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Abstract

On many important multi-dealer platforms, customers mostly request quotes from very

few dealers. I build a model of multi-dealer platforms, where dealers strategically choose to

respond to or ignore a request. If the customer contacts more dealers, each dealer responds

with a lower probability and offers a stochastically worse price when responding. Dealers’

strategic avoidance of competition overturns the customer’s benefit from potentially receiving

more quotes, worsening her best-overall price. In equilibrium, the customer contacts only two

dealers. Multi-dealer platforms have limited ability to promote price competition: No design

of information disclosure can improve the customer’s payoff above this outcome.
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1 Introduction

Many over-the-counter (OTC) markets now feature trading platforms that allow a cus-

tomer to simultaneously request quotes from multiple dealers.1 These multi-dealer platforms

have the potential to greatly intensify competition among dealers, provided that customers

request quotes from a large number of dealers. On many important multi-dealer platforms,

however, customers mostly request quotes from very few dealers, for example from only three

on Swap Execution Facilities (SEFs) for index credit default swaps—the minimum required

by regulations.2 Why do the customers contact so few dealers that even a lower bound of

three seems to be binding? Because the benefit of contacting more dealers to incite greater

competition proposed by existing theory ceases to exist, and in fact becomes a cost, when

the dealers are allowed to strategically ignore a customer’s request. I add exactly one feature

to an otherwise standard model: Dealers can endogenously choose to respond to or ignore

a request for quote (RFQ). I show that contacting more dealers, rather than spurring price

competition among dealers, actually suppresses competition and leads to worse prices. In

equilibrium, the customer chooses to contact only two dealers. More generally, no design of

information disclosure about the number of contacted dealers can improve the customer’s

payoff above this outcome. In this sense, multi-dealer platforms are limited in their ability

to promote price competition.

Dealers’ ability to ignore a trade request is a natural yet often overlooked feature of OTC

trading. Whether an OTC trade is requested on a platform or not, dealers are not forced to

1Examples include Bloomberg and Tradeweb for swaps, MarketAxess for bonds, and Refinitiv for curren-
cies.

2At the same time, the volume traded on platforms is relatively small in many OTC markets where
platform trading is not mandatory. For example, MarketAxess had 15% of the total trade volume for U.S.
corporate bonds in 2016Q1, and 20% as of November 2022. Most of its market share growth was gained
during the COVID pandemic in 2020.
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respond, and indeed, quite often do not. Dealers’ revealed preferences show that responding

requires effort and cannot be completely cost-free. In my model, the cost of such effort

to properly formulate a response can be arbitrarily small. Yet, that dealers endogenously

decide whether to respond fundamentally transforms the intended benefit from contacting

more dealers into a cost.

The underlying economics comes from the following observation: It is more cost-efficient

to concentrate response probabilities among fewer dealers. I consider a simple numerical

example to illustrate the cost efficiency of response concentration. I suppose that three dealers

are contacted in an RFQ, and they each respond with a probability of 70%, 60%, and 50%,

respectively. When at least one dealer responds, a trade occurs. Thus, the aggregate expected

gain from trade depends on the individual dealer response probabilities through a sufficient

statistic (1−70%)(1−60%)(1−50%), which is the probability that no dealer responds to the

RFQ. On the other hand, the aggregate expected cost of responding to the RFQ depends on

the sum of the response probabilities, 70%+60%+50%. Keeping the aggregate gain constant,

one can reduce the aggregate cost by reducing one dealer’s response probability, say, from

50% down to 0%, and raising another dealer’s response probability, say, from 60% up to 80%.

The adjustment does not change the aggregate gain, because the probability that no dealer

responds remains the same, (1 − 70%)(1 − 80%)(1 − 0%) = (1 − 70%)(1 − 60%)(1 − 50%).

Yet the aggregate cost declines, 70%+80%+0% < 70%+60%+50%. Therefore, it is more

cost-efficient to shut down one dealer and concentrate the response probabilities into the

remaining dealers.

My benchmark model has one of the most basic structures in economics: A customer

chooses to contact a number n of dealers simultaneously in order to purchase an asset.

Observing the customer’s choice of n, each dealer chooses whether to respond at a cost and
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what price to offer.

A dealer naturally trades off the response cost and its expected trading profit: It is

willing to respond only if the expected profit justifies responding. In the unique symmetric

subgame perfect equilibrium, each dealer mixes between responding or not, and offers a

distribution of prices conditional on responding. If the customer were to contact more dealers,

every contacted dealer would strategically avoid competition by (i) responding with a lower

probability, and (ii) offering a stochastically higher price when it responds. Dealers’ strategic

avoidance of competition more than offsets the benefit to the customer from potentially

receiving more quotes, resulting in (iii) a strictly less competitive best overall price for the

customer. Anticipating this dealer behavior, the customer contacts precisely two dealers in

equilibrium.

Moreover, the customer contacts two dealers not only in the symmetric subgame perfect

equilibrium, but also in any subgame perfect equilibrium. The driving force comes from

the cost savings of response concentration. The cost savings, as illustrated in the above

numerical example, does not require symmetry in the dealers’ strategies.

An assumption of the model is that the number n of dealers contacted in a customer

RFQ is disclosed to those n dealers, as is the case on SEFs. I examine alternative platform

designs of information disclosure about the number n. Not disclosing any information about

the number n would make the customer contact as many dealers as is feasible. However,

the customer’s payoff decreases relative to her status quo payoff where the number n is fully

disclosed, as the customer expects a lower response probability and a worse price offer from

each dealer. These predictions match the patterns for corporate bonds on MarketAxess,

which does not disclose the number of contacted dealers by default. There, a customer

contacts more than 25 dealers per RFQ, on average, and dealers’ response rate is only
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around 25% (Hendershott and Madhavan, 2015). In comparison, on SEFs, dealers’ response

rate is almost 90% (Riggs, Onur, Reiffen, and Zhu, 2020).

Although making the number n of contacted dealers undisclosed does not lead to more

competitive prices, it does cause the customer to contact more dealers in equilibrium. More

generally, one may wonder whether some alternative information design that partially dis-

closes the number n could reach the sweet spot—where the customer contacts a high enough

number of dealers and the dealers engage in a sufficient level of competition—and make the

dealers’ best overall price more competitive than the status quo of full disclosure. Unfor-

tunately, the answer is no. No alternative information disclosure design can improve the

customer’s payoff above the status quo. In this sense, multi-dealer platforms are limited in

their ability to promote price competition. The driving force once again comes from the cost

savings of response concentration. The cost savings, as illustrated in the above numerical

example, does not depend on what information is disclosed about the number n.

The benchmark model also predicts that a dealer responds with a higher probability

when facing a larger order or when perceiving a larger gain from trade. Conditional on

responding, the dealer offers a stochastically lower price when facing a larger order or when

perceiving a smaller gain from trade. The model’s predictions are largely consistent with

empirical patterns documented in the literature.

The model is also applicable to Bid Wanted in Competition (BWIC).3 BWIC is a common

method for a customer to sell collateralized loan obligations, asset-backed securities, or

mortgage-backed securities through an invited auction. Invited dealers do not see how many

or which other dealers are invited. Unlike RFQ on a multi-dealer platform, BWIC is not

a standardized process with automated information disclosure. As a result, the customer

3I thank an anonymous referee for suggesting BWIC as an application.
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cannot credibly commit to limit her number of invited dealers. The New York Fed conducted

a series of BWIC to sell its residential mortgage-backed securities. Consistent with my

model’s prediction, a large number of dealers (57 on average) were invited to bid at a BWIC.

Armantier and Sporn (2013) provides a detailed description of how BWIC works in practice.

1.1 Literature

I make three contributions. (i) My paper introduces response concentration, a new

mechanism that fundamentally overturns the competitiveness of the best overall price among

more potential contestants. (ii) My model proposes a simple explanation for why customers

contact very few dealers when the number of contacted dealers is disclosed and many when

the number is not disclosed. (iii) My results reveal the limits of multi-dealer platforms in

promoting price competition: No design of information disclosure can improve a customer’s

payoff above the status quo of full disclosure, where the customer contacts only two dealers

and prices are noncompetitive in equilibrium.

This paper belongs to the recent literature on multi-dealer platforms.4 Existing theories

cannot explain why customers contact very few dealers on some platforms like SEFs and

many more on others. Most closely related to this paper are the theories of Riggs et al.

(2020) and Baldauf and Mollner (2022). Both papers generate an interior solution for the

optimal number of dealers to contact by trading off the benefit of dealer competition against

either a direct “relationship cost” of contacting each additional dealer (Riggs et al., 2020)5

or an indirect cost of front-running (Baldauf and Mollner, 2022). To reconcile the large

4Examples include Collin-Dufresne, Junge, and Trolle (2020), Hau, Hoffmann, Langfield, and Timmer
(2021), O’Hara and Alex Zhou (2021), Hendershott, Livdan, and Schürhoff (2021), Liu, Vogel, and Zhang
(2017), Vogel (2019), and Allen and Wittwer (2023).

5Riggs et al. (2020) also features the winner’s curse. In their model, “[t]he relationship channel generates
an interior solution for the optimal number of dealers requested, and the winner’s curse channel generates
the comparative statics that [they] eventually test.”
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disparity in customer behavior on SEFs versus MarketAxess, those papers would require

the relationship or the front-running cost to be sufficiently high on one type of platform

yet extremely low on the other. My paper questions whether dealers’ best overall price

indeed becomes more competitive when more potential contestants are present in the first

place. Letting dealers strategically decide whether to respond fundamentally overturns their

standard pattern of competition in the presence of more rivals. As a result, my paper does

not need any added trade-offs as those in Riggs et al. (2020) and Baldauf and Mollner

(2022). I provide a parsimonious model that unambiguously explains why customers contact

very few dealers when the number of contacted dealers is disclosed to those dealers and

many when the number is not disclosed. Moreover, unlike existing theories, my paper goes

beyond a specific design of multi-dealer platforms. By exploring general platform designs

of information disclosure, my paper contributes a novel result on the limits of multi-dealer

platforms in promoting price competition.

Glode and Opp (2020) shows how interacting with more dealers reduces the dealers’

incentives to acquire costly expertise. They then show that an OTC market, which limits

competition, might socially dominate an exchange market. Dealers in their model do not

offer quotes—they receive quotes. The mechanism that pins down pricing in my paper—

dealers’ strategic avoidance of competition—requires dealers’ ability to set quotes, so that

they can offer stochastically worse prices if a customer contacts more dealers.

With different focuses, Glebkin, Yueshen, and Shen (2022) and Yueshen (2017) also

feature an uncertain number of dealers who respond to a trade request. My model differs

from theirs in two respects: (1) the number of contacted dealers is endogenously chosen

by the customer instead of being exogenously fixed; (2) each dealer endogenously mixes

between responding or not, instead of having response probabilities that do not depend on
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any agent’s endogenous strategy. These two modeling distinctions are crucial for obtaining

my paper’s results. In particular, if a dealer’s response probability were exogenously fixed at

some constant, as in Glebkin et al. (2022) and Yueshen (2017), the customer would contact

as many dealers as is feasible, and her price would approach the competitive limit when the

pool of potential dealers is large (Appendix A).

This paper is broadly related to the literature on search frictions,6 market concentration,7

and sticky relationships8 in OTC trading. Can these general features of OTC markets explain

why a customer contacts very few dealers on multi-dealer platforms? They cannot. First,

the very objective of multi-dealer platforms is to reduce search frictions by making it easy

for customers to reach out to many dealers at once. Second, these general arguments cannot

explain why a customer contacts many more dealers on platforms that by default do not

disclose the number of contacted dealers, such as MarketAxess. Therefore, these general

features of OTC markets cannot be the driving force that determines the extensive margin

of how many dealers a customer would contact on a multi-dealer platform.9

6Duffie, Gârleanu, and Pedersen (2005) pioneered the OTC search literature. Examples include Atke-
son, Eisfeldt, and Weill (2015), Bethune, Sultanum, and Trachter (2021), Dugast, Üslü, and Weill (2022),
Hugonnier, Lester, and Weill (2020), Li, Rocheteau, and Weill (2012), Maurin (2022), Praz (2014), Tsoy
(2021), Vayanos and Weill (2008), and Wang (2022) among many others. Weill (2020) reviews the literature
of search models in OTC markets.

7Most OTC markets exhibit a highly concentrated core-periphery trading network (Abad, Aldasoro,
Aymanns, D’Errico, Fache Rousová, Hoffmann, Langfield, Neychev, and Roukny, 2016; Afonso, Kovner, and
Schoar, 2014; Bech and Atalay, 2010; Craig and von Peter, 2014; Hollifield, Neklyudov, and Spatt, 2017;
in’t Veld and van Lelyveld, 2014; King, Osler, and Rime, 2012; Li and Schürhoff, 2019; Peltonen, Scheicher,
and Vuillemey, 2014). Theoretical explanations include Chang and Zhang (2022), Farboodi, Jarosch, and
Shimer (2022), Sambalaibat (2022), Üslü (2019), and Wang (2016).

8Examples include Di Maggio, Kermani, and Song (2017) and Hendershott, Li, Livdan, and Schürhoff
(2020).

9Riggs et al. (2020) provides evidence that the relationship channel matters for the intensive margin of
which dealers a customer would contact and which dealer would be more likely to offer her a better price,
although no evidence is provided for whether relationship quality drives the extensive margin of how many
dealers a customer would contact.
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To the consumer search literature,10 which also features mixed pricing strategies by firms,

this paper contributes a novel model, where the number of responding firms is endogenously

determined by the firms’ own decisions of whether to respond instead of being exogenously

chosen by nature. If one replaces the firms’ endogenous decisions by an exogenous availability

constraint, then the customer would contact as many firms as is feasible (Appendix A).

Another distinction is the absence of a search cost in my paper. The consumer search

literature assumes a positive search cost for at least some customers. In my model, the

customer chooses to contact only two dealers for prices in the absence of any search cost.

My paper also belongs to the literature on auctions with entry.11 My paper uncovers the

more general underlying economics of response concentration, which works under different

model setups. That the seller’s revenue decreases with the number of potential bidders in

a symmetric equilibrium is one special implication of response concentration. Thanks to

its generality, response concentration also drives all my other results: that the seller invites

very few potential bidders in any equilibrium, and that no design of information disclosure

can improve the seller’s revenue. Further, existing papers are concerned about the auction

format—such as second-price auctions and the commitment to a reservation price—which

are far away from practical implementation on multi-dealer platforms in real-world financial

markets. My model differs in that the number of potential bidders is chosen by the seller,

and may be fully disclosed, partially disclosed, or not disclosed to those potential bidders.

