (j, τ) in some index

set K ⊆ N × Z+. The construction implies that O2it(Iit) ∪K ∪Mit(Iit) = N × Z+, which

guarantees that the setK is large enough to include all indices that are not inMit(Iit). Fixing

Nature’s choice function in the periods of some index set T guarantees that the multistage

game Γ
[
(zT , xK), hit, (T,K), (O1it(Iit), O2it(Iit))

]
is well defined. Thus “containing the same

strategic information” means that, in all conceivable circumstances, player i in period t as

well as player j in period τ are either indifferent in their choice of strategies, or, in case

they are not indifferent, they face games that are strategically isomorphic, from the vantage

points of their respective information sets.

Given a multistage game Γ = (N,A, I,Θ, p, ζ, u), we say that a perturbed game Γ̂ =

(Γ, ε, χ) of Γ respects independence of strategically irrelevant information if εit(Iit) = εjτ (Ijτ )

and χjτ (Ijτ ) = χit(Iit) ◦ g whenever Iit and Ijτ contain the same strategic information for

players i and j, respectively, where g is the homeomorphism between Ait and Ajτ defined in

Definition 11.
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