Thereby, my paper contributes a novel result on the optimal information disclosure about

the number of potential bidders, which is assumed to be exogenously fixed in this literature.

Yueshen and Zou (2022) assumes the expected response cost to be convex—as opposed to

10Stigler (1961) pioneered the consumer search literature. Examples include Varian (1980), Burdett and
Judd (1983), Stahl (1989), and Lester (2011).

11Examples include McAfee and McMillan (1987), Engelbrecht-Wiggans (1987), Levin and Smith (1994),
Menezes and Monteiro (2000), and Jovanovic and Menkveld (2022).
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linear—in the response probability, and shows that the customer continues to contact very

few dealers. They do not consider the general design of information disclosure.

1.2 Institutional Details

Multi-dealer platforms allow customers to simultaneously request quotes from multiple

dealers. On SEFs, the Commodity Futures Trading Commission used to require a customer

to contact at least 2 dealers in an RFQ. On average, a customer contacted 2.9 dealers per

request (McPartland, 2014). The lower bound then increased by 1, to 3 dealers per request,

in 2014. After the change, Riggs et al. (2020) finds that customers most frequently contact

only 3 dealers, on average contact 4 (one more than before the change), and rarely contact

more than 5. If weighted by notional quantity, customers contact even fewer dealers on

average, because larger orders tend to be exposed to fewer dealers. These facts suggest that

the lower bound of 3 is most often binding for customers. Dealers’ response rate is slightly

below 90% on SEFs (Riggs et al., 2020, Table 3). These are in contrast to MarketAxess’

dramatically higher (25+) number of contacted dealers—which one naturally expects—and

a much lower response rate (around 25%) (Hendershott and Madhavan, 2015, Table VI).

In an RFQ, SEFs disclose the number of dealers contacted to those dealers (Riggs et al.,

2020). MarketAxess does not disclose that number by default. A customer can set it to

disclose her number of contacted dealers in a global setting, although not on a request-

by-request basis. Even when a customer chooses to do so, the disclosed number is greatly

contaminated by the customer’s possible selection of Open Trading (OT). Since 2012, Mar-

ketAxess’ RFQ platform has an OT option that allows a customer to simultaneously send

an RFQ to buy-side firms and non-permissioned dealers, in addition to the dealers that the

customer chooses to contact (MarketAxess, 2022). Selecting OT would send the RFQ to
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hundreds if not thousands of other platform participants. However, MarketAxess increases

the number of contacted participants by only one if the customer selects OT, and does not

indicate whether the customer selected OT. In practice, OT is selected more than 90% of

the time (Hendershott et al., 2021).

An advantage of my model is that it does not require me to take a stance on how large

dealers’ response cost is empirically. All my results hold, even with an infinitesimally small

response cost. A dealer’s cost of responding to a customer’s RFQ can arise from the effort and

the resources to evaluate the asset, the customer, market conditions, and the dealer’s own

inventory—activities that are necessary prior to forming a price offer. Each RFQ is unique,

requesting to trade a specific asset at a specific time under a specific market condition. Even

if the same dealer receives two RFQs for the same asset within a short period of time, the

two RFQs would most likely come from different customers, request to trade different sizes,

and have other distinctive characteristics. Such RFQs would still receive different prices,

as price discrimination is a prominent feature of OTC trading: The same dealer typically

offers different prices to a hedge fund versus to an insurance company (Ramadorai, 2008;

Hau et al., 2021; Bjønnes, Kathitziotis, and Osler, 2015; Pinter, Wang, and Zou, 2021),

to customers and trades of different sizes (Pinter, Wang, and Zou, 2020), to customers of

different activeness (O’Hara, Wang, and Zhou, 2018), and price discrimination persists on

multi-dealer platforms (Hau et al., 2021). Price discrimination can arise from differences

in information asymmetry (Lee and Wang, 2018; Pinter et al., 2020, 2021), dealer-customer

relationships (Di Maggio et al., 2017; Hendershott et al., 2020), customers’ outside options

(Hendershott et al., 2020; Pinter et al., 2020), and customers’ willingness to pay, etc. As a

result, a dealer needs to exert costly effort and resources to separately evaluate each RFQ

from each customer, even when the RFQ arrives within a short period of time after another
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RFQ for the same asset.

The remainder of the paper is organized as follows. Section 2 sets up the benchmark

model. Section 3 solves for the unique symmetric equilibrium in closed form and obtains

the main results in any equilibrium. Section 4 examines alternative designs of information

disclosure and establishes the limits of multi-dealer platforms. Section 5 derives the models’

other empirical predictions. Section 6 concludes.

2 Benchmark Model

2.1 Trading game

The trading game proceeds in three stages. In Stage 1, a customer seeking to buy12

one unit of an asset chooses a number n of ex-ante identical dealers to contact in an RFQ.

Observing the customer’s choice n, each dealer j chooses whether to respond and what price

pj to offer in Stage 2. The asset’s expected payoff is normalized to 0, and the customer has

an additional private value v of owning the asset. Responding to the RFQ incurs a cost

c > 0, which is assumed to be less than the value v (c < v) so that there is a positive net

surplus from trade. In Stage 3, the customer chooses whether and against which dealer’s

price to trade. I do not impose any tie-breaking rule in the case of indifference. All agents

are risk-neutral. Figure 1 summarizes the timeline of the model.

12The case where the customer is seeking to sell is symmetric.
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The customer chooses n.

Stage 1

Observing n, dealers
choose whether to respond
and what prices to offer.

Stage 2

Given the responses, the
customer chooses to trade
with dealer i ∈ {0, . . . , n}.

Stage 3

Figure 1: Timeline

2.2 Strategies and equilibrium concept

The customer’s strategy consists of a couple (n, i), following which the customer contacts

n dealers in Stage 1 and trades with dealer i ∈ {0, 1, . . . , n} in Stage 3 after receiving the

dealers’ responses (p1, . . . , pn) in Stage 2. If dealer j chooses to ignore the customer’s RFQ

in Stage 2, then pj = NA by convention. If the customer chooses not to trade in Stage 3,

then i = 0 by convention. Mixed strategies are allowed. The strategy of dealer j consists of

a couple (aj,n, Fj,n) for each number of dealers n chosen by the customer, where aj,n ∈ [0, 1]

is the probability with which the dealer responds to the RFQ, and Fj,n is the CDF of the

dealer’s price offer if the dealer does respond.

The solution concept is subgame perfect equilibrium. I first solve for the unique sym-

metric subgame perfect equilibrium, where all dealers employ the same strategy (a∗, F ∗).

Then, I show that the same results hold in all subgame perfect equilibria (Theorem 2). In

a symmetric subgame perfect equilibrium,

(symmetry) a∗j,n = a∗n and F ∗
j,n = F ∗

n for every n ∈ Z++ and j = 1, . . . , n.

The agents’ optimality conditions are derived as follows. In Stage 3, the customer chooses

to trade with the dealer who offers the lowest price if that price is less than the customer’s
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private value v, and does not trade otherwise:

i∗



∈ argmin
j=1,...,n

pj if min
j=1,...,n

pj < v,

= 0 if min
j=1,...,n

pj > v,

∈ {argmin
j=1,...,n

pj, 0} if min
j=1,...,n

pj = v.

(1)

In Stage 2, every price p that belongs to the support of the equilibrium price distribution

F ∗
n maximizes a dealer’s expected payoff given the other dealers’ pricing strategy for every

n ≥ 1,

p ∈ argmax
p̃∈R

(
p̃ 1p̃≤v [1− a∗nF

∗
n(p̃)]

n−1) ∀p ∈ supp F ∗
n . (2)

The right-hand side of (2) is the expected trading profit that the dealer maximizes: When

offering a price p̃ ≤ v, the dealer trades with the customer if and only if no other dealer

offers a price lower than p̃, an event that occurs with probability [1− a∗nF
∗
n(p̃)]

n−1.

The dealer’s individual rationality is given by

p 1p≤v [1− a∗nF
∗
n(p)]

n−1 ≥ c ∀p ∈ supp F ∗
n . (3)

That is, the dealer’s expected trading profit must be at least as large as its cost c of responding

to the RFQ. If the dealer responds with probability a∗n < 1, the dealer must be indifferent

between responding or not. In this case, (3) must hold as an equality,

if a∗n < 1, p 1p≤v [1− a∗nF
∗
n(p)]

n−1 = c ∀p ∈ supp F ∗
n . (4)

In Stage 1, the customer chooses the number of dealers n to maximize her expected
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payoff,

n∗ ∈ argmax
n∈Z+

[
v −EG∗

n
(p ∧ v)

]
, (5)

where 1−G∗
n(p) = [1− a∗nF

∗
n(p)]

n .

Here, v−EG∗
n
(p∧ v) is the customer’s expected payoff upon contacting n dealers, and G∗

n is

the CDF of the dealers’ best price offer p = minj=1,...,n pj.

Proposition 0. A symmetric subgame perfect equilibrium is a strategy profile (n∗, i∗, a∗, F ∗)

such that

� the customer’s strategy (n∗, i∗) satisfies the optimality conditions (1) and (5), and

� all dealers employ the same strategy (a∗, F ∗) that satisfies the optimality conditions (2)

to (4).

2.3 Discussion

Instead of a response cost on dealers, Riggs et al. (2020) imposes a cost on the customer

to contact each additional dealer. The contact cost mechanically appears in the customer’s

utility function and directly limits her optimal number of contacted dealers to an interior

solution, which depends on the magnitude of the contact cost. The contact cost has to be

sufficiently large to explain why the customer contacts very few dealers. In my model, there

is no additional cost to contact more dealers. The response cost c is materialized only when

a dealer strategically decides to respond to the RFQ. Further, the response cost c can be

arbitrarily close to 0 or heterogeneous across dealers (as an extension in Appendix C). In

both situations, the customer always contacts n∗ = 2 dealers in equilibrium.
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How, then, does my model make the customer contact generically fewer dealers than in

Riggs et al. (2020) without using costs that operate directly on the final outcome variable?

Because the dealers’ cost leads to their strategic avoidance of competition, whereas the cus-

tomer’s cost does not. The customer’s contact cost is sunk by the time dealers receive an

RFQ. As a result, the customer’s cost does not appear in any dealer’s utility function, and

thus does not affect how dealers compete with each other. Therefore, the conventional com-

petition argument applies: Contacting more dealers induces a more competitive best overall

price. Contrarily, the dealers’ response cost, together with their ability to ignore the RFQ,

overturns their standard pattern of competition. The cost incentivizes and the RFQ’s ig-

norability enables the dealers to strategically avoid competition when the customer contacts

more dealers, resulting in a strictly less competitive best overall price for the customer.

The dealer’s response cost also allows my paper to explain the large disparity in customer

behavior on SEFs versus MarketAxess based on their different disclosure designs regarding

the number n of dealers contacted. With the customer’s contact cost alone and not the

dealers’ response cost, the disclosure design is less relevant.13 The customer’s contact cost

serves as a natural commitment device because dealers understand that it is not incentive

compatible for the customer to contact many dealers due to her contact cost. To reconcile

the large gap between SEFs and MarketAxess, the contact cost would have to be sufficiently

high on one type of platform yet extremely low on the other. In contrast, any response cost

on the dealers—even an infinitesimal one—would push the customer to contact only two

dealers when the number n is disclosed, and many dealers when n is not. The disclosure

design determines whether the customer can commit to contact few dealers when facing

dealers’ strategic avoidance of competition. When the number n is disclosed, the customer

13I thank an anonymous referee for this sharp observation.
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can and will commit to contact very few dealers. Once n becomes undisclosed, the customer

loses the ability to credibly commit to do so. Thus, the customer contacts as many dealers

as is feasible, and the dealers correctly conjecture so (Section 4.1).

An indispensable ingredient for modeling dealers’ strategic avoidance of competition is

their ability to endogenously decide whether to respond to an RFQ. Existing works14 instead

assume that every dealer is available with an exogenously fixed probability α and responds

whenever available. With such an exogenous response probability, Appendix A shows that

the customer would contact as many dealers as is feasible (Proposition 5). Moreover, allowing

the available dealers to endogenously decide whether to respond would restore an interior

solution for the number n (Proposition 6). These results illustrate the opposing effects of

an exogenous versus an endogenous response probability: Letting dealers respond with an

exogenous probability pushes the customer to contact more dealers, whereas endogenizing

their response probability pushes the customer to contact fewer dealers. The exogenous

availability constraint captures a case of heterogeneous dealer valuations, in that the dealers

with a high valuation for the asset are not available to sell the asset. Equilibrium results

remain qualitatively identical if some dealers, instead of being exogenously unavailable to

respond, are subject to an exogenous budget constraint limiting their ability to respond with

a competitive price (Internet Appendix B).

What drives my result is not the deadweight cost of responding to an RFQ per se,

because the equilibrium is completely unaffected even if the cost becomes a mere transfer

from the responding dealers to the customer (Appendix D). The key force is dealers’ strategic

avoidance of competition, arising from the cost and enabled by the dealers’ ability to ignore

the RFQ.

14Examples include Glebkin et al. (2022), Yueshen (2017), and papers in the consumer search literature.
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3 Equilibrium

This section establishes that (1) the customer contacts only n∗ = 2 dealers in the unique

symmetric subgame perfect equilibrium (Theorem 1), (2) all subgame perfect equilibria are

payoff equivalent (Theorem 2 Part (i)), and (3) with a mild tie-breaking rule, the customer

always contacts n∗ = 2 dealers in any subgame perfect equilibrium (Theorem 2 Part (ii)).

3.1 Symmetric subgame perfect equilibrium

Theorem 1. The benchmark model has a unique symmetric subgame perfect equilibrium

(n∗, i∗, a∗, F ∗), where

n∗ = 2, i∗ satisfies (1),

a∗n =


1−

( c
v

) 1
n−1

if n > 1,

1 if n = 1,

F ∗
n(p) =


1−

(
c
p

) 1
n−1

1−
(
c
v

) 1
n−1

, and supp F ∗
n = [c, v] if n > 1,

1p≥v if n = 1.

Theorem 1 shows that it is strictly optimal for the customer to contact only n∗ = 2

dealers in the unique symmetric subgame perfect equilibrium. Next, I proceed with backward

induction to solve for the symmetric equilibrium.

In Stage 3, the customer’s dealer choice i∗ is directly given by her optimality condition

(1).

In Stage 2, if the customer contacts n = 1 dealer, then it would be strictly optimal for the

dealer to respond with probability a∗n = 1 and offer the monopoly price v deterministically,

F ∗
n(p) = 1p≥v. When the customer contacts n > 1 dealers, the price distribution F ∗

n cannot

have any atom: Given that responding with any non-positive price is strictly dominated
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by not responding, then F ∗
n(0) = 0; If F ∗

n had an atom at some price p0 > 0, slightly

undercutting it by offering a price p0− ε would yield a strictly higher payoff than offering p0

for at least one dealer.15 Given that responding with any price higher than the customer’s

value v is strictly worse than not responding, then the upper bound p̄ := sup (supp F ∗
n) of a

dealer’s price support is at most v, p̄ ≤ v. When a dealer offers a price p ∈ supp F ∗
n within

its support that arbitrarily approaches its upper bound p̄, it gets to trade with the customer

if and only if no other dealers respond, an event that occurs with probability (1 − a∗n)
n−1.

Thus, the dealer’s expected trading profit approaches p̄(1− a∗n)
n−1. If the dealer offers price

v, its expected trading profit equals v(1 − a∗n)
n−1. The dealer’s optimality condition (2)

implies that p̄ = v.

The dealer’s individual rationality (3) implies that its expected trading profit upon re-

sponding is no lower than its response cost, v(1 − a∗n)
n−1 ≥ c. Hence, a∗n < 1. The dealer’s

indifference condition (4) is equivalent to

p [1− a∗nF
∗
n(p)]

n−1 = c, ∀p ∈ supp F ∗
n . (6)

Setting p = v in the above equation yields

v(1− a∗n)
n−1 = c ⇐⇒ a∗n = 1−

( c
v

) 1
n−1

. (7)

15When every dealer offers the same price p0, at least one dealer trades with the customer with a probability
of less than 1 regardless of how the customer breaks her tie. Then, that dealer is strictly better off offering
the slightly lower price p0 − ε to undercut the other dealers.
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Then, equation (6) uniquely determines the price distribution F ∗
n ,

F ∗
n(p) =

1−
(

c
p

) 1
n−1

1−
(
c
v

) 1
n−1

and supp F ∗
n = [c, v] . (8)

Proposition 1 (Dealers’ strategic avoidance of competition). (i) The probability a∗n that

each dealer responds is strictly decreasing in the number of dealers n > 1 contacted by the

customer. (ii) Conditional on responding, each dealer’s price distribution F ∗
n′ first-order

stochastically dominates F ∗
n for n′ > n > 1, F ∗

n′ ≻(1) F
∗
n . (iii) The distribution G∗

n′ of the

dealers’ best overall price offer p = minj=1,...,n pj first-order stochastically dominates G∗
n for

n′ > n > 1, G∗
n′ ≻(1) G

∗
n.

When the customer contacts one more dealer, dealers strategically avoid competition by

(i) responding with a lower probability, a∗n+1 < a∗n, and (ii) offering strictly less competitive

prices when responding, F ∗
n+1 ≻(1) F ∗

n . Dealers’ strategic avoidance of competition more

than offsets the benefit to the customer from potentially receiving one more quote, and

results in (iii) a strictly less competitive best overall price for the customer, G∗
n+1 ≻(1) G

∗
n.

That the dealers can endogenously decide whether to respond is crucial for enabling their

strategic avoidance of competition. If the response probability were exogenously fixed at

some constant α instead of varying endogenously with the number of dealers n contacted

by the customer, Appendix A shows that the dealer’s price distribution Fα
n would become

stochastically smaller (that is, more competitive) if the customer contacts a larger number

n of dealers. So would the distribution Gα
n of the dealers’ best overall price. With such an

exogenous response probability, the customer would contact as many dealers as is feasible in

equilibrium (Proposition 5).

Since the distribution G∗
n of the dealers’ best overall price is a sufficient statistic for the
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customer’s choice of the number n in Stage 1, Proposition 1’s ultimate implication is its Part

(iii). Does Part (iii) rely on any parametric assumption? No. To show this, I derive Part

(iii) from a dealer’s individual rationality without resorting to the closed-form solutions (7)

and (8) for a∗n and F ∗
n . When a dealer j offers a given price p in its price support, its expected

trading profit

γ∗
n(p)︸ ︷︷ ︸

P(Dealer j wins the trade when offering a given price p)

× p︸︷︷︸
the trade’s profit

equals its response cost c. Then, P (Dealer j wins the trade when offering a given price p)

should remain constant when the customer contacts one more dealer, γ∗
n+1(p) = γ∗

n(p).

Dealer j wins the trade if and only if no other dealer offers a price lower than p. Then,

γ∗
n(p) = [θ∗n(p)]

n−1, where

θ∗n(p) := P (a given dealer does not offer a price lower than p) .

Because the probability that j wins the trade remains constant, [θ∗n+1(p)]
n = [θ∗n(p)]

n−1.

Thus, P (a given dealer does not offer a price lower than p) should rise, θ∗n+1(p) > θ∗n(p).

Hence, P (no dealer offers a price lower than p) should rise too, [θ∗n+1(p)]
n+1 > [θ∗n(p)]

n. There-

fore, the dealers’ best overall price becomes stochastically larger, G∗
n+1 ≻(1) G

∗
n.

Therefore, Proposition 1 provides the basis for the customer to contact fewer dealers in

Stage 1. I now turn to solve the customer’s problem in Stage 1.

In Stage 1, the customer’s payoff is 0 upon contacting n = 1 dealer. If the customer

contacts n > 1 dealers, the best price offer p = minj=1,...,n pj for her becomes first-order

stochastically higher when she contacts more dealers (Proposition 1). Therefore, it is strictly
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optimal for the customer to contact n∗ = 2 dealers. This establishes Theorem 1.

Theorem 1 continues to hold in the exact same form when the customer is risk-averse: In

Stage 3, the customer continues to trade with the dealer who offers the lowest price if that

price is less than the customer’s reservation value v. Thus, in Stage 2, the dealers’ subgame

remains unaffected, and the dealers continue to follow the equilibrium strategy (a∗, F ∗). In

Stage 1, given that the stochastic dominance G∗
2 ≺(1) G

∗
3 ≺(1) . . . is first-order, risk aversion

does not affect the customer’s choice of the number n. Therefore, a risk-averse customer

continues to contact n∗ = 2 dealers in the unique symmetric subgame perfect equilibrium.

Theorem 1 also holds in the exact same form when dealers are risk-averse. Appendix E

shows that the above intuition for Proposition 1 (dealers’ strategic avoidance of competition)

remains valid when dealers are risk-averse and pushes the customer to contact n∗ = 2 dealers.

Appendix E then formally solves for the equilibrium.

Responding to multiple RFQs that occur within a short period of time may provide some

economies of scale for a given dealer. Internet Appendix A solves an extension with three

sequential RFQs, where each dealer incurs a cost c only once upon responding to one or

more RFQs. This cost assumption captures the extreme version of economies of scale. In

equilibrium, the customer in each RFQ continues to contact two dealers. Proposition A.1

establishes the unique symmetric Markov perfect equilibrium of this extension.

3.2 Any subgame perfect equilibrium

The above intuition for Proposition 1 (dealers’ strategic avoidance of competition) re-

quires symmetry in the dealers’ strategies. This section uncovers the underlying economics,

which does not require the symmetry and generalizes Theorem 1 to any subgame perfect

equilibrium.
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There exist subgame perfect equilibria other than the symmetric one. For example,

one can modify the symmetric equilibrium as follows to obtain another subgame perfect

equilibrium: When the customer contacts n > 2 dealers, one can let n − 2 of them not

respond, and let the other two respond with probability a∗2 and offer the price distribution

F ∗
2 conditional on responding. In such an equilibrium, the customer still earns the same

ex-ante payoff of π∗
2 as in the symmetric equilibrium, where

π∗
n := v − EG∗

n
(p ∧ v). (9)

Generalizing this example, the next result establishes that (i) all subgame perfect equilibria

are payoff equivalent, and the customer’s ex-ante payoff equals π∗
2 across all subgame perfect

equilibria, and (ii) subject to a mild tie-breaking rule, the customer always contacts n∗ = 2

dealers in any subgame perfect equilibrium.

Theorem 2. (i) All subgame perfect equilibria are payoff equivalent. In any subgame perfect

equilibrium, the customer’s ex-ante payoff equals π∗
2, and all dealers’ ex-ante payoffs equal

0. (ii) If one imposes a tie-breaking rule that the customer contacts fewer dealers whenever

she is indifferent, then the customer always contacts n∗ = 2 dealers in any subgame perfect

equilibrium.

The proof, provided in Appendix B, generalizes that of Theorem 1. The underlying

economics—I call it response concentration—comes from the observation that it is more

cost-efficient to concentrate response probabilities among fewer dealers. To illustrate this

observation, I fix an arbitrary subgame perfect equilibrium. For a given number of contacted

dealers n, I let a∗1,n, . . . , a
∗
n,n be the n dealers’ equilibrium response probabilities. Then the

aggregate expected gain from trade is v[1− (1− a∗1,n) . . . (1− a∗n,n)]. That is, the aggregate
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gain depends on the individual response probabilities a∗1,n, . . . , a
∗
n,n only through the sufficient

statistic (1− a∗1,n) . . . (1− a∗n−1,n)(1− a∗n,n), which is the probability that no dealer responds

to the customer’s RFQ. Keeping this aggregate gain constant, one can reduce the expected

response cost c(a∗1,n + . . .+ a∗n−1,n + a∗n,n) by reducing one dealer’s response probability, say

a∗n,n, down to 0 and raising another dealer’s response probability, say a∗n−1,n, appropriately.

Specifically, the minimization problem

min a∗n−1,n + a∗n,n

subject to (1− a∗n−1,n)(1− a∗n,n) = constant

is solved when either a∗n−1,n = 0 or a∗n,n = 0. Therefore, it is more cost-efficient to shut down

one dealer and concentrate the response probabilities into the remaining dealers. Applying

this argument inductively, one obtains that it is more cost-efficient to let at most 2 dealers

respond with a positive probability.

When the customer contacts exactly 2 dealers, her expected payoff is shown to be equal

to the aggregate net payoff, which is π∗
2. Thus, in any subgame perfect equilibrium, the

customer’s ex-ante payoff always equals π∗
2, which she can achieve by contacting only 2

dealers.

I further exploit the cost efficiency of response concentration to generalize Theorem 1

with alternative platform designs. An assumption of the model is that the number n of

contacted dealers is disclosed to the n dealers, as is the case on SEFs. The next section

shows that no alternative design of information disclosure about the number n can improve

the customer’s payoff.
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4 Alternative Designs

In practice, many multi-dealer platforms (such as SEFs) disclose the number n of dealers

contacted in a customer RFQ to those n dealers (Riggs et al., 2020), perhaps as a way to

motivate the dealers to offer more competitive prices. Proposition 1 shows that upon observ-

ing a larger number n of contacted dealers, the dealers’ strategic avoidance of competition

more than offsets the benefit to the customer from potentially receiving more quotes, leading

to a less competitive best overall price for the customer. This section examines alternative

platform designs of the information disclosure about the number n. I first consider the other

extreme case where the platform designer does not disclose any information about the num-

ber n. Then, I search for the optimal design of information disclosure that maximizes price

competitiveness. Overall, no alternative design of information disclosure can improve the

customer’s payoff above that of her status quo, where the number of contacted dealers n is

fully disclosed.

4.1 No disclosure

I modify the benchmark model as follows: (1) The dealers cannot observe how many

other dealers are contacted by the customer. (2) The customer can contact at most n̄

dealers (n̄ > 2), because it turns out that the customer will contact as many dealers as is

feasible in equilibrium. (3) I assume the tie-breaking rule that the customer contacts fewer

dealers whenever she is indifferent. (4) To account for imperfect information as the number n

becomes unobservable, I use the solution concept of symmetric perfect Bayesian equilibrium

(PBE), where all dealers employ the same strategy (aunobs, F unobs). I do not impose any

restriction on off-path beliefs. The remaining setup is identical to the benchmark model in
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Section 2.

With the number of contacted dealers n being unobservable, a dealer’s response strategy

(aunobs, F unobs) can no longer depend on the number n. There are two symmetric PBE, one

of which is degenerate in that the customer submits no RFQ at all. I first solve for the

unique non-degenerate equilibrium, then spell out the degenerate one.

Formally, a symmetric PBE is non-degenerate if the customer submits an RFQ with a

positive probability. In a non-degenerate equilibrium, the customer’s ex-ante payoff must

be strictly positive. Thus, the dealers must respond and offer prices strictly less than the

monopoly price v with a positive probability, aunobs > 0 and F unobs(v−) > 0. Hence, it is

strictly optimal for the customer to contact as many dealers as is feasible, nunobs = n̄. In

equilibrium, the dealers have the correct conjecture about the customer’s equilibrium choice,

nunobs = n̄, leading to the following equilibrium result.

Proposition 2. I consider the modified model where the number of contacted dealers is not

disclosed. (i) There exists a unique non-degenerate symmetric PBE, (nunobs, i∗, aunobs, F unobs),

where i∗ is the same as in Theorem 1, and

nunobs = n̄, aunobs = a∗n̄, F unobs = F ∗
n̄ .

A dealer believes that the customer contacted n̄ dealers whenever it receives an RFQ. (ii)

Under (nunobs, i∗, aunobs, F unobs), the customer’s ex-ante payoff is strictly lower than her status

quo payoff π∗
2 given by (9) wherein her number of contacted dealers, n, is fully disclosed.

Once her number n becomes undisclosed, the customer can no longer commit to contact

fewer than n̄ dealers, and thereby receives a lower equilibrium payoff. Specifically, the

customer’s equilibrium payoff becomes π∗
n̄, which is what she would have earned if she had
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contacted n = n̄ dealers in the benchmark model. This payoff is strictly less than the

customer’s equilibrium payoff π∗
2 in the benchmark model where she contacts 2 dealers in

equilibrium, π∗
n̄ < π∗

2. That is, the customer receives a worse overall price and a lower

equilibrium payoff despite her contacting more dealers.

In the U.S. corporate bond market, MarketAxess does not disclose customers’ number of

contacted dealers by default; voluntary disclosure is ineffectual due to the platform’s lack of

detailed transparency (i.e. dealers cannot determine whether a customer has selected Open

Trading, as it would merely count as one additional contacted participant). Consistent

with Proposition 2, a customer contacts more than 25 dealers in an RFQ, on average, and

dealers’ response rate is only around 25% (Hendershott and Madhavan, 2015, Table VI). In

comparison, the response rate on SEFs is almost 90% (Riggs et al., 2020, Table 3). To jointly

explain these numbers, a rough computation based the relationship 1 − (c/v)1/(n−1) = a∗n

estimates that the cost-to-value ratios c/v that I would need for SEFs and MarketAxess are

nearly identical, (1 − 90%)4−1 ≈ (1 − 25%)25−1 ≈ 10−3. The trading cost in basis points

is also much higher on MarketAxess than on SEFs, although such a comparison may be

confounded by other factors, such as the lower liquidity of corporate bonds relative to index

credit default swaps.

Next, I spell out the degenerate equilibrium:

� In Stage 1, the customer submits no RFQ at all;

� In Stage 2, a dealer believes it is the only dealer contacted by the customer whenever it

receives an RFQ. The dealer responds with probability 1 and offers the monopoly price v

deterministically;

� In Stage 3, the customer’s dealer choice remains to be i∗, as given by her optimality
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condition (1), if the customer had received any quote(s).

It is easy to verify that the above constitutes a symmetric PBE. Proposition 7 (Appendix B)

shows that there exists no other symmetric PBE.

4.2 Optimal information disclosure

Although making the number n of contacted dealers undisclosed does not lead to more

competitive prices, it does cause the customer to contact more dealers in equilibrium. One

may wonder whether there exists an alternative information design with partial disclosure

that could reach the sweet spot—where the customer contacts a high enough number of

dealers and the dealers engage in a sufficient level of competition—and make the dealers’

best overall price more competitive than the status quo of full disclosure. Unfortunately, the

answer is no.

Formally, a design of information disclosure (S, µ) consists of a countable realization

space S and a family of distributions {µ(·|n)}n∈Z++ over the space S. The design of in-

formation disclosure is common knowledge among all market participants. Here are three

examples of information design.

� Example 1 (full disclosure): When S = Z++ and µ(s|n) = 1{s=n}, ∀s ∈ S, the information

design fully discloses the number n.

� Example 2 (no disclosure): When S is a singleton, the information design discloses nothing

about the number n.

� Example 3 (partial disclosure): When S = {odd, even} and µ(odd|n) = 1{n is odd}, the

information design discloses only whether n is odd or even.

28



I generalize the benchmark model to allow for any arbitrary design of information disclo-

sure (S, µ). In Stage 1, the customer chooses the number n of dealers to contact. A signal

s is drawn from the distribution µ(·|n) and is observed by the contacted dealers, who then

choose whether to respond and which price to offer in Stage 2. In Stage 3, the customer

chooses whether and against which dealer’s price to trade. As in the benchmark model, I do

not impose any tie-breaking rule in the case of indifference. All agents are risk-neutral. The

solution concept is symmetric PBE, where all dealers employ the same strategy (aµ, F µ). I

do not impose any restriction on off-path beliefs. Figure 2 summarizes the timeline of the

generalized model.

The customer chooses n.
A signal s ∼ µ(·|n).

Stage 1

Observing s, dealers
choose whether to respond
and what prices to offer.

Stage 2

Given the responses, the
customer chooses to trade
with dealer i ∈ {0, . . . , n}.

Stage 3

Figure 2: Timeline: Dealers now observe a signal s instead of the number n directly.

The way that information is optimally disclosed is identical to that of Bayesian Persuation

(Kamenica and Gentzkow, 2011) in that the platform designer sends a signal about the state

of the world n, and the contacted dealers receive the signal. There is one fundamental

distinction: Here, the receivers’ prior belief about the state of the world n is endogenously

determined by the customer’s equilibrium choice. In Bayesian Persuasion, the receiver’s prior

belief about the state of the world is exogenously given.

In my setup, fully disclosing the state of the world n is optimal.

Theorem 3. Given any design of information disclosure (S, µ), the customer’s ex-ante pay-

off in any symmetric PBE is less than or equal to her status quo payoff π∗
2 given by (9).
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Although the customer contacts only two dealers when the number of her contacted

dealers is fully disclosed, no alternative design of information disclosure can improve her

payoff above this outcome. Theorem 3 establishes the limits of multi-dealer platforms in

promoting price competition.

The proof of Theorem 3, provided in Appendix B, generalizes that of Theorem 1. The

underlying economics again comes from the cost savings of response concentration. Specif-

ically, conditional on any signal realization s ∈ S that is drawn with a positive probability

under a given equilibrium, I let χs(n) be the posterior probability that the customer con-

tacted n dealers. The conditional expectations of the aggregate gain from trade and the

aggregate response cost simply average the gain and the cost across all on-path choices n

with their respective posterior probabilities χs(n). Given each on-path choice n ≥ 2, it is

more cost-efficient to concentrate response probabilities among fewer dealers. Taking the

expectations across all on-path choices n naturally preserves this property of cost savings.

5 Empirical Predictions

The benchmark model in Section 2 can be easily extended to include an order size q

and to yield more testable predictions. These predictions are largely consistent with facts

documented in the literature.

I extend the benchmark model as follows: In Stage 1, a customer seeking to buy q units

of the asset chooses a number n of ex-ante identical dealers to contact in an RFQ. The order

size q is an exogenous parameter and thus is common knowledge among market participants.

Stages 2 and 3 remain identical to those in the benchmark model. To ensure a positive net

surplus from trade, I assume that c < vq.
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Proposition 3. The extended model with an order size q has a unique symmetric subgame

perfect equilibrium (n∗, i∗, aq, F q), where n∗ and i∗ are the same as in Theorem 1, and

aqn =


1−

(
c

vq

) 1
n−1

if n > 1,

1 if n = 1,

F q
n(p) =


1−

(
c
pq

) 1
n−1

1−
(

c
vq

) 1
n−1

, and supp F q
n =

[
c

q
, v

]
if n > 1,

1p≥v if n = 1.

Compared to Theorem 1, the customer’s equilibrium strategy (n∗, i∗) remains unchanged.

The only difference lies in the expressions of the dealer’s equilibrium strategy (aqn, F
q
n) in that

the cost c is normalized by the quantity q and becomes the per-unit cost c/q. This difference

arises from the fact that the dealer’s indifference condition (6) becomes

pq [1− aqnF
q
n(p)]

n−1 = c, ∀p ∈ supp F q
n .

The remaining proof is otherwise identical to that of Theorem 1.

Based on the above equilibrium result, the next proposition provides testable predic-

tions on a dealer’s response probability and price distribution. I write aq,v2 for the response

probability aq2, and F q,v
2 for the price distribution F q

2 , to state the effects of the value v.

Proposition 4. (i) The equilibrium response probability aq,v2 is strictly increasing in order

size q and value v. (ii) Conditional on responding, each dealer’s equilibrium price distribution

F q,v
2 becomes first-order stochastically smaller with a larger size q or a smaller value v,

F q,v
2 ≻(1) F

q′,v
2 for q < q′ and F q,v′

2 ≻(1) F
q,v
2 for v < v′.

On SEFs for index credit default swaps, Riggs et al. (2020) documents patterns that
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are largely consistent with the predictions of Propositions 1 and 4. Specifically, they find

that a dealer’s likelihood of responding to an RFQ decreases in the number of contacted

dealers (Proposition 1 Part (i)) and increases in notional quantity (Proposition 4 Part (i)).

A customer’s RFQ is more likely to result in an actual trade if the order size is larger or

nonstandard, which is consistent with the interpretation that those orders imply larger gains

from trade between customers and dealers (Proposition 4 Part (i)). Conditional on dealer(s)

responding to an RFQ, they find that dealers’ quoted spreads and customers’ transaction

costs become larger if more dealers are contacted in the RFQ (Proposition 1 Part (ii)) or

if order sizes are nonstandard (Proposition 4 Part (ii)), although the effects are mild. For

larger order sizes, however, they find that dealers’ quoted spreads are slightly larger by an

economically and statistically insignificant magnitude.

6 Conclusion

On many important multi-dealer platforms such as SEFs, customers mostly request

quotes from very few dealers. I build a model of multi-dealer platforms, where a customer

can simultaneously request quotes from any number of dealers, and each dealer strategi-

cally chooses to respond to or ignore the request. In this otherwise standard model of price

competition, letting dealers endogenously decide whether to respond overturns the compet-

itiveness of the dealers’ best overall price. If the customer contacts more dealers, every

contacted dealer strategically avoids competition by (i) responding with a lower probability,

and (ii) offering a stochastically worse price when it responds. Dealers’ strategic avoidance

of competition more than offsets the benefit to the customer from potentially receiving more

quotes, and results in (iii) a strictly less competitive best overall price for the customer. The
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more general underlying economics is “response concentration”: It is more cost-efficient to

concentrate response probabilities among fewer dealers. In equilibrium, it is strictly optimal

for the customer to contact only two dealers. More generally, no design of information dis-

closure about the number of contacted dealers can improve the customer’s payoff above this

outcome. In this sense, multi-dealer platforms are limited in their ability to promote price

competition.
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Appendices

A Exogenous Availability Constraint

The dealers’ ability to endogenously decide whether to respond is a driving feature of the

model. To illustrate its role, this appendix considers two variants of the model that include

an exogenous availability constraint.

Variant A1

Variant A1 differs from the benchmark model in two respects: (1) Instead of deciding

whether to respond at a cost, each contacted dealer is available with an exogenously fixed

probability α < 1 and responds whenever available, and (2) the customer can contact at

most n̄ dealers (n̄ > 1), because it turns out that the customer will contact as many dealers

as is feasible in equilibrium. Variant A1 is otherwise identical to the benchmark model. That

is, this variant differs from the benchmark model in that the dealers’ exogenous availability

constraint replaces their ability to endogenously decide whether to respond.

With such an exogenous response probability α, the next proposition establishes that each

dealer’s pricing becomes more competitive when the customer contacts more dealers (as in

a standard model of price competition), and the customer contacts n̄ dealers in equilibrium.

Proposition 5. Variant A1 has a unique symmetric subgame perfect equilibrium (nα, i∗, Fα),

where i∗ is the same as in Theorem 1, and

nα = n̄, Fα
n (p) =


1− (1− α)

(
v
p

) 1
n−1

α
, and supp Fα

n =
[
v(1− α)n−1, v

]
if n > 1,

1p≥v if n = 1.
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In particular, each dealer’s price distribution Fα
n becomes first-order stochastically smaller as

n increases. When n̄ → ∞, the equilibrium price distribution Fα
n̄ converges in distribution

to the competitive limit 0.

Proof. The backward induction for Variant A1 is similar to that for the benchmark model.

The only change is that a contacted dealer no longer needs to be indifferent between re-

sponding or not, as it now responds with an exogenous probability instead of endogenously

deciding whether to respond. That is, the indifference condition (4) need not hold.

In Stage 3, the customer’s dealer choice remains to be i∗, as given by her optimality

condition (1).

In Stage 2, if the customer contacts n = 1 dealer, then it would be strictly optimal for

the dealer to offer the monopoly price v deterministically whenever the dealer is available,

Fα
n (p) = 1p≥v. When the customer contacts n > 1 dealers, the price distribution Fα

n cannot

have an atom at any positive price: If Fα
n had an atom at some price p0 > 0, slightly

undercutting it by offering a price p0 − ε would yield a strictly higher payoff than offering

p0 for at least one dealer. When a dealer offers a price p ∈ supp Fα
n within its support that

arbitrarily approaches its support’s upper bound p̃ := sup (supp Fα
n ), the dealer’s expected

trading profit is at most p̃1p̃≤v (1 − α)n−1. If the dealer offers price v, its expected trading

profit is at least v(1− α)n−1. The dealer’s optimality condition (2) implies that p̃ = v.

Then, (2) is equivalent to

p [1− αFα
n (p)]

n−1 = v (1− α)n−1 , ∀p ∈ supp Fα
n

⇐⇒ Fα
n (p) =

1− (1− α)
(

v
p

) 1
n−1

α
, and supp Fα

n =
[
v(1− α)n−1, v

]
.

In Stage 1, the customer’s payoff is 0 upon contacting n = 1 dealer. If n > 1, the
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distribution Gα
n of the dealers’ best overall price p = minj=1,...,n pj is given by

1−Gα
n(p) = [1− αFα

n (p)]
n , ∀p ∈

[
v(1− α)n−1, v

]
.

If n increases, Fα
n (p) strictly increases, and thus 1 − Gα

n(p) strictly decreases. That is, the

dealers’ best overall price p = minj=1,...,n pj becomes first-order stochastically smaller when

the customer contacts more dealers. Therefore, the customer’s unique optimal choice is

nα = n̄.

Variant A2

Variant A2 differs from Variant A1 in two respects: (1) Each available dealer can endoge-

nously decide whether to respond at a cost c, which is assumed to be less than v (c < v) so

that there is a positive net surplus from trade, while a non-available dealer simply does not

respond. (2) The customer could contact any arbitrary number of dealers. Variant A2 is

otherwise identical to Variant A1. That is, Variant A2 reintroduces dealers’ ability to ignore

the RFQ to Variant A1.

This feature restores an interior solution for the equilibrium number of contacted dealers.

Proposition 6. Variant A2 has a unique symmetric subgame perfect equilibrium (nα,c, i∗,

aα,c, Fα,c), where i∗ is the same as in Theorem 1, and

nα,c = m or m− 1, where m is uniquely determined by a∗m−1 > α ≥ a∗m,

aα,cn =


1 if n < m,

a∗n
α

if n ≥ m,
Fα,c
n =


Fα
n if n < m,

F ∗
n if n ≥ m.

When the contacted dealers are able to endogenously decide whether to respond, the
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exogenous availability constraint becomes non-binding when a∗n ≤ α, because each dealer

would respond with a probability a∗n that is lower than α anyway. Since the endogenous

response probability a∗n decreases to 0 as n increases, it declines below the exogenous prob-

ability α when n is above a certain threshold m. When n ≥ m, the exogenous availability

constraint becomes irrelevant. Thus, the dealers behave as in the benchmark model of Sec-

tion 2: Each dealer’s effective response probability remains at αaα,cn = a∗n, and its price

distribution remains at Fα,c
n = F ∗

n . Hence, the customer strictly prefers to contact fewer

dealers in this range. When n < m, the exogenous availability constraint is binding while

the dealers’ ability to strategically ignore the RFQ becomes irrelevant. Thus, the dealers

behave as in Variant A1. Hence, the customer strictly prefers to contact more dealers in this

range. Overall, the customer’s optimal choice is nα,c = m or m− 1, depending on how close

the two probabilities a∗m and α are when a∗m declines below α.

The backward induction for Variant A2 is similar to that for the benchmark model. The

only change is that the dealers need not be indifferent between responding or not when the

exogenous availability constraint is strictly binding. That is, the indifference condition (4)

need not hold when n < m. I do not repeat the formal proof.

B Proofs

Proof of Theorem 1. The proof is given immediately after Theorem 1.

Proof of Proposition 1. Part (i): Since c < v, then (c/v)1/(n−1) is strictly increasing in

n. Thus, the probability a∗n is strictly decreasing in n.
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Part (ii): Fixing any p ∈ [c, v], I let c/p = η and c/v = δ. Then, δ < η < 1 and

lnF ∗
n(p) = ln

(
1− η

1
n−1

)
− ln

(
1− δ

1
n−1

)
.

It suffices to show that lnF ∗
n(p) is strictly decreasing in n > 1. I view n as a continuous

variable and take the partial derivative of lnF ∗
n(p) with respect to n to obtain

∂

∂n
lnF ∗

n(p) =
1

n− 1

[
η̃ ln(η̃)

1− η̃
− δ̃ ln(δ̃)

1− δ̃

]
,

where δ̃ := δ1/(n−1) < η1/(n−1) =: η̃. Since the function x 7→ (x lnx)/(1 − x) is strictly

decreasing in x ∈ (0, 1), then ∂
∂n

lnF ∗
n(p) < 0. Hence for any p ∈ [c, v], F ∗

n(p) is strictly

decreasing in n > 1. Therefore, F ∗
n′ ≻(1) F

∗
n for n′ > n > 1.

Part (iii): If the customer contacts n > 1 dealers, the distribution G∗
n of the dealers’ best

price offer p = minj=1,...,n pj is given by

1−G∗
n(p) = [1− a∗nF

∗
n(p)]

n =

(
c

p

) n
n−1

, ∀p ∈ [c, v].

If n increases, 1−G∗
n(p) strictly increases. Therefore, G∗

n′ ≻(1) G
∗
n for n′ > n > 1.

The next two lemmas are useful to prove Theorem 2.

Lemma 1. Given a price p0, after the customer contacts any number n of dealers, at most

one contacted dealer’s price distribution can have an atom at price p0 in any subgame perfect

equilibrium of the benchmark model.

Proof. I suppose that two price distributions F ∗
j,n and F ∗

j′,n have an atom at p0. Since

dealer j and j′ must earn strictly positive expected trading profits when offering price p0 in
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compensation for their response cost, then either j or j′ is strictly better off undercutting

by offering some price p0− ε. This contradicts the optimality of the price p0 for dealer j and

j′. Lemma 1 follows.

Lemma 2. Given a contacted dealer j, if there exits some price p0 < v and ε > 0 such that

(p0, p0 + ε) ∩ supp F ∗
j′,n = ∅ for any other contacted dealer j′ ̸= j, then the price p0 cannot

be in the price support of dealer j, p0 /∈ supp F ∗
j,n.

Proof. I suppose that the condition of Lemma 2 holds.

Step 1 : By offering any price p ∈ (p0, p0 + ε), dealer j gets to trade with the customer

with a constant probability. Conditional on such a trade, the trading profit earned by j

equals the price p, which is strictly increasing in p. Thus, the expected trading profit earned

by j is either 0, which is insufficient to cover the response cost c, or strictly increasing in

p ∈ (p0, p0 + ε). Hence, no price p ∈ (p0, p0 + ε) can be in the price support of dealer j,

p ̸∈ supp F ∗
j,n, ∀p ∈ (p0, p0 + ε).

Step 2 : If the distribution F ∗
j,n has an atom at p0, no other price distribution F ∗

j′,n can

have an atom at p0 (Lemma 1). Then, dealer j is strictly worse off offering price p0 than

some price p ∈ (p0, p0 + ε). Hence, the distribution F ∗
j,n cannot have an atom at p = p0. By

the same argument, any other price distribution F ∗
j′,n cannot have an atom at p = p0 either.

Step 3 : When dealer j offers a price p0 − ε′ that arbitrarily approaches the price p0 from

below, j either trades with the customer with probability 0 or is strictly better off offering

some price p ∈ (p0, p0 + ε), as no other price distributions have an atom at p0. Hence, for
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some ε′ > 0, no price p ∈ (p0, p0 − ε′) can be in the price support of dealer j,

p ̸∈ supp F ∗
j,n, ∀p ∈ (p0, p0 − ε′).

The conclusions of Steps 1-3 together imply that p0 cannot be in the price support of dealer

j, p0 /∈ supp F ∗
j,n.

Proof of Theorem 2. I fix an arbitrary subgame perfect equilibrium. If the customer

contacts n = 1 dealer, the dealer would respond with probability 1 and offer the monopoly

price v deterministically. Thus, the customer’s payoff is 0. If the customer contacts some

given number n ≥ 2 of dealers, I show that the customer’s expected payoff does not exceed

π∗
2.

Given a contacted dealer j, I let p̄j be the upper bound of the dealer’s price support, and

let p̄−j be the highest upper bound of the other contacted dealers’ price supports:

p̄j := supp F ∗
j,n, p̄−j := max

j′ ̸=j
p̄j′ .

If a dealer j′ responds with probability 0, then p̄j′ := −∞ by convention. If p̄−j < v, then

Lemma 2 implies that p̄−j ̸∈ supp F ∗
j,n. Hence, Lemma 2 further implies that p̄−j ̸∈ supp F ∗

j′,n

for any other contacted dealer j′ ̸= j. Then, p̄−j cannot be the upper bound of any dealer’s

price support, which contradicts the definition of p̄−j. Thus, p̄−j = v for any contacted

dealer j. Hence, at least two contacted dealers’ price supports have an upper bound of v.

At most one contacted dealer can have an atom at v in its price support (Lemma 1).

Without loss of generality, I let dealer 1 be such that p̄1 = v and all other dealers do not have

an atom at v. When dealer 1 offers a price p ∈ supp F ∗
1,n within its support that arbitrarily
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approaches v, the dealer’s expected trading profit approaches v
(
1− a∗2,n

)
. . .

(
1− a∗n,n

)
. This

limiting profit must be at least c,

v
(
1− a∗2,n

)
. . .

(
1− a∗n,n

)
≥ c ⇐⇒

(
1− a∗2,n

)
. . .

(
1− a∗n,n

)
≥ c

v
. (10)

Thus, a∗j,n < 1 for dealer j = 2, . . . , n. Hence, all those dealers’ expected payoffs must equal

0.

It then follows that the customer’s expected payoff does not exceed π∗
2,

v

[
1−

n∏
j=1

(
1− a∗j,n

)]
− c

n∑
j=1

a∗j,n︸ ︷︷ ︸
aggregate expected payoff

−

[
v

n∏
j′=2

(
1− a∗j′,n

)
− c

]
a∗1,n︸ ︷︷ ︸

expected payoff of dealer 1

= v
[
1−

(
1− a∗2,n

)
. . .

(
1− a∗n,n

)]
− c

[
a∗2,n + . . .+ a∗n,n

]
≤ v

[
1−

(
1− a∗2,n

)
. . .

(
1− a∗n,n

)]
− c

[
1−

(
1− a∗2,n

)
. . .

(
1− a∗n,n

)]
(11)

≤ v
[
1− c

v

]
− c

[
1− c

v

]
(following from (10)) (12)

= v
[
1− (1− a∗2)

2]− c [a∗2 + a∗2] = π∗
2.

Inequality (11) above follows from x+ y ≤ xy + 1 for 0 ≤ x, y ≤ 1 and an induction over n:

a∗2,n + . . .+ a∗n,n

= n− 1−
[(
1− a∗2,n

)
+ . . .+

(
1− a∗n−2,n

)
+
(
1− a∗n−1,n

)
+
(
1− a∗n,n

)]
≥ n− 1−

[(
1− a∗2,n

)
+ . . .+

(
1− a∗n−2,n

)
+
(
1− a∗n−1,n

) (
1− a∗n,n

)
+ 1

]
≥ . . .

≥ n− 1−
[(
1− a∗2,n

)
. . .

(
1− a∗n,n

)
+ n− 2

]
= 1−

(
1− a∗2,n

)
. . .

(
1− a∗n,n

)
.
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In the special case where the customer contacts 2 dealers, I show that the customer’s

expected payoff equals π∗
2. First, inequality (11) becomes an equality. Further, Lemma 2

implies that both contacted dealers’ price supports must share the same lower bound p ≥ c.

If p > c, then undercutting by offering some price p− ε would yield a strictly positive payoff

to dealer 2. Thus, p = c. When dealer 1 offers a price p ∈ supp F ∗
1,2 within its support

that arbitrarily approaches c, the dealer’s limiting payoff is non-positive. Thus, the expected

payoff of dealer 1 must also be 0. Thus, (10) must hold as an equality, 1−a∗2,2 = c/v. Hence,

(12) becomes an equality too.

Then, the customer’s ex-ante payoff equals π∗
2, which she can achieve by contacting only

2 dealers. Thus, for any n that is chosen by the customer with a strictly positive probability

under the equilibrium, (12) must hold as an equality. So must (10), which implies that the

ex-ante payoff of dealer 1 must be 0. Hence, all dealers’ ex-ante payoffs equal 0. Theorem 2

follows.

Proof of Proposition 2. The proof is given immediately before Proposition 2.

Proposition 7. I consider the modified model where the number of contacted dealers is

undisclosed. All symmetric PBE are provided in Section 4.1, and there exists no other

symmetric PBE.

Proof. Proposition 2 establishes the unique non-degenerate symmetric PBE. It is easy

to verify that the other candidate degenerate equilibrium provided in Section 4.1 indeed

constitutes a PBE. It suffices to show that there exists no other degenerate symmetric PBE.

In a given degenerate symmetric PBE, the customer’s ex-ante payoff is 0. Then, every

dealer must offer the monopoly price v deterministically whenever it receives an RFQ and

decides to respond. Thus, upon receiving an RFQ and under any belief about how many
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other dealers are contacted by the customer, a given dealer j can secure a strictly positive

payoff by offering some price p ∈ (c, v). Hence, dealer j optimally responds with probability

1 and offers the monopoly price v deterministically. For such a response strategy to be

optimal for dealer j against other dealers’ response strategy, dealer j has to believe that the

customer contacted no other dealers. Proposition 7 follows.

Proof of Theorem 3. Given a design of information disclosure (S, µ) and a symmetric

PBE, I fix any signal realization s ∈ S that is drawn with a positive probability under the

PBE. That is,
∑∞

n=1 µ(s|n)ξ(n) > 0, where ξ(n) is the prior probability that the customer

contacts n dealers under the PBE. It suffices to show that the customer’s expected payoff

conditional on the signal realization s does not exceed π∗
2.

I let χs denote a dealer’s posterior belief about the number n of contacted dealers, and let

(aµs , F
µ
s ) denote the dealer’s equilibrium strategy upon observing the signal s. If χs(n) = 1

for n = 1, then it would be strictly optimal for the dealer to respond with probability

1 and offer the monopoly price v deterministically. Thus, the customer’s expected payoff

conditional on the signal realization s equals 0. If χs(n) < 1 for n = 1, the price distribution

F µ
s cannot have any atom: Given that responding with any non-positive price is strictly

dominated by not responding, then F µ
s (0) = 0; If F µ

s had an atom at some price p0 > 0,

slightly undercutting it by offering a price p0 − ε would yield a strictly higher payoff than

offering p0 for at least one contacted dealer. Given that responding with any price higher

than the customer’s value v is strictly worse than not responding, then the upper bound

p̂ := sup (supp F µ
s ) of a dealer’s price support is at most v, p̂ ≤ v. When a dealer offers

a price p ∈ supp F µ
s within its support that arbitrarily approaches its upper bound p̂, the

dealer’s expected trading profit approaches p̂
∑

n≥1 χs(n) (1− aµs )
n−1. If the dealer offers

price v, its expected trading profit equals v
∑

n≥1 χs(n) (1− aµs )
n−1. The dealer’s optimality
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condition implies that p̂ = v. Then, the dealer’s individual rationality is given by

v
∑
n≥1

χs(n) (1− aµs )
n−1 ≥ c ⇐⇒

∑
n≥1

χs(n) (1− aµs )
n−1 ≥ c

v
. (13)

It then follows that the customer’s expected payoff conditional on the signal realization s

does not exceed

v

[
1−

∑
n≥1

χs(n) (1− aµs )
n

]
− c

∑
n≥1

χs(n)na
µ
s︸ ︷︷ ︸

aggregate conditional expected payoff

−

[
v
∑
n≥1

χs(n) (1− aµs )
n−1 − c

]
aµs︸ ︷︷ ︸

one dealer’s conditional expected payoff

= v

[
1−

∑
n≥1

χs(n) (1− aµs )
n−1

]
− c

∑
n≥1

χs(n)(n− 1)aµs

≤ v

[
1−

∑
n≥1

χs(n) (1− aµs )
n−1

]
− c

∑
n≥1

χs(n)
[
1− (1− aµs )

n−1]
≤ v

[
1− c

v

]
− c

[
1− c

v

]
(following from (13))

= π∗
2.

Proof of Proposition 3. The proof is given immediately after Proposition 3.

Proof of Proposition 4. Part (i): Given that c/(vq) is strictly decreasing in order size

q and value v, probability aq2 is thus strictly increasing in size q and value v.

Part (ii): Fixing any p ∈ [c/q, v],

1− F q
2 (p) =

c
p
− c

v

q − c
v

is strictly decreasing in size q and strictly increasing in value v. Therefore, F q
2 ≻(1) F

q′

2 for

q < q′, and F v′
2 ≻(1) F

v
2 for v < v′.
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C Heterogeneous Response Costs

The benchmark model in Section 2 can be easily extended to allow for heterogeneous

response costs across dealers. This appendix shows that the customer continues to contact

n∗ = 2 dealers in the extended model.

To the benchmark model in Section 2, I add a Stage 0 in which each dealer j privately

observes its response cost cj. The response costs are independently and identically distributed

with a CDF H whose support is within [0, v], cj
iid∼ H, H(0) = 0 and H(v−) = 1. The

remaining setup is identical to the benchmark model in Section 2.

Proposition 8. In any symmetric subgame perfect equilibrium of the extended model with

heterogeneous response costs, the customer contacts n∗ = 2 dealers. Upon observing the

customer’s choice of n, each dealer j responds with probability aHn (cj), which is a function of

its response cost cj,

aHn (cj) =



1 if n > 1 and cj < c∗,

0 if n > 1 and cj > c∗,

a∗n(c
∗)−H(c−j )

H(cj)−H(c−j )
if n > 1, cj = c∗, and H(cj) > H(c−j ),

1 if n = 1,

where c∗ ∈ (0, v) is uniquely determined by

v[1−H(c∗)]n−1 ≤ c∗ ≤ v[1−H(c∗−)]n−1,
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and a∗n(c
∗) has the same expression as a∗n given by (7) with cost c being replaced by c∗,

a∗n(c
∗) = 1−

(
c∗

v

) 1
n−1

.

When the dealer responds, its price distribution FH , unconditional on the realization of its

response cost, has the same expression as F ∗ given by (8) with cost c being replaced by c∗,

FH
n (p) =

1−
(

c∗

p

) 1
n−1

1−
(
c∗

v

) 1
n−1

, and supp FH
n = [c∗, v] .

Compared to Theorem 1, the only difference is how a dealer decides whether to respond

in equilibrium. Instead of mixing between responding or not, dealer j decides to respond

based on its response cost cj: Dealer j responds with probability 1 if its response cost cj is

below threshold c∗, and does not respond if its cost cj is above the threshold; if its cost cj

equals the threshold, j is indifferent and may mix between responding or not. When the cost

distribution H has no atom, allowing heterogeneous costs purifies the dealer’s decision to

respond. Unconditionally, a dealer’s response probability is a∗n(c
∗) as if all dealers’ response

costs were homogeneous and equal to c∗. Conditional on responding, the response cost cj

is sunk. Hence, the dealer’s problem of what price to offer remains the same as in the case

with homogeneous cost c∗. Therefore, the customer continues to contact n∗ = 2 dealers as

in the homogeneous cost case. The proof is otherwise identical to that for Theorem 1.
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D The Deadweight Nature of the Response Cost

What happens if the dealers’ response cost c, rather than being a deadweight loss, is a

fee levied by the platform and redistributed to the customer? I show that (1) the customer

continues to contact two dealers, and (2) her ex-ante payoff is π∗
2 + 2a∗2c, which is her

equilibrium payoff π∗
2 in the benchmark model of Section 2 plus the expected fee 2a∗2c paid

by the two dealers.

The benchmark model is modified in one way: Each dealer pays a fee c > 0 to respond

to the RFQ in Stage 2. The fee paid by all responding dealers is transferred to the customer

upon a successful trade and refunded back to the responding dealers if the RFQ fails. The

refund prevents the customer from sending “fake” RFQs only to collect the fee.

Proposition 9. I consider the modified model with a response fee replacing a deadweight

response cost. Its unique symmetric subgame perfect equilibrium is identical to that of the

benchmark model, (n∗, i∗, a∗, F ∗), given in Theorem 1.

Proof. In Stage 3, the customer continues to trade with the dealer offering the lowest

price if that price does not exceed the customer’s reservation price v. Thus, in Stage 2,

the dealers’ subgame remains unaffected, and the dealers continue to follow the equilibrium

strategy (a∗, F ∗). In Stage 1, the customer’s payoff is 0 upon contacting n = 1 dealer. If the
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customer contacts n > 1 dealers, her expected payoff is given by

π∗
n + na∗nc = v − EG∗

n
(p ∧ v)︸ ︷︷ ︸

suppression of competition

+ na∗nc︸︷︷︸
fee revenue

(following from (9))

= v −
(
c+

∫ v

c

[1−G∗
n(p)]dp

)
+ na∗nc

= v −
(
c+

∫ v

c

[1− a∗nF
∗
n(p)]

n dp

)
+ na∗nc

= v − c−
∫ v

c

(
c

p

) n
n−1

dp+ n

[
1−

( c
v

) 1
n−1

]
c (following from (7) and (8))

= v − c− (n− 1)c

[
1−

( c
v

) 1
n−1

]
+ nc

[
1−

( c
v

) 1
n−1

]
= v − c

( c
v

) 1
n−1

.

The customer’s expected payoff is thus strictly decreasing in n ≥ 2. Therefore, it is strictly

optimal for the customer to contact n∗ = 2 dealers.

For some fee-to-value ratio c/v, the aggregate fee revenue na∗nc expected by the customer

could be strictly increasing in the number n of contacted dealers (Figure 3, when c/v = 0.1).

However, dealers’ strategic avoidance of competition causes the customer’s trading profit to

decline more steeply with n, dominating any fee incentive.

This variant shuts down the deadweight loss aspect of the response cost while preserving

the suppression of dealer competition caused by the cost. What drives my result is not

the deadweight cost of responding to an RFQ per se, because the equilibrium is completely

unaffected even if the cost becomes a mere transfer from the dealers to the customer. The

key force is dealers’ strategic avoidance of competition, arising from the cost and enabled by

the dealers’ ability to ignore the RFQ.
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Figure 3: Aggregated Expected Fee Revenue

E Risk-Averse Dealers

This appendix solves the case where dealers are risk-averse. I modify the benchmark

model by letting the dealer’s utility function u be concave. The remaining setup remains

identical to the benchmark model. It remains strictly optimal for the customer to contact

n∗ = 2 dealers in the unique symmetric subgame perfect equilibrium of this modified model. I

first obtain this result by applying the intuition for Proposition 1 (dealers’ strategic avoidance

of competition). Then, I formally solve for the equilibrium.

The intuition for Proposition 1 (dealers’ strategic avoidance of competition)

remains valid.

When a dealer j offers a given price p in its price support, its expected utility

γu
n(p)︸ ︷︷ ︸

P(Dealer j wins the trade when offering a given price p)

×u(p− c) + [1− γu
n(p)]× u(−c)
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equals that of its outside option, u(0). Then, the remaining steps follow in the exact same

manner. When the customer contacts one more dealer, γu
n(p) should remain constant. Given

that γu
n(p) := P (Dealer j wins the trade when offering a given price p) = [θun(p)]

n−1, where

θun(p) := P (a given dealer does not offer a price lower than p) ,

then [θun+1(p)]
n = [θun(p)]

n−1. Thus, P (a given dealer does not offer a price lower than p)

should rise, θ∗n+1(p) > θ∗n(p). Hence, P (no dealer offers a price lower than p) should rise

too, [θ∗n+1(p)]
n+1 > [θ∗n(p)]

n. Therefore, dealers’ best overall price offer becomes stochasti-

cally larger, G∗
n+1 ≻(1) G

∗
n. The intuition for Proposition 1 (dealers’ strategic avoidance of

competition) remains valid when dealers are risk-averse, and results in a strictly less compet-

itive best overall price p = minj=1,...,n pj for the customer if the customer contacts one more

dealer. Consequently, it remains strictly optimal for the customer to contact two dealers.

Formal solution for the equilibrium

Proposition 10. The modified model where dealers are risk-averse has a unique symmetric

subgame perfect equilibrium (n∗, i∗, au, F u), where n∗ and i∗ are the same as in Theorem 1,

and

aun =


1−

(
u(0)− u(−c)

u(v − c)− u(−c)

) 1
n−1

if n > 1,

1 if n = 1,

F u
n (p) =



1−
(

u(0)−u(−c)
u(p−c)−u(−c)

) 1
n−1

1−
(

u(0)−u(−c)
u(v−c)−u(−c)

) 1
n−1

, and supp F u
n = [c, v] if n > 1,

1p≥v if n = 1.

Compared to Theorem 1, the customer’s equilibrium strategy (n∗, i∗) remains unchanged.
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The only difference lies in the expressions of the dealer’s equilibrium strategy (aun, F
u
n ), which

arises from the fact that the dealer’s indifference condition (6) becomes

[1− aunF
u
n (p)]

n−1︸ ︷︷ ︸
P(Dealer j wins the trade)

u(p− c) +
(
1− [1− aunF

u
n (p)]

n−1)︸ ︷︷ ︸
P(Dealer j loses the trade)

u(−c) = u(0), ∀p ∈ supp F u
n .

The remaining proof is otherwise identical to that of Theorem 1. Some algebra shows that

au = a∗ and F u = F ∗ if u is linear, and aun < a∗n and F u
n ≻(1) F

∗
n for all n > 1 if u is strictly

concave: Risk aversion causes every dealer to respond with a lower probability and offer a

stochastically worse price when responding.
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Internet Appendices

A Sequential Requests for Quote

This section solves an extension with three sequential RFQs, where each dealer incurs

a cost c only once upon responding to one or more RFQs. Through a backward induction,

I show that the customer in each RFQ continues to contact two dealers, in the unique

symmetric Markov perfect equilibrium of this extension.

Trading Game. Formally, the three-period trading game works as follows. A dealer incurs

no cost upon responding to an RFQ and is thus called a “free dealer” if it had already

responded to a prior RFQ. Otherwise, the dealer is called a “non-free dealer” and incurs

a response cost c > 0. In each period k (k = 1, 2, 3), an RFQ proceeds in three stages.

In Stage 1, customer k chooses a number nk
1 of free dealers and a number nk

0 of non-free

dealers to contact. Observing the total number fk of free dealers at the beginning of period

k and the customer’s choice (nk
0, n

k
1), each contacted dealer j chooses whether to respond

and what price pkj to offer in Stage 2. In Stage 3, the customer chooses whether and against

which dealer’s price to trade. I assume two tie-breaking rules: Whenever the customer is

indifferent among several options, she first minimizes the number of dealers she contacts,

and then maximizes the probability of a trade.16 The asset’s expected payoff is normalized

to 0, and the customer has an additional value v of owning the asset. The response cost c is

assumed to be less than the value v (c < v) so that the RFQ has a positive net surplus from

trade at all possible contingencies. As in the benchmark model of Section 2, all agents are

risk-neutral with no time discounting.

16The priority of these two tie-breaking rules is irrelevant. All equilibrium results continue to hold if a
customer first maximizes the probability of a trade, and then minimizes the number of dealers she contacts.
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Strategies and equilibrium concept. The strategy of customer k consists of a triple(
nk
0, n

k
1, i

k
)
, following which the customer contacts nk

1 free dealers and nk
0 non-free dealers

in Stage 1, and trades with dealer ik ∈ {0, 1, . . . , nk} in Stage 3, where nk := nk
0 + nk

1. The

strategy of dealer j consists of a couple
(
ak
j,hk

j
, F k

j,hk
j

)
for each period k ∈ {1, 2, 3}, which can

depend on all information hk
j available to the dealer right before it responds to the kth RFQ.

A symmetric Markov perfect equilibrium17 is a symmetric subgame perfect equilibrium

such that every dealer’s equilibrium strategy depends on its information set only through the

payoff-relevant state (fk, fk
j , n

k
0, n

k
1), where fk

j := 1{j is free at the beginning of period k}:

(Markov symmetry) a∗kj,hk
j
= a∗kfk

j ,f
k,nk

0 ,n
k
1
and F ∗k

j,hk
j
= F ∗k

fk
j ,f

k,nk
0 ,n

k
1

for k ∈ {1, 2, 3}, fk, nk
0 ∈ Z+, nk

1 ≤ fk, j ≤ nk, and fk
j ≤ max{fk, 1}.

Equilibrium

Proposition A.1. The three-period model has a unique symmetric Markov perfect equilib-

rium consisting of the following strategies:

n∗k
1 = min

{
fk, 2

}
, n∗k

0 = 2− n∗k
1 , i∗k


∈ argmin

j=1,...,n
pj if min

j=1,...,n
pj ≤ v,

= 0 if min
j=1,...,n

pj > v,

for k = 1, 2, 3,

17The solution concept of Markov perfect equilibrium has been widely applied in publications starting
about 1988 in the work of Jean Tirole and Eric Maskin (Maskin and Tirole, 1988b,a; Fudenberg and Tirole,
1991). It is formally defined in Maskin and Tirole (2001).
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nk
1 > 1 k = 3 or fk > 0, nk

1 ≤ 1 k = 2, fk = 0 k = 1

a∗k
1,fk,nk

0 ,n
k
1

1 1 NA NA

F ∗k
1,fk,nk

0 ,n
k
1

1p≥0 ac
nkF

c
nk +

(
1− ac

nk

)
1p≥v NA NA

a∗k
0,fk,nk

0 ,n
k
1

0 ac
nk := a∗

nk ac
′′

nk ac
′

nk

F ∗k
0,fk,nk

0 ,n
k
1

NA F c
nk := F ∗

nk F c′′

nk F c′

nk

Here, I write ac for a∗ and F c for F ∗ (both are given in Theorem 1) to underline their

dependence on the cost c, and

c′′ :=
cv

c+ v
, c′ :=

cv2

v2 + cv + c2
.

If all dealers are non-free at the beginning of an RFQ (fk = 0), responding to the RFQ

spares a dealer the cost of responding to subsequent RFQs, giving that dealer a potential

advantage over other dealers and thus a higher continuation payoff. The anticipation of

this gain in continuation payoff reduces every dealer’s effective cost of responding to the

current RFQ down to some c′′ in period 2 and c′ in period 1, respectively. I compute the

effective response costs c′′ and c′ in the formal proof below. Hence, the dealers respond with

probability ac
′′

nk and offer the price distribution F c′′

nk in period k = 2, and follow (ac
′

nk , F
c′

nk) in

period k = 1. Therefore, it remains strictly optimal for the customer in each of periods 2

and 1 to contact two dealers.

If some dealers are free at the beginning of an RFQ (fk > 0), responding to the RFQ

does not change the continuation payoff of any dealer j, regardless of whether j was free

before responding. Hence, one can solve for the current RFQ’s equilibrium strategies as if

it were in the last period and thus insulated from other RFQs. Following the steps above, I

show that every customer continues to contact two dealers in all circumstances.
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Now, I proceed with a backward induction to formally solve for the symmetric Markov

perfect equilibrium.

Proof of Proposition A.1. In Stage 3 of any customer RFQ, it is always optimal for

the customer to trade with the dealer who offers the lowest price if that price does not exceed

the customer’s private value v, and does not trade otherwise.

In Stage 2, if the customer contacts more than one free dealer (nk
1 > 1), those free dealers

respond with probability a∗k
1,fk,nk

0 ,n
k
1
= 1 and offer the competitive price 0 deterministically,

while any non-free dealer responds with probability a∗k
0,fk,nk

0 ,n
k
1
= 0. If the customer contacts a

total of nk = 1 dealer, then that dealer responds with probability 1 and offers the monopoly

price v deterministically. It remains to consider cases where nk
1 ≤ 1, nk > 1.

- Period 3 (k = 3):

When the customer contacts only non-free dealers (nk
1 = 0), those non-free dealers’

equilibrium response strategy consists and only consists of a symmetric subgame perfect

equilibrium being played in the benchmark model’s second stage. Thus, those non-free

dealers respond with probability ac
nk and offer the price distribution F c

nk conditional on

responding (Theorem 1).

If the customer contacts nk
1 = 1 free dealer, that free dealer responds with probability

a∗k
1,fk,nk

0 ,n
k
1
= 1, because it can undercut all non-free dealers and thus secure a strictly positive

payoff by offering a price slightly below c. The price distributions F ∗k
1,fk,nk

0 ,n
k
1
and F ∗k

0,fk,nk
0 ,n

k
1

cannot both have an atom at the same price: Given that responding with any non-positive

price is strictly dominated by not responding for a non-free dealer, then F ∗k
0,fk,nk

0 ,n
k
1
(0) = 0.

If F ∗k
1,fk,nk

0 ,n
k
1
and F ∗k

0,fk,nk
0 ,n

k
1
both had an atom at some price p0 > 0, undercutting it by

offering a price p0 − ε would yield a strictly higher payoff than offering p0 for at least one
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dealer.18 Letting the upper bounds of the free and a non-free dealers’ price supports be

p̂1 := sup(supp F ∗k
1,fk,nk

0 ,n
k
1
) and p̂0 := sup(supp F ∗k

0,fk,nk
0 ,n

k
1
), respectively, I show that p̂1 = v.

When a non-free dealer offers a price p ∈ supp F ∗k
0,fk,nk

0 ,n
k
1
within its support that arbitrarily

approaches its upper bound p̂0, it gets to trade with the customer with a probability of at

most 1−F ∗k
1,fk,nk

0 ,n
k
1
(p̂−0 ). Then, F

∗k
1,fk,nk

0 ,n
k
1
(p̂−0 ) < 1. Thus, p̂0 = p̂1 and F ∗k

1,fk,nk
0 ,n

k
1
has an atom

at p̂1, or p̂0 < p̂1. In either case,

F ∗k
0,fk,nk

0 ,n
k
1
(p̂−1 ) = 1, (A.1)

as F ∗k
0,fk,nk

0 ,n
k
1
and F ∗k

1,fk,nk
0 ,n

k
1
cannot both have an atom at p̂1. Given that responding with

any price higher than the customer’s value v would earn the free dealer a payoff of zero,

then p̂1 ≤ v. When the free dealer offers a price p ∈ supp F ∗k
1,fk,nk

0 ,n
k
1
within its support that

arbitrarily approaches its upper bound p̂1, it gets to trade with the customer if and only if

all non-free dealers do not respond, an event that occurs with probability (1− a∗k
0,fk,nk

0 ,n
k
1
)n

k
0 .

Thus, the free dealer’s expected trading profit in period 3 approaches p̂1(1− a∗k
0,fk,nk

0 ,n
k
1
)n

k
0 . If

the free dealer offers price v, its expected trading profit is at least v(1 − a∗k
0,fk,nk

0 ,n
k
1
)n

k
0 . The

free dealer’s optimality condition implies that a∗k
0,fk,nk

0 ,n
k
1
< 1 and p̂1 = v.

When a non-free dealer offers a price p
1
− ε that arbitrarily approaches the free dealer’s

lower bound p
1
:= inf(supp F ∗k

1,fk,nk
0 ,n

k
1
) from below, the non-free dealer’s expected trading

profit approaches p
1
[1 − a∗k

0,fk,nk
0 ,n

k
1
F ∗k
0,fk,nk

0 ,n
k
1
(p−

1
)]n

k
0−1. This limiting gain is at most c, since

the non-free dealer’s response probability is less than 1, a∗k
0,fk,nk

0 ,n
k
1
< 1. When the free dealer

offers a price p ∈ F ∗k
1,fk,nk

0 ,n
k
1
within its support that arbitrarily approaches its lower bound

p
1
, its expected trading profit is at most p

1
[1 − a∗k

0,fk,nk
0 ,n

k
1
F ∗k
0,fk,nk

0 ,n
k
1
(p−

1
)]n

k
0 . Then, the free

18When every dealer offers the same price p0, at least one dealer trades with the customer with a probability
of less than 1 regardless of how the customer breaks her tie. Then, that dealer is strictly better off offering
the slightly lower price p0 − ε to undercut the other dealers.
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dealer’s expected trading profit is at most c and thus must equal c,

p
[
1− a∗k0,fk,nk

0 ,n
k
1
F ∗k
0,fk,nk

0 ,n
k
1
(p−)

]nk
0

= c, ∀p ∈ supp F ∗k
1,fk,nk

0 ,n
k
1
. (A.2)

Setting p = p̂1 = v in the equation above together with equation (A.1) yields

v
[
1− a∗k0,fk,nk

0 ,n
k
1

]nk
0

= c ⇐⇒ a∗k0,fk,nk
0 ,n

k
1
= 1−

( c
v

) 1

nk−1
.

A non-free dealer’s expected trading profit also equals c,

p
[
1− a∗k0,fk,nk

0 ,n
k
1
F ∗k
0,fk,nk

0 ,n
k
1
(p−)

]nk
0−1 [

1− F ∗k
1,fk,nk

0 ,n
k
1
(p−)

]
= c, ∀p ∈ supp F ∗k

0,fk,nk
0 ,n

k
1
. (A.3)

Then, equations (A.2) and (A.3) uniquely determine the price distributions F ∗k
0,fk,nk

0 ,n
k
1
and

F ∗k
1,fk,nk

0 ,n
k
1
,

F ∗k
0,fk,nk

0 ,n
k
1
= F c

nk , F ∗k
1,fk,nk

0 ,n
k
1
= acnkF

c
nk + (1− acnk)1p≥v.

Instead of ignoring the RFQ with probability 1 − ac
nk , the free dealer offers the monopoly

price v with the same probability 1− ac
nk . Otherwise, the n dealers’ response strategies are

identical to those in the benchmark model of Section 2.

In Stage 1, when there exist at least two free dealers (fk ≥ 2), the customer’s payoff is v,

which she achieves by contacting exactly n∗k
1 = 2 free dealers; when there exists at most one

free dealer (fk ≤ 1), the customer’s expected payoff is π∗
2, which she achieves by contacting

n∗k
1 = fk free dealer and n∗k

0 = 2− n∗k
1 non-free dealer(s) due to the two tie-breaking rules.

As a result, a dealer’s expected payoff in period 3 is summarized as follows.

Lemma A.1. In all cases, a dealer expects a payoff of c in period 3 if it is the only free
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dealer at the beginning of period 3, and a payoff of 0 otherwise.

- Period 2 (k = 2):

If some dealers are free at the beginning of period 2 (fk > 0), then given any contacted

dealer j, responding in period 2 does not change its period-3 continuation payoff, regardless

of whether j was free before responding: If j was free, j remains free and thus expects the

same continuation payoff in period 3, regardless of whether j responds in period 2. If j was

non-free, j cannot be the only dealer who is free at the beginning of period 3 as some other

dealers were already free. Thus, j expects a continuation payoff of 0 in period 3, regardless

of whether j responds in period 2 (Lemma A.1). Hence, one can solve for the current RFQ’s

equilibrium strategies as if it were in the last period and thus insulated from other RFQs.

Therefore,

a∗2f2
j ,f

2,n2
0,n

2
1
= a∗3f2

j ,f
2,n2

0,n
2
1
, F ∗2

f2
j ,f

2,n2
0,n

2
1
= F ∗3

f2
j ,f

2,n2
0,n

2
1
, n∗2

0 = n∗3
0 , n∗2

1 = n∗3
1 , if f 2 > 0.

In particular, the customer contacts a total number of n∗2 = n∗3 = 2 dealers.

If all dealers are non-free at the beginning of period 2 (fk = 0), then the price distribution

F ∗k
0,fk,nk

0 ,n
k
1
cannot have an atom at any positive price: If F ∗k

0,fk,nk
0 ,n

k
1
had an atom at some price

p0 > 0, undercutting it by offering a price p0 − ε would yield a strictly higher payoff than

offering p0 for at least one dealer.

Responding in period 2 earns a dealer an additional expected payoff of c in period 3 if no

other dealer responds in period 2. Thus, upon offering a price p ∈ supp F ∗k
0,fk,nk

0 ,n
k
1
within its

support that arbitrarily approaches its support’s upper bound p̄ := sup
(
supp F ∗k

0,fk,nk
0 ,n

k
1

)
,

a dealer’s continuation payoff is at most (p̄1p̄≤v + c)(1− a∗k
0,fk,nk

0 ,n
k
1
)n

k−1. If the dealer offers

price v, its continuation payoff is at least (v+ c)(1− a∗k
0,fk,nk

0 ,n
k
1
)n

k−1. The dealer’s optimality
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condition implies that p̄ = v. The dealer’s individual rationality implies that its continuation

payoff upon responding is no lower than its response cost, (v + c)(1 − a∗k
0,fk,nk

0 ,n
k
1
)n

k−1 ≥ c.

Hence, a∗k
0,fk,nk

0 ,n
k
1
< 1. Then the dealer’s indifference condition implies

(c+ v)
[
1− a∗k0,fk,nk

0 ,n
k
1

]nk−1

= c ⇐⇒ a∗k0,fk,nk
0 ,n

k
1
= 1−

(
c

c+ v

) 1

nk−1

.

Thus, responding in period 2 earns a dealer an additional expected payoff of c(1−a∗k
0,fk,nk

0 ,n
k
1
)n

k−1

= c2/(c + v) in period 3, which reduces every dealer’s “effective response cost” in period 2

to

c′′ = c− c2

c+ v
=

cv

c+ v
.

Therefore, every dealer responds with probability a∗k
0,fk,nk

0 ,n
k
1
= ac

′′

nk and offers the price distri-

bution F ∗k
0,fk,nk

0 ,n
k
1
= F c′′

nk conditional on responding (Theorem 1), and the customer contacts

a total number of n∗k = 2 dealers.

- Period 1 (k = 1):

As in period 2, the price distribution F ∗k
0,fk,nk

0 ,n
k
1
cannot have an atom at any positive price.

Responding in period 1 earns a dealer an additional expected payoff of c in period 2 if no other

dealer responds in period 1, and another payoff of c in period 3 if no other dealer responds

in either period 1 or period 2. Thus, upon offering a price p ∈ supp F ∗k
0,fk,nk

0 ,n
k
1
within its

support that arbitrarily approaches its support’s upper bound p̃ := sup
(
supp F ∗k

0,fk,nk
0 ,n

k
1

)
, a

dealer’s continuation payoff is at most [p̃1p̃≤v+c+c(1−a∗2
0,1,n∗2

0 ,n∗2
1
)n

∗2−1](1−a∗k
0,fk,nk

0 ,n
k
1
)n

k−1 =

(p̃1p̃≤v+ c+ c2/v)(1−a∗k
0,fk,nk

0 ,n
k
1
)n

k−1. If the dealer offers price v, its continuation payoff is at

least (v+ c+ c2/v)(1− a∗k
0,fk,nk

0 ,n
k
1
)n

k−1. The dealer’s optimality condition implies that p̃ = v.

The dealer’s individual rationality implies that its continuation payoff upon responding is

no lower than its response cost, (v+ c+ c2/v)(1− a∗k
0,fk,nk

0 ,n
k
1
)n

k−1 ≥ c. Hence, a∗k
0,fk,nk

0 ,n
k
1
< 1.
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Then, the dealer’s indifference condition implies

(
v + c+

c2

v

)(
1− a∗k0,fk,nk

0 ,n
k
1

)nk−1

= c ⇐⇒
(
1− a∗k0,fk,nk

0 ,n
k
1

)nk−1

=
c

v + c+ c2

v

.

Thus, responding in period 2 earns a dealer an additional combined payoff of (c+ c2/v)(1−

a∗k
0,fk,nk

0 ,n
k
1
)n

k−1 = (c2v + c3)/(v2 + vc + c2) in periods 2 and 3, which reduces every dealer’s

effective response cost in period 1 to

c′ = c− c2v + c3

v2 + cv + c2
=

cv2

v2 + cv + c2
.

Therefore, every dealer responds with probability a∗k
0,fk,nk

0 ,n
k
1
= ac

′

nk and offers the price distri-

bution F ∗k
0,fk,nk

0 ,n
k
1
= F c′

nk conditional on responding (Theorem 1), and the customer contacts

a total number of n∗k = 2 dealers.

B Exogenous Budget Constraint

If some dealers are subject to an exogenous budget constraint, the equilibrium results

remain qualitatively identical to those in the case where some dealers are subject to an

exogenous availability constraint (Appendix A). This section solves two variants of the model

that include an exogenous budget constraint.

Variant B1

Variant B1 alters Variant A1 of Appendix A as follows. In Stage 0, every dealer j

privately observes whether it is subject to a budget constraint pj ≤ z, which occurs with

probability 1 − β independently across dealers (β < 1). In Stage 1, a customer seeking to

sell one unit of an asset chooses a number n of dealers to contact in an RFQ. The customer
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can contact at most n̄ dealers (n̄ > 1), because it turns out that the customer will contact

as many dealers as is feasible in equilibrium. Observing the customer’s choice n, each dealer

j chooses what price pj to bid subject to its potential budget constraint pj ≤ z in Stage

2. The asset’s expected payoff is normalized to 0, and the customer has a private disutility

−v of owning the asset due to a liquidity shock. The budget constraint z is assumed to be

−v ≤ z < 0. In Stage 3, the customer chooses whether and against which dealer’s price

to trade. I do not impose any tie-breaking rule in the case of indifference. All agents are

risk-neutral.

Variant B1 differs from Variant A1 in Appendix A in two respects: (1) Variant B1 flips

the direction of trade by letting the customer be a seller and the dealers be bidders, in order

to introduce the budget constraint for the dealers, and (2) the budget constraint replaces

the exogenous availability constraint, which would be equivalent to a budget constraint with

z < −v such that a constrained dealer would be unable to bid any price acceptable to the

customer. (On the other hand, the benchmark model of Section 2 with no budget constraint

would be equivalent to a budget constraint z ≥ 0 that is non-binding as a dealer would not

bid a price exceeding the asset’s expected payoff 0 anyway.)

As in Variant A1 of Appendix A, the customer would contact as many dealers as is

feasible. The next proposition establishes the counterpart of Proposition 5 (Appendix A)

for the budget constraint.

Proposition B.1. Variant B1 has a unique symmetric subgame perfect equilibrium (nz, ibid,
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F cons, F uncons), where the customer’s strategy is

nz = n̄, ibid



∈ argmax
j=1,...,n

pj if max
j=1,...,n

pj > −v,

= 0 if max
j=1,...,n

pj < −v,

∈ {argmax
j=1,...,n

pj, 0} if max
j=1,...,n

pj = −v,

and the price distributions F cons and F uncons of a constrained and an unconstrained dealer

are

n > 1 n = 1

F cons
n (p) 1p≥z 1p≥−v

F uncons
n (p) 1−β

β

[(
z
p

) 1
n−1 − 1

]
, and supp F uncons

n = [z, z(1− β)n−1] 1p≥−v

In particular, the best overall bid p = maxj=1,...,n pj becomes first-order stochastically larger

as n increases. When n̄ → ∞, the equilibrium best overall bid p = maxj=1,...,n̄ pj converges

in distribution to the competitive limit 0.

Proof. The backward induction for Variant B1 closely parallels that for Variant A1 (Propo-

sition 5, Appendix A).

In Stage 3, the customer optimally chooses to sell to the dealer with the highest bid if

that bid exceeds the customer’s disutility −v, and does not sell otherwise.

In Stage 2, if the customer contacts n = 1 dealer, then it would be strictly optimal for the

dealer to bid the monopoly price −v deterministically, F cons
n (p) = F uncons

n (p) = 1p≥−v. When

the customer contacts n > 1 dealers, the price distribution F cons
n cannot have an atom at any

price p0 < z: If F cons
n had an atom at some price p0 < z, slightly overbidding it with a price

p0+ε would yield a strictly higher payoff than bidding p0 for at least one constrained dealer.

At least one constrained dealer can secure an expected trading profit of −z(1−β)n−1/n > 0
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or higher by bidding price z. When that dealer bids a price p ∈ supp F cons
n within its support

that arbitrarily approaches its support’s lower bound pcons := inf (supp F cons
n ), the dealer’s

expected trading profit approaches 0 if pcons < z. Hence, pcons = z. Therefore, a constrained

dealer bids price z deterministically, F cons
n (p) = 1p≥z.

Similar to F cons
n , the price distribution F uncons

n cannot have an atom at any negative

price. When an unconstrained dealer bids a price p ∈ supp F uncons
n within its support that

arbitrarily approaches its support’s lower bound puncons := inf (supp F uncons
n ), the dealer’s

expected trading profit is at most−puncons1{puncons≥z}(1−β)n−1. If the dealer bids a price z+ε

that arbitrarily approaches z from above, its expected trading profit is at least −z(1−β)n−1.

The dealer’s optimality condition implies that puncons = z. Then, the dealer’s optimality

condition is equivalent to

− p [βF uncons
n (p) + 1− β]n−1 = −z(1− β)n−1, ∀p ∈ supp F uncons

n ,

⇐⇒ F uncons
n (p) =

1− β

β

[(
z

p

) 1
n−1

− 1

]
, and supp F uncons

n =
[
z, z(1− β)n−1

]
.

In Stage 1, the customer’s payoff is 0 upon contacting n = 1 dealer. If n > 1, the

distribution Gz
n of the dealers’ best overall bid p = maxj=1,...,n pj is given by

Gz
n(p) = [βF uncons

n (p) + 1− β]n , ∀p ∈
[
z, z(1− β)n−1

]
.

If n increases, F uncons
n (p) strictly decreases, and thus Gz

n(p) strictly decreases. That is, the

dealers’ best overall bid p = maxj=1,...,n pj becomes first-order stochastically larger when

the customer contacts more dealers. Therefore, the customer’s unique optimal choice is

nz = n̄.
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Variant B2

Variant B2 differs from Variant B1 in two respects: (1) Each dealer can endogenously

decide whether to respond (subject to its potential budget constraint) at a cost c, which is

assumed to be less than v (c < v) so that there is a positive net surplus from trade. (2) The

customer could contact any arbitrary number of dealers. Variant B2 is otherwise identical to

Variant B1. That is, Variant B2 reintroduces dealers’ ability to ignore the RFQ to Variant

B1.

Variant B2 is the counterpart of Variant A2 in Appendix A. As in Variant A2, an interior

solution for the equilibrium number of contacted dealers resurfaces. The next proposition

establishes the counterpart of Proposition 6 (Appendix A) for the budget constraint.

Proposition B.2. All symmetric subgame perfect equilibria (nz,c, ibid, acons,c, F cons,c, auncons,c,

F uncons,c) of Variant B2 are such that ibid is the same as in Proposition B.1,

nz,c = m, . . . , or m̄,

and the strategies (acons,c, F cons,c) and (auncons,c, F uncons,c) of a constrained and an uncon-

strained dealer satisfy

(1− β) acons,cn [1− F cons,c
n (p)] + β auncons,cn [1− F uncons,c

n (p)] = a∗nF
∗
n(−p) if n ≥ m̄, (B.1)
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n ≤ m m < n < m̄

acons,cn (p) 1 max

{
ã, 1− ( c

v )
1

n−1

1−β

}

F cons,c
n (p) F cons

n (p) min

{
1− 1− 1

1−β (
c

−p)
1

n−1

1− 1
1−β (

c
v )

1
n−1

, 1− δ

}
1p≥−v + δ1p≥z

auncons,cn (p) 1 1

F uncons,c
n (p) F uncons

n (p) F uncons
n (p).

Here, (F cons, F uncons) are given in Proposition B.1; (a∗, F ∗) are given in Theorem 1; m and

m̄ are uniquely determined by

a∗mF
∗
m

(
−z

m

)
≥ β > a∗m+1F

∗
m+1

(
−z

m+ 1

)
and

a∗m̄−1F
∗
m̄−1(−z) > β ≥ a∗m̄F

∗
m̄(−z), respectively;

and ã ∈ (0, 1) is uniquely determined by

1− [1− ã]n

ã
=

nc

−z(1− β)n−1
, (B.2)

and

δ =
ã

acons,cn
.

An interior solution on the number n resurfaces in Variant B2 following an argument

similar to that for Variant A2 in Appendix A. When the n contacted dealers are able to

strategically ignore the RFQ, the budget constraint becomes non-binding when m ≥ m̄,

because each dealer would bid above the constraint z with a probability a∗nF
∗
n(−z) that is

lower than β anyway. Thus, the dealers behave as if the budget constraint were absent:

Each dealer’s unconditional bid distribution, given by the left-hand side of equation (B.1),
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remains to be a∗nF
∗
n(−p). Hence, the customer strictly prefers to contact fewer dealers in

this range. Therefore, an interior solution on the equilibrium number of contacted dealers

resurfaces, as in Proposition 6 (Appendix A).

The equilibrium is formally solved as follows.

Proof of Proposition B.2. In Stage 3, the customer’s optimal dealer choice remains to

be ibid, as given in Proposition B.1.

In Stage 2, when the customer contacts n > 1 dealers, the price distribution F uncons,c
n

cannot have any atom. Otherwise, bidding slightly above the atom would yield a strictly

higher payoff for at least one unconstrained dealer. Likewise, the price distribution F cons,c
n

cannot have an atom at any price p < z.

- If the customer contacts n ≥ m̄ dealers: If an unconstrained dealer j had a strictly

positive expected payoff, j would respond with probability 1. When j bids a price p ∈

supp F uncons,c
n within its support that arbitrarily approaches its support’s lower bound

puncons,c := inf (supp F uncons,c
n ), its expected trading profit is at most −puncons,c(1 − β)n−1.

Given that n ≥ m̄ is equivalent to

−z(1− β)n−1 ≤ c,

it must be that puncons,c < z. Then a constrained j must have the same expected payoff

as an unconstrained j, which was assumed to be strictly positive. These would imply

acons,cn = 1 and auncons,cn = 1. Thus, sparing the n dealers the response cost c would

not make any dealer’s equilibrium response strategy suboptimal. Hence, the n dealers’

response strategy would constitute a subgame perfect equilibrium being played in the

second stage of Variant B1, where every dealer responds (subject to its potential budget
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constraint). However, in the unique subgame perfect equilibrium of Variant B1 (given in

Proposition B.1), the lower bound inf (supp F uncons
n ) of an unconstrained dealer’s support

equals z, contracting puncons,c < z. Therefore, an unconstrained dealer’s expected payoff

must equal 0. The optimality of an unconstrained dealer implies that the n dealers’

unconditional response strategy constitutes a subgame perfect equilibrium being played

in the second stage of an RFQ with no budget constraint. Equation (B.1) thus follows.

- If the customer contacts n ≤ m dealers: Equivalently,

−z(1− β)n−1

n
≥ c.

If a constrained dealer responds with a probability of less than 1 (acons,cn < 1), then at

least one constrained dealer can secure an expected payoff that strictly exceeds −z(1 −

β)n−1/n−c ≥ 0 by bidding price z, contradicting the assumption that the dealer responds

with a probability of less than 1. Thus, acons,cn = 1. An unconstrained dealer can secure an

expected payoff of −z(1−β)n−1− c > 0 or higher by bidding a price z+ ε that arbitrarily

approaches z from above. Thus, an unconstrained dealer also responds with probability

1, auncons,cn = 1. Then, sparing the n dealers the response cost c would not make any

dealer’s equilibrium response strategy suboptimal. Hence, the n dealers’ response strategy

constitutes a subgame perfect equilibrium being played in the second stage of Variant B1,

where every dealer responds (subject to its potential budget constraint). Therefore,

F cons,c = F cons, F uncons,c = F uncons, acons,cn = 1, auncons,cn = 1.

- When the customer contacts m < n < m̄ dealers: If a constrained dealer j had a strictly
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positive expected payoff, so must an unconstrained j. These would imply that acons,cn =

1 and auncons,cn = 1. Then, sparing the n dealers the response cost c would not make

any dealer’s equilibrium response strategy suboptimal. Hence, the n dealers’ response

strategy would constitute a subgame perfect equilibrium being played in the second stage

of Variant B1, where every dealer responds (subject to its potential budget constraint).

However, under the equilibrium given in Proposition B.1, at least one constrained dealer’s

expected trading profit is bounded from above by −z(1 − β)n−1/n, which is strictly less

than the response cost c for n > m. This contradicts the constrained dealer’s individual

rationality. Therefore, a constrained dealer’s expected payoff must equal 0. Given that

an unconstrained dealer can secure an expected payoff of at least −z(1 − β)n−1 − c >

0 by bidding a price z + ε that arbitrarily approaches z from above, then the dealer

never bids below z, puncons,c ≥ z. That the supports of constrained and unconstrained

dealers do not overlap allows me to solve for their response strategies (acons,c, F cons,c) and

(auncons,c, F uncons,c) separately.

An unconstrained dealer responds with probability 1, auncons,c = 1. Following identical

steps that solve F uncons in the proof of Proposition B.1, one obtains the same solution for

F uncons,c, F uncons,c = F uncons.

A constrained dealer cannot have an atom at any price p < z, and could have an atom

at price z. I let δ := 1−F cons,c
n (z−) be the dealer’s mass at price z. Then δ > 0, otherwise

bidding z would yield an expected payoff of −z(1 − β)n−1 − c > 0 for the constrained

dealer. Thus,

−z

n∑
k=1

(
n

k

)
[(1− β)acons,cn δ]k−1[1− β − (1− β)acons,cn δ]n−k = nc.
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The left-hand side above is a given dealer’s expected trading profit upon bidding z, summed

across the n dealers. This sum equals nc, the response cost summed across the n deal-

ers. Letting ã := acons,cn δ, the above equation is equivalent to equation (B.2), which is a

polynomial that admits a unique solution ã ∈ (0, 1).

Conditional on responding, if a constrained dealer does not bid z deterministically

(δ < 1), then −v ∈ supp F cons,c
n : Given that responding with any bid lower than the

customer’s value −v is strictly worse than not responding, then the lower bound pcons,c :=

inf (supp F cons,c
n ) of the dealer’s support is at least −v, pcons,c ≥ −v. When the dealer bids

a price p ∈ supp F cons,c
n within its support that arbitrarily approaches its lower bound

pcons,c, the dealer’s expected trading profit approaches −pcons,c[(1 − β)(1 − acons,cn )]n−1. If

the dealer offers price −v, its expected trading profit equals v [(1− β)(1− acons,cn )]n−1. The

dealer’s optimality condition implies that pcons,c = −v.

A constrained dealer’s expected trading profit upon bidding −v does not exceed its

response cost c,

v [(1− β)(1− acons,cn )]n−1 ≤ c.

If v [(1− β)(1− ã)]n−1 > c, then ã < acons,cn and thus δ < 1. Hence, −v ∈ supp F cons,c
n ,

and

v [(1− β)(1− acons,cn )]n−1 = c ⇐⇒ acons,cn = 1−
(
c
v

) 1
n−1

1− β
.

If v [(1− β)(1− ã)]n−1 ≤ c, then either δ = 1 or v [(1− β)(1− acons,cn )]n−1 < c. In either

case, −v ̸∈ supp F cons,c
n . Thus,

δ = 1, and acons,cn = ã.
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Overall,

acons,cn = max

ã, 1−
(
c
v

) 1
n−1

1− β

 , δ =
ã

acons,cn
.

Finally, I solve for F cons,c
n by adding a constrained dealer’s indifference condition upon

bidding any price p < z within its support:


− p [(1− β)(1− acons,cn (1− F cons,c

n (p)))]n−1 = c, ∀p < z and p ∈ supp F cons,c
n ,

F cons,c
n (z−) = 1− δ, F cons,c

n (z) = 1

⇐⇒ F cons,c
n (p) = min

1−
1− 1

1−β

(
c
−p

) 1
n−1

1− 1
1−β

(
c
v

) 1
n−1

, 1− δ

1p≥−v + δ1p≥z.
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